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This study elaborates on the pivotal roles of mathematical and statistical models in data-

driven predictions in an integrated STEM context using the case of Year 4 students: (ⅰ) 
a descriptive means to describe the features of trends and variability of data and (ⅱ) an 

explanatory means to explain causal relationships behind data. These roles are linked to 

models in other STEM subjects (i.e., prototypes and scientific models) and the 

application and development of STEM content knowledge. The results contribute to a 

better understanding of the role of mathematics/statistics in STEM education. 

Predictions are found everywhere in life, society, and science. During the global COVID-

19 pandemic, daily data on the number of positive cases, severe cases, and deaths were 

published in graphs and tables, and it became routine to keep track of the current infection 

situation and predict future waves of infection. Data-driven prediction by using data, 

mathematics, statistics, and interdisciplinary knowledge to predict and validate complex and 

uncertain events is indispensable for today’s citizens and societies (e.g., Geiger et al., 2023). 

To provide a vehicle and platform for such data-driven predictions, modelling processes 

involving the generation, evaluation, and revision of mathematical models (deterministic 

representations) and statistical models (non-deterministic/stochastic representations) in data-

rich interdisciplinary contexts are gaining attention in Science, Technology, Engineering and 

Mathematics (STEM) education from a mathematics education perspective (e.g., English, 

2023). However, the literature does not clearly explain how and to what extent students use 

mathematical and statistical models for data-driven predictions in an integrated STEM context. 

Unravelling the pivotal roles of mathematical and statistical models in STEM education 

offers two advantages for research and practice. First, it could elaborate on and advance the role 

of mathematics/statistics in integrated STEM education (English, 2016) as well as in 

mathematics curricula, such as ACARA (2022) and MEXT (2018), which emphasise 

mathematical modelling, statistical investigation, and STEM education. Second, it has 

implications on developing students’ epistemic knowledge about the nature and role of models 

and representations in STEM disciplines, which are essential for STEM competencies (Tytler, 

2020). Therefore, this study elaborates on the roles of mathematical and statistical models in 

data-driven predictions in an integrated STEM context using the case of Year 4 students. 

Conceptual Framework 

Data-Driven Prediction 

The potential for introducing data-driven prediction from the primary school years has been 

identified by mathematics and statistics education research. Informal statistical inference (ISI), 

in which trends and variations in unknown data are predicted and generalised without adopting 

formal statistical procedures and methods, is actively studied since primary school years (Makar 

& Rubin, 2018). For instance, Oslington et al. (2023) highlighted primary school students’ 

predictive reasoning as part of the ISI with representations of patterns such as seasonal trends 

and variability in data to predict temperature using tables, line graphs, and bar graphs. 

Moreover, data-driven predictions are important in an integrated STEM context. Watson et 

al. (2023) conducted statistical investigations using ISI and technology with primary school 
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students in a STEM context, revealing their representations, predictions, and understandings of 

variation. English (2023) implemented modelling involving data-driven predictions with 

mathematics and statistics for primary school students in an integrated STEM context. It 

explored how they applied multidisciplinary knowledge of mathematics, statistics, and science 

through predictions. Aridor et al. (2023) proposed a framework to describe the interactions 

between statistical reasoning, scientific reasoning, and the nature of scientific understanding 

using the case of citizen science. 

Research (Aridor et al., 2023; English, 2023; Oslington et al., 2023) suggests that it is 

essential to use deterministic reasoning flexibly, based on mathematical models and non-

deterministic/stochastic reasoning, through statistical model use, to consider data from multiple 

perspectives and make more reliable predictions for better decision-making. Non-

deterministic/stochastic reasoning raises awareness of the limitations of human decision-

making and provides an opportunity for critical reflection. Conversely, deterministic reasoning 

is required when predicting maximum certainty or controlling for uncertainty by seeking 

conditions that reduce variability. However, few research has demonstrated the roles of 

mathematical and statistical models in data-driven predictions in an integrated STEM context. 

Interdisciplinary Data-Driven Modelling and Functions of Mathematical and 

Statistical Models 

We adopted interdisciplinary data-driven modelling (IDDM) considering mathematical and 

statistical models in data-driven predictions in an integrated STEM context (Kawakami, 2023a, 

2023b; Kawakami & Saeki, in press). The IDDM generates, validates, and revises mathematical 

and statistical models and models in other STEM subjects (science, technology, and 

engineering) based on data/context to make better predictions (Kawakami & Saeki, in press). 

