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Preface 

This is a record of the Proceedings of the 46th annual conference of the Mathematics Education 

Research Group of Australasia (MERGA). The conference was hosted by Griffith University and 

organised by colleagues from all the universities across South-East Queensland. The Proceedings were 

published online at the MERGA website. 

Griffith University, the Gold Coast campus, is situated on the land of the Kombumerri people of the 

Yugambeh Language Region. The Kombumerri, or ‘Salt Water’ people, lived off the land and the 

water as the first people to the Gold Coast region. Established in 1971, Griffith is a relatively young 

university and in four decades has grown from one campus and 451 students to become a 

comprehensive, multi-campus institution, with 50,000 students and over 200,000 graduates. 

The Gold Coast is world famous for its beaches and surfing, and strongly influences the theme of the 

conference, Surfing the Waves of Mathematics Education. This theme is of special importance as it 

reflects the strength of MERGA as a modern organisation committed to living and learning. Surfing 

the Waves of Mathematics Education also captures the dynamic and ever-changing nature of the field 

of mathematics education research: Surfing is an activity that requires navigating constantly changing 

waves, much like the field of mathematics education, which is continuously evolving with new 

research, pedagogical approaches, and technological advancements. The theme suggests a readiness to 

adapt and thrive amidst these changes. 

By highlighting the dynamic nature of mathematics education, the local organising committee 

encouraged participants to be open to new ideas, methods, and technologies. This openness was bound 

to foster a culture of innovation where attendees could feel inspired to share their latest research, 

teaching strategies, and technological tools. The conference theme acknowledged the ever-changing 

landscape of mathematics education through recognising and valuing diverse perspectives and 

approaches. Featuring a wide range of topics and speakers, including those from different educational 

backgrounds, cultures, and disciplines, the conference provided a rich learning experience. 

Delegates from Australia, Canada, Cyprus, Fiji, Germany, India, Ireland, Italy, Japan, Malawi, New 

Zealand, Philippines, Singapore, South Africa, and the United States of America participated in the 

conference.  

Keynotes 

Two keynote speakers set the pace for this theme. The opening keynote to the conference, Towards 

embodied validity in mathematics education research, was presented by Dr Nathalie Sinclair, 

Distinguished Simon Fraser University Professor. The address challenged researchers to consider 

embodiment as a method for accounting for experience in mathematical activity and as a method of 

research communication.  

The keynote by Professor Mercy Kazima, Interventions and development of mathematics education in 

primary schools, highlighted research and development projects from Malawi, conducted over a 

decade. Two of these projects highlighted improved quality and capacity of mathematics teacher 

education in Malawi; and professional development projects to strengthen numeracy in the early years 

of primary school. 

The Clements/Foyster lecture was delivered by Professor Janette Bobis. In this presentation, Professor 

Bobis explored what it means for research to be deemed significant. Her reflections drew upon her 

own experiences and those of others, as part of a ‘deep dive’ into the search for significance in 

mathematics education research. This exploration aimed to provide insights and perspectives to help 

researchers better articulate and elevate the impact of their work in the field. 

Simplification of the awards nomination processes resulted in a record number of entries received for 

the Beth Southwell Practical Implications Award, aimed at highlighting opportunities for embedding 

research in practice. Eighteen candidates nominated their papers to be considered, and four (two 

without a self-nomination) were nominated by the review panels. Ten shortlisted papers were 
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considered by a panel of four expert external assessors who arrived at a worthy winner in 2024. For 

the first time, commendations were also awarded to the two runners-up. 

Six papers were shortlisted for the Early Career Award. The shortlisted submissions were judged by a 

panel of judges for the quality of both the written paper and the presentation during the conference. 

Among further notable events of MERGA 46 was the workshop by the Aboriginal and Torres Strait 

Islander Mathematics Alliance (ATSIMA) CEO Professor Chris Matthews, Quandamooka man, on the 

Sunday preceding the MERGA Welcome. This pre-conference workshop was well received, 

connecting mathematics and culture through the Goompi Model and emphasising building 

relationships with Community. 

Of significant mention this year was the crossover between MERGA 46 and the Queensland 

Association of Mathematics Teachers (QAMT) State Conference Ideas into Action. Teacher’s Day 

welcomed approximately 75 teachers from around Queensland, and commenced with the Beth 

Southwell Practical Implications Award keynote and a parallel program of presentations. Eight 

exhibitors joined the event. A welcome response was felt by the QAMT community as teachers and 

researchers were supported to meet and connect.  

Proceedings 

The published Proceedings include the plenary papers, symposia papers, research papers, and abstracts 

of short communications and round tables. All submitted papers (i.e., in both symposia and research 

papers sections) were double-blind reviewed in the Main round of submissions by panels of 

mathematics educators with expertise in the field. Figure 1 captured phases of the review process.  

Figure 1 

MERGA Review and Revision Process for Research Papers 

 

Authors had an opportunity to receive formative feedback if they first submitted their papers via the 

Early Bird submission round. This opportunity was taken on by authors of unprecedented 28 papers 

and three research symposia. 

The Proceedings illustrate the breadth of mathematics education research undertaken in the region and 

beyond by the MERGA research community. The Editorial Team would like to thank the authors for 

sharing their research. Gratitude also goes to the Review Panel Convenors and all the reviewers for 

their professionalism and effort in reviewing the papers and providing constructive feedback. The 

review process ensured that the high academic standards of the MERGA community were upheld. 

Thank you 

We would like to thank all the many colleagues who have helped bring MERGA 46 together, the 

Local Organising Committee, the MERGA Executive, the School of Education and Professional 

Studies at Griffith University, AAMT CEO Allan Dougan, the Queensland Association of 

Mathematics Teachers, our administrative support officer Megan Quentin-Baxter; and our sponsors: 

• Gold Level: Griffith University (griffith.edu.au), reSolve—Australian Academy of Sciences 

(resolve.edu.au);  

https://qamt.qld.edu.au/2024-state-conference-program-now-available/
https://griffith.edu.au/
/Users/mquentin/Documents/MERGA/MERGA46/PROCEEDINGS/PROCEEDINGS/resolve.edu.au


PREFACE 

iii 

• Silver Level: School of Education, The University of Queensland (https://www.uq.edu.au), the 

Queensland Department of Education (education.qld.gov.au), Springer (www.springer.com); 

and 

• Bronze Level: the Australian Association of Mathematics Teachers (AAMT, aamt.edu.au).  

A special word of thanks goes to Dr Candace Kruger, Yugambeh Elder and Songwoman, Kombumerri 

(Gold Coast) and Ngugi (Moreton Island) Aboriginal woman, and her son Aric Kruger, up-and-

coming mathematics education researcher, for conducting the Welcome to Country. 

Kym Fry & Peter Grootenboer (Conference Convenors) 

Jana Višňovská, Emily Ross, & Seyum Getenet (Proceedings Editors) 

 

 

https://www.uq.edu.au/
https://education.qld.gov.au/
https://www.springer.com/gp
https://aamt.edu.au/
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Clements-Foyster Lecture 

The Clements-Foyster Lecture acknowledges an eminent mathematics education researcher 

from Australia, New Zealand, or a South East Asian rim country, who is invited to present a 

keynote address at the annual MERGA conference. This annual keynote address is named in 

honour of Ken Clements and John Foyster who initiated and organised the first Mathematics 

Education Research Group of Australia Conference at Monash University in 1977. This led to 

the establishment of the organisation now known as MERGA. 





CLEMENTS-FOYSTER LECTURE 

(2024). In J. Višňovská, E. Ross, & S. Getenet (Eds.), Surfing the waves of mathematics education. 

Proceedings of the 46th annual conference of the Mathematics Education Research Group of Australasia 

(pp. 3–10). Gold Coast: MERGA. 

A Deep Dive Into Mathematics Education Research 

in Search of Significance 

Janette Bobis 

The University of Sydney 
janette.bobis@sydney.edu.au 

Janette Bobis 

Doing significant research is critical to building the quality of mathematics education 

research. But doing substantively significant research is inherently difficult because we 

are studying the unknown. The ability to clearly articulate or ‘sell’ the significance of 

our research often poses even a greater challenge to researchers. Nevertheless, without 

such statements of significance we are unlikely to win grants or have papers accepted 

for publication. In this presentation, I consider what it means when we say that research 

is significant. My reflections draw upon my own experiences and those of others as part 

of a ‘deep dive’ in search of significance in mathematics education research. 

The annual Clements/Foyster Lecture at MERGA conferences provide an important 

reminder to us of the foresight John Foyster and McKenzie (Ken) Clements showed in founding 

an organisation that has played such a major role in the lives and careers of so many 

mathematics educators since its inception in 1977. I recall being in the audience when the 

inaugural Clements/Foyster lecture was given by David Clarke in 2005 and although I never 

had the opportunity to meet John Foyster, Ken Clements was one of the first people to greet me 

at my maiden MERGA conference in 1991 when I was still a doctoral student. The following 

year, I had the honour of receiving the MERGA Early Career award and being given a hand-

written certificate signed by Ken Clements. The certificate is now a valued memento of not 

only the award but of Ken Clements as co-founder of MERGA. 

In my letter of invitation to present this lecture, it was suggested that I “take an empirically 

rich and theoretically robust forward-thinking approach that celebrates and thinks about the 

future potential of our organisation and its members”. With this request in mind, I felt that 

a presentation going beyond just my own research was needed. I wanted to focus on an aspect 

of research that impacts us all and is critical to strengthening the ongoing credibility and quality 

of mathematics education research not just in Australasia, but more widely. After assessing 

high stakes grant applications, research proposals for higher degree research students, and 

reviewing and writing manuscripts for publication over many years, I often find myself asking 

“So what?” and wondered why it challenges so many of us to clearly articulate the significance 

of our research. According to Cai et al. (2019b) about one-third of manuscripts rejected for 

publication in the Journal of Research in Mathematics Education (JRME) received feedback 

from reviewers that “So what?” had not been adequately addressed despite being a fundamental 

aspect of doing and reporting research. In keeping with the conference theme, Surfing the waves 

of mathematics education, I decided to take a ‘deep dive’ into the significance of mathematics 

education research. My aim in this presentation is to raise questions and start conversations 

about aspects of research that we should be discussing to help build some shared understandings 

about doing significant mathematics education research. 

Speaking the Same Research Language 

I started my dive into the significance of research by examining how I and other MERGA 

researchers describe the significance of our work. First, I searched for occurrences of the term 

and its derivatives in papers from the MERGA 2023 conference proceedings and scrutinised 

the context in which the terms were used. Excluding occurrences in references and short 

communications, the term significance or significant occurred 84 times but only 73 of those 

mailto:janette.bobis@sydney.edu.au
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were in research papers. I was only interested in references to the substantive significance of 

research so mentions of statistically significant results, and use of the term to indicate an issue 

was noteworthy or sizeable were discounted. Just five instances remained where the term was 

used to refer to the substantive significance of the research and only three of those (all written 

by early career researchers) offered elaborations as to why their studies were significant. Of 

course, the significance of a study can be conveyed in ways other than citing this exact term. 

Drawing upon papers from the MERGA 2023 proceedings, I created a list of terms that were 

most frequently used to potentially convey the significance of research. However, I now 

consider many of those terms to be distinctly different to the meaning intended by ‘significance’ 

of research. 

Armed with this set of ‘synonyms’ for describing the significance of our research, 

I extended my inquiry to a relatively recent issue of the Mathematics Education Research 

Journal (MERJ). An examination of eleven articles from the same issue revealed that the term 

significance was frequently used in subheadings toward the end of papers (e.g., Significance of 

findings) but rather than elaborate on the significance in the ensuing paragraphs, authors spoke 

in terms of other characteristics that typically drew upon terms from the set of so-called 

synonyms. At the same time, I made a point of asking educational researcher colleagues from 

a range of fields such as philosophy, linguistics, educational psychology, and mathematics 

education what the significance of research meant to them during incidental conversations. 

Almost without exception, even the most experienced researchers used a range of terms and 

phrases to explain their thinking and all acknowledged that a succinct statement was 

challenging—especially when not having had time to prepare a considered response. The terms 

and phrases they most typically used were added to my list of synonyms. From this initial 

shallow dive, I realised that a fundamental issue surrounding how we convey the significance 

of our research exists—we are not all speaking the same research language. 

To guide a deeper dive into this topic, I did what all researchers do—I developed research 

questions. The first guiding question was: What do we mean when we say research is 

significant? Before moving deeper into my explorations of research significance, I urge you to 

pause reading and reflect on your own response and perhaps the responses of those around you 

to what we mean when we say that our research is significant. 

Of interest, is the extent to which the terms and phrases you have just considered match 

those of other researchers. The most used terms and phrases in my list of synonyms for research 

significance included: importance, contribution to the field, benefits, impact, innovative 

solutions to a problem, implications, and extending or building new knowledge. There were 

others, but these were the terms and phrases most frequently mentioned by colleagues, authors 

of texts recommended for our higher degree research students, in papers from the MERGA 

2023 conference proceedings, and in the MERJ issue examined in my initial investigations. 

From these exploratory beginnings, further questions were formulated to help me delve deeper 

into issues surrounding the identification and articulation of significance in mathematics 

education research. Questions included: 

• Why is it so challenging for researchers to agree upon a definition of significant 

research? 

• Is the significance of research different to its contribution or its implications? If so, how 

do they differ? 

• How are significant research questions developed? 

• How can we judge if a research question is significant? 

• Why is it important that we do significant research? 
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The remainder of this paper is structured around responses to each of these guiding 

questions and draws upon examples from my own research experiences and those of others as 

part of a ‘deep dive’ in search of significance in mathematics education research. 

Clarifying Key Terms 

Why is it so challenging for researchers to agree upon a definition of significant research? 

Is the significance of research different to its contribution or its implications? If so, how do they 

differ? Before we can dive more deeply into what we mean by significant research, it is 

necessary to clarify a few key terms. The lack of consensus surrounding the meaning of key 

research terms is, according to Hiebert and colleagues (2023), a result of such terms being 

overused which has led to definitions gradually shifting. Meanwhile, Evans et al. (2014, p. 69) 

argue that confusion is “due to a looseness of expression” used among researchers. 

Conversations with established researchers from a range of disciplines, and readings of texts 

about doing educational research confirmed early in my dive that researchers often use a variety 

of terms interchangeably when talking about the significance of research. However, one term 

stood out from the rest—important. All colleagues and reference texts used the term ‘important’ 

at some point when discussing the significance of research. In their discussion of research 

agendas, Ertmer and Glazewski (2014) argue for the importance of research and do not mention 

significance at all. Although, when defining ‘importance’ they use almost the exact phrases and 

examples that Evans et al. (2014) use to define significance. Hiebert et al. (2023) suggest that 

the importance of our research is judged by its “significance, contributions, and implications” 

(p. 106). This statement implies that while they are connected, each of these terms refers to 

a different aspect of research that taken together, argue for the importance of our research. 

Significance 

From the literature and conversations, there seems to be consensus that significance is 

mostly associated with the research questions we pose and for them to be potentially significant 

they need to address important issues or problems in education. Arguing significance purely 

because there is a ‘gap’ in the literature is not sufficient. Perhaps the gap exists because it is 

just not important enough to know. Cai et al. (2019a) suggest that the significance of our 

research is drawn from the importance of the mathematics content or context in which the 

problem we are addressing is situated. They agree with Simon (2004), arguing that it is unlikely 

significant research will result from opportunistic research—studies undertaken purely because 

participants are conveniently available rather than those planned to address a recognisable 

problem of importance. This means that the likelihood our mathematics education research will 

be considered significant will depend on the degree to which it addresses a problem or issue of 

interest and perceived value by the community including other researchers and practitioners. 

However, what is valued and considered to be an important problem in need of solving 

might not be the case in another place or time. Research significance is bound by context. What 

mathematics education research and the broader educational community perceive to be 

significant changes over time. Moreover, the significance of research might be viewed 

differently in different cultures. The implication of research significance being bound by 

context is that the significance of a study might not be realised for many years after it is 

published and might be more (or less) highly valued in another country. Consider the current 

research interest surrounding artificial intelligence (AI). The term AI was originally coined in 

the 1950’s and made popular by Alan Turing when he posed the question “can machines think?” 

(Turing, 1950, p. 434). Interestingly, after posing this question, he questioned its significance, 

“Is this new question a worthy one to investigate?” (p. 434). He also made the prediction that 

by the end of the 20th century, the idea of machines thinking and learning will be without 

contradiction. Given the current pervasiveness of AI, the significance of his initial question is 

perhaps more important today than it was in 1950 when so many dismissed his claims as having 
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little consequence for society. However, the contribution of Turing’s paper to the field of AI 

was acknowledged from its release as being the first published paper to introduce the idea of 

testing machines for their capacity to exhibit acts of intelligence. From this example, we can 

surmise that unlike significance, the contribution of research remains the same regardless of 

time and place. This means that there is a clear distinction between the significance of research 

and its contribution to education research and education practice. 

Although nowhere near the level of importance as Turing’s seminal work on AI, the 

realisation that the significance of research is bound by context, but its contribution is not, 

caused me to reflect on my early experiences as a doctoral student and why my initial ideas for 

research were rejected by my supervisor but eventually gained traction in mathematics 

curricula. Emerging directly from a part-time research master’s degree and full-time primary 

teaching to my PhD in the late 1980’s I was prepared with a specific mathematics-related 

problem from the classroom that I wanted to explore. My proposal involved investigating the 

impact of a teaching intervention designed to facilitate the development of visualisation 

strategies in young children that would assist mental computation strategies. I had already 

conducted a pilot study with my kindergarten class from the previous year to refine my 

instructional activities. To my dismay, my supervisor quickly rejected my proposal during our 

first meeting on the grounds that he could not see any potential for it to be significant research. 

I revised my proposal to align with my supervisor’s expectations and completed my PhD. As a 

very early career researcher, I did not question the rejection of my initial proposal. When I 

finished my PhD, I returned to my pilot data and decided to present it at the 1993 MERGA 

conference—the year after I had won the Early Career Researcher award with a paper based on 

my PhD research. The new paper was titled, ‘Visualisation and the development of mental 

computation’ (Bobis, 1993) and was one of two papers concerned with visualisation strategies 

at the conference. I recall a very large audience and feeling intimidated by some influential 

researchers, such as Professor Bob Wright and Alistair McIntosh sitting in the front row. As far 

as I was aware, no one in the audience seemed familiar with ten frames or the potential benefits 

of using subitising strategies to assist the noticing of structure in dot pattern arrangements or 

the potential for students’ early number knowledge. Immediately following my presentation, 

Bob Wright congratulated me on such an important piece of research. Less than a year later, he 

had incorporated subitising into his Learning Framework of Number, eventually including 

subitising and ten frames into the New South Wales Department of Education’s Count Me In 

Too (CMIT) numeracy program learning and assessment materials (Wright, 1998). Although 

ten frames and subitising were familiar to primary teachers involved in CMIT since 1996, they 

were not popularised until they were included in the 2002 NSW Mathematics Syllabus K–6 

(NSW Board of Studies, 2002). Following the conference, I was also invited to expand on my 

paper for a chapter in a book edited by Joanne Mulligan and Mike Mitchelmore (see Bobis, 

1996). This chapter is still one of my top ten cited publications. 

Reflecting on this experience caused me to question: Why was my initial proposal not 

judged as significant research if only a few years later it could be acknowledged as such and 

impact curriculum documents? I consider that there are at least two reasons for this delayed 

acknowledgement of significance. First, is the context in which my initial proposal was 

delivered. In the late 1980’s, research surrounding number sense and mental computation was 

surging, but that of visualisation and visual imagery was still mostly confined to geometry. Its 

potential for improving young students’ number knowledge was relatively undervalued. 

Additionally, my supervisor was not an expert in early years mathematics learning issues, so 

was not familiar with this area of research. The second major reason for its rejection was 

probably my own inexperience as an early career researcher to articulate a convincing argument 

for the potential significance of the proposed research to my supervisor—something that I was 

much better at doing in publications post-PhD (Bobis, 1993, 1996). Reflecting on this 
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experience, the importance of establishing a robust case for significance early in the evolution 

of a research project and of clearly articulating it as such were reinforced. Without the ability 

to clearly articulate a case for significance, our research may never come to fruition. 

If the significance of research is mostly associated with the research problems and questions 

we pose early in the life of a study, this means that significance can be determined before data 

collection. Authors of researcher guides and thesis-writing handbooks (e.g., Evans et al., 2014; 

Hiebert, et al., 2023; Paltridge & Starfield, 2020) invariably discuss research significance when 

describing the contents of the introductory chapter or opening paragraphs of research work. 

A colleague described research significance and contributions as the ‘bookends’ in her 

writing—a case for significance is built at the start of her work and the contributions of findings 

are presented at the end. The important aspect of the metaphor for my colleague was the 

connecting thread between the bookends. In her view, this connection ensures consistency 

between the aims of the study and the conclusions, providing a robust argument for the 

importance of the research which starts with the case for significance and ends with a discussion 

emphasising the value of its contributions and implications. This connecting thread is akin to 

Simon’s (2004, p. 160) “line of reasoning” and to the “coherent chain of reasoning” that Hiebert 

and colleagues (2023, p. 116) identify as running through all parts of a research study. The 

visual representation (Figure 1), adapted from Hiebert et al.’s chain, conveys the point that there 

must be a clear flow between the initial phases of research and the contributions and 

implications discussed at the end. Methods are viewed as an enabling bridge—selecting the 

appropriate methods is needed to ensure a strong connection between significance and 

contributions. The authors warn that contributions are also constrained by the original research 

questions and hypotheses or revisions to these in the light of findings. A takeaway message of 

this chain of coherence is that if the significance of the study is established early, and if the 

methods are appropriate, the likelihood that the contributions will be important is increased. 

