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This paper provides evidence that a short, fully online, well-constructed diagnostic test 

based on research literature can give teachers information about their students’ thinking 

and strategies that is sufficiently accurate to use for formative assessment purposes. The 

example is a test for students beginning to learn to solve equations. The main goal is to 

inform their teacher of the solving strategies each can use. Accuracy data from 3010 

students is analysed to judge how well the overall performance of each group matches 

predictions. Alongside a previous analysis of misconceptions and common errors, we 

show this test gives teachers a good picture of most students to plan their lessons. 

The purpose of this paper is to provide evidence that a short, fully online diagnostic test can 

give teachers information about their students’ thinking and strategies that is sufficiently 

accurate to use for formative assessment purposes, i.e., to identify individual student’s 

understandings and to plan future teaching that builds on their current knowledge. Of course, 

we do not claim that a computerised test is the best way to learn about an individual’s 

mathematical thinking and knowledge, but our focus is on developing quick and easy tools to 

give teachers a ‘good enough’ guide for teaching an up-coming topic to all their students. Over 

many years, we have created Specific Mathematics Assessments that Reveal Thinking 

(SMART::tests) on 66 topics for middle years students. 

In this paper, using a test of solving equations as an example, we illustrate one part of the 

evaluation of these tests from the large-scale data, here using the accuracy of student responses 

to assess its adequacy as a diagnostic tool and to identify refinements. To evaluate a 

SMART::test, we also conduct an in-depth analysis of students’ common errors and 

misconceptions, as demonstrated for the present test by Steinle, Stacey, et al. (2022). Small-

scale mixed methods studies have also been undertaken to validate SMART::tests (e.g., 

Klingbeil et al., 2024) 

SMART::tests (www.smartvic.com) have been described elsewhere (e.g., Stacey et al., 

2018). For this paper, the key points are that volunteer teachers assign the tests, which students 

can do at school or at home when needed. All aspects of the test are fully automated. The 

diagnosis is not just based on the correctness of items but also considers actual responses. The 

teacher receives, for each student, a ‘stage of learning’ and possibly some flags which indicate 

that there is evidence of a misconception, a missing conception or a common (procedural) error. 

Each test has a highly specific focus on a central aspect of a topic that we believe influences 

students’ underlying understandings. The focus is on what mathematics education researchers 

have identified lies behind students’ work and affects their success, not what is easy to see from 

a standard test. Professional learning is an important goal, by helping to deepen teachers’ 

knowledge of hidden cognitive obstacles as they see how their own students think and see 

teaching suggestions for students at each stage. 

In the next section, we describe the Australian curriculum expectations that are the focus of 

this test; briefly describe research which identifies an important learning challenge; give a 

mathematical analysis of the three strategies that students should learn, and explain the 

diagnosis made by the test. The method section briefly describes the test and its construction, 
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and the data collection. We then look in turn at the performance of students in each of the 

diagnosed stages, examining whether their performance supports the diagnosis supplied. 

Space limitations restrict this paper to reporting only on analyses of accuracy statistics—

the numbers of students who are correct, incorrect or omit each item. This paper is 

supplemented by data from a detailed study of errors within the item responses (Steinle, Stacey 

et al., 2022). In this paper, it is valuable to see how much accuracy statistics can reveal. 

Solving Linear Equations—Mathematical Analysis and Research 

Curriculum Expectations 

This paper focusses on the SMART::test Solving Linear Equations. Its target group is 

students beginning to learn (symbolic) algebra. The Australian Curriculum: Mathematics 

(Version 9) (Australian Curriculum, Assessment Reporting Authority [ACARA], 2022) has one 

main content descriptor for learning to solve linear equations, placed at Year 7 “AC9M7A03 

“Solve one-variable linear equations with natural number solutions; verify the solution by 

substitution” (https://acara.edu.au/curriculum). 

Supporting this, the (non-compulsory) elaborations suggest that students might use 

substitution to determine whether a given number is a solution, or solve using backtracking 

(called unwinding in this paper), or balance equations perhaps illustrated with a concrete model. 