Data have a structure comprising a deterministic aspect (signal) focused on exact numbers and 

causal explanations with certainty and a non-deterministic/stochastic aspect (noise) focused on 

uncertainty and variability (Innabi et al., 2023). A model refers to a representation of the 

structure of a given system and a reflection of the modeller’s series of interpretations of an 

object (Hestenes, 2010). A mathematical model refers to a representation of the signal inherent 

in the data, reflecting the modeller’s deterministic interpretation of the data and context 

(Kawakami, 2023b). A typical example is the linear model y = ax+b (a and b are parameters), 

where the value of the variable y can be determined if the value of the variable x is determined. 

A statistical model refers to a representation of the noise inherent in the data, reflecting the 

modeller’s non-deterministic/stochastic interpretation of the data and context (Kawakami, 

2023b). A typical example is the linear model y = ax+b+ε (a and b are parameters), where the 

value of the variable y cannot be determined even if the value of the variable x is determined 

and distributed by a random error ε. Models in other STEM subjects involve modellers’ 

representations and interpretations of data, which are relevant to big ideas in STEM disciplines 

(Kawakami & Saeki, in press), such as scientific models (e.g., motion models of a falling body 

and structural models of seeds) and engineering models (e.g., scale model/prototypes). 

Mathematical and statistical models describe phenomena and explain their prediction 

mechanisms. Ärlebäck and Doerr (2020) showed that models serve as descriptive means and 

explanatory means. The former is a function of understanding and describing the behaviour of 

events. The latter is a function of explaining the structure of events and the mechanisms of their 

structure in a unified and comprehensive way and elucidating why events behave as they do. 

They pointed out that a unified explanation of several events using the same model leads to the 

idea of generalisation, and it is necessary to combine several models with different perspectives 

to provide a comprehensive explanation of a single event. 

Additionally, the descriptive and explanatory functions of mathematical and statistical 

models are essential in an integrated STEM context. To build a causal narrative about why a 
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phenomenon occurs, Baptista et al. (2023), who identified the core features of a reasonable 

explanation for a STEM problem, required students to describe what was happening in a given 

scenario (by summarising patterns in the data), make connections between observations and 

mathematical or statistical models, and use scientific ideas. Thus, mathematical and statistical 

models are expected to contribute to data-driven predictions in an integrated STEM context 

through IDDM by describing and reading the signal and noise characteristics in the data and 

explaining them in a unified and comprehensive manner (Table 1). 

Table 1 

Functions of Mathematical and Statistical Models that Could Contribute to Data-Driven Prediction 

Functions Descriptions 

Descriptive means Mathematical and statistical models, such as graphs and statistics, provide an 

external representation of the signal and noise characteristics inherent in data, 

providing an understanding of how the data behaves 

Explanatory means Mathematical and statistical models, such as graphs and statistics, provide a 

unified and comprehensive explanation of the signal and noise characteristics 

inherent in data, providing an understanding of the behaviour of data and the 

mechanisms and causal relationship of events behind the data 

Given the theoretical framework of the functions of the mathematical and statistical models 

in Table 1, we formulated and addressed the following research question: 

• Considering the model functions of descriptive and explanatory means, how do students 

use mathematical and statistical models when making predictions through IDDM? 

Research Design 

Setting, Participants, and Context 

To answer the research question, we used data from the IDDM practice implemented in 

Year 4, where students used mathematical and statistical models and models in other STEM 

subjects for data-based predictions. An overview of this practice is given in Kawakami and 

Saeki (in press); however, this study is substantially different from our previous work in that it 

analyses the role of models in data-driven predictions in practice. 

The participants were students (n = 30) from a Year 4 class (aged 9–10 years) in a public 

primary school in Japan. They had learned about bar graphs, line graphs, and two-dimensional 

tables. However, they were unaware of representative values, dot plots, and histograms. The 

practice comprised nine 45-minute lessons in mathematics and cross-curricular enquiry classes 

and addressed the Seed Dispersal Task (Figure 1), incorporating data-driven predictions into 

Fitzallen et al.’s (2019) seed dispersal material for integrated STEM education. 