Figure 1 

The Chain of Coherence That Runs Through a Research Study (Adapted from Hiebert et al., 2023) 

 

Contributions 

Contributions are determined by the degree to which the research has moved the field 

forward, what we now understand better, and that can only be determined at the end of the 

study. The greater the perceived importance or value of the problem or issue investigated, the 

greater the perceived contribution of the research. An important characteristic of research 

contribution is that it is most often cumulative. We are regularly led to believe every study we 

conduct must include the Holy Grail as its contribution! Yet, one of the major criticisms made 

by reviewers of JRME is that authors’ claims of contribution are often not justified by the data 

(Hiebert et al., 2023). The reality is that the merits of the contributions to a field of research by 

most researchers are judged on their contributions over a series of studies. Consider the 

contributions of prominent mathematics education researcher Professor Emeritus Peter 

Sullivan. A driving force behind his work throughout his career has been the identification of 

and desire to address barriers to learning mathematics particularly for students from 

disadvantaged backgrounds. Throughout his career, Sullivan has addressed this theme from 
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multiple perspectives including good questioning (Sullivan & Clarke, 1991); open-ended tasks 

(Sullivan et al., 2001); enabling and extending prompts (Sullivan et al., 2006); lesson structures 

(Sullivan et al., 2015); challenging tasks (Sullivan et al., 2016); and sequences of challenging 

lessons (Sullivan et al., 2023). Examining even this narrow representation of his work reveals 

how Sullivan’s underlying research agenda to identify and address barriers to learning 

mathematics provided direction to his research. More importantly, the linked work yielded a 

far greater contribution over time to advance our understanding of how to design tasks and 

lessons that increase the likelihood of challenging and engaging all students in learning 

mathematics than just one study could possibly achieve. 

The critical point derived from the notion of cumulative contribution is that important 

advancements of knowledge in mathematics education rarely come from a single research study 

but from the linked contributions made by many. This is a major reason why researchers 

develop research agendas and base their studies on prior research conducted by themselves and 

by colleagues. Look at any chapter in Research in mathematics education Australasia 2020–

2023 (Mesiti et al., 2024) for the evidence of this cumulative contribution! 

Implications 

In the mathematics education research field, implications are most popularly presented in 

terms of suggestions that are reasonably derived from the findings for improving educational 

practices. Implications for educational policy, curricula development, theory, and research 

methods are also common. Additionally, implications expressed as recommendations for future 

research are usually expected in reports of research. Contrary to these popular views regarding 

the nature of implications, Hiebert et al. (2023) argue that most implications can be considered 

as research contributions. They propose that only conclusions about the efficacy of certain 

methods for generating a study’s data align with their definition of research implications. 

Although I can understand this perspective given that there is often a fine line between 

contributions and implications, I prefer a targeted discussion of implications, especially for 

educational practice and future research. A thorough discussion of practical implications is 

valued by MERGA and is a reason why we offer the Beth Southwell Practical Implications 

Award. Unfortunately, some researchers encounter difficulties writing about implications of 

their studies. One common difficulty relates to the definition that implications should be 

reasonably derived from data. In their analysis of JRME reviewer comments, Cai et al. (2019b) 

report that nearly 30% of reviews included concerns about implication claims that were 

unsupported by the findings. 

A second potential reason why some authors experience difficulties making a strong case 

for implications is linked to the positioning of implications in the concluding sections of 

research text. Word limitations along with an afterthought that implications should be included 

can result in the generation of meaningless sentences, such as: 

The results have important implications for theory and practice. 

Findings from this study contribute significantly to the development of recommendations for teacher 

professional learning. 

The study’s findings will impact student learning and have important implications for pedagogy. 

Regularly these types of sentences comprising sweeping statements appear with little or no 

details as to what the significance, contributions and implications are. 

Inevitably there will be some variation in the way different researchers interpret the 

meaning of key terms used to argue the significance of their research. Nonetheless, it is still 

important that we have a clear understanding of what we mean when we use them in our work 

and that we can differentiate between them. Without this clarity or differentiation, we risk using 

these terms interchangeably, which can cause confusion for readers. The important point is that 

although we are aware of the necessity of claiming the significance, contribution, and 
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implications of our work to argue its importance, without clarifying what these terms mean to 

ourselves, it is almost impossible to present a convincing case to others. 

Developing Significant Research Questions 

Earlier I stated that significance is mostly associated with the research questions we pose. 

This statement is in accordance with the National Research Council’s (NRC, 2002) six guiding 

principles for scientific inquiry. The first of these principles is to “pose significant questions 

that can be investigated empirically” (p. 52). The NRC maintains that such questions in 

education pertain to “pressing problems of practice and policy” (p. 8) and that the formulation 

of significant questions can be more important than the solutions. This advice is still not very 

helpful for developing significant research questions because it is not always obvious what 

pressing problems of practice or policy exist in education. In fact, Evans et al. (2014) consider 

that using the term ‘problem’ may be too strong and suggest that “motivation for the study” 

(p. 63) might be more appropriate in some contexts. Either way, a major challenge for 

researchers is often how to develop significant research questions. Moreover, as reviewers of 

research manuscripts and proposals, how can we judge if a research question is significant? Or 

at least, has the potential to be significant? 

Helpful advice for developing potentially significant research questions in mathematics 

education is provided by Cai et al. (2019a). They assert that research questions are more likely 

to be significant if they arise from teachers’ problems of practice and should “aim to directly 

impact practice” (p. 115). They advocate increased interaction between teachers and 

researchers so that authentic problems of practice can guide research question development. 

Although Cai et al. focus on teachers’ instructional problems as inspiration for research 

questions, it is important to also consider the problems of learners as a source. Perhaps the most 

significant questions in mathematics education are derived from our aspirations to improve 

students’ learning of mathematics. This improvement should occur by addressing problems of 

instruction and problems of learning. 

Once a question is selected, it will usually go through refinements to ensure it is 

unambiguous and meaningful. I use the Goldilocks principle as a guide for judging the 

meaningfulness of a research question. Namely, the question should not be too broad, not too 

narrow, but just right. Being ‘just right’ means that it will be focused, address an important 

problem or issue, and not require only a yes/no answer but seek to understand how and why. 

Finally, simply because we consider a research question to be significant does not ensure 

that readers will also view it as such. It is unlikely anyone can judge the significance of a 

research proposal simply by reading the research questions. Presenting a strong case or ‘selling’ 

the significance of a research question starts early by establishing the research context. The 

research question(s) and the problem it addresses must be contextualised in terms of existing 

research, providing a justification as to how addressing the research question will deepen our 

understanding of an important phenomenon in mathematics education and extend our 

knowledge in the field. As so eloquently argued by Hiebert et al. (2023) and represented in 

Figure 1, contextualising the research question based on prior research is only the first stage in 

a chain of justification that should be coherently woven through each subsequent section of 

writing; thus, continuously strengthening the case for significance. 

Conclusion 

An aim of this paper was to raise questions and spark conversations about aspects of doing 

and reporting significant mathematics education research. These are conversations that we 

should regularly revisit not only with our research colleagues but also with potential end-users 

whether they be practitioners or policymakers. I hope that my comments have made a positive 

contribution to individual researchers and to the MERGA community by raising awareness of 
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how critical it is for researchers to not only do significant research, but to think more deeply 

about how to communicate a coherent case for its importance via the significance, 

contributions, and implications. Not doing so, runs the risk that the quality of mathematics 

education research will be questioned. Refining our skills for arguing the case for the 

importance of research impacts us all—only together can we strengthen the ongoing credibility 

and quality of mathematics education research and have a truly significant impact on students’ 

learning internationally. 
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Mercy Kazima 

In this presentation I discuss the work of two research and development projects in my 

country, Malawi, which I coordinated since 2014, and how the work responded to the 

needs and context of mathematics education in Malawi. For more than two decades, 

Malawi has been concerned about low learner achievement in mathematics as indicated 

by national and international assessments. The concerns are similar to other countries 

in sub-Sahara Africa, where the mathematics achievement of most learners in primary 

schools is below their grade level. There have been some interventions aimed at 

addressing this concern by targeting schools, teachers and learners. I share these briefly 

as part of the background. Then I share the work of ‘my’ two projects called Improving 

quality and capacity of mathematics teacher education in Malawi project (2014–2019) 

and Strengthening numeracy in early years of primary school through professional 

development of teachers project (2017–2022). I focus on the research and interventions 

by the projects - in particular the intervention on counting in the first two grades of 

primary school. Finally, I discuss the findings and implications to mathematics 

education research in Malawi and other similar contexts. 

It is a great honour to be invited as keynote speaker, many thanks to the MERGA 2024 

organising committee. My talk is drawn from my work in Malawi but can apply to other similar 

contexts. First, I share the context of Malawi and three examples of interventions that have 

taken place in primary schools within the last decade. Then I discuss the two projects that I 

coordinated since 2014. I share the motivation for projects, a summary of the work and 

interventions by projects, focusing on an intervention on counting in the first two grades of 

primary school. Finally, I highlight the findings and implications to mathematics education 

research. 

Introduction and Background 

Malawi Context 

Malawi is a small low-income country in southeast Africa with an area of 118,484 square 

kilometres and population of about 21 million. It is a republic that gained its independence from 

Britain in 1964. The official language is English and is used in schools from Grade  5 onwards. 

Grades 1–4 use Chichewa, the national language, or other local language. The school structure 

has 8 years of primary school and 4 years of secondary school. Primary teacher education takes 

place in Teacher Training Colleges (TTC) under the Ministry of Education, and the 

qualification is a Teacher’s Certificate. The duration is two years covering 6 terms; four terms 

for taught courses at the TTC and two terms for school-based training in form of teaching 

practice. The initial teacher education programme prepares generalist primary school teachers 

with no specialisation in terms of teaching subjects or year level. Teacher education for 

secondary school is offered at universities and has a duration of four years of taught courses 

and one school term of teaching practice. The university teacher education programmes have 

specialisations for teaching subjects; often one major and one minor teaching subject (e.g., 

Mathematics major and Physics minor). 
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Teaching and Learning Mathematics in Malawi 

The teaching and learning of mathematics in Malawi is considered important, hence 

mathematics is a compulsory subject in primary and secondary schools, and a core subject for 

all science related programmes in post-secondary education. In primary and secondary schools, 

mathematics is allocated more time than all other subjects except English, which is also 

allocated about the same time. For example, 40% of teaching time in Grade 1, 34% in Grade 2 

and 31% Grade 3 (Ministry of Education, 2006). While there is all this emphasis on 

mathematics in schools, the learning seems to be limited as evidenced in low learner 

achievement. Assessments such as the Early Grade Mathematics Assessment in 2010 and the 

Monitoring Learning Achievement survey in 2012 reported that more than 50% of the learners 

achieved below the expectation of the Malawi primary school mathematics curriculum 

(Brombacher, 2011; Ravishankar et al., 2016). In all the assessments by the Southern and 

Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ) in 1995, 2000, 

2007, and 2013, Malawi was one of the two lowest performing countries in mathematics, with 

more than 90% of learners performing at or below the basic numeracy level (Milner et al., 2011; 

Brombacher, 2019). 

The concern in low learner achievement in mathematics led the government of Malawi 

through the Ministry of Education to commission a study to investigate the problem. This was 

a large-scale study from 2018 to 2019 that investigated what was inhibiting student learning of 

mathematics. The study focused on the first four grades of primary school and scrutinised the 

curriculum materials, lesson observations, and the various assessments (Brombacher, 2019). 

Findings of the study include that the Malawi curriculum had low expectations of learners, for 

example, it had low number range for calculations (0–9 for Grade 1, 0–99 for Grade 2, and  

0–999 for Grade 3); the focus of teaching was on procedures not understanding; and the 

approach to calculations was the same from Grade 1 to Grade 4. Same single-digit arithmetic 

using counters and the “combine and count all” strategy was observed. There was no increase 

in efficiency or development of number range appropriate strategies (Brombacher, 2019). There 

are other factors that contribute to the learners’ low achievements, including large classes, 

limited teaching and learning resources, and problems of learning mathematics in English while 

not competent in the language (Kazima, 2008, 2014). 

Interventions in Primary Mathematics 

The concerns in teaching and learning mathematics have led to some interventions in 

primary mathematics. These are mostly small-scale interventions targeting schools, teachers, 

and learners. Below are three examples, selected for their relatively good impact. The first 

example is Unlocking Talent which focuses on learners, the second is Numeracy Boost which 

focuses on the community, and third is Japan International Cooperation Agency (JICA) 

Numeracy which focused on teachers. 

Unlocking Talent Intervention 

This is an intervention by an international project aimed at improving numeracy and literacy 

for marginalised children in various countries (Pitchford, 2018). In Malawi, the intervention 

started in 2014. It is funded by the Norwegian Embassy and implemented in partnership with 

the Voluntary Services Oversees, the Malawi Ministry of Education, a non-profit organisation 

called Onebillion, The United Kingdom’s Department for International Development (DFID), 

United Nations International Children’s Emergency Fund (UNICEF), and the Scottish 

Government (Royal Norwegian Embassy, 2017). The intervention offers children in early years 

of primary school individualised learning using tablets. The tablets are installed with 

applications that were developed based on the content of the country’s primary school 

curriculum (Pitchford, 2018). The applications focus on basic numeracy and are designed in 



Interventions and development of mathematics education for primary schools 

15 

such a way that they do not rely heavily on a quality teacher. This was done to overcome the 

challenge of limited resources including qualified teachers (Hubber et al., 2016). 

Each intervention school has a classroom reserved for tablet use and is provided with 30 

tablets. During school time, groups of 29 learners at a time are taken out of their regular class 

to the tablet class with one supervising teacher. All the applications are in local language, are 

easy for the learners to use and give feedback to the learner. For example, the tablet can display 

10 circles and ask the child to count how many. The tablet would also display some numbers 

for the child to select the answer by touching the number. Verbal and visual feedback is given 

to the child before moving to the next item. The supervising teacher only acts as a facilitator 

and solves technical problems (Pitchford et al., 2019). 

The intervention has registered some successes including that it has helped to support 

development of basic numeracy skills because it allows learners to repeat activities when 

needed (Outhwaite et al., 2017). Furthermore, it promotes inclusiveness of both boys and girls, 

and of special needs learners (Pitchford et al., 2019). 

Numeracy Boost Intervention 

The Numeracy Boost intervention is supported by Save the Children. It started in 2012 in 

selected rural school communities in one district. The intervention has three components. The 

first component is community camps which are the core feature of the intervention. The camps 

are located in the school communities and run by volunteers from the community, referred to 

as camp facilitators. The camps operate after school and offer a learning through play 

environment. Some school teachers have the responsibility of camp supervisor which involves 

suggesting mathematics content areas to be covered at the camp (Mbendera, 2019). 

The second component is capacity building of the volunteer camp facilitators and teacher 

camp supervisors in form of brief training. The intervention works collaboratively with 

a primary teacher training college, where the mathematics teacher educators are offered training 

and then participate in developing teaching and learning materials for the camp and training the 

camp facilitators and supervisors (Mbendera, 2019). The third and final component is learner 

assessment. The intervention administers baseline and endline assessments each academic year 

in the intervention schools and some control schools. So far, the intervention schools have 

registered better achievement than the control schools, and have shown a more positive attitude 

towards mathematics (Mbendera, 2019). 

JICA Numeracy Intervention 

This intervention was conducted in 2016 in two schools only and focused on teachers of 

Grades 1–3. The aim was to equip teachers with knowledge and skills to help learners progress 

from unit counting to composition and decomposition when adding and subtracting numbers. 

For example, when addition of numbers crosses a 10 such as 8 + 5, they should be able to see 

8 + 5 as (8 + 2) + 3 and obtain the answer, 13, without unit counting. The teachers were offered 

three weeks of training before implementing the composition and decomposition strategies in 

their classrooms. A pre-test and post-test were administered to learners in the classes. It was 

observed that the learners that used unit counting in the pre-test were able to work out the 

problems without unit counting during the post-test, indicating that they were able to progress 

to composition and decomposition strategies of addition and subtraction (Kazima et al., 2022). 

Successes and Challenges of the Interventions 

Each of the interventions registered some successes which is commendable. However, they 

also registered some challenges which presented limitations. For example, the Numeracy Boost 

camps depend on volunteers, which might pose problems if the mathematical knowledge is not 

at the desired level. The Unlocking Talent takes groups of children out of class for the tablet 
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sessions, which means the children miss some of the regular learning. A common limitation 

across many interventions is that there is not much possibility for scaling up. Most start and end 

with the project life; like small experiments in the schools, then back to usual. The good 

outcomes are rarely shared widely to apply to others, and possibly there are some bad outcomes 

for some experimental groups. 

Projects I Coordinated 

Since 2014, I have coordinated two large projects which I refer to as project 1 and project 2. 

Both projects were in collaboration with the University of Stavanger, Norway, and with funding 

from the Norwegian Agency for Development cooperation (Norad). 

Project 1: Improving Quality and Capacity of Mathematics Teacher Education in 

Malawi (2014–2019) 

In 2013, prior to the project, we started a collaboration between the University of Malawi 

(UNIMA) and the University of Stavanger (UiS). We were successful in getting seed funding 

to develop a 5-year project proposal. Our overall goal was to strengthen the teaching and 

learning of mathematics in Malawi. We used the seed funding for a baseline study to identify 

needs that would guide our focus. We identified many needs at different levels; schools, 

learners, teachers, and teacher education. We decided to focus on teacher education for long 

term effect. Specifically, we focused on capacity building at the University of Malawi, and in 

TTCs. 

We received a grant of 16.5 Million NOK and we designed a project with five components 

(Kazima & Jakobsen, 2019) based on the identified needs, as shown in Table 1. 

Table 1 

Components of Project 1 

Component Needs 

PhD programme 

(developed for UNIMA 

and offered jointly with 

UiS) 

Capacity building for UNIMA: 

to have more faculty with PhD, 

to offer PhD programme, (increase number of well qualified mathematics 

educators in Malawi)  

Master course 

(developed for UNIMA 

and offered jointly with 

UiS 

Capacity building for UNIMA to offer course 

Target TTC lecturers to strengthen their capacity in preparing primary 

school teachers 

Increase number of well qualified mathematics educators in Malawi 

Research To learn from Malawi context and inform professional development 

Capacity building for UNIMA 

To increase research in mathematics education in Malawi 

Infrastructure 

development  

Capacity building for University of Malawi to offer the new courses (Master 

& PhD) and improve the existing one (Bachelor) 

Professional development  Capacity building: 

for TTC lecturers to offer better quality mathematics education 

for UNIMA to offer the PD 

Research and Intervention by Project 1 

The project intervention was to introduce Lesson Study in public TTCs. Lesson Study 

originated in Japan where teachers worked together to plan, teach, and observe a lesson with 

the aim of deepening their understanding of how students learn, and how to use that 

understanding to improve their teaching (Dudley, 2014; Fauskanger et al., 2019). In Malawi, 

lesson study is relatively new. The project introduced it with the aim for mathematics teacher 
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educators to learn about their own teaching and their students’ learning, to inform improvement 

in their practice. Research informed the intervention, both prior and during the intervention. 

The intervention was carried out from 2016 to 2018 through a series of activities; designing 

the lesson study programme, conducting workshops with teacher educators before and after the 

lesson study, and working with teacher educators on their lesson plans for lesson study. Each 

year, the programme started with a 3-day workshop in May, then lesson study in the TTCs from 

May to November, and finally another 3-day workshop in November. The intervention was 

conducted in all eight public primary teacher education colleges and reached all mathematics 

teacher educators in the colleges, 106 educators at the time. The intervention registered success 

in terms of mathematics teacher educators’ learning and uptake of lesson study as model for 

their professional development. Challenges include the demand on time of the teacher 

educators. However, it was observed that advance planning reduced the challenge of time. The 

project’s research and intervention revealed that the mathematics teacher educators need 

support, suggesting that teacher education should not be ignored as is often the case in many of 

the interventions. 

Project 2: Strengthening Numeracy in Early Years of Primary School Through 

Professional Development of Teachers (2017–2022) 

Midway through project 1, we applied for project 2 to continue the collaboration between 

UNIMA and UiS. We received a grant of about 15 Million NOK. Through our work with 

teacher educators in project 1 and our earlier baseline study, we identified the need for 

professional development of teachers. Thus the project 2 focus was on primary school teachers, 

and the overall aim was to improve Numeracy in early years of primary school in Malawi 

(Kazima & Jakobsen, 2021). The project had three main components based on the needs we 

identified, as shown in Table 2. 

Table 2 

Components of Project 2 

Component Needs 

Research 

(including Master, PhD, 

and PostDoc) 

To learn from Malawi context and inform professional development 

Capacity building for UNIMA 

To increase research in mathematics education in Malawi 

Infrastructure 

development  

Capacity building for University of Malawi to offer PD 

Professional 

development  

Capacity building: 

for teachers to strengthen their teaching 

for UNIMA to offer the PD 

to provide TTCs with a possible model of working with schools 

Research and Intervention by Project 2 

In project 2, we planned to introduce an intervention on something teachers already do in 

their teaching and strengthen it so that they can do it better. Based on our research and 

observations, we identified counting in the first two grades of primary school as a good focus. 