The only given example of an equation is 3x + 7 = 19 which has one occurrence of the 

pronumeral, and a natural number solution. 

These elaborations for AC9M7A03 point to three different strategies for solving equations, 

all of which significantly contribute to mathematical progress. In order of cognitive complexity, 

these are substituting, unwinding then balancing. Both substituting and unwinding are 

foreshadowed in Year 6 by AC9M6A02 which is about finding unknown numbers in numerical 

equations (e.g., an equation where a square placeholder is written instead of the unknown 

number). At Year 8, AC9M8A01 highlights algebraic manipulation including rearranging, 

simplifying linear expressions, and using inverse properties (presumably to solve equations). 

These capabilities open up the range of equations that can be solved, especially by the balancing 

method. 

Literature Review 

The fundamental research on the teaching of equation solving was conducted several 

decades ago, although related research continues (e.g., Linsell 2010; Knuth et al., 2006). At that 

time, researchers were interested in characterising the essential elements of ‘algebraic thinking’ 

with a goal to move teachers’ and researchers’ conceptualisation of the school topic of algebra 

away from emphasis on the manipulation of symbols towards understanding the fundamental 

concepts that students must develop. This movement led to the formalisation of an algebra 

strand in primary school curriculum descriptions. Within the topic of solving linear equations, 

Filloy and Rojano (1989) observed there was a ‘didactic cut’ between the demands of solving 

‘arithmetic equations’ that can be solved by successively unwinding operations on numbers 

(e.g., Ax ± B = C, x/A = B) and other ‘non-arithmetical equations’ like Ax ± B = Cx ± D (for 

A, B, C, D positive numbers). As other researchers have, they showed that this ‘didactic cut’ 

was hard for students to cross, not just because of new procedures to be followed but because 

the second required a different way of thinking about equations. Kieran (1992) described this 

distinction as being (p. 392) between (i) procedural operations with “ostensibly” algebraic 

items, i.e., “arithmetic operations carried out on numbers to yield numbers” and (ii) structural 

operations “that are carried out, not on numbers, but on algebraic expressions” which can have 

the result being an algebraic expression. Herscovics and Linchevski (1994) referred to a similar 

‘cognitive gap’ between arithmetic and algebra, (p. 59) which is “characterised as the students’ 

inability to spontaneously operate with or on the unknown”. They observed that Year 7 

https://acara.edu.au/curriculum
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students’ strategies and success changed depending on the location of the unknown in the 

equation, especially for subtraction and division. For example, the most frequent strategy for 

solving n − 13 = 24 was to add 13 to 24 (using the inverse operation), but 37 − n = 18 was 

solved by a variety of strategies such as “complementary subtrahend” (37 − 18) using 

knowledge of subtraction. They concluded that the difference in success solving these two 

similar equations resulted from students “working around the unknown at a purely numerical 

level” (p. 70). This literature provides a justification for the importance of this test, as well as 

the fundamental concepts that illuminate the three strategies and enable the design of the 

Solving Linear Equations test. Note that there is no indication of the ‘cognitive gap’ in the 

curriculum statements, so helping teachers understand it is a major goal of this test. 

Analysis of Strategies 

Table 1 analyses the three strategies, their roles, and the characteristics of items that the test 

uses to identify the strategies that students are able to use. In practice, experts use all these 

strategies, often interchangeably in the case of unwinding and balancing, but for beginners they 

are separate skills drawing on separate concepts. The various statements about students in the 

early stages of learning algebra in Table 1 draw on evidence from the literature and our pilot 

studies (Steinle, Price, & Stacey, 2022). 

Table 1 

Characteristics of Three Equation Solving Strategies 

Feature Substituting Unwindingα Balancingβ 

General statement A guess and check 

strategy, sometimes with 

an ‘improve’ step. 

Read notation as 

specifying a sequence of 

operations applied to an 

unknown number. 

A series of transformed 

equations including 

simplifying and 

reorganising steps. 

Example: 

Solve 2n + 5 = 20 

Guess n = 3 

Substitute: 2  3 + 5 = 11. 