Figure 1 

Seed Dispersal Task (Partial) 

 

The goal of the task was to redesign the shape of the buckleya lanceolata seed (Figure 2a) 

to maximise flight time. After several experiments that measured the flight times of seed 

prototypes that behaved similarly to the seeds when they fell (Figures 2b and 2c), the sub-task 

involved predicting trends in flight times with the prototype shape as a variable and validating 

the predictions with real data. In the sub-task, the students generated mathematical and 

The buckleya lanceolata seeds (Figure 2a) come in various sizes. The speed at which they fall seems to 

vary depending on the seeds. Therefore, how can the flight time of the seeds be increased? 

Sub-task: After several experiments with the seed prototype (Figure 2b) to measure the flight time, 

predict what will happen to it if the slit length of the prototype is varied, as shown in Figure 2c. After 

making a prediction, validate it through experiments. 
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statistical models (e.g., line graphs) and models in other STEM subjects. For example, the 

students interpreted data trends deterministically and stochastically in relation to seed prototype 

size, weight, and shape as engineering models. Students also generated scientific models of the 

motion of a falling body under air resistance and the structure and function of the seeds. 

Figure 2 

Buckleya Lanceolata Seed and the Seed Prototypes (Photos Taken by Shohei Chiba) 

a)  b)  c)  

To answer the research question, we focused on a sub-task involving prediction. In the 

lessons, before working on the sub-task, the students experienced dropping prototypes with 

vertical lengths of 15 cm and 20 cm and predicted the change in flight time as the vertical length 

increased, by drawing line graphs on the worksheets. After making predictions, they collected 

data on the flight times of the prototype with longer vertical lengths, plotted the datasets on a 

line graph, and compared the predicted graph with the actual data to validate their predictions. 

In the sub-task, the students collected data by experimenting with the flight time of a 

prototype with a fixed vertical length and slit lengths of 3 cm, 6 cm, and 9 cm (Figure 2c). Then, 

they plotted these data online graphs and presented their predictions regarding the change in 

flight time when slit length increased. They drew line graphs on the worksheet and calculated 

the differences in the data (Prediction). Once the predictions were made, they collected data on 

the flight time of the prototype with a further increase in slit length, plotted the data on a line 

graph, and validated their predictions by comparing the predicted graph they made with the one 

containing the actual data (Validation). 

Data Collection and Analysis 

We analysed 30 students’ worksheet excerpts in the Prediction and Validation activities and 

used a post-class interview protocol for complementary analysis. The prediction intention could 

also be written in the validation statement; therefore, it was included in the analysis. These data 

were analysed in three coding phases to answer the research question. The first author 

performed these coding phases, and the second author validated them. The differences in 

interpretation between the two authors were discussed until an agreement was reached. The 

analyses were revised as necessary. 

In Phase 1, we identified and coded the mathematical and statistical models generated in 

the sub-task based on the framework of our study. In this analysis, the exact representation was 

not taken absolutely but relatively as a mathematical or statistical model depending on the 

student’s intention to create and interpret the representation. For example, if a student 

interpreted a line graph deterministically, the model was taken as mathematical; if interpreted 

non-deterministically or stochastically, the model was taken as a statistical one. 

In Phase 2, we examined whether these models’ functions were descriptive or explanatory, 

based on Table 1, and coded them accordingly. In this analysis, the descriptions of the features 

of the trends and variability of the flight time data were judged as the emergence of the 

descriptive function. The use of the models to explain the causal relationship that changes flight 

time and its consistency with the results of previous experiments was judged as the emergence 

of the explanatory function. 

In Phase 3, we disaggregated the interdisciplinary aspects of students’ descriptive or 

explanatory use of mathematical and statistical models, focusing on the inclusion of models in 
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other STEM subjects (i.e., engineering models such as prototypes and scientific models such as 

the air resistance model). 

Results 

To varying degrees, all participating students used a line graph as either a mathematical or 

statistical model to predict the flight times of seed prototypes. Considering the functions of the 

mathematical and statistical models (Table 1), we classified students’ use of mathematical and 

statistical models into three types (Table 2). 

Table 2 

Types of Mathematical and Statistical Model Use (n = 30) 

Types Mathematical model Statistical model # (%) 

1 Descriptive means N/A 5 (17%) 

2 Descriptive and explanatory means N/A 20 (66%) 

3 N/A Descriptive and explanatory means 5 (17%) 

Type 1 comprised students who used a mathematical model as a descriptive method. 

Students belonging to this type used the line graph only as a means of reading trends (signal) 

in the already collected data, but only superficially read the graphs (e.g., “As the flight time 

was rising, I thought it would continue to rise”). 