Almost all lessons started with counting activities usually through play and song which was 

motivating and exciting for young learners. However, the counting was all forward counting in 

ones starting from one. We planned an intervention that would extend the teachers’ work of 

counting to more mathematically meaningful counting activities. 

The intervention was conducted in form of professional development for the teachers 

through lessons study. We adapted the structure of lesson study from project 1 where we started 

with a 3-day workshop with teachers in May, followed by lesson study in schools from May to 
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November, then another workshop for 3 days in November. We repeated this from 2019 to 

2022, with different schools each year except 2020 due to COVID. We managed to work with 

a total of 11 schools and all the 136 teachers of grade 1 and 2 in the schools. 

Workshop 1 

The first workshop included (i) what is teaching and what is learning? (ii) discussion of how 

the participants teach counting in their classrooms; (iii) counting activities—choral counting 

and counting collections (Franke et al., 2018)—and why they are important; and (iv) an 

introduction to lesson study. On the last day, teachers from each school were encouraged to 

work together to conduct lesson study on counting based on what they learnt during the 

workshop. Each school drafted their initial ideas then shared with the rest of the group by the 

end of the workshop. Teachers were also encouraged to use the counting strategies explored 

during the workshop, specifically counting forwards and backwards, counting in groups, skip 

counting, counting collections, and choral counting. 

Lesson study in schools started with developing draft lesson plans for the research lesson. 

The focus of the lesson study was for teachers to learn about their students’ learning. As such, 

the research lesson plans needed to make clear what it was about their students’ counting that 

the teachers wanted to learn and how the teachers would observe it. The draft lesson plans were 

submitted to the project team at UNIMA and UiS. Each draft was reviewed by at least two 

project team members who provided written feedback to the teachers. The UNIMA project team 

visited each school to discuss the feedback with the teachers and provide support where needed. 

The schools revised their lesson plans following the feedback, then identified one of the 

teachers to teach the research lesson while the others observed. Finally, the teachers reflected 

on the lesson, discussed their learning from it, and prepared a report to share at workshop 2. 

Workshop 2 

The second workshop again lasted 3 days, and it covered (i) reports form all schools on their 

lesson study, what they learned and discussions; (ii) reflections and more lesson plans on 

counting; (iii) talk moves (Kazemi & Hintz, 2014); and (iv) the mathematics teaching 

framework (Adler, 2021). 

The UNIMA project team visited all schools during the lesson study and later followed up 

with some of the schools after the second workshop. The findings that follow are from both the 

lesson observations and reports from the teachers. 

Findings and Implications 

Findings 

I highlight three findings, then discuss their implications to mathematics education research. 

First, we observed that teachers included more meaningful counting activities in their teaching 

besides the rote counting through song and play. Teachers adapted skip counting in their play 

and songs. However, there were reports of challenges in implementation in large classes. 

Second, almost all the teachers reported surprise at what their learners could do, for example, 

counting in groups and identifying number patterns on a 100 square or other grid arrangement 

of numbers. There seemed to be a general underestimation of what grade 1 and 2 learners can 

do. This supports the argument by Brombacher (2019), that the primary mathematics 

curriculum has a low expectation of the learners. It seems that the teachers also shared the low 

expectation. However, it could be argued that the curriculum influenced the teachers’ low 

expectations of their learners. For example, the curriculum’s low number range of 0-9 for 

Grade 1 might have limited teachers’ expectation of Grade 1 and 2 learners identifying number 

patterns. Third, most teachers were able to link counting to mathematical concepts (e.g., linking 
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counting in groups to multiplication). However, some teachers might have benefited from more 

workshops and activities to see the mathematical connections. 

A general finding from the two projects was that Lesson Study is an effective method of 

professional development of teacher educators and teachers. However, there was need for 

support from ‘experts’ in the field, referred to as knowledgeable others in lesson study terms. 

Implications For Mathematics Education Research 

The findings have implications for teaching, for teacher education, for curriculum 

development, and others. I focus only on implications for research in mathematics education. 

One implication is a call for research on implementing the counting strategies in large classes. 

During the lesson study, some schools split the classes into two so that they could observe all 

learners easily. While this was a good solution, it is not practical to do so in their everyday 

teaching. Hence the need for research to inform our practice. Another call for research is on 

what Malawi children bring to the classroom as they start primary school mathematics and how 

to use that in teaching. Many children in Malawi do not have access to preschool, and there is 

no reception class prior to the first grade at age 6. Studies of the curriculum have shown that it 

has low expectations (Brombacher, 2019), probably because the assumption of what children 

bring to the classroom was too low. Research to explore this would greatly inform the 

curriculum and teaching. 

Teacher education is another area that needs research to inform practice, specifically 

research that addresses the knowledge teachers need to teach counting effectively and make 

mathematical connections with other concepts. What role can initial teacher education play in 

developing counting skills and teaching strategies? And what role can school-based 

professional development play? 

A general implication is the need for more lesson study with a research component on how 

to learn from teachers’ own teaching and how to apply their learning in teaching to improve 

their practice. 

We found research within the Malawi context crucial. Research prior and during 

intervention informs design and ongoing improvements. Research from other contexts informs 

us better when we understand our own context. 

Concluding Remarks 

I have shared my work and how interventions can contribute to development. Malawi is an 

illustrative example, the discussion can apply to other similar contexts. We learnt from project 1 

that teacher education needs support and should be included in research and interventions in 

mathematics education. From project 2, among other things, we learnt that there are many 

things that the teachers do well within the constraints of the context. Interventions need to 

acknowledge and strengthen these existing skills while developing new skills. For example, the 

teachers were good at counting with young learners through songs and play in a motivating 

way. The intervention needed to strengthen their approach, by keeping the counting songs and 

extending from the rote counting to more mathematically meaningful counting. There is a lot 

we can learn from such contexts to complement our understanding of mathematics education 

that we learn from other ‘more visible’ contexts. There is need for more research and 

dissemination from different contexts, especially the low-income countries whose work is 

rarely disseminated beyond their national boundaries. Mathematics Education research 

associations in the various regions such as MERGA and SAARMSTE have a role to play. 

Thank you. 
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Nathalie Sinclair 

In 1993, Patti Lather proposed the notion of voluptuous, or embodied, validity. As part of 

her broader post-structural methodological inquiry, embodied validity was a way of speaking 

to the importance of lived experience. An author can describe something that happened, but 

that is significantly different than experience what happened oneself. Consider the transcript 

that includes a parenthetical remark indicating that a student has laughed. Now start laughing 

yourself: part your lips and stretch them out, feel the air coming out of your nose and the 

contraction of the chest; notice your eyes squinting and the repetitive heaving that is 

accompanied by unusual sounds; all the while, endorphins are released and others around you 

might be sympathetically laughing too. In my talk, I will be going on an adventure in thinking, 

one that explores why embodied validity matters in mathematics education research, both as a 

method for creating and interpreting data and as a method for communicating research. One of 

my premisses is that despite the growing interest in theories of embodiment, the methods that 

have been used in mathematics education research are still dominated by static, language-

dominant and cognitively focused methods that often fail to adequately understand and express 

what is at stake in mathematics teaching and learning. The stakes are political because focusing 

only on what is said or what can be objectively seen and heard, frames both mathematics and 

knowledge in exclusive ways (de Freitas & Sinclair, 2017). 

My talk will proceed in three parts, each motivated by a re-thinking of widely held 

assumptions about the role of the senses in knowing, the kinds of evidence that can give rise to 

knowledge, and the forms of experience required to communicate knowledge. Although this 

adventure began from my own inclusive materialist commitments (de Freitas & Sinclair, 2014), 

I hope this adventure might also be enriching for those of different theoretical persuasions. 

Part 1: What Senses Matter in Mathematics? 

When, as researchers, we look at a video clip, we often attend to what is said, both by the 

teachers and the students. If we are using theories of embodiment, we might also attend to 

student gestures, or even to their postures or gaze. If they are working with tools of any kind, 

we might also attend to their actions. Essentially, we are focused on what we can see and what 

we can hear. Howes (2022) brings together researcher from anthropologists, biologists, 

neuroscientists, and artists to propose that our typical focus on the five “cardinal” senses is quite 

restricted and that we may have many, many more (up to 32, according to Young (2021)). These 

include senses such has proprioception, pressure, rhythm, as well as mixed senses such as hand-

eye. If we subscribe to theories of embodiment, surely these senses should matter in our 

research. However, as researchers, how can we “get at” these senses if we are only watching 

and listening to videos? Is it enough to be aware of these senses to see if they matter at all in 

mathematics teaching and learning? Can we feel them by watching videos? These questions are 

perhaps most important in contexts where students and teachers are using tools or materials that 

engage these other senses, such as touching screens or weaving thread, but they are also relevant 

to collective interactions, where sympathy and proprioception are often significant. 

Part 2: Aestheticising Experience 

Aestheticizing is a term I borrow from Fuller and Weizman (2021), who draw on the 

Ancient Greek concept of sensory knowing, so that aestheticizing experience is about rendering 

it “more attune to sensing” (Fuller & Weizman, 2021, p. 34). They use this idea of aestheticizing 
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experience to describe the work of forensic architects, which aims “to uncover hidden, 

obfuscated facts” through tracking movements, disentangling “the making of a situation”, 

working out “the genesis of an incident” and “combining and interpreting clues that are already 

in the open” (p. 107). In contrast to representational research, which aims to account for what 

happened, or critical research, which is interested in the hidden formative forces of 

representations, their investigations are interested in the formation of the representations to 

propose “new conditions of knowing, seeing and doing” (p. 111). Fuller and Weitzman use 

simulations to do their work. They will recreate a crime scene, for example, and run through 

the crime multiple times in order to create new conditions of knowing: for example, what could 

be heard or seen or smelt from different positions? What if we as researchers also conducted 

simulations, by re-enacting the videos from research sites (see Günes et al., 2024)? Would we 

be able to feel the pressure required to make something move on the screen or the changing 

nature of hand-eye coordination as screen touches are made? In other words, rather than seeing 

bodily movements only as the representation of mathematical thinking, what new conditions 

for knowing and doing mathematics might arise? 

Part 3: Not Obviating the Necessity for Direct Experience 

Shapin (1984) traces the technologies of scientific research that were devised by Robert 

Boyles during his air pump experiments in the 1650s, and that have since become normative in 

empirical research (including mathematics education research). Shapin argues that Boyles 

created a literary technology of virtual witnessing, which was “the production in a reader’s 

mind of such an image of an experimental scene as obviates the necessity for either its direct 

witness or its replication” (p. 491). The researchers must provide details of what happened, in 

objective ways, so that the reader finds the experiment credible (as well as potentially 

replicable). As a consequence, writing the experimental report became just as important as the 

experiment itself, since it enabled the establishment of matters of fact by the public. 

This is what we do in our journal publications. Our writing is circumstantially dense as we 

provide descriptions of the research setting and even more specific and detailed accounts of the 

events that occurred, including the things said as well as the actions made. Transcripts are part 

of this technology of knowledge production, enabling the kind of virtual witnessing that Shapin 

identifies (Sinclair, 2024). However, I wonder whether transcripts really obviate the necessity 

for direct experience? In the case of accounting for experience in which multiple senses are at 

stake, like the kinetic and the tactile, witnessing seems insufficient. What new literary 

technologies might render possible direct experience? 
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Beth Southwell Practical Implications Award 

The Beth Southwell Practical Implications Award was initiated and sponsored by the 

National Key Centre for Teaching and Research in School Science and Mathematics, Curtin 

University, Perth, Western Australia. Curtin sponsored the “Practical Implications Award” 

(PIA), as it was then known, for the first 10 years. The Australian Association of Mathematics 

Teachers (AAMT) now sponsors the Award. In 2008, MERGA was honoured to be able to 

rename the PIA as the Beth Southwell Practical Implications Award (BSPIA), in honour of 

MERGA’s and AAMT’s esteemed late member, Beth Southwell. The award is designed to 

stimulate the writing of papers on research related to mathematics teaching or learning or 

mathematics curricula. Application for the award is open to all members of MERGA who are 

registered for the conference. Applications for the BSPIA are judged against specific criteria 

set by a four-member panel. The panel consists of two members from MERGA, two from 

AAMT, and is chaired by the MERGA Vice President (Development). 
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In this paper we problematise the expectation that Year 1 (6/7 years) children can 

effectively discriminate left/right, enact left/right-turning directions and use the 

language of left/right to give directions. Results from task-based interviews with 36 

Year 1 children are interpreted through the lens of embodied cognition and spatial 

frames of reference to reveal some of the complexities and cognitive demands of 

learning what it means to ‘turn left’ or ‘turn right’, as a basis for further investigation. 

The Australian Curriculum: Mathematics includes the following achievement standard for 

Year 1 (the second year of schooling), “Children give and follow directions to move people and 

objects within a space.” Further elaboration of the learning expectation emphasises the role of 

language and “understanding the meaning and importance of the words when giving directions: 

for example, using words like ‘forwards’ and ‘backwards’, straight ahead’, ‘left or right’ to 

describe movement” (Australian Curriculum, Assessment and Reporting Authority [ACARA], 

2022). The learning requirement is mirrored in the NSW state Mathematics K–10 syllabus with 

the statement, “Give and follow directions, including directions involving turns to the left and 

right” (NSW Education Standards Authority [NESA], 2022). The presence of this learning 

expectation for 6/7-year-olds implies that the meaning of turning left and right is not innately 

developed and needs to be taught, and that it is reasonable to expect children of this age group 

to achieve competence in both following and giving such directions. Yet left/right confusion in 

people is common and research to inform the teaching of left/right discrimination and its 

application to navigating the environment is scarce. 

The current curriculum clearly specifies the involvement of moving people, yet much of 

what we know about children’s lateral left/right discrimination abilities comes from 

psychological research conducted decades ago involving inanimate objects and static tasks 

rather than dynamic tasks involving moving the body and turning left/right. The curriculum 

also emphasises the importance of understanding the meaning of relative directional words. 

Humans, like many other animals, have a natural ‘front-facing’ perspective that assists us in 

orienting ourselves in space. In the English language, a sense of ‘front-facing’ is essential for 

the understanding the viewer-centric terms left/right and turn-left/turn-right. However, some 

other cultures and languages make greater use of an allocentric frame of reference (FoR) in 

which locational and directional terms refer to objects and landmarks (Abarbanell & Li, 2021). 

In this study we focused on situations where the viewer-centric perspective is central to the 

enactment of spoken directions and the production of spoken directions by children. We 

concentrated on two scenarios for utilising the viewer-centric perspective; one involved the 

egocentric FoR relating the child’s own body and the other was where the child had to switch 

the FoR to the viewpoint of another front-facing entity. In the former scenario the child would 

be responding to verbal instructions to move their own body, and in the latter scenario, the child 

would be directing someone else to move. To reflect the exploratory nature of the investigation, 

the study was guided by the open-ended question: How do Year 1 children respond to, and give, 

verbal instructions to turn-left and turn-right? 

mailto:jennifer.way@sydney.edu.au
mailto:katherin.cartwright@sydney
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Background Research 

In previous research an important distinction has been made between the discrimination 

and recognition (awareness) of left and right and the verbal identification of left and right 

(Rigal, 1994; Roberts & Aman, 1993). Discrimination and recognition of the left and right of 

one’s own body develops much sooner than verbal identification. Some children may correctly 

verbally identify their own left and right by 7 years, but verbal identification of someone else’s 

left and right takes longer to develop. Half of the 11-year-olds in Rigal’s (1994, 1996) study 

still could not correctly apply the words left and right to someone else’s perspective. The long 

development period was attributed to the children’s persisting egocentric spatial FoR and the 

cognitive demands of performing mental rotations to imagine other perspectives (e.g., Rigal, 

1996; Roberts & Aman, 1993). Notably, studies in this era consistently used static two-

dimensional displays of geometric shapes rather than dynamic and/or embodied situations in 

the three-dimensional world. 

More recently, the broader acceptance of embodied cognition theory (e.g., Dackermann et 

al., 2017; Keifer & Trumpp, 2012) and evidence from neuroscience about spatial processing 

and memory (e.g., Ruggiero et al., 2016), has led to renewed interest in the development of 

spatial FoR, the role of body movement and the implications for education. A modest quantity 

of research on ‘turning the body’ has arisen from the field of technology and robotics education 

with children (e.g., Clements et al., 1996; Kocher et al., 2020). 

Navigating Without Language 

At a basic level, physically navigating oneself around a spatial environment involves an 

egocentric spatial FoR in which all orientations, positions, directions and movements are 

processed in relation to one’s own body. We can achieve tasks such as walking across a room 

while navigating around tables and chairs, at an embodied level, with minimal cognitive 

demand. In essence, we can move forward and turn left and right, whenever required, without 

actually thinking about it or needing to connect our actions with language—we can just do it. 

Similarly, we could push an object around a structured spatial environment, much like a chess 

piece on a chess board, without connecting language to the movements. Perhaps it could be 

argued that the latter scenario also involves egocentric referencing because of its proximity 

(Ruggiero et al., 2016), and the direct manipulation of the ‘object’ may be perceived as an 

extension of oneself. 

If we wanted to guide another person across the room following the same path (and they 

could see us) we could again use embodied modes to communicate by gesturing and pointing. 

Such a task appears to use an allocentric spatial FoR, where we consider the location of objects 

in relation to other objects. In this sense, we perceive the other person as an ‘object’ that we 

can move without actually touching because ‘it’ responds to our hand signals. Consider the 

effectiveness of directing a driver trying to reverse a vehicle into a parking space using gestures 

rather than calling out left and right directions. Without the use of language, it is not necessary 

to use a viewer-entered perspective and switch to the other’s perspective. 

Navigating with Language 

In each scenario above, embodied modes are dominant in the navigation of the three-

dimensional environment and language is redundant. The encoding of spatial frames of 

reference—the attachment of specific language to spatial and directional concepts—creates 

another layer of complexity. While some research suggests that increased exposure to spatial 

language supports the development of spatial skills (Casasola et al., 2020), we know little about 

how children learn frame-of-reference words (Shusterman & Li, 2016) and even less about how 

to effectively teach this aspect of spatial competence. 
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Being able to give left/right directions to someone else appears to be more difficult than 

following left/right directions. Waller (1986) reported that 5 to 6-year-olds could differentiate 

left/right but had difficulty in remembering left/right instructions and giving appropriate 

left/right directions to others. Giving effective directions requires the cognitive flexibility to 

utilise an allocentric spatial FoR in a way that requires switching spatial perspectives from one’s 

own perspective to the perspective of the other person—plus an awareness of the need for 

accurate instructions (Waller, 1986). Cognitive science research provides at least a partial 

explanation for different levels of difficulty through establishing that spatial memory of 

egocentric-based experiences is easier to retrieve than spatial representations that involve 

allocentric referencing, which involves a different part of the brain (Ruggiero et al., 2016). 

In recent years, educational research regarding children’s interactions with computers and 

robotics has produced some insights into the development of navigational language through the 

use of verbal commands (Kocher et al., 2020). In their research with 4-to-9-year-olds, Kocher 

et al. (2020) asked the children to verbally guide an adult (acting as a robot) to find a ‘treasure’ 

the child had hidden in the room. The researchers categorised the navigational commands the 

children naturally used into three levels that illustrate increasing precision in spatial language, 

alongside decreasing dependence on embodied communication. Explication of the levels was 

intended to inform teaching and the choice of types of digital robot suitable for use with the 

children. The Beginner level featured the use of landmarks and gestures. For example, ‘go to 

the chair’ or ‘walk round the table’. Such direction might utilise gesture to reduce the demand 

for language, and vague terms such as ‘Go there’ and ‘Turn’ needed to be accompanied by 

gesture to be effective in producing the desired movement by the robot-actor. At the 

Intermediate level more specific spatial terms were used such as ‘left’, ‘right’, ‘turn-stop’, 

‘forward’ and ‘diagonal’. Self-corrections were made following the feedback afforded by the 

robot-actor’s response to a command (e.g., ‘the other left’). Advanced level commands were 

more precise, such as ‘turn-left’ (sometimes with the angle specified), or the inclusion of 

distance (e.g., forward 5 steps) (Kocher et al., 2020). 

An important language consideration is the meaning of ‘turn’ in different contexts, 

particularly in relation to the context of robotics. In most circumstances the command ‘turn left’ 

would be interpreted as rotating the front-face until the new front-face is ‘looking’ directly to 

the left-side of the original position, that is, a turn of 90o. However, depending on the context, 

the movement that achieves the turn can be quite different. For example, in the contexts of 

walking or driving a car, the command ‘turn left’ would be enacted gradually by moving 

forward simultaneously with the left-turn motion, creating a curved pathway (Clements et al., 

1996). So, there is a change in both location and the front-face orientation. However, in the 

context of robotics the left turn would be achieved by a rotation of 90o on the spot, without any 

forward movement. The robot’s location remains the same and only the orientation of the front-

face changes. Bakala et al. (2021) suggest the method of turning in robotics is counterintuitive 

for children and so would require special attention in teaching. 