Compare result: 11 is too 

small, try larger n, etc. 

Unknown was multiplied 

by 2, then 5 was added to 

give 20. To undo, first 

subtract 5 (gives 15) and 

divide by 2 (gives 7.5) 

2n + 5 = 20 

2n + 5 − 5 = 20 − 5 

2n = 15 

2n ÷ 2 = 15 ÷ 2 

n = 7.5 

Operations used Given operations Inverse operations Inverse operations 

Operations on and 

with 

Numbers  Numbers  Numbers and 

pronumerals  

Applicability Can be used to solve any 

equation, but beginners 

only successful with small 

natural number solution.  

Beginners only successful 

with one occurrence of the 

variable easily seen to be 

at the start of the ‘story’. 

Powerful for a wide 

variety of equations.  

Main teaching 

purposes 

Reading algebraic notation; 

understanding what a 

solution is; introducing 

tables of values.  

Introducing inverse 

operations; connecting to 

‘function machine’ 

diagrams. 

Widely applicable 

principle for equation 

solving. 

αUsed to describe a process which is applied without any preliminary algebraic manipulation. 

βOften referred to as do the same to both sides and process often abbreviated to change side-change sign. 

Table 1 includes a simple example and then specifies various salient characteristics from 

the literature. The example does not show operating on or with pronumerals and expressions, 

which is required when there is more than one occurrence of the pronumeral (e.g., to solve 

5x + 9 = 2x). Not noted is the fact that the logic of balancing additionally requires a conception 

of operating structurally on a whole equation to gradually transform it to a form where the 

solution is obvious. To stress the importance of all the strategies to progress in algebra, the table 

also briefly outlines their curriculum functions. The applicability row is the key to the diagnosis 
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made by the test. We exploit the limitations of the methods, in particular for beginners, to 

identify what strategies students can use. 

Method 

The present test is an outcome of considerable preliminary investigation, pilot testing, and 

data analysis as recorded by Steinle, Price, and Stacey (2022). Each item requires the student 

to type the solution to the equation. Table 2 gives the 14 equations, noting features of equation 

structure and the solution, as well as a label which indicates which of the five groups each 

equation belongs to. Students are allocated to one of five stages according to accuracy of 

responses to items in Groups A to D, as described in Table 3. Items in Group E provide another 

part of the report to teachers. In specific terms, the research question for this paper is to 

determine the extent to which the performance of the students diagnosed in each stage matches 

the predictions based on the strategies. 

Space does not allow a thorough discussion of the choice of items, but we note a few general 

points. The pilot work and literature highlighted how much beginning students are affected by 

apparently small changes of algebraic structure (e.g., changing 14 − 2x to 2x − 14). Therefore, 

to be able to attribute changed success to just the identified features of structure (and hence 

strategy), the items in the diagnostic Groups A, B, C and D are as close to the canonical linear 

form as possible. Because teachers want to know about how students deal with various algebraic 

notations, the Group E items were included but not used for the main diagnosis. The number of 

equations were reduced to a minimum, to keep the average time of completion under 15 

minutes. This test is Version 1; there is also a parallel test (Version 2) which can be used as a 

post-test, which has been similarly analysed. Results are similar to those reported here. 

The data was collected from the 3010 anonymous students in the classes of volunteer 

teachers who assigned this test during the years 2016 to 2018. Most students were in Year 8 or 

9. In general, the teachers seemed to have allocated the test to the intended target group, since 

the median test score was 7/14. We have no information about the conditions for taking the test, 

which may have varied significantly. Some students had trouble typing fraction and decimal 

answers (e.g., typing 1\5 instead of 1/5 or 1.1.625 instead of 1.625). Teachers can access any 

completed SMART::test to see why a student has received an unexpected result. 