Type 2 comprised students who used a mathematical model for descriptive and explanatory 

purposes. This was the most common type. Students belonging to this type used line graphs as 

a means of reading trends (signals) in the already collected data and also as a means of asserting 

the reasonableness of predictions. They explained the causal relationship between the changing 

flight time and consistency with experimental results for different horizontal lengths using the 

different slopes of the graphs. Figure 3 shows an example of the Type 2 model use, 

demonstrated in a worksheet by Hata (student pseudonym), where on the left is a line graph of 

the real data and their prediction, and on the right is the reason for the prediction. They described 

the relationship between feather length and flight time from a line graph of the experimental 

results before the vertical length was stretched (“In the previous experiment of stretching the 

vertical length, if the length was stretched too far, the flight time became shorter”). 

Additionally, they explained why the slope of the flight time graph varied based on the 

prototype (e.g., “the weight of the prototype remained the same, so I thought the graph would 

not drop too steeply”). 

Figure 3 

Descriptive and Explanatory Use of a Line Graph as a Mathematical Model From Hata’s Worksheet 

 

Note. Black graph: Predictive data; Red graph: Real data; Horizontal axis: Prototype slit length; Vertical axis: 

Flight time. 

Type 3 comprised students who used a statistical model as a descriptive and explanatory 

means. Students belonging to this type used line graphs as a means of reading variability (noise) 

In the previous experiment of stretching the vertical length, if the 

length was stretched too far, the flight time became shorter, so I 

thought that if the slit was made too long, the flight time would 

become shorter. But the weight of the prototype remained the same, 

so I thought the graph would not drop too steeply. Moreover, I 

thought that the lower part of the prototype would become too short 

and the leaf (wing) part too long, so it wouldn’t fly very well. …I 

thought that the graph would fall gradually, because the part of the 

prototype that is in contact with the wind would become larger. 
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in the data already collected and also as a means of asserting the reasonableness of predictions. 

Figure 4 shows an example of the Type 3 model used, demonstrated in a worksheet by Aki 

(student pseudonym). They described variability in the flight time from a line graph (“the flight 

time increased between 0.20 and 0.39 s”) and utilised it to make predictions with an awareness 

of the range of values (“the flight time would also increase with a further increase in slit length, 

roughly between 0.20 and 0.39 s”). Referring to the geometry of the prototype, they also 

explained in a unified way the results of previous experiments with different vertical lengths 

and the results of the current experiments with different slit lengths (“The reason for lowering 

the graph at the end was the same as in the previous experiment with different vertical lengths: 

I thought that the longer the slit, the faster it would fall”). 

Figure 4 

Descriptive and Explanatory Use of a Line Graph as a Statistical Model From Aki’s Worksheet 

  

Note. Black graph: Predictive data; Red graph: Real data; Horizontal axis: Prototype slit length; Vertical axis: 

Flight time. 

The interdisciplinary aspects (i.e., engineering and science relevance) in students’ 

descriptive and explanatory use of mathematical and statistical models are shown in Table 3. 

Table 3 

Interdisciplinary Aspects in Students’ Use of Mathematical and Statistical Models 

Roles Mathematical model # Statistical model # 

Descriptive 

means  

Engineering relevance  N/A  

Understanding trends (signal) in the 

data in relation to the prototypes  

2   

Exploratory 

means 

Engineering relevance  Engineering relevance  

Explaining the data trends (signal) 

using information from the 

prototypes  

20 Explaining reasons for varying flight 

times (noise) using information from 

the prototypes  

5 

Science relevance  Science relevance  

Explaining the data trends (signal) 

using informal scientific knowledge 

of air resistance 

4 Explaining reasons for varying flight 

times (noise) using informal 

scientific knowledge of air resistance 

1 

Explaining the data trends (signal) 

based on observations from the 

experiment 

1   

Note. Statements that applied to more than one category were counted. 

Twenty-five students used mathematical and/or statistical models to make engineering 

and/or science-related predictions. Regarding descriptive means, the students used the 

Since the flight time increased between 

0.20 and 0.39 s, I predicted that the flight 

time would also increase with a further 

increase in slit length, roughly between 

0.20 and 0.39 s. The reason for lowering 

the graph at the end was the same as in the 

previous experiment with different vertical 

lengths: I thought that the longer the slit, 

the faster it would fall. 
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prototypical context to read trends (signals) in the graphs. They described the length of the 

wings and the weight of the prototype by replacing the line graph variable from the flight time 

with the weight of the prototype. As for the explanatory means, the students used information 

from prototypes (i.e., volume and weight remained the same, balance of form, and centre of 

gravity), informal scientific knowledge of air resistance, and observations from the experiment 

with prototypes to explain the data trends (signals) and reasons for varying flight times (noise). 