Methods 

Context and Participants 

This study is situated within the Embodied Learning in Early Mathematics and Science 

project (2021–2024), the aim of which is to translate research on embodied cognition into 

classroom practice for Preschool through to Year 2 (4- to 8-year-olds). The participants for this 

study were randomly selected Year 1 children from three different schools (New South Wales, 

Australia) which had not been part of the professional learning intervention aspect of the larger 

project. A total of 36 children returned consent forms from their parents. School 1 is a medium-

sized primary school with 409 children, 29% of children are from a LBOTE (Language 

Background other than English). School 1 has an ICSEA (Index of Community Socio-
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Educational Advantage) score of 1121 indicating a higher SES (socio-economic status) 

compared with other schools in Australia. [Note: An ICSEA score of 1000 is set as the average 

benchmark with which other schools are valued as lower or higher levels of educational 

advantage of student populations (ACARA, 2020)]. School 2 is a medium-sized primary school 

with 301 children, 33% of children are from a LBOTE. School 2 has an ICSEA score of 1028 

indicating it has a higher SES. School 3 is a medium-sized school with 553 children. School 3 

is identified as having a high, 94%, LBOTE child population and lower level of educational 

advantage with an ICSEA of 950. 

Task-Based Interviews 

Task-based interviews (Goldin, 2000) were carefully designed for the purpose of the study 

and to elicit each child’s embodied “representations of particular mathematical ideas” (Maher 

& Sigley, 2014, p. 821), in this case the concepts of right-turn and left-turn. The one-to-one 

task-based interviews were conducted by five different researchers. The delivery of the tasks 

was scripted and practiced for consistency of question-asking by the interviewers. However, it 

is acknowledged that some variations still occurred within the child-interviewer interactions, 

mainly due to the unpredictability of the child responses. The interviews were video recorded, 

with additional permission given by the children themselves before commencing the tasks. 

Task 1: You be the Robot 

Task 1 required the child to respond to spoken orientation and directional terms (turn-right, 

turn-left) by moving their own bodies, and therefore utilised a viewer-centric perspective and 

an egocentric spatial FoR. The task began by inviting the child to stand in a clear floor space, 

then the interviewer followed the script (Table 1), delivered one part at a time. No feedback 

was given to the child during the task and incorrect moves were simply followed by the next 

instruction. In the mapping of the correct movement responses (Table 1) the right-turn is 

represented by Locus 2 and 3, and the left-turn by Locus 4 and 5. 

Table 1 

Task 1 Details 

Task 1 script Mapping of correct movements 

Let’s play a robot game. 

You be the robot. Stand up like a robot. I’m the 

robot controller. 

Robot, take 1 step forward (pause) 

Robot, turn right (pause) 

Robot, take 2 steps forward (pause) 

Robot, turn left (pause) 

Robot, sit on the chair (point to child’s interview 

chair)  

 

 

Task 2: Direct the Robot 

Task 2 required the child to give verbal commands to a toy robot (animated by the 

interviewer), and therefore required an allocentric spatial FoR and switching the viewer-centric 

perspective to the robot’s viewpoint. The task began by placing a grid on the desk in front of 

the child (see Table 2 for the orientation) and showing the child the toy robot, followed by 

scripted instructions, all delivered at the beginning. The child was not permitted to touch the 

robot and the interviewer moved the robot as if it could hear the child’s verbal instructions. 

Therefore, if the child did not give a verbal instruction the robot did not move, and the child 

was prompted to try again. Feedback was often (but not consistently between interviewers) 

provided if the child did not use the verbal prompt related to a specific direction. For example, 
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if the child said, ‘go there’ or ‘take one step’, a prompt might have been ‘which way?’ 

Unavoidable feedback was also provided by the robot’s response to a command—which may 

or may not be the movement envisaged by the child. 

Table 2 

Task 2 Details 

Instructions Robot grid and placement 

Now you be the controller for this little robot. 

The robot can only move one square at a time. 

It won’t turn left or right unless you tell it to. 

Your job is to tell the robot how to move from here 

(place robot on star) to here (point to red square). 

What’s your first order for the robot? (Interviewer 

moves the robot according to child’s instructions). 

(If child does not commence, demonstrate) 

Robot, take 1 step forward (move the robot one square). 

Your turn to tell the robot 

 
Toy robot 

Analysis 

Both tasks included other concepts such as forward movement and distance, but the focus 

of analysis was narrowed to the instances of right (R) and left (L) turns for the purposes of this 

paper. Two analysis approaches were applied to viewing the videos. The deductive approach 

recorded whether each child could produce a ‘correct’ response (yes/no). The inductive 

approach recorded more information about the nature of each child’s response using descriptive 

text. An analysis spreadsheet was constructed and two members of the research team who had 

conducted the interviews analysed the videos, cross-checked each other’s analyses, and 

resolved any difficult interpretations through discussions. 

Correct for Task 1: You be the Robot 

Correct body movements in response to the verbal instruction Turn right (R), or Turn left 

(L): 

• R/L awareness: Gave some indication that they know which is their R/L side, such as a 

gesture or other movement to the R/L (including turning); 

• R/L Turn: Turned R/L a quarter turn (90º) to reorient their body to R/L of their original 

‘front-facing’ position—and remains in that position and orientation. 

Correct for Task 2: Direct the Robot 

Correct verbal commands (on first attempt) given to the robot relative the robot’s Right (R) 

or Left (L). 

R/L awareness: Gave some indication that they know which is the robot’s R/L side. To 

determine correctness the researcher must make a judgement about the child’s intent. For 

example, if a child says ‘Turn left’ but shows surprise when the interviewer turns the robot to 

the robot’s left, then the spoken direction did not match the child’s intent, so was recorded as 

incorrect. When incorrect, the command was classified as R or L according to the intended 

direction. Pointing to the grid square to the left of the robot or using a left gesture (with no 

accompanying verbal ‘left’) were recorded as incorrect, as these embodied actions ‘may’ have 

indicated L/R awareness, however they may also have simply indicated the child knew which 

way or path to take to the target square. 

R/L Turn: Gave a verbal command to Turn R/L. Verbal instructions such as ‘Go Left’, or 

non-verbal instructions such as pointing were not recorded as correct. 
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Results 

The results of the two Robot Tasks are first presented separately with a focus on specific 

findings in relation to egocentric (Task  1) and allocentric/view-switching (Task 2) spatial FoR. 

Second, findings from across the two tasks are presented as general findings highlighting 

connections and comparisons. Table 3 provides a summary of correct responses for L/R 

awareness and turn for each task. This table will be referred to throughout the results section in 

conjunction with the descriptive text regarding children’s alternate incorrect responses. 

Table 3 

Deductive Analysis Summary: Number of Children with Correct Responses 

 Task 1 (egocentric) Task 2 (allocentric/perspective switching) 

School (n) R 

aware 

R  

turn 

90º 

L 

aware 

L 

turn 

90º 

All 

yes 

R 

aware 

R turn 

verbal 

L 

aware 

L turn 

verbal 

All 

yes 

1 (10) 7 6 7 3 2 3 3 7 6 2 

2 (15) 12 9 12 5 5 5 3 12 6 3 

3 (11) 9 6 8 2 1 1 1 3 1 1 

Total (36) 28 21 27 10 8 9 7 21 13 6 

Some children did not have the opportunity to make a right turn command because the pathway they chose for 

the robot only required left turn/s. 

All yes in Task 2 only refers to children who provided commands for both R/L. 

Task 1 Results 

Across the three schools eight children obtained a complete correct (R and L) score for the 

egocentric task, and eight children we unable to complete any aspect correctly. Of the eight 

children who were unable to complete Task 1, most (7) turned, but turned the opposite direction, 

for example turned L for R, therefore they scored incorrectly on both awareness and turn. The 

remaining 20 children’s responses were mixed. All except one showed both R and L awareness. 

Of the 19 that showed R and L awareness, 10 children could also turn R and turn L–but turned 

L 180° instead of 90°. It was noted that turning L from Locus 4 (see Table 1) would place 

children facing L if a L turn was completed facing the ‘original’ front (starting direction) of 

Task 1. Overall, children were more competent with R and L awareness than physically turning 

R or L 90° as indicated in Table 3. However, if interpreting correct ‘turning’ as correct 

directional turn, not necessarily correct rotation amount, then 18 children could be considered 

as scoring complete correct on Task 1. Where children scored incorrect for R or L turn, they 

either turned in the opposite direction or stepped sideways in the correct direction. 

Task 2 Results 

Six children obtained a complete correct (R and L) score for the allocentric task. As noted 

in the analysis, Task 2 could be completed without a R turn, therefore, an additional four 

children were correct for the turns they use to direct the robot. Observational notes made about 

these children revealed; two children made ‘Ls’ with their hands/fingers to know which way 

was left before stating their directions, and one child moved around the desk to position their 

body behind the robot’s starting position. There were 13 children unable to give any correct 

verbal command for the robot to turn R and/or L. Eight of these children indicated to move/turn 

but said the opposite direction (e.g., R for L), half (4) then self-corrected after seeing the robot 

move/turn the opposite direction to what they intended. Table 3 shows that children from 

School 3 (high NESB, low SES school context) had the most difficulty in completing the 

allocentric/view-switching task. The majority (8) of the 13 children unable to complete the 
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allocentric task were from School 3. Some children (16) used gestures or co-speech gestures. 

Gesturing alone was used to indicate/point to the square to move to or the possible direction—

not specifically linked to L or R as no verbal ‘left’ or ‘right’ were uttered. Co-speech gesture 

was used in children’s commands, for example ‘go left [while pointing in a L direction]’, or 

‘turn up [while gesturing L]’. Gesture or co-speech gesture were used more frequently by 

children from School 3 (8 of the 11 children from School 3). 

General Findings 

Four of the 36 children scored a completely correct score on both tasks. Five children who 

were unable to follow any directions in Task 1 (egocentric), could give some correct directions 

in Task 2 (allocentric/switching). One of those children made no errors in the directions they 

provided in Task 2. Six of the 10 children who correctly completed Task 2 had mixed results 

in the egocentric task. In the allocentric task, like the egocentric task, more children were L 

aware than able to provide a verbal L turn command. Children would often use alternate words 

for turn including ‘go left’, ‘turn up’, ‘this way’, ‘turn that way [gesture]’, ‘go right’, ‘turn 

straight’, ‘one step left’. 

Discussion 

Our findings aligned with previous research related to the 5-to-7-year-old age range in 

several ways. The majority of children were successful in responding to the viewer-centric 

terms ‘left and right’ when operating with an egocentric FoR (Waller, 1986; Ruggiero et al., 

2016). We suggest there is a relationship between the lower success rate in School 3 and the 

school’s social/educational disadvantage and high non-English speaking population. It is 

possible that some of the children’s home languages preference allocentric terminology based 

on landmarks and object-to-object relationships (with little use of left/right), rather than viewer-

centric navigational terms (as in English), as discussed by Abarbanell and Li (2021). 

The children found following left-right directions easier than giving left-right directions, 

aligning with Waller (1986). Compared with Task 1, fewer children were able to successfully 

take the viewer-centric perspective of the robot in Task 2, though the difference was not large. 

The success of some students in Task 2 could possibly be attributed to the availability of 

feedback through seeing the response of the robot to a command, and the availability of the grid 

for visualising a route to the target location. However, there were a few children who, 

surprisingly, performed better in Task 2 than Task 1, and this requires further investigation. 

Like Kocher et al. (2020), we found that the children tended to use gesture and vague directional 

terms rather than the precise commands of left/right or turn. Some children managed to produce 

the appropriate directions when prompted, but others found it beyond their current capability. 

The main focus of the study was the children’s responses to the turning aspect of the tasks, and 

we found that the children interpreted the meaning of ‘turn’ in a variety of ways, with some 

children even responding in different ways within the same task. For example, in Task 1, 10 

children correctly turned right 90°, but when asked to turn left inexplicably turned 180°. We 

are yet to find any explanation for this in previous research. Some children responded by turning 

90°, but in the opposite direction, while others did not rotate their bodies at all, instead stepping 

sideways or just turning their heads or shoulders then resuming their front-facing orientation. 

In Task 2, many children were not able to give the verbal command ‘turn’ to the robot, which 

perhaps can be partly explained by the requirement in the robotics context to change the 

orientation of the robot by rotating on-the-spot before moving to a new location, as indicated 

by Clements et al. (1996) and Bakala et al. (2021). 

Conclusion 

This study investigated the question, ‘How do Year 1 children respond to, and give, verbal 

instructions to turn-left and turn-right?’ Keeping in mind the limitations of a small sample of 
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children, we offer some tentative propositions for further investigation. First, the mastery of the 

viewer-centric terms of left, right, and turn is problematic for both spatial/cognitive and 

cultural/linguistic reasons. Second, the tendency of children to preference embodied 

representations and ‘landmark’ cues may offer a starting point for instructional practices. Third, 

further attention should be given to the differing meanings of ‘turn’ when enacted in different 

contexts. We refrain from making more specific recommendations until analysis of the much 

larger data set from the project has been completed. 
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This symposium offers insights into the leadership enacted by those who lead the 

mathematics education professional learning of in-service teachers in schools. We provide 

evidence of mathematics leadership practice as a way of contributing knowledge to this 

undertheorised area of mathematics education research. Three separate accounts of 

mathematics leadership are reported, with two focused on leading enacted in primary school 

settings, whilst the third paper highlights the support offered to rural and regional mathematics 

leaders through a sector-wide leadership network initiative. 

Although separate accounts of leadership are presented, each paper is connected through 

the ways that tensions in practice provided opportunities for mathematics leaders to develop 

leading practices within the spaces in which their leadership was enacted. In this symposium, 

the relational dimension of mathematics leadership is highlighted, providing evidence of the 

critical role that relationships play in the ways that mathematics leadership responds to tensions 

as opportunities for practice development. 

The format of the symposium is as follows: 
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Paper 1: Evidencing How Primary Mathematics Leaders Balance the Supports and 
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Primary mathematics leaders work together both with and between school leadership 

and teachers as middle leaders, balancing expectations and responsibilities of 

themselves, school leadership, and teachers. This paper presents a case study of 

mathematics leaders in a school with a diverse community and frequently changing 

staff. It explores the tensions in this school and the supports that help the mathematics 

leaders find opportunities to respond. Findings show that building relationships and trust 

with staff were essential to address challenges and meet the needs of the school. 

Primary mathematics leaders (PMLs) are middle leaders working with and between school 

leaders and teachers with a recognised responsibility for improving student learning (Copping, 

2022). Mathematics leadership is a multi-faceted and complex role that includes balancing both 

management and leadership responsibilities to improve teacher impact on student learning (De 

Nobile, 2017; Gurr & Drysdale, 2013). This paper focuses on the following research question: 

How do PMLs balance the challenges and supports within their role at a metropolitan school in 

Melbourne? A case study is reported from one school, Wattle Tree Primary School (WTPS), 

which has the unique situation of having two mathematics leaders. The narrative incorporates 

viewpoints of mathematics leaders and others to convey the challenges and supports for primary 

mathematics leadership at WTPS. Pseudonyms have been used throughout this paper. 

Literature Background 

Primary mathematics leaders play a strategic role in the improvement of mathematics 

practices as the critical link between a school’s vision and the work enacted in classrooms, 

working with school leaders and directly with teachers (Leithwood, 2016). In Australia, middle 

leaders often have a teaching aspect to their role, maintaining current classroom practice, while 

also working with teachers in other classrooms (Grootenboer et al., 2015). Teachers therefore 

view middle leaders as still being connected to the classroom and practising alongside them. 

Concurrently, middle leaders work with school leadership guiding a strategic, whole-school 

approach to teaching and learning (De Nobile, 2017). A significant role associated with PMLs 

is ensuring that professional development is localised and targets the specific needs of the 

school, teachers, and students. Leading this professional learning (PL) in a school requires the 

development of relational trust with all participants (Grootenboer & Edwards-Groves, 2020). 

Common practices of successful middle leaders focus on student learning and teacher 

development through fostering a clear vision and strategy, collective responsibility, and trust, 

with high expectations of themselves and others (De Nobile, 2017; Gurr & Drysdale, 2013). 

These ideas were developed further in a framework of middle leadership, which underpins this 

research exploring the roles and responsibilities of PMLs. The framework is designed for 

exploring the roles of middle leaders, as distinct from senior leadership positions, such as a 

principal’s role (De Nobile, 2019). It is important to note that this framework is not a discipline-

based model of leadership, but it can be applied to the roles and responsibilities of a primary 

mathematics leader. The six role aspects are “Student focussed, Administrative, Organisational, 

Supervisory, Staff development, and Strategic” (De Nobile, 2019, p. 3). This framework of role 

aspects is situated along a continuum from predominantly managerial tasks at one end to 

leadership aspects on the other end, reflecting the diverse responsibilities of the role. Each stage 

supports and enables more effective enactment in the subsequent level. 

mailto:kcopping@unimelb.edu.au
mailto:ziebelln@unimelb.edu.au


From tensions to opportunities: Evidencing mathematics leadership 

37 

A key aspect of success in the leadership role is attributed to the principal’s support for 

a PML by showing trust in the middle leader’s expertise, as well as providing the time, 

organisation, and resourcing to support change and professional learning (Grootenboer et al., 

2020). A shared understanding by all staff of their roles and responsibilities is important to 

attain a school’s goals. However, there are contextual factors that can influence or challenge 

the success of this collective understanding, including time allocation for the role and teachers’ 

experience (Copping, 2023). Challenges for PMLs identified by Driscoll (2017), included: time, 

leader’s expertise, teacher knowledge, and funding. Furthermore, Sexton and Downton (2014) 

noted the impact of time constraints on the ability to fulfil leadership duties and the difficulty 

faced in sustaining improvements in changed practices. The research in this paper investigated 

supports and challenges, such as these, experienced by PMLs at WTPS. 

Methodology 

This case study forms part of a PhD research project examining how primary mathematics 

leadership is conceptualised and experienced. A phenomenological approach (Heidegger 

2008/1928) has been utilised to acknowledge the experiences, perceptions, and understandings 

from the participants. The wider project included eight schools within the state of Victoria. 

Interviews were conducted with the PML/s, a school leader, and two teachers at each school to 

investigate how primary mathematics leadership was conceptualised and experienced by those 

in the role, and by those with whom they work. This paper reports on interviews from WTPS, 

a Government, Foundation to Year 6 school in the northern suburbs of metropolitan Melbourne. 

At the time of data collection WTPS had an enrolment of 400 students. The diverse school 

community was well below average in socio-educational advantage (>90% English as an 

Additional Language). 

Semi-structured interviews were conducted with five participants at WTPS: Mia, PML for 

Years 3–6, Zara, PML for F–Year 2 (both worked three days as mathematics leaders and two 

days as classroom teachers), Assistant Principal Holly, experienced teacher Anna, and graduate 

teacher Justin. The semi-structured interviews varied slightly depending on the role of the 

participant. Participants were asked what challenged or supported the PMLs in their role. 

Interview data was analysed using an inductive approach to identify, summarise, and refine 

themes (Thomas, 2006), which was then applied to the Framework for Middle Leadership 

(De Nobile, 2019) to support interpretation of the analysis. 

Results and Discussion 

Zara (PML F–2) was new to the school and role but had been a primary mathematics 

specialist at her previous school. Mia (PML 3–6) had been the mathematics leader in the school 

for more than 5 years. Tensions faced at WTPS by the PMLs were recognised by all 

participants, as well as supports available which presented opportunities for action. 

Consistency of the Instructional Program 

Staff turnover at the school was high and there was a large proportion of graduate teachers. 

The school population was changing with families moving in and out frequently with some 

students attending an intensive English language school part time on site. Due to these regularly 

changing circumstances, the school’s focus was on consistency of the instructional program. 

The PMLs were responsible for supporting staff to implement the instructional program, acting 

in a Supervisory role (De Nobile, 2019). This was identified as a clear expectation by all 

participants, and an area of tension for the PMLs, as Anna stated: 

It’s been quite a high turnaround of staff ... there is an instructional model in place in terms of how 

mathematics is expected to run. But because of Covid, because of the high turnaround of staff, it’s 

hard to then, disseminate it to others, when you’re constantly having to start again, start from fresh. 
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Sustaining and maintaining an instructional model with a consistent approach has been 

previously recognised as a challenge for PMLs (Sexton & Downton, 2014). Both Zara and Mia 

acknowledged this as an issue. In response, they enacted their Staff development role 

(De Nobile, 2019), and conducted whole school PL sessions together and participated in 

coaching sessions with individual teachers, on a needs-based approach. Crucially, Zara and Mia 

harnessed the opportunity to focus on the development of supportive, trusting relationships 

(Grootenboer & Edwards-Groves, 2020) to aid in the implementation of the instructional model 

and address the challenge of changing staff. Mia stated: 

I also think it’s the good relationships that I have with the teachers. Because the teachers trust me 

and especially when we do coaching...it’s personal conversation, and I’m not going to be sharing 

this to other people, and it’s confidentiality and non-judgmental. So, teachers give me their trust. 

Consistency of Timetabling 

Time was another recognised area of tension by all participants. Covid implications resulted 

in days timetabled for leadership work being used to cover teacher absences. Timetabling and 

coaching sessions were affected and the Staff development role (De Nobile, 2019) was not able 

to be implemented as planned. Holly stated: 

It’s [the PMLs] being used as CRTs [Casual Relief Teachers] a little bit at the moment, and then the 

coaching disruptions. The inability sometimes to do that part around the conversation after coaching. 

That’s a challenge, because then I’m not able to support with that time. 

