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Progressing from additive to multiplicative thinking is a key outcome of school 

mathematics, making ratios an essential topic of study in junior secondary. In this study, 

15 Australian Year 8 students were administered a ratio test followed by semi-structured 

interviews to explore their conceptions of ratio prior to formal instruction. In this paper, 

students’ responses to one of the ratio questions are analysed in detail. Analysis of 

incorrect responses was conducted using a modified version of Radatz’s (1979) 

framework. Analysis of correct responses revealed that some students worked 

proficiently with ratio without formal instruction. 

Ratio is termed a “big idea” in mathematics, and appreciation of the multiplicative 

relationship between quantities is fundamental to developing proportional reasoning (Siemon 

et al., 2012). The capacity to reason proportionally and work with ratios is a key outcome of 

high school mathematics (Australian Curriculum, Assessment and Reporting Authority 

[ACARA], 2022). Ratios are an important topic of study in the secondary years since they unify 

the content strands of number, algebra, measurement, geometry, and data analysis and 

probability (Siemon, 2013). Despite the importance of ratios, researchers have considered the 

topic “the most protracted in terms of development, the most difficult to teach, the most 

mathematically complex, [and] the most cognitively challenging” (Lamon, 2007, p. 629). 

Analysis of student performance on the 2019 Trends in International Mathematics and Science 

Study (TIMSS) test confirmed students’ difficulties with ratios. Only 35% of students 

internationally and 40% of Australian students were able to solve a ratio problem involving the 

enlargement of a figure (Mullis et al., 2020). 

Given the importance of ratios and the noted difficulties that students experience when 

learning ratios, this study aimed to investigate Australian students’ approaches to solving ratio 

problems prior to the formal teaching of the topic. Analysing student responses before explicit 

instruction allowed for the observation of students’ natural approaches to ratio problems. This 

provides teachers with insight into the challenges and misconceptions students may experience 

when first introduced to ratios. The research question was “What approaches do junior 

secondary students use when solving ratio problems prior to instruction, and what 

misconceptions do they hold?” 

Ratio Misconceptions 

Although ratios have been identified as an area of challenge for both students and teachers, 

research into students’ misconceptions in this area is limited. International research on ratios 

has mostly focused on misconceptions and difficulties held by primary school students and 

those with mathematical difficulties (e.g., Dougherty et al., 2016). One study analysed 

secondary students’ misconceptions and difficulties with ratios in South Africa (Mahlabela, 

2012), but similar research has not yet been conducted in Australia. On a national level, research 

has focused on diagnostic approaches to assess primary school students’ proportional reasoning 
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(Hilton et al., 2013) and interventionist approaches to promote students’ emerging proportional 

reasoning (Fielding-Wells et al., 2014). Siemon and colleagues have also extensively 

researched the development of students’ multiplicative thinking, but their work was not focused 

on misconceptions (Siemon et al., 2006; Siemon, 2019). Key themes pertaining to students’ 

misconceptions and difficulties with ratios included difficulties transitioning from additive to 

multiplicative thinking, and confusion between fraction and ratio representations when 

analysing the findings from this research. 

Proficiency with ratios is dependent on students’ ability to think multiplicatively as 

proportional reasoning is the most sophisticated form of multiplicative thinking (Callingham & 

Siemon, 2021). During the transition from primary to high school, students’ progression from 

additive to multiplicative thinking is one of the major barriers to learning mathematics, 

including the topic of ratios (Siemon, 2019). Research has shown that 30–55% of Year 8 

students do not think multiplicatively, and differences between students’ overall mathematics 

achievement can be attributed to an inadequate understanding of multiplication, division, 

fractions, decimals, and proportion (Siemon et al., 2006). 

Misconceptions surrounding ratios have also been attributed to difficulties with prerequisite 

knowledge related to fractions (Dougherty et al., 2016). Students can have difficulties 

differentiating the part-part relationship of ratios from the part-whole relationship of fractions 

(Clark et al., 2003). Moseley (2005) also found that students’ conceptual understanding of ratios 

is lacking as they focus on the numbers rather than the relations the numbers represent, as ratios 

are a multiplicative comparison. 