Results 

In this section, we examine the extent to which the performance of the students diagnosed 

in each stage matches the predictions based on the strategies. Table 2 shows which items are 

expected to be within the capability of students who can use each strategy. The validity of the 

tests requires evidence that students in each diagnosed stage can use the strategy specified in 

Table 3. Of course, beginning algebra students make many slips, so that giving an incorrect 

response is not always indicative of a lack of knowledge of a strategy. Hence we have used the 

word ‘feasible’ in Table 2 for an appropriate strategy rather than ‘correct’. However, we expect 

that the predicted successes of Table 2 should give a good guide to the observed success on all 

items, including Group E items not used for diagnosis. 
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Table 2 

Items Showing Equations, Details of Structure and Applicability of Strategies (Test Version 1) 
L

a
b

e
l 

Equation Equation Structure 

S
o
lu

ti
o
n

 

Strategy Applicability 

Pronumeral 

Location: 

Left, Right 

Explicit 

Oper-

ations 

S
u

b
st

it
u

te
 

U
n

w
in

d
 

B
a
la

n
c
e 

A1 3x + 8 = 23 1, 0 + 5 F F F 

A2 4x + 9 = 37 1, 0 + 7 F F F 

B1 5x + 7 = 15 1, 0 + 1.6 A F F 

B2 8x + 3 = 16 1, 0 + 1.625 A F F 

C1 8x + 5 = 3x + 14 1, 1 +   + 1.8 A N F 

C2 12x + 2 = 8x + 15 1, 1 +   + 3.25 A N F 

D1 7x − 11 = 2x − 4 1, 1 −   − 1.4 A N F 

D2 12 − 11x = 5 − x 1, 1 −   − 0.7 A N F 

E1 7x − 2 = 16 1, 0 − 18/7 A F F 

E2 14 − 2x = 8 1, 0 − 3 F N F 

E3 3x + 6 + 2x = 7 2, 0 +   + 0.2 A N F 

E4 𝑥 + 2

5
= 3 

1, 0 +   ÷ 13 F F F 

E5 𝑥

3
+ 1 = 5 1, 0 ÷   + 12 F F F 

E6 4(x − 3) = 21 1, 0 −   × 8.25 A A F 

F: strategy is feasible, A: strategy is awkward, N: strategy not possible without initial algebra. 

Fraction or brackets may or may not be seen as ‘explicit’ operations. 

Notes. E1 is only item with solution longer than three decimal places. Pronumeral a was used in Version 1. 

Table 3 

Rubric for Allocating Stages to Students Based on Scores on Groups of Items 

Stage Description of stages 
Score on group of items 

A B C D E 

0 Not yet at Stage 1 0 − − − − 

1 Students can solve simple linear equations that are easy to solve 

by repeat substituting;  

1,2 0  − − − 

2 …and can solve linear equations with more difficult solutions 

requiring systematic strategy (such as unwinding);  

1,2 1,2 0  − − 

3 …and can solve linear equations involving addition only, with 

the pronumeral on both sides (balancing strategy needed); 

1,2 1,2 1,2 0  − 

4 …and can further solve linear equations involving subtraction 

with the pronumeral on both sides and non-integer solutions.  

1,2 1,2 1,2 1,2 − 

Note. “−” indicates that group is not used in the stage diagnosis. 

Table 4 shows the accuracy for each item by stage, reporting two measures: Facility 1 is the 

percentage of all students who are correct on an item and Facility 3 is the percentage of the 

students who respond who are correct. If there are any omissions, Facility 3 is larger. When 

reading the tables, it is useful to note that algebraic manipulation shows the omission rate for 

an item is (Facility 3 − Facility 1) / Facility 3. If Facility 3 − Facility 1, there are no omissions; 

if Facility 3 = 1.5 × Facility 1, one third of students omitted; and if Facility 3 = 2 × Facility 1, 
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the same number of students omitted the item as responded. Omissions generally increase later 

in the test although students also look through the test selecting items that look easy. (See 

Steinle, Stacey, et al. (2022) if you are curious about Facility 2.) 