Zara and Mia’s time for mathematics leadership was affected by teacher absences and 

staffing issues, as Zara said, “Obviously the absences and not being able to do the coaching is 

a massive challenge.” This impacted their opportunity to get into classrooms and to enact their 

plans as intended. They experienced frustration due to time constraints (Driscoll, 2017). 

However, this challenge was recognised by the leadership team, as Holly said, “Also giving 

them that time out of the classroom, I think is essential.” The support of school leadership was 

evident (Grootenboer et al., 2020) with extra time provided where possible. The PMLs also 

adjusted their schedules to find opportunities to support teachers, as Mia explained: 

I try to, even though time is a challenging issue for me, but I still try to, whenever I’m available, 

I get to make-up my coaching or I get to meet this teacher catch up with teacher ... even though 

sometimes I lose my lunch or I lose my time, but I still, I still want to support people. 

Being a Middle Leader 

Tension was noted by participants that working with and between school leadership and 

teachers requires balancing leadership, Administrative, and Organisational, responsibilities 

(De Nobile, 2019). Justin stated, “Being part of leadership here, I know you do get roles outside 

your maths domain.” Zara also noted that managing leadership duties was challenging, “It is 

hard, and I find I’m unfortunately the kind of person that just, especially when you’re in 

leadership, I take on all those things that I can’t control.” These extra duties can be draining on 

middle leaders and it is important that PMLs do not get overwhelmed by administrative 

responsibilities (Grootenboer et al., 2020). However, the support between Mia and Zara to help 

manage their roles was widely noted by the participants, particularly Zara: 

Mia is an amazing support because she’s, one, been at the school for, for longer than me, but also 

she’s got great maths knowledge. But also just, she’s further along in her leadership journey... So, 

um, she’s been great to talk to about what’s going on and how possibly to approach. 

Additionally, participants discussed the support the PMLs had from school leadership 

noting the principal trusted the PMLs and valued their role (Grootenboer et al., 2020). Zara 

discussed the possibilities of her role, saying, “I think that the, the principal is very supportive 

of the role and that is massive ... I know that it’s really valued.” While Mia stated, “My principal 

trusts that I’m doing my job well ... I get my opportunity to work with teachers and work with 
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students.” Both identified the opportunities present while acknowledging the challenges they 

face and that supportive relationships built on trust are essential to their role. 

Conclusion 

Balancing the responsibilities and roles of PMLs, such as leadership, staff development, 

supervisory, administration, and organisation (De Nobile, 2019) was impacted by the school’s 

needs and resources (e.g., human, time). However, supports were in place which afforded 

opportunities to address these tensions. One of the most significant findings was the 

development of trust between the two PMLs, between school leadership and PMLs, and 

between teachers and PMLs. The nurturing of supportive relationships enabled the PMLs to 

meet challenges with the development of relational trust being central to their success. Support 

and trust were not one-way, but multi-layered and multi-directional. For PMLs and school 

leaders, the relationships between and within PMLs, school leadership, and teachers are 

important to build and maintain, as it is the relationships and the support offered through them 

which provide opportunity to address tensions within schools. 
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We report the leadership of mathematics leaders who participated in a leadership 

intervention. Participation in the intervention was provoked by a tension in teaching 

practice concerned with a lack of challenge in mathematics teaching in the leaders’ 

schools. We evidence how the mathematics leaders sought to address the tension they 

faced through their relational and developmental leadership activity. 

Using cultural-historical activity theory (CHAT), we report on the collective activity of 

eight primary school mathematics leaders who participated in a leadership intervention. The 

intervention focused on expanding mathematics leadership activity. The intention of activity 

expansion focused on ways that leaders influenced teachers’ use of pedagogical approaches that 

facilitated greater challenge for student learning in mathematics lessons. We attend to the 

motive-objects and the mediational means that facilitated the leaders’ activity with the purpose 

of responding to this research question: At what do mathematics leaders direct their activity and 

how is their leadership mediated? 

Literature Background 

Teaching practice that challenges learning can support students in becoming more 

autonomous learners as they rely less on teacher support and take greater ownership of their 

learning (Ingram et al., 2020). However, a tension that faces many teachers concerns the 

enactment of practices that incorporate appropriate challenge for all students in mathematics 

lessons (Russo & Hopkins, 2017; Sullivan, 2018). Sullivan (2018) stated reasons for this 

tension including teachers’ beliefs about challenge in mathematics (Russo et al., 2020), and 

infrequent use of pedagogies that incorporate and maintain challenge. Another reason is 

teachers’ limited mathematical content knowledge (MCK). The ways in which mathematics 

leadership responds to this tension in teaching for challenge remains undertheorised. 

Mathematics leadership is understood as a form of middle leading, enacted by a staff 

member who leads mathematics education whilst undertaking teaching responsibilities (Sexton, 

2019). Working in the space between executive leadership and classroom practice  mathematics 

leaders enact leadership that develops dispositions, practices, and knowledge for mathematics 

education (Grootenboer, 2018). Sexton (2019) outlined how they lead that developmental work 

as a form of activity, through their leadership of school-based professional learning (PL). 

CHAT understands activity as object-oriented meaning that psychological and practical activity 

is concurrently advanced through attention to motive-objects, pursued in dynamic ways to 

achieve desired outcomes (Engeström, 2015). Motive-objects drive activity and are vital when 

interpreting the ‘what’ and ‘why’ of activity (Kaptelinin, 2005). Motive-objects are realised 

through a hierarchical organisation of activity, implying that individuals engage in action 

sequences to achieve the motive-objects they pursue (Leont’ev, 1978). 

With mediation as core to CHAT (Miettinen, 2006), activity is facilitated through 

mediational means. Meditational means are understood as cultural tools (psychological tools 

like concepts and physical ones such as laptops), rules that explicitly and implicitly govern 

behaviours of those involved, and a division of labour that mediates the distribution and 

organisation of roles and responsibilities among those engaged in activity (Engeström, 2015). 

In CHAT, tensions are catalysts for change and the adoption of new mediational means can 

facilitate change in activity through the process of remediation (Miettinen, 2006). 
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Methodology 

The context of the study was a mathematics leadership intervention, focused on leading the 

development of teaching practice that incorporated greater opportunities for challenge in 

mathematics lessons. The intervention was funded by a Catholic education system in the 

Sydney region during 2023. Eight mathematics leaders, working in five schools involved in the 

intervention, participated in our study. Three schools had two staff members undertaking the 

mathematics leadership role, whilst the other two schools nominated one leader. Each 

participant was required to enact mathematics leadership whilst undertaking teaching 

responsibilities, meaning they were middle leaders in their schools (Grootenboer, 2018). 

In August 2023, data were generated using semi-structured interviews with each of the eight 

mathematics leaders who volunteered to take part in the study. Interview questions were 

informed by CHAT concepts, specifically motive-object, cultural tool, rules, and division of 

labour, to evidence the what, the how, and the why of the collective mathematics leadership 

activity enacted across the schools. Documents identified by the leaders, along with 

photographs of leadership activity were also collected. We used the aforementioned CHAT 

concepts when deductively analysing data, searching for evidence of them in the dataset. 

Inductive analysis involved asking these questions of the data: What are the mathematics 

leaders working on? How are they working on that? What is mediating their work? 

Results and Discussion 

We found that the mathematics leaders worked on two main motive-objects of activity: the 

development of relational trust and the development of mathematics planning practices. 

Development of Relational Trust 

The development of relational trust through collaborative approaches to PL surfaced as a 

motive-object of mathematics leadership activity. Table 1 provides examples of evidence. 

Table 1 

Evidence Examples of the Development of Relational Trust Motive-Object of Activity 

Motive-object Key leadership actions Adoption of mediational means 

Development 

of relational 

trust 

Making the 

developmental work 

focus explicit and 

shared amongst staff 

 

Creating dialogical 

spaces for pedagogical 

discussions about 

teaching practice 

development 

Cultural tool 

Mathematics Leadership Activity Plan (MLAP) 

Rule 

Everyone knows what we are working on and why 

We are all in this together, so everyone has to trial ideas in 

classrooms 

Division of labour 

Leaders share their own PL with staff along with their own 

experiences of teaching for challenge 

Leaders and teachers engage in pedagogical discussions to 

create shared commitment to new practices 

The mathematics leaders pursued relational trust development when they nurtured shared 

understandings about the purpose and content of the leadership intervention through the 

deliberate opening of spaces for pedagogical dialogue (Grootenboer, 2018). Developing 

relational trust through a commitment to collaboration supported the adoption of new rules 

(Miettinen, 2006). Those new rules concerned shared understanding of reasons for teaching 

practice development and the expectation that teachers will trial new pedagogical practices. 

One critical mediator that supported the pursuit of the relational motive-object was the 

Mathematics Leadership Activity Plan (MLAP), a leadership planning resource introduced 
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within the intervention. The MLAP, which documented their work plans for influencing 

teachers’ PL, was adopted as a cultural tool by the leaders (Miettinen, 2006). They used the 

MLAP to develop interactional trust by creating communicative spaces about reasons for 

teaching practice development, as well as pragmatic trust by highlighting how that 

development was linked to teachers’ work in reasonable and practical ways (Grootenboer, 

2018). This was highlighted by Cathy’s (a pseudonym) statement about the use of the MLAP: 

Because we had to make the plan on the MLAP. So, then we shared with the staff what we were 

doing and why we were doing it. And that seemed to be a big shift with how teachers were 

participating in the planning (meetings), but also what we were doing in the classroom. 

Development of Mathematics Planning Practices 

The mathematics leaders engaged in developmental activity by working on improvement of 

mathematics planning practices in their schools. Table 2 presents examples of evidence. 

Table 2 

Evidence Examples of the Development of Planning Practices Motive-Object of Activity 

Motive-object Key leadership actions Adoption of mediational means 

Development 

of mathematics 

planning 

practices 

Using challenging tasks 

with teachers in 

planning meetings to 

develop teachers’ MCK 

 

Influencing teachers’ 

use of anticipation, 

questioning, and 

extending prompts 

during planning 

meetings 

Cultural tools 

Mathematics Leadership Activity Plan (MLAP) 

Planning documentation includes sections about 

anticipation, questioning, and extending prompts for tasks 

Mathematical task analysis document with pedagogical 

discussion prompts 

Challenge task sequences 

Rule 

Planning meetings are teacher PL opportunities. 

Teachers do the maths tasks in planning meetings and 

specifically plan for the use of extending prompts 

Division of labour 

Mathematics leaders facilitate planning meetings 

Teacher share responsibility for the design of planning 

documentation 

The leaders decided that to address tensions about the lack of challenge in mathematics, 

they needed to create opportunities that influenced how teachers were prepared to teach for 

challenge. This saw the surfacing of the developmental motive-object, realised through 

a repositioning of planning meetings. This developmental motive-objects was mediated by the 

leaders’ own PL within the leadership intervention within which examples of challenging task 

sequences, advice concerning the use of anticipation and extending prompts (Sullivan, 2018), 

and a mathematical task analysis tool were provided. The leaders claimed they used those as 

planning resources, evidencing an example of cultural tool adoption intended to remediate 

teaching practice (Miettinen, 2006). 

Remediation of planning practice was further evidenced through the adoption of new rules 

(Miettinen, 2006). This was realised through the leaders’ co-option of teachers’ planning 

meetings, using them as opportunities for PL to improve teachers’ MCK (Sullivan, 2018) and 

to develop beliefs about challenge (Russo et al., 2020). MCK development was worked on when 

leaders used challenging tasks along with the mathematics task analysis document in planning 

meetings. They also encouraged teachers to adapt planning tool to include sections for 

anticipation, questioning, and extending prompts as ways of preparing teachers to teach for 

challenge. Claire (a pseudonym) evidenced this when she shared: 
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It is about them (teachers) actually taking the time to do the tasks themselves, to work it out, because 

then that’s going to lead them to being more confident in presenting it and working with their 

students. But it’s also giving them ideas, and think, ‘oh, what kind of questions might the kids ask 

in response to this?’ 

It is important to acknowledge the crucial support of principals. The mathematics leaders 

reported how principals created conditions for their leadership. An example of this support was 

how principals advocated for the introduction of facilitated planning meetings and arranged the 

spatial and temporal resources for those meetings to take place. This highlights again the role 

of principal leadership in mediating mathematics leadership activity (Sexton, 2019). 

Concluding Remarks 

We do not know yet the influence on teachers’ practice, but we highlight that the 

mathematics leaders responded to the practice tension by directing their activity at relational 

and developmental motive-objects. We evidenced the adoption of cultural tools, rules, and 

divisions of labour by the leaders and how they acted as mediational means that mediated the 

motive-objects of their leadership activity with the intention of remediating teaching practice. 

Although presented separately, the mathematics leaders pursued their motive-objects in 

simultaneous and dynamic ways (Engeström, 2015). For example, as they engaged teachers in 

challenging tasks during planning meetings to develop MCK (Sullivan, 2018), they also worked 

on relational trust development by opening dialogical spaces for teachers to engage in 

pedagogical discussions (Grootenboer, 2018). This highlights the dynamism of mathematics 

leadership as a relational and developmental activity. 
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We share our experience of establishing a network for primary and secondary 

mathematics leaders working in rural and regional Catholic schools in Victoria. We 

evidence the influence of our sector leadership that addressed a tension concerning the 

leaders’ work isolation through a network initiative. This network initiative was in 

response to the leaders demands for establishing a way to connect and to learn from and 

with one another using evidence-based mathematics learning and teaching practices. 

For decades, a tension in mathematics education has existed that sees urban school students 

outperforming rural and regional students in mathematics (McConney et al., 2018). The 

Organisation for Economic Co-operation and Development (OECD, 2013) reported that 

according to the Programme for International Student Assessment (PISA) 2009 results, urban 

students outperformed rural students in every country that participated. On average urban 

students outperformed rural students by up to half a year of schooling (Lamb et al., 2014). 

Contributing factors to the widening gap include staff access to quality professional learning 

and educational resources (Murphy, 2018). For staff working in rural and regional schools, 

these factors cause another tension that problematises this situation further. These schools are 

faced with the challenge of attracting talent from urban communities, retaining the best talent 

over time, and conquering the tension of distance (Hargreaves et al., 2015). 

Literature Background 

The greatest in-school factor for improving student learning and achievement is teacher 

quality (Hattie, 2009). Fullan and Hargreaves (2012) discussed the benefit of building 

professional capital of teachers and leaders by investing in leadership through the provision of 

high-quality professional learning (PL). Opportunities are required to build and share 

knowledge, and provide feedback in communities characterised by relational trust, strong 

collaboration, and a shared vision to improve student outcomes. Unfortunately, access to quality 

PL and opportunities to connect and network with colleagues from other schools is a significant 

challenge for rural and regional teachers and leaders (Hargreaves et al., 2015). 

Networks provide a platform for educational leaders to connect and collaborate through the 

delivery of high-quality PL to build professional leadership practice (Hargreaves et al., 2015). 

Rincón-Gallardo and Fullan (2016) highlighted the importance of three shifts needed in 

relationship between network participants and sector leaders for the establishment of successful 

networks. These shifts are critical to ensure the sustainability of any network. Figure 1 captures 

the shifts as reported by Rincón-Gallardo and Fullan (2016). 

Figure 1 

Required Shifts in the Relationships Between Networks and Sector Leadership 
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However, the effectiveness of networks measured through improved system-wide student 

learning outcomes is varied and is dependent upon how the network facilitates effective 

collaboration and relationships driven by a shared purpose (Rincón-Gallardo & Fullan, 2016). 

Figure 2 presents a summary of the eight Essential Features for effective networks that support 

the successful implementation and impact of professional learning features. 

Figure 2 

Eight Essential Features Required for Effective Networks (Rincón-Gallardo & Fullan, 2016, p. 10) 

 

The eight features provide guidelines that support the development of an educational 

network by building relational trust that facilitates effective collaboration between system and 

school leaders. Relational trust is especially highlighted in features 2, 3, 4, 5, 6, and 7. 

Our Response to the Tension 

Catholic Education Sandhurst (CES) has been intentional in engaging with research 

literature concerning middle leadership and mathematics education as a tool to support 

innovation and improvement in student learning outcomes. In response to that literature and 

using the work of Rincón-Gallardo and Fullan (2016), CES sought to create a network for 

mathematics leaders working in the diocesan primary and secondary schools. One intention of 

the network was to provide opportunities that developed mathematics leadership practice 

through networking and relationship building. This was done in response to the tension of work 

isolation, which was compounded by the effects of the COVID-19 pandemic that faced the 

mathematics leaders working in schools within the CES diocese. 

The establishment of the Sandhurst Numeracy Leader Network (SNLN) in 2021 aimed to 

provide CES mathematics leaders access to quality mathematics PL and to support the 

formation of a professional network between leaders, professional organisations, and 

mathematics educators working in universities. In essence, the SNLN intended to impact 

students’ mathematical achievement by developing the professional practice of mathematics 

leaders so they could lead improvement in mathematics teaching practice in their schools. 

During the formation of the SNLN, a steering committee was developed to set goals and 

develop a shared vision for the network. The steering committee included CES staff members, 

mathematics leaders working in diocesan schools and a mathematics educator working in 

a Victorian university. The formation of this steering committee was informed by Essential 

Features 6 and 7 for effective networks (Rincón-Gallardo & Fullan, 2016). 

As a way of supporting the implementation of the SNLN, mathematics leaders were 

included in nominating content of the PL, making the content more demand driven and 

learning-oriented (Rincón-Gallardo & Fullan, 2016). CES staff developed a needs analysis tool 

as a way of collecting data, used to inform the content and implementation of the SNLN 

workshops. Workshops were a combination of virtual and face-to-face PL opportunities, used 

to address the tension of work isolation whilst focusing on mathematics leadership and teaching 
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practice development. In this paper, we evidence the influence of the SNLN drawing on data 

about the perceptions of mathematics leaders who have participated in the network. 

Methodology 

We draw on data from workshop feedback provided by 30 primary and secondary network 

participants who engaged in middle leadership of mathematics in CES rural and regional 

schools. Data were gathered using open response questionnaires. Participants were provided 

with prompts asking them to comment on new learning and actions they will take up as 

mathematics leaders in their schools. Using the features of effective networks (Rincón-Gallardo 

& Fullan, 2016), a coding scheme was created to support the deductive analysis approach that 

was used to generate evidence of those features in the mathematics leaders’ responses. 

Workshop data were also read and coded using an iterative inductive approach that supported 

the development of themes that captured the leaders’ perceptions. 

Results and Discussion 

Four key themes were generated from the data analysis which are presented in Table 1. 

Table 1 

Data Excerpts of the Mathematics Leaders Responses Aligned to the Themes 

Themes Essential 

network 

feature 

Evidence of responses from mathematics leaders 

Engaging in 

interactive 

opportunities 

to learn with 

other leaders  

5, 6 & 7 Being able to engage with a [mathematical] task with other [mathematics] 

leaders from different settings 

Having time to dissect task with others to identify the maths involved, the 

possibilities for extension and enabling 

I was able to collaborate with a colleague that is further along the journey 

than I! Helped clarify next steps 

Great to listen to other leaders explain their journey with their MLAP 

[mathematics leadership activity plan]. Gave us some ideas 

Developing 

strategies for 

mathematics 

leadership  

4 Looking at the Data to help guide our planning, it’s ok to start with a small 

team [of teachers] before trying to implement whole school [improvement] 

In planning sessions, being mindful to spend time explicitly planning for 

[differentiation] prompts. Also have teachers ‘become the learner’ with rich 

tasks so they feel confident to transfer this to the classroom 

Ensuring I am continuously meeting with my [executive leadership] team 

and referring back to data to inform our practice 

Planning for 

leadership of 

school-based 

professional 

learning  

1 & 4 Think more deeply about common student misconceptions with tasks and 

plan for them more explicitly 

Continue to work with staff on developing the use of open/challenging tasks 

and how we can enable and extend students 

Model/use the differentiation planning sheet to support staff PCK 

Using MLAP to develop goals and planning 

Having 

access to 

resources to 

support 

leadership  

8 The MAAP tool [mathematics task analysis document] is so useful for 

discussing the possible avenues that the task can take a learner 

I really enjoy activities where we get to trial a task. I want to do more of this 

with my teams at school 

Love the Jigsaw protocol, something I wish to incorporate into my learning 

leader meetings moving forward 

Add the MLAP tool to team meeting 

Along with those themes, links to network features (Rincón-Gallardo & Fullan, 2016), and 

data excerpts (quotes from mathematics leaders) are also reported. The responses are illustrative 
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of how the SNLN provided opportunities for mathematics leaders to interact with and learn 

from each other to build their skills and expertise to enact this new learning with the teachers 

in their schools. This is evidenced in the theme of Interactive opportunities to learn with other 

mathematics leaders, suggesting to us that the SNLN responded in some way to the tension of 

work isolation by building relationships through networking. This highlights the importance of 

interacting and learning with others within network settings (Rincón-Gallardo & Fullan, 2016). 

The data also suggest that the SNLN facilitated opportunities for mathematics leaders to 

focus on developing leadership strategies, allowing them to engage with executive leaders and 

teachers in their schools through leadership of mathematics PL. Focusing leadership work on 

school-based PL for teachers is central to the work of mathematics leaders (Sexton, 2019). It 

was also evident how the SNLN provided resources that mathematics leaders claimed they 

would use as part of their leadership. We interpreted this as another way of addressing the 

tension of work isolation as rural and regional staff members may have limited access to such 

resources compared to colleagues working in urban and metropolitan schools. 