For instance, Hata explained data trends by relating a prototype’s weight, shape, and informal 

scientific knowledge of air resistance to the slope of a graph (Figure 3). In both mathematical 

and statistical models, the explanatory means were more explicitly related to engineering 

(particularly prototypes) and science than the descriptive means. 

Discussion and Concluding Remarks 

This study addressed some aspects of Year 4 students’ data-driven predictions in an 

integrated STEM context, taking the descriptive and explanatory functions of models as 

perspectives. We discuss two findings regarding this research question. 

First, all the participating students consciously or unconsciously used mathematical or 

statistical models for descriptive and explanatory purposes (Table 2). In line with Oslington et 

al. (2023), mathematical and statistical models helped students recognise the patterns and 

structural features of data to support their predictive reasoning. However, more than half of the 

students tended to use mathematical models only for descriptive and explanatory purposes. This 

may be because the primary school students involved in this study were mainly exposed to 

mathematical models rather than statistical models in their everyday mathematics lessons 

(MEXT, 2018), and they have difficulty understanding complex variations (e.g., Watson et al., 

2023). The fixed form of the line graph representation used for predictions might have further 

triggered the generation of a mathematical model (cf. Oslington et al., 2023; Watson et al., 

2023), thereby indicating that more research is necessary to examine students’ use of the 

statistical model in data-driven predictions. 

Second, 80% of students connected mathematical or statistical models to other STEM 

subjects (Table 3). As seen in the case of Hata (Figure 3), mathematical or statistical models, 

when connected with models in other STEM subjects (i.e., prototypes and scientific models), 

describe the characteristics of the data and also provide explanatory power for the causal 

relationships behind the characteristics of the data (i.e., the reasons why flight time varied). 

Through these explanations with models, students’ own scientific hypotheses and 

interdisciplinary knowledge—linking mathematics and engineering or science—are 

constructed (Figures 3 and 4), leading to the development of epistemic knowledge (Tytler, 

2020). This finding provides evidence of the need for multiple models in demonstrating 

explanatory power (Ärlebäck & Doerr, 2020) and an example of a reasonable explanation in an 

integrated STEM context (Baptista et al., 2023). 

The findings of this study that data-driven predictions in an integrated STEM context, 

including IDDM (Kawakami & Saeki, in press), could contribute to the development of STEM 

content knowledge in justifying predictions as well as their application. On the one hand, data-

driven predictions contributed to other STEM subjects by encouraging the generation of 

students’ scientific hypotheses and interdisciplinary knowledge through the process of using 

models as explanatory tools in prediction. On the other hand, other STEM subjects contributed 

to data-driven predictions by making sense of the data and models and strengthening the validity 

of predictions. These findings extend English’s (2023) results, which revealed students’ 

application of multidisciplinary knowledge, and advance the role of mathematics/statistics in 

STEM education as well as in the mathematics curriculum as more than just a service subject 

(e.g., ACARA, 2022; English, 2016; MEXT, 2018). These findings are based on a case study 

of the activity of a single prediction in the Seed Dispersal Task. A future step is to analyse in 
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detail the teacher’s role in promoting student predictions as well as the relationship between the 

development of students’ predictions through the task and how they use mathematical and 

statistical models. 

Acknowledgements 

This study was partially supported by JSPS KAKENHI Grant Numbers JP21K02513 and 

JP21K02553. We thank Shohei Chiba for conducting the classroom practice and providing class 

details. Ethics approval H23–0111 was granted by Utsunomiya University, and principal, 

teacher, parents, and students in the class gave informed consent. 

References 

Australian Curriculum, Assessment and Reporting Authority (ACARA). (2022). The Australian Curriculum 

(v9.0). ACARA. https://v9.australiancurriculum.edu.au/ 

Aridor, K., Dvir, M., Tsybulsky, D., & Ben-Zvi, D. (2023). Living the DReaM: The interrelations between 

statistical, scientific and nature of science uncertainty articulations through citizen science. Instructional 

Science, 51(5), 729–762. https://doi.org/10.1007/s11251-023-09626-8 

Ärlebäck, J. B., & Doerr, H. M. (2020). Moving beyond descriptive models: Research issues for design and 

implementation. Advances in Research in Mathematics Education, 17, 5–20. https://doi.org/gjgsmz 

Baptista, M., Jacinto, H., & Martins, I. (2023). What is a good explanation in integrated STEM education?. 