Table 4 

Facility Range (Facility 1~Facility 3) of Test Items by Diagnosed Stage 

L
a
b

e
l 

E
q

u
a
ti

o
n

 

S
o
lu

ti
o
n

 

Diagnosed stage 

S
ta

g
e
 0

 

(n
=

3
3
8
) 

S
ta

g
e
 1

 

(n
=

5
7
5
) 

S
ta

g
e
 2

 

(n
=

7
6
2
) 

S
ta

g
e
 3

 

(n
=

2
8
7
) 

S
ta

g
e
 4

 

(n
=

1
0
4
8
) 

A1 3x + 8 = 23 5 rubric 0% 94%~94% 96%~96% 98%~98% 97%~97% 

A2 4x + 9 = 37 7 rubric 0% 87%~89% 95%~96% 95%~95% 97%~97% 

B1 5x + 7 = 15 1.6 3%~4% rubric 0% 95%~95% 97%~97% 97%~97% 

B2 8x + 3 = 16 1.625 3%~3% rubric 0% 83%~88% 87%~90% 95%~95% 

C1 8x + 5 = 3x + 14 1.8 6%~9% 12%~22% rubric 0% 90%~91% 96%~96% 

C2 12x + 2 = 8x + 15 3.25 5%~8% 7%~15% rubric 0% 63%~76% 94%~94% 

D1 7x − 11 = 2x − 4 1.4 4%~7% 6%~13% 3%~9% rubric 0% 92%~93% 

D2 12 − 11x = 5 − x 0.7 3%~5% 5%~10% 3%~9% rubric 0% 69%~72% 

E1 7x − 2 = 16 18/7 4%~6% 11%~20% 40%~61% 53%~70% 81%~83% 

E2 14 − 2x = 8 3 7%~10% 27%~46% 33%~54% 39%~52% 77%~81% 

E3 3x + 6 + 2x = 7 0.2 2%~4% 7%~15% 19%~44% 39%~61% 81%~87% 

E4 
𝑥 + 2

5
= 3 13  9%~16% 23%~46% 35%~68% 52%~78% 79%~87% 

E5 
𝑥

3
+ 1 = 5 12 10%~19% 22%~46% 34%~66% 46%~70% 76%~84% 

E6 4(x − 3) = 21 8.25 3%~6% 5%~11% 18%~39% 37%~59% 72%~80% 

The shading (from Table 2) indicates the applicability (F, A, N) of the hypothesised strategy for each stage. ‘Rubric 

0%’ indicates the item must be incorrect for student to be allocated to that Stage (as in Table 3). 

Stages 3 and 4: Do Responses Match the Balancing Strategy? 

Stage 3 and 4 students were predicted (Table 2) to do well on all items (except Stage 3 on 

Group D). They have very high performance on Group A, B and C and higher performance 

than other stages on all other items. After A1, Stage 4 students had a somewhat higher facility 

range than Stage 3 on every item. We see that Stage 4 students are more secure than Stage 3 in 

their balancing strategy (e.g., comparing Group C facilities) and the Group E facilities show 

they are better able to manage algebraic variations. Importantly, the facility ranges for Group 

D reveal the importance difference between subtraction of a number (D1) and subtraction of a 

pronumeral (D2) even for these relatively accomplished students (as noted by Herscovics & 

Linchevski, 1994). This difference is also apparent in the decrease in facility between E1 and 

E2 for students in Stages 2, 3 and 4. Only Stage 0 and Stage 1 students had higher facility on 

E2 than on E1, supporting the hypothesis that these students are substituting numbers rather 

than working with the algebra and hence found the item with a natural number solution easier. 

Stage 3 students’ responses generally fit the predicted pattern, with high success on items 

in Groups A, B, and C, and moderate success on Group E. We have no good explanation for 

the large drop in facility for C2 compared to C1. Overall, the Stage 3 pattern is consistent with 

students still developing the balancing strategy and the algebraic skills that are necessary to 

manage variations in algebraic structure (see, for example E3 and E6). 
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Stage 2: Do Responses Match the Unwinding Strategy? 