Conclusion 

The establishment of the SNLN stemmed from a tension brought on by work isolation. It 

presented opportunities for our CES leadership to bring together geographically diverse 

mathematics leaders through networking as a relationship building initiative. We have 

evidenced enactment of the essential features of networks using data concerning perceptions 

held by the mathematics leaders. This small study provides opportunities for future research 

into the key features of successful networks and how they address tensions that exist in rural 

and regional settings. We had the opportunity to support mathematics leaders to connect, 

collaborate, and engage in mathematics leadership PL, but more importantly, influence 

relationships between the leaders as a response to the work isolation tension they faced. 
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Classrooms worldwide are becoming increasingly diverse. The term ‘diversity’ is 

contextual and often ambiguous. At a foundational level, ‘diversity’ is a descriptive term that 

refers to individual differences and needs (Forghani-Arani et al., 2019). The type of individual 

differences varies to include the following dimensions “migration, ethnic groups, national 

minorities and Indigenous peoples; gender; gender identity and sexual orientation; special 

education needs; and giftedness” (OECD, 2023, About us section). The OECD definition 

captures a range of individual differences, but it is essential to recognise that these differences 

can occur simultaneously, be intersecting, and often inseparable. In this way, an individual 

could have multiple dimensions of diversity in which they differ from others. 

The multi-dimensionality or ‘hyper-diversity’ recognises the “intense diversification of the 

population, not only in socio-economic, socio-demographic and ethnic terms, but also with 

respect to lifestyles, attitudes and activities” (Tasan-Kok et al., 2013, p. 8). We adopt the term 

‘hyper-diversity’ to refer to students who have multiple dimensions of diversity. In light of 

growing student diversity, there is a need for more research (Rigney & Rinaldi, 2023). We 

would extend this claim to students who are ‘hyper-diverse’. This symposium showcases 

different dimensions of diversity, focusing on students with diverse needs in inclusive 

mathematics education. The papers explore students with diverse needs from the early primary 

years to post-secondary schooling, highlighting the importance of inclusiveness across the 

lifespan. 

Chair: Kate Quane. 

Paper 1: Reflecting on the school mathematics experiences of adults with Down Syndrome. 

 Matt Thompson, Catherine Attard and Kathryn Holmes. 

Paper 2: “Look at solutions”: Differentiated instruction (DI) in senior secondary 

mathematics. 

 Lorraine Gaunt and Tom Porta. 

Paper 3: Participation in mathematics for a student with blindness or low vision in 

Australian mainstream schools: A longitudinal case study. 

 Melissa Fanshawe and Melissa Cain. 

Paper 4: Opportunities for hyper-diverse students to communicate their mathematical 

thinking in multi-year classes. 

 Kate Quane and Bec Neill. 
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This paper reports on a section of a larger study, investigating the mathematics 

experiences of Down syndrome (DS) learners in Australian Primary Schools. 

Developing the numeracy skills to experience independence in post school settings is 

crucial for individuals with DS. The aim of this paper is to share the school mathematics 

experiences of six DS adults and their parents/carers to ascertain if their experiences 

(DS adults) with mathematics when they were at school have had consequences for how 

they engage and participate in society as adults. Initial findings suggest that DS adults’ 

mathematics experiences have impacted on their quality of life in a post-school setting. 

Down syndrome (DS) is the most commonly occurring chromosomal disorder in Australia 

with 1 in every 1100 births resulting in a DS diagnosis (Miller, 2015). Individuals with DS 

often have an intellectual disability and experience significant developmental delays. At the 

beginning of the 21st century, research alluded that most individuals with DS would struggle 

and have difficulties with learning mathematics (Bird & Buckley, 2001). Fortunately, 

contemporary research highlights the need for encouraging further mathematics education 

research, aiming to find new ways to bring positive mathematics experiences to this population 

(Faragher & Gil Clemente, 2019). This need is grounded in the fact “that mathematics can 

contribute, like other disciplines (language, theatre, sports) to the holistic development of 

people with DS especially with respect to thinking skills and awareness of the world” (Faragher 

& Gil Clemente, 2019, p. 112). 

Importance of Positive Mathematics Experiences 

Many individuals in society have a negative disposition towards mathematics as a result of 

their experiences with the subject at school. These experiences can be the result of teachers not 

having the pedagogical content knowledge in mathematics to design mathematics experiences 

for students that are substantively engaging, purposeful, and relevant to students’ lives, and that 

are reflective of the individual needs of each student (Martin et al., 2009). Consequently, 

sustained student engagement, attainment of the subject in the later years of schooling as well 

later career choices are all factors that have the potential to be negatively impacted as a result 

of students’ adverse experiences when learning mathematics (Bourgeois & Boberg, 2016). 

Interestingly, this research is usually only undertaken with students without intellectual 

disabilities in mainstream schools. 

However, it can be argued that negative experiences in mathematics, leading to negative 

consequences in adult life could equally be as applicable and devastating to students with 

intellectual disabilities. Specific to individuals with DS, developing the appropriate numeracy 

skills needed to be able to function in, contribute to, and make sense of the world in which they 

live is crucial for them to experience independence, develop a sense of purpose, and function 

as a member of wider society (Faragher, 2019). 

Methodology 

Snowball sampling was used to recruit six DS adults and their parents/caregivers to 

participate in a joint semi-structured interview. Interview questions were designed to garner the 
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perspectives of these individuals and their parents/caregivers about their mathematics 

experiences when they were at school. The methodology literature that explores research in 

marginalised contexts, highlight the importance of not interviewing those with disabilities in 

isolation. Kelly (2007) attests to this notion and states that “gaining access to marginalised 

groups may be difficult, and that, in the case of those with disabilities, it is likely to be necessary 

to gain access through gatekeepers” (p. 24) such as parents/caregivers. The DS adult 

participants were given the option to provide their own informed consent (n = 1) or have their 

parents consent for them (n = 5) and to participate in their own separate interview (n = 0) or to 

be interviewed with their parents (n = 6). 

Findings 

This section reports on the findings from the interviews of each participant group 

(pseudonyms used), made up of the DS adults and their parents/caregivers. Thematic analysis 

underpinned by Brofenbrenner’s ecological model (1994) was used to analyse interview data. 

Participant Group One—Michael and Tania 

Michael is twenty-two years old and completed school four years ago. He was in a support 

unit that was in a mainstream public school for both primary and secondary school. When 

reflecting on Michael’s school experience with mathematics, his mother, Tania said, “They 

[school] probably could have done a bit more … expanded on it [mathematics] instead of just 

limiting him, because now he is probably working at a year two level … I can see it now … his 

understanding is still not great.” Tania also acknowledged in the interview that she felt that 

Michael was never challenged with his learning, “I found that they [school] almost expected 

him to be behind and not be able to do things, this was completely the opposite for my other 

kids, if they were struggling with something at school, I was told straight away.” 

Participant Group Two—David and Kate 

David is 24 years old and completed school six years ago. He was home-schooled for his 

first year of school, then attended a support unit in a public school for Year 1 and Year 2. Due 

to negative experiences with his teacher and class during this time, David’s mother, Kate 

enrolled him in a mainstream Catholic school where he attended from Year 3 until Year 12. 

When asked about David’s school experiences with mathematics and how his learning in 

mathematics has impacted on his life now in a post school setting, Kate said, “If I hadn’t got 

myself educated, he’d still be struggling … not knowing the days of the week … not knowing 

the time of day … these are the things that are foundational to be able to function in the world.” 

It was evident when interviewing David and Kate at their home, that Kate has invested an 

enormous amount of time since David has finished school, trying to teach David basic 

mathematics concepts such as time, money, addition and subtraction so that he can experience 

some independence in society. 

Participant Group Three—Cooper, Lauren and Renee 

Cooper is 23 years old and completed school five years ago. He attended a support unit in 

a mainstream public school for kindergarten; however, like David, encountered negative 

experiences with his teacher. As a result, his mother, Lauren enrolled him in a support school 

for the remainder of his school career. Lauren stated in her interview that Cooper “loved school, 

but it wasn’t until later on that we realised that he didn’t learn a lot at school … my daughter, 

Renee taught him how to read and write … he learned so much after he left school.” Lauren 

also stated that “he [Cooper] just never understood anything to do with maths. Counting, 

money, time he doesn’t understand that.” Cooper’s sister, Renee spoke about Cooper not 

understanding weather predictions. She gave the example of when it is forecast to be cold and 

raining, Cooper would get himself dressed in shorts and a t-shirt. She said, “we’ve had big 
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issues with this … it is really frustrating for him now that he is an adult.” Lauren also stated in 

the interview when discussing the basic numeracy skills needed to be able to independently 

function in society, “all those skills, he [Cooper] really didn’t get them at school, which is a 

shame, because now he really does struggle.” Like David, it appears that Cooper’s experiences 

with mathematics at school, have also impacted on his ability to be able to function 

independently, now that he is an adult. 

Participant Group Four—Kim, Joanne and Robert 

Kim is 35 years old and completed school 17 years ago. She was in a mainstream class in 

a mainstream public school for her primary years of schooling and was enrolled in a support 

unit in a mainstream public high school for her secondary schooling. When asked about the 

importance of mathematics in Kim’s life now that she has finished school and lives 

independently, Joanne and Robert spoke about the important role that Kim’s schooling had in 

her learning of mathematics. Joanne said, “we were lucky, in those days we had lots of support 

in the classroom, we only had to get on the phone and say, Kim needs help with this, and the 

support was there.” Kim spoke about her ability to be able to independently budget her money 

each week and proudly showed her weekly budgeting folder. When asked if these skills were 

something that Kim learnt at school, Joanne said “it was learnt at home, Kim taught herself how 

to do those things because she wanted to be independent.” 

Participant Group Five—Evelyn and Alison 

Evelyn is 30 years old and completed school 12 years ago. She was enrolled in a support 

unit in a mainstream public school for both her primary and secondary schooling. Alison spoke 

of a teacher that Evelyn had in her primary school years, Mrs Peterson. She said “Mrs Peterson, 

is one of those people that should be cloned … she was unbelievably fantastic, I felt like 

between them [Evelyn and Mrs Peterson] that they reached so many goals.” Interestingly, 

Alison also said when discussing Evelyn’s mathematics experiences, “I felt like it 

[mathematics] didn’t get anywhere, but I didn’t expect it to because there was so much other 

stuff to concentrate on … we were trying to get language and reading happening.” Alison also 

said that she felt that mathematics plays a rather large role in Evelyn’s life now, that she is in a 

post school setting. Similarly, to David, Cooper, Kim and Noah, Alison stated that “most of her 

[Evelyn’s] mathematics has been learnt since she finished school.” 

Participant Group Six—Noah, Melissa and Jackson 

Noah is 36 years old and completed school 18 years ago. He attended a mainstream class in 

a Catholic school for his primary school years; however, due to negative experiences with 

teachers and other students, Noah’s parents, Melissa and Jackson decided to enrol him in a 

supported setting in a Catholic school for Year 7 through to Year 12. Noah’s parents spoke 

about their negative experiences encountered when Noah was in primary school. They said they 

“felt pressured to send Noah to a mainstream school” and stated when talking about the 

teachers’ aide that supported Noah that “they were there to take him out of class, so that the rest 

of the class could get on with it and he did kind of whatever.” Like Michael and Cooper, it 

appears that Noah also experienced limited opportunities. Similarly, to Cooper and David’s 

experiences, Noah’s parents also expressed the amount of work they have done since Noah has 

left school, to try and support him in developing his independence, “even at the start of this 

year, we were trying to teach Noah how to read and understand time.” When asked, if they 

thought if Noah’s mathematics skills were the result of what he learned at school or at home, 

Noah parents said, “it’s definitely been more home-based than school-based.” 



Student diversity symposium 

53 

Discussion and Conclusion 

Analysis of interview data has revealed that irrespective of the type of school that was 

attended by the adult participants with DS when they were at school, negative mathematics 

experiences at school were commonplace, except in the case of Kim. These negative 

experiences appear to have manifested themselves into ongoing problems for this population 

and their parents/caregivers, navigating the world in a post-school setting. It appears that low 

teacher and school expectations in relation to mathematics were evident among most 

participants. Contrary to this were Kim’s experiences; however, she too has had to learn the 

numeracy skills needed to experience independence, since leaving school. Similarly, all 

parent/caregiver participants expressed similar experiences relating to having to teach their 

child mathematics at home, after finishing school, to try and give them the opportunity to 

independently access society. Not having the opportunity at school to develop the skills needed 

to be prepared for their role as a community and workforce members (Education Council, 

Australia, 2019) is “disheartening and frustrating” as expressed by one parent. This paper 

contributes to our knowledge of the impact of negative school mathematics experiences on the 

quality of life of adults with DS navigating the world in post-school settings. It is imperative 

that more research be conducted to ensure that current and future DS learners in Australian 

schools, be given the opportunity to experience positive mathematics throughout their school 

career, developing the appropriate skills needed to prepare them to be able to engage, post 

school, as informed numerate citizens. 
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Differentiated Instruction (DI) is a philosophical and pedagogical approach supporting 

diverse student engagement in learning, but limited research exists in DI in senior-

secondary mathematics. Using semi-structured interviews, the perceived use of DI of 

two senior secondary mathematics teachers was investigated. One of three themes is 

discussed in this paper; using strategies to enable student choice and voice. Results 

indicated teachers used various DI strategies to support students to understand their 

current levels of need, allowing student choice in their tasks, and supporting student 

reflective practice. DI in senior-secondary mathematics is complex, but achievable. 

Differentiated Instruction (DI) is a widely researched framework supporting teachers to 

attend to student diversity. Teachers do so by adjusting instruction to suit student need, taking 

a proactive (Tomlinson, 2014) and responsive approach (Tomlinson, 2022) based on data-

driven teaching. There is a paucity of research, however, in DI practices and implementation in 

mathematics classrooms, specifically in senior-secondary mathematics. Australian teachers are 

required to differentiate for their students (Australian Institute of Teaching and School 

Leadership [AITSL], (2017). Thus, understanding how successful teachers use DI in senior 

secondary mathematics is imperative. DI is not reactive but takes a responsive approach to 

meeting the needs of diverse learners in one’s classroom (Tomlinson, 2022). While research on 

DI has increased in the last 20 years (Sun & Xiao, 2021), research on DI and mathematics in 

senior-secondary education is scarce, with studies focusing on DI in primary (Fitzgerald et al., 

2021) middle or lower secondary education (Pozas et al., 2023). In a special issue of 

Mathematics Teacher Education and Development (Russo et al., 2021) that focused on 

differentiating instruction in mathematics, only two of 11 articles were on senior secondary 

mathematics differentiation (Coles & Brown, 2021; Mellroth et al., 2021). While Coles and 

Brown (2021) discussed three teacher’s reflections of the process of DI in their senior secondary 

classes, Mellroth et al. (2021) studied eight mathematics teachers in Sweden who taught 

university mathematics preparation courses in years 10–12. Mellroth et al. (2021) discussed 

how teachers collaboratively planned a problem bank of challenging tasks to be implemented 

in their classes, but no discussion of classroom implementation was provided in either paper. 

Given van Geel et al. (2019) outlined that teachers struggle to differentiate instruction, research 

highlighting effective DI practices in senior-secondary mathematics classrooms is timely. 

Student enrolment in Year 12 mathematics subjects has dropped in Australia (Australian 

Mathematical Sciences Institute [AMSI], 2020). Given research outlined that DI is one way to 

engage students in learning, determining how teachers use DI for learners in senior-secondary 

mathematics may support more teachers in implementing DI, ensuring success of mathematics 

students. This study investigated how two teachers implemented strategies in their mathematics 

classrooms, to answer: What teacher-developed DI strategies are senior-secondary mathematics 

teachers utilising in their classroom, to cater for learner diversity? 

Methodology 

This study was conducted at two independent schools in Australia, Adelaide, South 

Australia, and Brisbane, Queensland. Part of a wider study, this paper reports on two senior 

secondary mathematics teachers. Maria (pseudonym) with 20+ years’ experience, taught 

Essential Mathematics in South Australia (Government of South Australia, 2016). Julia 

(pseudonym) with 10 years’ experience, taught Mathematical Methods in Queensland 

mailto:tom.porta@adelaide.edu.au
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(Queensland Curriculum & Assessment Authority, 2019). This study aims to compare the DI 

strategies used in senior-secondary mathematics. Case studies allowed the first author to gain 

an understanding of the practice of DI (Creswell, 2012). Using purposeful sampling, data were 

collected using semi-structured interviews to elicit detail of DI, as a philosophical practice, in 

classrooms. Data were analysed according to the six steps reflexive thematic analysis (Clarke 

& Braun, 2021), which included researchers familiarising themselves with data, reading and 

conducting member checks. Researchers coded data inductively and deductively, according to 

the framework by Tomlinson (2014), ensuring interrater reliability during joint coding. 

Results 

Three themes constructed from data were (1) Strategies to enable student voice and choice 

in mathematics; (2) Supporting the process of learning, not just content of mathematics; and 

(3) DI is for all students and takes time to master. Here, the first theme will be explored. Both 

teachers were efficacious in using DI, both identifying several effective strategies. These 

teachers taught two mathematics subjects individually, that both target different levels of 

mathematical ability, but data from interviews with both teachers showed similarity in their 

strategies to implement DI, even within the difficult confines of the inflexibility of senior 

secondary mathematics. Strategies identified by both teachers within this theme have been 

delineated into three sub themes; (1) Strategies supporting students to see themselves as 

mathematics learners; (2) Strategies giving students choice that led to student success; and 

(3) Strategies supporting student voice using reflections and feedback. 

Theme 1.1: Strategies Supporting Students to see Themselves as Mathematics 

Learners 

Both teachers felt supporting students to see themselves as capable mathematics learners 

was vital. Julia said, “every kid walks out of my classroom feeling like they can do something” 

and from Maria, they “don’t feel like maths failures anymore. I can successfully convince them 

that they do have a mathematical brain”. In Mathematical Methods, Julia created a safe space 

where students feel empowered to try even if they were wrong. She said students were not afraid 

to be wrong because “that’s the place [the classroom] to be wrong, and who cares if you’re 

wrong? We can fix wrong”. To cultivate this safe space, Julia encouraged student collaboration, 

stating “it gives the students who are able to carry on, on their own, access to each other as well 

to push each other, and I think that is almost more important than any teacher driving anything”. 

Similarly, Maria encouraged collaboration in her classroom stating that when students learn 

from each other, “they can reinforce their own learning in class”. This leads to “that beautiful 

moment, when you teach something to a kid and they’re really enjoying learning it” and when 

they share that learning with others, “it empowers them”. Hence, teachers felt supporting 

students to see themselves as mathematics learners was empowering. 

Theme 1.2: Strategies Giving Students Choice That led to Student Success 

Both Julia and Maria differentiated instruction within their classrooms by providing choice 

for students. Strategies included starter questions, colour coding questions into different levels, 

providing extra resources such as videos and weblinks, formative assessment tasks, regular 

feedback, exercises with multiple destinations, group work, and students teaching each other. 

Both teachers saw value in providing student choice. Julia indicated formative assessment tasks 

and starter questions enabled students to select the most appropriate level to work, stating 

“lessons I make are created so that the kids have a say in what they’re doing and … help them 

decide what levels they’re at”. Maria would “look at solutions, ways of presenting things to 

kids that enable them”. She suggested “having multiple destinations in the exercise, they make 

the choice. They push themselves to their limit”. Both teachers outlined students responded to 

choice in their learning by working harder and they had seen improvements in students’ success. 
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Julia stated she saw “what they’re doing very regularly”, and Maria said “they came away with 

extra skills themselves. They really enjoyed learning from one another”. Thus, teachers 

believed, strategies which gave students choice, led to student success. 

Theme 1.3: Strategies Supporting Student Voice Using Reflections and Feedback 

A more recent strategy that both teachers had employed was student self-reflection, which 

allowed students to deepen their own understanding. Julia provided students with feedback on 

work booklets and students then completed a self-reflection sheet. Julia stated that self-

reflection was “helping them develop their own understanding of exactly where they are”. 

Maria used open ended problem tasks and asked students to reflect on the process. She felt that 

this deepened student learning. For example, in an open-ended geometry task where students 

needed to develop a product, Maria asked students “to explain why the construction worked”. 

Additionally, Julia differentiated her instruction by facilitating classroom discussions where she 

could support or extend student thinking “because I think for maths particularly it’s incredibly 

important for development of understanding”. Therefore, self-reflections and feedback were 

identified as supporting student voice. 

Discussion 

We recognise that DI is more than just a series of strategies, however, one must have a 

repertoire to differentiate effectively. The results highlighted that these two efficacious senior 

secondary mathematics teachers used a variety of differentiation strategies that focused on 

supporting students to understand the current levels of need, allowing student choice in their 

tasks and approaches, and in supporting student reflective practice to deepen student learning. 

The use of a variety of strategies aligns with the results from Smets and Struyven (2020) who 

found that DI can quickly be seen as just a series of strategies. While true in the case of these 

two teachers, the use of a variety of strategies contributed to greater student voice being 

included in the differentiated classroom. Importantly, teachers were asked questions beyond DI 

strategies, including, for example, using differentiated resources and tasks. The use of tiered 

assessments, one of the most applied DI practices (Smit and Humpert, 2012), were not 

highlighted. Therefore, tiering may not be as applied in senior-secondary mathematics 

classrooms. Julia and Maria both cultivate supportive classroom climates where students felt 

comfortable to “have a go” and it was “okay to make a mistake”. Students collaborated, often 

participating in group problem solving tasks, teaching each other, or revising and testing each 

other. Teacher planning supported students to make choices and work through the material at 

their own pace and students chose materials and resources that best supported their learning. 