Theoretical Framework 

Categories of ratio errors are currently not well-established in the literature given the limited 

research on students’ misconceptions and difficulties with ratios. This study drew from 

Radatz’s (1979) error analysis framework that described five error categories: errors due to 

language difficulties; errors due to difficulties in obtaining spatial information; errors due to 

developing proficiency in prerequisite skills, facts, and concepts; errors due to incorrect 

associations or rigidity of thinking; and errors due to application of irrelevant rules or strategies. 

Figure 1 

Modified Version of Radatz’s (1979) Error Analysis Framework 
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This framework uses an information-processing approach to classify errors because the 

“mechanisms used in obtaining, processing, retaining and reproducing the information in 

mathematical tasks” are examined (Radatz, 1979, p. 164). This study modified the original 

Radatz framework (Figure 1) through small language changes (removing reference to 

‘deficient’ skills and knowledge to encourage a move away from a deficit view), adding the 

halting signal error (a partially complete response: Brodie & Bergie, 2010), and splitting the 

error category of ‘errors due to the developing proficiency in prerequisite skills, facts, and 

concepts’ into two for clarity (separating concepts and skills/facts). 

Methodology 

Participants were 15 Year 8 students from one class in an Australian independent school. 

The school’s demographic was representative of a higher socioeconomic background, with 

a school ICSEA value of 1087 given the 1000 average. The study was conducted prior to the 

class formally learning ratios. A mixed methods approach was used, drawing on both qualitative 

and quantitative analysis of student error types on an 8-item ratio test. The test was developed 

from an analysis of the local mathematics syllabus (Stage 4 New South Wales Syllabus) which 

allowed for the identification of key ratio concepts and skills covered in Year 8. The test was 

completed in 20 minutes under exam conditions without calculators. In this paper, the findings 

from one of the test items are reported as they allow for a deep analysis of all students’ attempts. 

Following the test, semi-structured interviews were conducted to clarify and confirm the 

researcher’s interpretation of students’ test responses. Interviews enhanced the validity of 

findings, since the different datasets elaborated, enhanced, and clarified each other (Greene et 

al., 1989). When coding students’ incorrect responses, error analysis was conducted. All 

incorrect responses were collaboratively analysed and coded using the modified version of 

Radatz’s framework (Figure 1). 

Findings 

This paper focuses on analysing students’ correct and incorrect responses to one test 

question, “Can 10 people be divided into two groups with a ratio of 1:2? Explain your answer.” 

Overall, the 15 students reported a 26.7% success rate on answering this item; 10 students 

answered incorrectly, and one student did not attempt the question. Students’ challenges in 

answering the test question were expected since they had not yet been taught ratios. There was 

a diverse range of correct and incorrect answers provided by students. 

Correct Responses 

Students’ correct responses reflected varying levels of developing proficiency with ratios, 

although the semi-structured interviews after the ratios test revealed that some students still 

held some misconceptions on the topic. 

In Figure 2, the student added the antecedent (i.e. 1) and consequent (i.e. 2) of the ratio 

together to reach 3. 

Figure 2 

Example of Student’s Correct Response Using Concepts of Division, Factors, and Multiples 
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To check if 10 people can be divided into two groups with a ratio of 1:2, this sum of the 

ratio parts (i.e., 3) must be a factor of the total number of people (i.e., 10), or conversely, the 

total number of people must be a multiple of the sum. The student also provided an 

accompanying diagram showing the first and second group having three and six people 

respectively, and their last uncrossed circle of 10 suggests the leftover person. This strategy for 

solving the question was also encapsulated in the working out of the student in Figure 3. Both 

students drew on key prerequisite knowledge of division and the concept of equal groups, which 

are foundational concepts of ratios. 

Figure 3 

Example of Student’s Correct Response Using an Evenness Argument 

 

Two students provided an alternative explanation that demonstrated a developing 

conceptual understanding of ratios. Instead of providing an explanation involving visuals or 

relating the problem to division, factors and multiples, their answer was that the group division 

would not be possible because the two groups would not be even in number. Although even 

groups were not a criterion of the question, these students identified that when ten is grouped 

in a ratio of 1:2, there would be one person leftover who has not joined a group. The response 

from the first of these two students, shown in Figure 4, shows emerging proficiency with ratios 

but some misconceptions are still held. Although their explanation aligns with the student’s 

explanation in Figure 3, their diagram shows that they have not recognised that 4:6 = 2:3 is not 

equal to the desired 1:2 ratio. 