The a priori analysis in Table 2 predicted the unwinding strategy would give success with 

eight items but, assuming no prior algebraic manipulation to put the equation in an amenable 

form, it would fail for six items (C1, C2, D1, D2, E2, E3) and that E6 would be difficult. The 

facility ranges for the Group A, B, C and D items match the prediction. Items E1, E4, E5 were 

predicted to be feasible with the unwinding strategy (Table 2), and around two thirds of those 

Stage 2 students who attempted these were successful. Item E6 can also be solved by 

unwinding, but success relies on reading the brackets notation appropriately; first 3 is subtracted 

from the unknown number then the answer is multiplied by 4. Perhaps this is why the facility 

was much lower. Items E2 and E3 cannot be solved by unwinding without preliminary algebraic 

manipulation. After collecting like terms, E3 belongs to Group B where this group of students 

have already shown very high facility, but only 44% of those who responded to E3 were 

successful and the omission rate was high. This is consistent with students learning unwinding 

strategies with clear stories of what happened to the unknown number, written in algebra (e.g., 

E4, E5, A, and B items), and not yet doing preliminary algebraic manipulation. Stage 2 students 

did much better on item E2 than predicted with nearly half being successful; we assume they 

turned to substitution (natural number answer), which may also have boosted facilities of E4 

and E5. The omission rate was high for all E items, supporting the picture of these students just 

beginning to learn equation solving, still having little exposure to variations of algebraic form. 

Stage 1: Do Responses Match the Substituting Strategy? 

The a priori analysis in Table 2 predicted the substituting strategy would be successful 

when solutions were small natural numbers, but in other cases would be awkward for beginners. 

Locating a non-integer solution takes a relatively long time and is prone to error because more 

complex arithmetic is required. This is well supported by the data. All the items with Facility 3 

over 40% have small natural number solutions. All other facilities are under 25%. The omission 

rate is high at around one third after Group A items, which is consistent with students taking a 

long time to complete the questions. Further support for use of substituting was presented by 

the error analysis (Steinle, Stacey et al., 2022). Stage 1 students often gave an answer of 1 more 

or less than the correct answer (so a numerical slip) or answered N.5 when the correct answer 

was between N and N + 1 (e.g., to give an answer 3.5 instead of 3.25). We hypothesise that this 

response was used to indicate that they know the answer is somewhere between 3 and 4. 

Stage 0: What do These Students Know? 

Students were put into Stage 0 if they answered neither A1 nor A2 correctly. It is to be 

expected that a small number of capable students made slips (mathematical or response entry) 

on both A1 and A2 and therefore are misdiagnosed by the strictly hierarchical rubric we have 

used (see Table 3). A small rate of misdiagnosis is supported by the observation that every item 

in Groups B, C and D was answered correctly by at least 3% of the Stage 0 students. The items 

with the highest facility for Stage 0 students are E2, E4, and E5, all of which have small natural 

number solutions, indicating some students were substituting. For E4 and E5, around 10% of 

students were correct. These are the only items that do not include implicit multiplication. We 

conclude that at least 10% of the students diagnosed as Stage 0 are using substitution (and we 

estimate about a half), but they do not reliably interpret implicit multiplication. In support of 

this, the error analysis (Steinle, Stacey et al., 2022) found that incorrect responses consistent 

with interpreting mx as m + x were given by over one-third of Stage 0 students. 

Conclusion 

The purpose of this paper was to demonstrate that a short online test can diagnose students’ 

thinking sufficiently well to help a teacher plan teaching. The constraints were that the test must 
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be short, student responses must be machine-readable, and the diagnosis given to the teacher 

must be easily understood and important. The literature review and curriculum analysis 

demonstrated the importance of the strategies for solving linear equations. This paper illustrated 

the contribution of analysis of overall accuracy to validating the resulting diagnoses; error 

analysis reported elsewhere supplements this. The match between the theoretical predictions of 

item facility and the actual facilities provided evidence that most students in Stage 1 use 

substituting only, most students in Stage 2 can (also) use unwinding and that students in Stages 

3 and 4 can use balancing, at least with basic algebraic structures. The distinction between Stage 

3 and 4 students was not as clear-cut as expected, so could be refined. The test results also 

highlighted the importance of students frequently working with linear equations that are not 

written in the canonical ax + b form. 
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