Even within the perceived inflexibility of senior-secondary mathematics curriculum, both 

teachers stated they found ways to use DI and support student learning. Hence, while teachers 

worldwide are struggling to differentiate (van Geel et al., 2019), the results from this study 

extend the findings of van Geel et al. (2019), by outlining that teachers make DI work, within 

the constraints they perceive they have. As Julia stated, with the restrictions on assessment and 

content, “the only thing we can change is the instruction and the support behind it” and in that 

regard, both Julia and Maria successfully used DI and supported their students. Limitations in 

this research included the small sample size, teacher participants were female, taught in 

independent, all-girls schools, and self-reported DI strategies. The teachers taught different 

levels of mathematics, but demonstrated remarkably similar approaches to DI. Future research 

warrants a broader sample across school systems. 

Conclusion and Recommendations 

As student numbers in senior secondary mathematic decline, it is possible students may not 

be engaging in higher level mathematics because teaching does not meet their needs. These two 

exemplary teachers demonstrated that DI in the senior-secondary classroom is both possible 
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and necessary to improve student outcomes. This calls for further investigation into how 

exemplary practices like these can be shared through professional learning activities to ensure 

both greater enrolment in senior secondary mathematics and better student support. 
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Students with blindness and low vision (BLV) are less likely to choose mathematics as 

a subject in the senior secondary years which may negatively impact future employment 

opportunities. Using a longitudinal qualitative methodology, three interviews were 

recorded with a student who is legally blind over a six-year period. Findings suggest 

that access to mathematics curriculum and assessment was significantly impacted. Use 

of assistive technology and support from others enabled increased participation and 

achievement in this subject. Independent access to the curriculum and use of assistive 

technology may lead to students with BLV choosing mathematics in senior secondary. 

Participation in mathematics for students in schools has been previously found to develop 

the required attitudes, knowledge, and skills to gain entry to Science, Technology, Engineering, 

and Mathematics (STEM) careers (Nitzan-Tamar & Kohen, 2022). This is important as STEM 

offers some of the highest employment opportunities within the world labour market. Further, 

mathematics is an essential component of many professions which require employees to 

understand numbers, solve problems, and apply critical reasoning (Just & Siller, 2022). Barriers 

to accessing mathematics learning have been previously documented based on gender, 

ethnicity, and disability. Students with blindness or low vision (BLV) face unique challenges 

within classrooms, due to the curriculum being designed for those who can see (Fanshawe & 

Jones, 2021). Curriculum materials such as writing on the board, handouts in class, textbooks 

images, and videos can be inaccessible, along with symbolic representations such as graphs, 

diagrams, symbols, shapes, and patterns. Inability to access classroom materials presents as 

challenges for BLV students, if students are not given agency to access and participate in 

learning (McLinden et al., 2016). With approximately 4,000 Australian students with BLV, this 

paper is guided by the research question: What factors does a student with BLV perceive as 

impacting participation in mathematics learning? 

Methods 

Qualitative methodology was considered the most useful to answer the research question, 

to examine participation in mathematics in Australian Schools for students with BLV (Calman 

et al., 2013). The longitudinal case study presented in this paper concerned one student with the 

pseudonym of Kye, who was known to the researchers and thus recruited through convenience 

sampling. Kye was interviewed once at the end of primary school (Year 6), once in secondary 

school (Year 9) and again in senior secondary school (Year 11). Three different interviewers 

were used over the project and member checking was used to ensure validity in reporting of 

results. In each interview, Kye was asked questions which aimed to elicit information about 

participation in mathematics in the classroom. Transcripts of the recordings were checked for 

accuracy by Kye and his parents and uploaded into NVivo. Tools within NVivo were used to 

identify main themes using inductive category development (Mayring, 2000) and then to 

categorise qualitative data examining the contextual changes over time. 

Results 

Kye attended a local government primary school and a Catholic secondary school. Kye had 

a congenital vision condition with clouding on his cornea and nystagmus with a medical 

diagnosis of counting fingers at 70cm, which meant he was legally blind. Kye described his 

vision “the most I can see is one metre away, but it’s cloudy and shaky” and in a later interview, 
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“I like to say I’m legally blind so other people know I can’t see much at all. If I say I have low 

vision, they think I just need glasses or something”. 

Accessibility of Mathematics in Primary School 

Concrete materials were used in primary school which Kye reported helped aid his 

understanding of mathematical concepts, “if my teachers are talking about a cube, they give me 

a cube so that I can feel the sides and corners and angles”. He also received worksheets “blown 

up in large print”. He stated, however, he still needed magnification such as a handheld dome 

magnifier, a digital magnifier, and CCTV camera to enlarge the worksheets. Furthermore, he 

had an iPad, which he used to take photos which he used to magnify images on the board and 

worksheets. When completing tests, Kye reported that it took him a lot longer than his peers. 

The “hardest part is that I can’t see all the numbers in one spot, so I have to look at one number 

and go back and look at the next”. He explained that he would have a teacher read out the 

question, then “I write the numbers down really big so I can remember them”. Despite using 

technology, he shared that mathematics was “difficult to access information”. He would ask 

friends to read out questions and “I’d remember numbers in my head”. 

Technological devices such as a screen reader and an electronic braille device were used by 

Kye to access information in subjects such as English, however, he reported that these 

technologies were not as useful in mathematics as “there are lots of pictures and shapes”. He 

explained that his friends and teachers could not use screen readers or read braille and it took 

a long time to find information; “and it’s difficult to go back in braille to find something, you 

have to read it all again”. To access images, shapes, and graphs, Kye was provided with tactile 

diagrams, which were created on a “PIAF which gets all the ink on the paper that is black and 

raises it up so you can feel it”. Teachers and support staff assisted Kye to access mathematics 

in diverse ways including using thick pens on the board which made the magnified image on 

his iPad clearer, giving verbal instructions, and reading out what they wrote on the board. Kye 

spoke of an advisory teacher who supported his classroom teachers and a teacher aide who 

taught him braille and created his enlarged worksheets. Despite not all aspects of the 

mathematics curriculum being accessible, and exams taking additional time, Kye shared his 

love of mathematics and provided examples of ways he was able to access mathematics. 

Accessibility of Mathematics in Secondary School 

Microsoft OneNote, which is a digital note-taking tool used by Kye’s school to store and 

organise class content, increased independent access to mathematics in secondary school for 

Kye, “the teacher in maths, instead of writing on the board, he does it in OneNote”. He 

explained that teachers uploaded mathematics curriculum materials into OneNote, which meant 

Kye could use a braille device, magnification, or a screen reader to read out the online content 

at the same time as his peers. Kye stated the benefit was that “everybody has OneNote, not just 

me”. The benefits to the class were further acknowledged “the teacher writes on OneNote, and 

we all have access, but [the teacher] isn’t standing in front of the board, so everyone can see. 

Then I sit at the back and zoom in on my iPad”. Kye’s textbook was downloaded in digital 

format, accessible on iPad Pro. Tactile diagrams were common again in secondary school, with 

many PIAFs being created by the teacher aide, particularly for graphs and images. Kye was 

also provided with 3D models created on the school’s 3D printer. 

Internal examinations were created in a word document using a table and equation editor, 

which was accessible with braille, magnification, and a screen reader, and allowed Kye to tab 

through the fields to access content. Kye explained that he received an additional half an hour 

in time for every hour of exam, “but I need every minute of it to access the test”. Kye preferred 

to work independently in class. Support from teachers was appreciated in creating accessible 

materials for OneNote and consistent training in assistive technology was provided by the 
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advisory teacher. Kye reported that he performed well in the exams and was selected in an 

advanced enrichment mathematics class. 

Accessibility of Mathematics in Senior Secondary School 

At the time of the third interview, Kye was engaged and performing well at school, however, 

it was reported he was no longer using braille and had withdrawn from Senior Maths Methods. 

He reported, “OneNote kept glitching. I had no idea what was on the board. By the time the 

teacher came to help me, I had missed a double lesson of information and had no idea how to 

catch up”. When asked why the OneNote had changed from previous years, Kye suggested ICT 

support didn’t prioritise his access. Further, Kye shared senior secondary examinations were 

created externally which meant that previous accessibility was no longer available. Teachers in 

the school would make the examinations accessible for Kye by providing equations, graphs, 

and images in alternate formats. However, despite additional time provided, Kye reported 

exams being “too frustrating as I just ran out of time”. He said this reflected in his marks. Kye 

shared that while he had tried to remain enrolled in Maths Methods, it “took me too long with 

all of my other subjects”, resulting in Kye withdrawing midway through the year. 

Discussion 

This case study identified that the mathematics curriculum and assessment was not 

inherently accessible for a student BLV, which is concerning given the goal for the Australian 

education system to promote equity and excellence. Successful adjustments included accessing 

information from the board, textbooks, and worksheets through simple solutions such as verbal 

descriptions of what were on the board, along with assistive technology including 

magnification, braille, and screen readers to access digital information. McLinden et al., (2016) 

shared the importance of students being able to access materials independently, to ensure 

agency in learning, such as Kye’s use of OneNote. When items were not able to be accessed 

independently, support people within the school assisted to create accessible content. 

Advances in assistive technologies have increased opportunities for students with BLV to 

independently access the mathematics curriculum. For Kye, digital technology provided ways 

for digital textbooks and documents to be accessed using screen readers, magnification tools, 

and an electronic braille device. When digital documents were accessible and the technology 

was working, Kye’s participation was enabled. However, inequities in access to assistive 

technologies for students with BLV (Fanshawe et al., 2023) can further emphasise the gap in 

achievement in mathematics for these students. In Kye’s case, the secondary school seemed 

willing, capable, and equipped to use inclusive technologies, and implemented 

recommendations to support access from an advisory teacher from outside the school. However, 

when technology was not connecting, and documents were not formatted Kye experienced 

barriers to participation in mathematics. Although additional time was provided in 

examinations this was not always sufficient for Kye and as a result his grades were not 

necessarily indicative of his knowledge. Similarly, Al-Dababneh et al. (2015) found that 

barriers to participation in mathematics could mask academic potential. This is indeed 

problematic, as Nitzan-Tamar & Kohen (2022) report that learning experiences in classroom 

mathematics have a potential to impact university selection and employment outcomes. 

Support from others also positively impacted Kye’s participation. Kye reported the school 

utilised an advisory teacher and all his teachers were willingly trying to make access inclusive. 

Whitburn (2014) asserted that pedagogical practices were important for inclusion in schooling 

as the teacher’s ability to normalise differences within a class could decrease the stigma if all 

students had access to the curriculum and pedagogy. Kye reported that he preferred the teacher 

aide to support his access through the creation of accessible curriculum and assessment, rather 

than sit with him in class. This aligns with the study of Byrne (2014) who found students 
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resisted the assistance of a teachers’ aide as this meant they had decreased control over their 

learning or looked different to their peers. Independence in accessing mathematics information 

was an important enabler for the student in this study. 

Conclusion 

The qualitative case study highlighted that the standardised curriculum and assessment 

provided was not always accessible for all students in Australian mainstream schools. The 

longitudinal data from three interviews of one student in in primary, secondary, and senior 

secondary school contexts showed barriers to accessing mathematics for BLV students. While 

materials which were formatted digitally and use of assistive technology provided greater 

independence to the student, many essential elements of mathematics, such as images, diagrams 

and graphs were not able to be accessed independently. When the student not able to 

independently participate in mathematics learning, teachers and external experts provided 

modification to access learning and teaching materials. Unfortunately, this case study also 

showed, that barriers in access for students can take additional time and frustration, which 

ultimately led to attrition from mathematics subject by student who is blind. Advances in 

technology and reconsideration of accessibility embedded in the curriculum is essential to 

provide excellence and equity in education for all students. It is hoped that further research will 

identify needs of BLV students in the classroom, resulting in increased participation in 

mathematics and more equitable access to STEM careers. 
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This paper examines the mathematical experiences of students with additional and 

diverse needs in multi-year classes within the educational context of small regional 

South Australian (SA) schools. Qualitative research methods were used to collect data 

about how students communicate their mathematical thinking. Opportunities for 

students to communicate their mathematical thinking were categorised using Bruner’s 

experiential stages of learning. Findings suggest that the collaborative nature of multi-

year classes fosters peer learning and cooperation, enabling students to share and build 

upon each other’s mathematical thinking. 

One way that student diversity is evident is in students attending small schools. Students 

attending small schools can be arranged in composite, multi-age, multi-year, or stage classes 

(Cornish, 2010). Often, these terms are used interchangeably but each refers to a specific 

structure and rationale for the organisation of students. Cornish (2010) describes the formation 

of multi-grade (or multi-year) classrooms due to low student and/or teacher numbers which are 

predominately found in rural locations. The number or years within one class will be determined 

by the number of students and can include all students from all primary years within the one 

class. In contrast, Cornish (2010) describes composite classes “formed by necessity” due to the 

annual variation in student enrolment within particular year groups (p. 8). In this way, 

composite classes are a result in fluctuations in student numbers and are temporary. A third way 

to organise students is in multi-age classes whereby students are not associated with a year, 

rather the classes are flexible based on choice (Cornish, 2010). According to Cornish (2010) 

multi-age classes can be known as “non-graded classes” or “family classes” and students “have 

no association with a grade, nominal or otherwise” (p. 8). Rather the classes are structured so 

that they are “developmentally appropriate” tailoring the curriculum to “allow for continuous 

progress in learning” (p. 8). 

The paper reports on an aspect from a larger study that explored optimising early 

mathematical learning experiences and establishing positive attitudes towards and experiences 

of mathematics for young South Australians attending small regional schools. In SA, 70% of 

small schools are in regional or remote locations, typically characterised by multi-year classes 

whereby two or more consecutive curriculum-year levels are within the one class. This focus 

responds to enduring inequalities in academic success and lower life opportunities experienced 

by young Australian children living in regional and rural locations (Thomson et a., 2019). This 

paper seeks to answer the research question, “What opportunities do students have in multi-

year classrooms to communicate their mathematical thinking to others?” 

Communicating Mathematical Thinking 

Communication is a participatory and cultural process, that is a significant practice in 

mathematics (van Oers, 2013). The ways in which mathematical thinking is communicated are 

diverse, interrelated, and can often go unnoticed. Freitas and Walshaw (2016) argue that 

thinking can happen “without language” but through language, thinking becomes more 

sophisticated (Freitas & Walshaw, 2016, p. 20). Mathematical thinking is often communicated 

verbally or in written form. While these two forms of communication are predominant features 

in communicating mathematical thinking, there are other multi-modal forms that students can 

use to communicate their thinking (Quane & Booth, 2023). Numerous curriculum documents 

and standards emphasise the importance of developing student’s mathematical thinking. One 
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Australian jurisdiction that elaborates on the communication of mathematical thinking is the 

New South Wales Education Standards Authority (NESA, 2021), which provides a general 

description of students communicating mathematical by describing, representing, and 

explaining “mathematical situations, concepts, methods, and solutions to problems, using 

appropriate language, terminology, tables, diagrams, graphs, symbols, notation, and 

conventions”. From this description, we can see that communicating mathematical thinking 

involves several processes including representing, describing, and explaining through using 

appropriate language, terminology, and conventions. 

Method 

The participatory action research was conducted in two small regional South Australian 

state schools with two junior primary teachers. Site 1 had 35 student enrolments with 17% of 

students (six) identifying as Aboriginal or Torres Strait Islander. The 35 students were arranged 

in two classes, a junior class comprising of Reception (first year of school), year 1, and year 2 

(n = 15), and an upper class of students in years 3 to 6 inclusive. Site 2 had 45 students enrolled 

and arranged in three classes, a Reception and year 1 (n = 13); a year 2 and 3; and a year 4–6 

inclusive. Both sites had high proportions of students with additional learning needs and 

diagnosed disabilities. 

Data was collected using children’s drawings, semi-structured interviews (n = 16), and 20 

classroom observations to ascertain how students in multi-year classrooms communicated their 

mathematical thinking. The participating students were diverse in terms of their gender (5 

females, 11 males), their special education needs (50% of students with a formal diagnosis of a 

form of neurodivergence, 1 child with an intellectual disability, 3 children with delayed speech) 

or their giftedness with 1 child from site 1 being accelerated in mathematics, attending the year 

3–6 class. In addition, students at both sites experienced higher levels of socio-economic 

disadvantage adding another dimension of diversity. Further, children also completed a task co-

designed between the two teachers and two researchers. Data analysis occurred atomically and 

holistically, initially viewing each data source separately and then collectively using an open-

coding process to identify emerging themes. Bruner’s (1966) experiential stages of learning 

classified as enactive, iconic, and symbolic were used to analyse the opportunities for students 

to communicate their mathematical thinking. 

Findings 

Opportunities for students to communicate their mathematical thinking were classified into 

three broad themes: (1) opportunities to represent mathematical thinking; (2) opportunities to 

describe and explain their thinking; and (3) opportunities to use appropriate language, 

terminology, and conventions. In this paper, the first theme of representing mathematical 

thinking will be discussed. Bruner’s (1966) experiential stages of learning have been used to 

elaborate on the first theme with this paper paying particular attention to the iconic stage. 

We report on an observation conducted at Site 1 where all students engaged in the same 

mathematical task and the resultant opportunities provided by the teacher for students to 

communicate their mathematical thinking. Students were given numerous opportunities to 

represent their mathematical thinking during all three experiential stages, with greater 

opportunities for representations occurring during the enactive and iconic stages. The enactive 

representations lead to students describing what they have represented which aided the 

transition from the enactive to iconic representations. The task (Figure 1) explored the concept 

of additive patterns and was displayed on the interactive board. The teacher organised a range 

of iconic representations including buttons and pom poms to represent the decorations. The 

teacher read the task and gave explicit instructions on the materials and group expectations. 

Students were grouped into three mixed-year-level groups. Figures 2 and 3 show two different 
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student group representations created collaboratively. At the mid-point of the learning 

experience, the teacher gathered the students around each group’s representations and asked 

students to share what they had done and why (Figure 6). Students were then encouraged by 

the teacher to use the strategies that were shared by their peers. Students had further 

opportunities to develop and refine their representations (Figures 5 and 6) before a final sharing 

opportunity was instigated. 

Figures 1–6 

Task Description (1), Students Representing their Thinking (2 and 3), Sharing their Thinking (4), and 

Final Representations (5 and 6) 

    

Figure 1 Figure 2 Figure 3 

     

Figure 4 Figure 5 Figure 6 

Discussion 

The student-co-constructed representations were great opportunities for students to 

communicate their mathematical thinking to their peers and their teacher. In developing their 

constructions, students used multiple forms of communication including gestures, the use of 

manipulatives, and assistive technology. The familiar objects (Larkin, 2016) of buttons and 

pom poms provided opportunities for students to create representations that could then be later 

used to aid students in describing and explaining their mathematical thinking. Students 

combined iconic representations, drawing circular shapes for the biscuits with the familiar 

objects. The use of diagrams (Larkin, 2016) was a key feature of all iconic representations 

providing further opportunities to share mathematical thinking. The student-generated diagrams 

led to a class discussion about the suitability of the diagrams, with one student adamant that the 

only way to represent the 20 biscuits was in lines. 

The two multi-year classes that were the focus of this study were rich in examples of the 

many opportunities afforded to students to communicate their mathematical thinking. The 

engagement with peers of different ages provided numerous opportunities to use and engage in 

multiple representations and hear and see different descriptions and explanations. Peers acted 

as enablers, motivators, and collaborators (Quane, 2021) whereby students sought help from 

their peers and to share ideas. Students actively contributed to the ideas of other students, 

building on or adapting their thinking or adopting the thinking of others, thereby, enabling and 
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fostering students’ mathematical thinking. Through facilitating sharing opportunities, the 

teacher provided further opportunities for students to observe and listen to other students’ 

thinking, cultivating the classroom norms to share and collaborate. The multi-year structure of 

the classes provided opportunities for students to hear a variety of explanations that may be 

beyond their curriculum year level. As such, they provided opportunities for greater exposure 

to how mathematics develops including but not limited to mathematical language which in turn 

provides further opportunities for students to communicate their mathematical thinking. In 

selecting the task (Figure 1), the teacher provided students with an authentic scenario that was 

relatable to the children. Further, the investigation style of the lesson provided another layer of 

opportunities for students to communicate their mathematical thinking. Students were given 

opportunities that were planned by teachers while other opportunities to represent mathematical 

thinking spontaneously occurred, introduced by both teachers and students. 

Conclusion 

The paper highlights the invaluable opportunities for hyper-diverse students to 

communicate their mathematical thinking within the unique context of multi-year classes in 

small regional SA Schools. The findings underscore the significance of providing students with 

multiple opportunities to represent their mathematical thinking using various modalities 

together with the nature of multi-year classes fostering peer learning and collaboration, enabling 

students to share and build upon each other’s mathematical thinking. Teachers play a crucial 

role in facilitating these opportunities by creating a supportive learning environment and 

selecting authentic tasks that resonate with students’ lived experiences. By harnessing the 

power of multi-modal communication and peer interaction, educators can empower hyper-

diverse students to develop confidence, agency, and a deeper understanding of mathematics, 

ultimately promoting equitable access to mathematical learning and success. Moving forward, 

continued research is required into the practices used in multi-year classes to better understand 

the complexities of these settings. 
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Providing professional development at scale requires engaging diverse stakeholders to 

ensure support is based on research evidence and meets a range of teachers’ needs. This 

symposium outlines research, partnerships and initiatives undertaken by a mathematics 

team in a state department of education to build a cohesive network of resources and 

professional learning to improve mathematics teaching and learning across the state. 