Figure 4 

Example of Student’s Correct Response Using an Evenness Argument but With Misconceptions 

 

The second student similarly identified that the groups would not be even (Figure 5), and 

when questioned on what they meant by ‘even’, they stated that “if there’s one person on one 

side, for example, and there are two on the other”, the number of people in each group would 

not be even. When the student was probed further, their misconceptions on ratios were revealed. 

After asking them their next steps in their working to ensure no halting signal error “Would you 

have added more people on either side or would you have left it as one person on one side and 

two people on the other?”, the student responded “I would add an extra one to the other side” 
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to make it even. Their thought process behind this was that “[the question] says ‘to be divided 

into two groups’ so it has to probably be even”. 

Figure 5 

Example of Student’s Correct Response but Their Interview Reveals Misconceptions 

 

Incorrect Responses 

While some students correctly solved the ratio problems, some students were not as 

successful. Like the student in Figure 2, the student response in Figure 6 demonstrated that they 

added the ratio parts together to help them solve this problem.  

Figure 6 

Example of Student’s Correct Response but Their Working Reveals Misconceptions 

 

However, instead of using this sum of three to conceptualise putting one person in one group 

and two people in the other group every round, they misinterpreted this as putting 10 people 

into groups of three. They were, however, able to identify that one person would be leftover so 

this division into three groups would be unsuccessful. Although the working here does not 

reflect the expected understanding of splitting a quantity into a ratio, it does indicate some 

developing conceptual understanding of ratios, based on the idea of division into equal groups. 

The root error cause was coded to be the developing proficiency in concepts and language 

difficulties, leading to procedural errors. 
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Figure 7 

Example of a Student Misinterpreting 1:2 to Mean 
1

2
 

 

When given the ratio 1:2, it is speculated that some students misinterpreted the colon sign 

of ratios to mean the same as the vinculum sign of fractions. This is because students lacked 

conceptual understanding of what a ratio is, which led to the language difficulty of 

misinterpreting the colon as a vinculum due to incorrect associations with fractions. An example 

of this misconception is shown in the student response in Figure 7. 

Students also demonstrated conceptual difficulties with working with a fixed number of 

total people (i.e., 10) despite correctly identifying equivalent ratios (Figure 8). 

Figure 8 

Example of Student’s Developing Proficiency in Concepts 

 

Students’ responses also demonstrated that a flow-on error resulting from developing 

proficiency in concepts was the halting signal error, as students only partially completed the 

question (Figure 9). This can be attributed to students not having formally learnt ratios, although 

it reveals their approaches to solving ratio problems. 
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Figure 9 

Examples of Two Students’ Halting Signal Errors 

 

Discussion and Conclusion 

This study aimed to investigate Australian students’ approaches to solving ratio problems 

prior to the formal teaching of the topic and address the research question. For the analysed 

question, it was found that the main root error cause was developing proficiency in ratio 

concepts, leading to other error types including incorrect associations with fractions, application 

of irrelevant procedures and halting signal errors. This was not unexpected as the students had 

not learnt ratios yet. What was particularly interesting for teachers to observe was that several 

students successfully reasoned through the ratio problem despite not having learnt the topic. 

Students’ prior experience with fractions (Dougherty et al., 2016) and emerging multiplicative 

thinking (Siemon et al., 2006) set the foundation for success when learning ratios. The 

implication of this finding is that it is beneficial for teachers to help students connect ratios with 

this prerequisite knowledge, rather than viewing it as a distinct and entirely new topic when 

first introducing it. Moreover, since students may resort to fraction strategies and concepts when 

first approaching ratios, another teaching recommendation is to clarify the similarities and 

differences between fractions and ratios in terms of vocabulary, concepts, and procedures. 

The findings from this study have implications for research investigating student errors in 

mathematics. Through the error analysis conducted in this study, the modified version of 

Radatz’s (1979) framework was shown to be a viable and useful way of coding student errors. 

Potential directions for future research include ascertaining whether the same errors exist before 

and after formal instruction on ratios, and testing whether Radatz’s (1979) error analysis 

framework can be used to hierarchically classify errors for other mathematical topics. 

Although it was anticipated that one class of students would provide adequate data to gain 

insight into students’ understanding of ratios and corresponding errors, generalisability may be 

limited beyond this study because of its dependence on only one class of students. Despite this, 

the demographics of the school and participants provide context for the findings and support 

the reader to make judgements concerning the generalisability of the study to other contexts. 
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