ZDM Mathematics Education, 55(7), 1255–1268. https://doi.org/10.1007/s11858-023-01517-z 

English, L. (2016). Advancing mathematics education research within a STEM environment. In K. Makar, 

S. Dole, J. Višňovská, M. Goos, A. Bennison, & K. Fry (Eds.), Research in mathematics education in 

Australasia 2012–2015 (pp. 353–371). Springer. 

English, L. (2023). Multidisciplinary modelling in a sixth-grade tsunami investigation. International Journal 

of Science and Mathematics Education, 21(Suppl. 1), 41–65. https://doi.org/mbs5 

Fitzallen, N., Wright, S., & Watson, J. (2019). Focusing on data: Year 5 students making STEM connections. 

Journal of Research in STEM Education, 5(1), 1–19. https://doi.org/10.51355/jstem.2019.60 

Geiger, V., Gal, I., & Graven, M. (2023). The connections between citizenship education and mathematics 

education. ZDM Mathematics Education, 55(5), 923–940. https://doi.org/10.1007/s11858-023-01521-3 

Hestenes, D. (2010). Modeling theory for math and science education. In R. Lesh, P Galbraith, C. Haines, & 

A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 13–41). Springer. 

Innabi, H., Marton, F., & Emanuelsson, J. (2023). Sustainable learning of statistics. In G. F. Burrill, L. de 

Oliveria Souza, & E. Reston (Eds.), Research on reasoning with data and statistical thinking: 

International perspectives (pp. 279–302). Springer. 

Kawakami, T. (2023a). Research on the learning and teaching of data-driven modelling in school 

mathematics [Doctoral dissertation, in Japanese]. Hyogo University of Teacher Education. 

Kawakami, T. (2023b). A triplet of data/context, mathematical model, and statistical model: Conceptualising 

data-driven modelling in school mathematics. In P. Drijvers, C. Csapodi, H. Palmér, K. Gosztonyi, & 

E. Kónya (Eds.), Proceedings of the 13th congress of the European Society for Research in Mathematics 

Education (pp. 1243–1250). Budapest: Hungary, Alfréd Rényi Institute of Mathematics and ERME. 

Kawakami, T., & Saeki, A. (in press). Extending data-driven modelling from school mathematics to school 

STEM education. In J. Anderson, & K. Makar (Eds.), The contribution of mathematics to school STEM 

education: Current understandings. Springer. 

Makar, K., & Rubin, A. (2018). Learning about statistical inference. In D. Ben-Zvi, K. Makar, & J. Garfield 

(Eds.), International handbook of research in statistics education (pp. 261–294). Springer. 

Ministry of Education, Culture, Sports, Science and Technology (MEXT). (2018). Elementary school 

teaching guide for the Japanese course of study (notified in 2017): Mathematics (Grade 1–6) [in 

Japanese]. https://www.mext.go.jp/content/20211102-mxt_kyoiku02-100002607_04.pdf 

Oslington, G., Mulligan, J., & Van Bergen, P. (2023). Shifts in students’ predictive reasoning from data tables 

in years 3 and 4. Mathematics Education Research Journal. https://doi.org/mb63 

Tytler, R. (2020). STEM education for the twenty-first century. In J. Anderson, & Y. Li (Eds.), Integrated 

approaches to STEM education (pp. 21–43). Springer. 

Watson, J., Wright, S., Fitzallen, N., & Kelly, B. (2023). Consolidating understanding of variation as part of 

STEM: Experimenting with plant growth. Mathematics Education Research Journal, 35(4), 961–999. 

https://doi.org/10.1007/s13394-022-00421-1 

https://v9.australiancurriculum.edu.au/
https://doi.org/10.1007/s11251-023-09626-8
https://doi.org/gjgsmz
https://doi.org/10.1007/s11858-023-01517-z
https://doi.org/mbs5
https://doi.org/10.51355/jstem.2019.60
https://doi.org/10.1007/s11858-023-01521-3
https://www.mext.go.jp/content/20211102-mxt_kyoiku02-100002607_04.pdf
https://doi.org/mb63
https://doi.org/10.1007/s13394-022-00421-1