Supporting teachers with relevant resources and professional learning is a priority to 

promote improvement in mathematics teaching and learning. At a systemic level, providing 

support at scale while recognising the highly diverse needs of teachers and schools is a well-

documented challenge. A significantly revised mathematics curriculum has heightened the need 

for timeliness and range of expertise and perspectives. Collectively, the papers in this 

symposium tell a story of how a state department of education strategically partnered with 

mathematics education researchers, teachers and schools to design and implement a range of 

co-ordinated initiatives to support teachers and improve students’ learning in mathematics. 

In the first paper, Wood and her colleagues outline the history and background of ways that 

the Queensland Department of Education (the Department) have sought to support teachers to 

develop their mathematics pedagogy through a range of strategic partnerships across two 

decades. In Building system-wide mathematics pedagogy through collaborative partnerships, 

the authors discuss the impetus behind building teachers’ pedagogical expertise in guided 

mathematical inquiry by working with mathematics education researchers as critical friends 

and developing resources at scale. In the second paper, Designing curriculum resources to 

support teacher learning, Goos details her theoretical analysis of the design of resources 

supporting teachers to “learn how to learn” to teach content that was new to them in the 

Queensland senior secondary mathematics syllabuses. Her paper exemplifies the Department’s 

initiative to create a suite of professional learning materials for teachers designed by 

mathematics education researchers in a range of topics in mathematics curriculum, pedagogy, 

and classroom strategies. In the next paper, Building capability: What to do when you don’t 

know what to do, school practitioners Moran and Lambie discuss how their school worked with 

a mathematics education researcher as a critical friend to address a problem of practice: 

improving students’ performance on a new state assessment using complex, open-ended 

problems. They provide school-based evidence of how the using a research-based framework 

supported students to build confidence in addressing these tasks. Finally, in Building capability 

for teachers of mathematics, Horne and Hillman outline the partnership between the 

Department and an experienced teacher to develop resources that build teachers’ capabilities in 

teaching mathematics. The ‘How to Teach Mathematics Toolkit’ seeks in particular to support 

beginning teachers and those teaching mathematics out-of-field in an online resource.   
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Research shows that when students engage with mathematical inquiry their problem-

solving skills are strengthened. Demands in the revised Australian curriculum raised 

problem-solving of new senior secondary mathematics assessment, specifically in 

Queensland Problem-solving and Modelling Tasks (PSMTs). The challenge for 

Queensland was to scale inquiry pedagogies through secondary state schools in a way 

that was age appropriate and curriculum-aligned. A system, researcher and teacher 

collaboration produced a suite of resources and capability materials to build inquiry 

pedagogies of secondary teachers and ultimately students’ problem-solving skills. 

When students engage with guided mathematical inquiry, their problem-solving skills are 

strengthened (Lazonder & Harmsen, 2016). In addition, students experience greater 

engagement, enjoyment, and achievement (Collie & Martin, 2017). However, research outlines 

the difficulties that teachers experience in learning to adopt and appropriately guide their 

students’ learning to engage in mathematical inquiry (Makar, in press; Munter, 2014). 

Facilitating system-wide pedagogical change in mathematics classrooms requires a multi-

faceted, scalable approach (Roesken-Winter et al., 2021; Spillane et al., 2018). 

This paper outlines the direction, history and development that the Queensland Department 

of Education made over 15+ years in supporting teachers to engage in adopting guided 

mathematical inquiry and problem-solving state-wide across all levels of schooling. The 

implications of this journey can provide guidance for system-level change over time in other 

jurisdictions. The outcomes highlight the importance of vision, partnerships, resource 

development and time in seeing systemic improvement in mathematics pedagogy from primary 

through secondary. 

Queensland’s Journey 

In 2023 the Queensland Department of Education (the Department) reaffirmed its 

commitment to prioritising achievement in mathematics in the education strategy, Equity and 

Excellence—a progressive, high performing education system realising the potential of every 

student—and continued a systematic approach to lifting outcomes for students in mathematics 

through building teacher capability. The Department has established a Prep to Year 12 approach 

to developing students’ problem-solving skills with a focus on building teacher capability in 

inquiry pedagogies particularly in the secondary phase of schooling. Central to this has been 

collaborative partnerships with mathematics education researchers (Rosenquist et al., 2015). 

The Department’s journey of valuing evidence-based practice through partnering with 

researchers has spanned almost two decades. In 2006, a formal partnership was initiated 

between the Department and a university in the form of an Australian Research Council (ARC) 

Linkage Project. The aim of the project was to study teachers’ evolving experiences as they 

developed expertise in teaching mathematics through inquiry. The partnerships expanded to 

other universities over the years. 

mailto:rose.wood@qed.qld.gov.au
mailto:rhonda.horne@qed.ald.gov.au
mailto:k.makar@uq.edu.au


Building partnerships to co-develop evidence-based capability 

69 

A Strategic Approach to Building Teacher Capability in Mathematics Pedagogy 

The M-in-STEM initiative of the Queensland Department of Education was established in 

2019 to strengthen age-appropriate and curriculum-aligned pedagogical practices of teachers of 

mathematics in Prep to Year 12. Through the STEM team, the Department engaged with 

fourteen mathematics education researchers from seven universities across Queensland and 

beyond to co-develop resources and capability programs to support teachers in adopting inquiry 

and problem solving pedagogies. The partnerships contributed to a range of co-ordinated and 

differentiated resources to build teacher capability (Figure 1), with many of these partnerships 

continuing. 

Figure 1 

Nature and Outcomes of Research Collaboration 

 

Professional learning resources were developed for teachers across a range of experiences. 

The How to Teach Mathematics Toolkit was designed to support beginning, returning and out 

of field teachers of mathematics and is self-paced and online. Mathematical inquiry is addressed 

in two modules: Teaching practices—the pedagogy of inquiry, and Problem-solving—using the 

mathematical guided inquiries (MGIs). A partnership with a mathematics education researcher 

saw the adaptation of a framework for effective teaching of mathematics (National Council for 

Teachers of Mathematics [NCTM], 2014) supported with video content unpacking the 

framework and its implementation in classroom practice. 

The M in STEM professional learning suite was developed to support experienced teachers 

of mathematics, particularly in secondary. Researchers co-developed professional learning 

resources with evidence-based pedagogical approaches across a range of topics supported with 

video content of classroom implementation. For example, in the inquiry module, the video case 

study Effective inquiry strategies: Implementing a mathematical inquiry framework documents 

how a secondary school adopted the 5Ds approach (Allmond et al., 2010) by implementing 

MGIs by collaborating with a mathematics education researcher. The partnership supported 

a consistent approach to inquiry across Years 7 to 10 in the school to ensure their students 

developed the age appropriate and curriculum aligned skills they needed to meet the demands 

of the PSMT into Years 11 and 12. 

M in STEM Clusters Initiative 

Building capabilities at scale required systemic partnerships between the Department, 

schools, and mathematics education researchers to support teachers with identified problems of 

practice (e.g., Koichu & Pinto, 2018). More direct collaboration between researchers and 
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teachers was facilitated through the M in STEM clusters initiative. Researchers walked the 

journey of school improvement in mathematics with middle and aspiring leaders working in a 

cluster with a similar problem of practice. Researchers played the role of critical friend and 

provider of professional learning. 

Case Study—M in STEM Collaborative Mathematics Inquiry 

In 2021 a cluster of six state secondary schools undertook a collaborative inquiry to 

investigate how to improve implementation and outcomes in the PSMT requirements of the 

senior secondary mathematics syllabuses. PSMTs were prioritised as they contributed 20% of 

the final mathematics grade in Year 12. Pre-intervention data analysis across the six schools 

showed that students achieved lowest in the Solve and Evaluate and Verify criteria of the PSMT 

(compared with, for example, Communicate). The working hypothesis was that low 

performance in Solve was due to difficulties in the Formulate criterion, and, that low 

performance in Solve led to difficulties in the Evaluate and Verify criterion. Furthermore, both 

teachers and students were challenged by the language of the PSMT criteria. 

In discussing the problem of practice with a content expert researcher as critical friend, the 

cluster agreed to use brainstorming in senior secondary (Years 11 and 12) to support student 

confidence in the Formulate and Evaluate and Verify stages of PSMTs. Taking an inquiry 

approach, the cluster backward mapped from the intended student outcomes and class 

behaviours, requisite teacher practice and professional learning, and the expected evidence of 

these anticipated changes, to understand how the cluster leaders needed to create the conditions 

for the change to occur. The M in STEM initiative provided the professional learning in 

instructional leadership and opportunities for intentional collaboration. 

Schools in the cluster introduced brainstorming in junior secondary to strengthen problem 

solving skills and a whole school approach to language and pedagogy for problem solving tasks. 

Co-developed lesson plans and teaching resources were developed for implementation across 

the schools that developed brainstorming skills. Brainstorming encourages people to think in a 

free and open way with no restrictions. As a result, they often generate more possibilities than 

they would using a structured approach (Dugosh et al., 2000). The shared lessons were 

implemented with classroom routines and norms established to build students’ confidence in 

the process and a safe environment for sharing ideas. Fermi problems were also used to 

stimulate ideas to evaluate and make assumptions. Fermi problems are miniature modelling 

problems that emphasise estimation (Albarracín & Ärlebäck, 2019). 

Monitoring and reviewing activities including classroom walk-throughs, feedback from 

teachers and students, and pre- and post-intervention data analysis, showed an increase in 

confidence in both brainstorming and PSMT processes for students and teachers, improved 

disposition towards PSMTs for teachers and students and improved assessment literacy. The 

school found evidence of its effectiveness not only in the initial criterion (Formulate), but gave 

students confidence to proceed across all four criteria (Formulate, Solve, Evaluate and Verify, 

Communicate). A video capturing the case study was provided to all schools as an example of 

a high quality strategy and benefit of engaging a critical friend. The benefits of working in a 

cluster were identified as access to critical friend, opportunities to collaborate with other 

schools, and professional learning around an inquiry approach to school improvement. 

Next Steps 

The quality assured and curriculum-aligned materials developed through system-researcher 

partnerships are provided to all Queensland state schools to lift mathematics outcomes for 

students. In addition system-researcher-teacher relationships have further strengthened the 

network of mathematics educators across the state. While we have significant case studies 

demonstrating impact (see for example, Moran & Lambie, 2024), next steps are to gather further 
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evidence of reach and impact of these materials. This includes evidence of downloads and 

access to online resources and professional learning, localised case studies of impact in schools 

and clusters, opt-in surveys of teacher feedback after engaging with and implementing the 

materials, and monitoring trends in system-wide mathematics reporting data. 

This paper outlined strategies that enact the Department’s commitment to strengthening 

teaching and learning in mathematics at scale to ensure every student realises their potential. It 

exemplifies the Department’s focus on fostering collaborative partnerships to build evidence-

based, inquiry pedagogies in mathematics across the system to build problem-solving skills. 
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This paper presents an analysis of how resources were designed to support 

implementation of the new Queensland senior secondary mathematics syllabuses. The 

analysis draws on the concept of educative curriculum materials that build teachers’ 

subject matter knowledge and pedagogical content knowledge. Such resources are 

intended to help teachers “learn how to learn” to teach mathematical content that is new 

or unfamiliar to them. 

Introduction of the Australian Curriculum: Mathematics at F–10 and senior secondary 

mathematics levels has led to diverse initiatives by state and territory education jurisdictions to 

provide resources and support for teachers. This paper examines one aspect of the Queensland 

Department of Education’s M in STEM initiative, which involves collaboration with university-

based mathematics education researchers to develop a professional learning suite for secondary 

school mathematics teachers. The resources are intended to strengthen teachers’ curriculum 

knowledge and pedagogical practices across six topics: productive dispositions, problem 

solving and inquiry, modelling, reasoning, new content in the senior mathematics syllabuses, 

and strategies for long term retention of knowledge and preparing students for assessment. 

The aim of this paper is to analyse the process used to develop resources for one of the focus 

topics in the professional learning suite: learning to teach new content in the senior secondary 

mathematics syllabuses. The analysis draws on the concept of educative curriculum materials, 

that is, curriculum resources that are designed to promote teachers’ learning of mathematical 

content and pedagogy as well as student learning (Ball & Cohen, 1996; Davis & Krajcik, 2005). 

The paper addresses the following research question: 

• How can curriculum resources be designed to support mathematics teacher professional 

learning in the context of curriculum reform? 

Curriculum Context 

In 2019, the Queensland Curriculum and Assessment Authority (QCAA) introduced new 

syllabuses for senior secondary mathematics based on the subjects developed by the Australian 

Curriculum, Assessment and Reporting Authority (ACARA, n.d.): General Mathematics, 

Mathematical Methods, and Specialist Mathematics (version 8.4). The new syllabuses included 

mathematical content that was either new or at a higher level of difficulty than in the previous 

Queensland syllabuses for the equivalent subjects of Mathematics A, Mathematics B, and 

Mathematics C respectively. The new suite of subjects represented the most significant change 

to senior secondary mathematics curriculum in Queensland since the previous syllabuses were 

launched in 1992. 

The support offered to teachers for implementing a new syllabus is often in the form of 

instructional materials that help teachers interpret the official curriculum and create their own 

personal plans for teaching specific groups of students (Remillard & Heck, 2014). One 

challenge in designing such resources is to find a realistic balance between pedagogical 

prescription and professional autonomy (Davis & Krajcik, 2005). Determining the appropriate 

amount of guidance needed by senior secondary teachers was a particular challenge for General 

Mathematics, the subject most likely to be taught by out-of-field teachers who have undertaken 

limited advanced studies of mathematical content and little or no formal preparation in teaching 

mathematics. Text-based and online curriculum materials are also more educative for teachers 

if combined with in-person social support (Robutti et al., 2016). However, delivering a state-

mailto:mgoos@usc.edu.au


Building partnerships to co-develop evidence-based capability 

73 

wide professional learning program containing face-to-face elements is challenging in 

Queensland, the Australian state with the most decentralised population spread over a very large 

area (see Australian Bureau of Statistics, 2022; Geosciences Australia, 2023). Each of these 

constraints influenced the design of the M in STEM professional learning suite. 

Theoretical Background 

The design of resources for one of the M in STEM focus topics is analysed by reference to 

five high-level guidelines for educative curriculum materials set out by Davis and Krajcik 

(2005). They proposed that educative curriculum materials should: 

• Develop teachers’ capacity to anticipate and interpret student thinking during 

instructional activities, as well as how to respond to student thinking (e.g., by using 

appropriate examples or instructional representations); 

• Support teachers’ learning of the subject matter and related disciplinary practices; 

• Help teachers recognise how a learning objective, instructional activity, or lesson 

Sequence is related to the curriculum as a whole; 

• Make visible the resource developer’s pedagogical reasoning, thus enabling teachers to 

integrate this knowledge into their own repertoire; 

• Promote teachers’ pedagogical design capacity so they are able to make principled 

adaptations to the original curriculum materials. 

In these ways, educative curriculum materials build teachers’ subject matter knowledge and 

pedagogical content knowledge. 

Designing Curriculum Resources for General Mathematics 

In the curriculum context outlined above, consultation with the Queensland Department of 

Education led to a decision to focus on teaching new content in the General Mathematics 

syllabus (QCAA, 2019). It was not feasible to design curriculum resources for every topic in 

the syllabus that was likely to be new or unfamiliar to teachers. Instead, three syllabus topics 

considered to be most demanding for inexperienced or out-of-field teachers were selected: 

linear equations and their graphs; geometric sequences; and planar graphs, paths, and cycles. 

Teachers are also time poor and not always willing to engage with extensive materials. 

Thus, the resources needed to concisely address key ideas for teaching while simultaneously 

illustrating how teachers could “learn how to learn” to teach other new topics in the syllabus. 

This was done by creating, for each topic, a series of three recorded PowerPoint presentations 

outlining evidence-based pedagogical strategies (1 hour total) and a placemat that defined the 

topic together with planning and teaching principles. These static resources were supplemented 

by an interactive 40-minute online professional discussion with teachers from around the state. 

The intention was to develop a consistent structure for the recorded presentations that would 

expose the pedagogical decision-making underpinning the design. The rationale for these 

decisions was also made explicit in the placemat representing the design process. The design 

process moves through three stages: (a) interrogating the senior syllabus to identify and 

understand the subject matter; (b) mapping connections backwards, forwards, and across the 

Australian curriculum; and (c) designing pedagogy by selecting appropriate representations and 

real-life examples, and addressing common misconceptions that hinder student learning. The 

design process for the geometric sequences PowerPoint presentation is illustrated in Table 1 

and mapped against Davis and Krajcik’s (2005) guidelines for educative curriculum materials. 

The principles underpinning the design process illustrated in Table 1 were articulated in the 

topic placemat, which is presented in abbreviated form in Figure 1. The placemat highlights the 

teacher’s role in bringing the curriculum to life for students, by moving back and forth between 

the curriculum world, real world, and classroom world. 
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Table 1 

Design Process for Geometric Sequences PowerPoint Presentation 

(a) Interrogate the syllabus 

Educative curriculum materials guideline 2: Support teachers’ learning of subject matter 

What subject matter is included? 

• Generating sequences using recursion or rule for the nth term 

• Displaying the terms of a sequence in tabular or graphical form 

• Using geometric sequences to model and analyse (numerically or graphically only) practical 

problems involving geometric growth and decay 

How are key terms defined? 

• Syllabus glossary definition of a geometric sequence, “a sequence of numbers where each term after 

the first is found by multiplying the previous term by a fixed non-zero number (excluding ±1) called 

the common ratio” (QCAA, 2019, p. 59) 

• Common ratio > 1 → exponential growth; Common ratio < 1 → exponential decay 

• Illustrate two methods of generating the geometric sequence 2, 6, 18, 54, …: 

• Recursion relation 𝑡1 = 2, 𝑡𝑛+1 = 3𝑡𝑛 for n ≥ 1 

• Rule for the nth term 𝑡𝑛 = 2 × 3𝑛−1 for n ≥ 1 

Why is the topic important? 

• Geometric sequences are used to understand real life situations and solve real life problems 

involving exponential growth and decay 

(b) Map the curriculum 

Educative curriculum materials guideline 3: Relate the topic to the curriculum as a whole 

What prior learning have students experienced from the F–10 mathematics curriculum? 

• Understand the connection between algebraic and graphical representations 

• Solve basic problems involving simple and compound interest 

What other topics in the General Mathematics syllabus connect to this topic? 

• Loans, investments, and annuities: Use a spreadsheet to investigate the effect of interest rate on the 

future value of an investment 

What other curriculum areas connect with this topic? 

• Physics and ancient history: radioactive decay, carbon dating 

• Biology: population growth, bacterial growth, spread of infectious diseases such as COVID-19 

(c) Design pedagogy 

Educative curriculum materials guideline 1: Anticipate, interpret, and respond to student thinking 

• Select appropriate representations and link to 

real life examples. 

• Understand and respond to students’ thinking 

• Recognise misconceptions about working with 

numerical expressions in exponential form. 

• Encourage students to explore both recursion 

relationships and the rule for nth term to define 

sequences 

• Provide experiences for students to explore 

and compare additive and multiplicative 

patterns that model arithmetic and geometric 

sequences respectively 

• Use technology so students can investigate 

patterns of growth and decay in sequences, 

generating both tables of values and graphs 



Building partnerships to co-develop evidence-based capability 

75 

Figure 1 

Placemat for Teaching New Content in Senior Mathematics 

 

Concluding Remarks 

This paper illustrates one approach to designing educative curriculum materials that support 

teacher learning as well as student learning. In principle, the resources developed for 

Queensland senior secondary mathematics teachers align with the guidelines proposed by Davis 

and Krajcik (2005). However, little is known about teachers’ uptake of these resources and what 

difference this makes to their professional knowledge and classroom practice. These promise 

to be fruitful areas for future research on teachers’ learning in times of curriculum reform. 
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The Queensland Certificate of Education (QCE) system is Queensland’s senior school 

qualification. To support the introduction of the system in 2019, existing senior 

syllabuses were redeveloped and a new senior assessment model was established, this 

included the implementation of a mandatory high-stakes assessment task, the Problem-

solving and Modelling Task (PSMT) in all four mathematics syllabi. The PSMT 

required new skills from both students and teachers to manage complex, open-ended 

investigations. In this paper, we reflect on our school’s approach to build teacher 

capability in designing PSMTs and supporting student engagement with PSMTs.  

In 2019, the new Queensland Certificate of Education (QCE) system was introduced. To 

support the introduction of the system, existing senior syllabi were redeveloped and a new 

senior assessment model was established to strengthen the quality and comparability of school-

based assessment. These changes included the introduction of a mandatory high-stakes 

assessment—the Problem-solving and Modelling Task (PSMT)—to four senior mathematics 

syllabi: Essential Mathematics, General Mathematics, Mathematical Methods and Specialist 

Mathematics. PSMTs are designed by schools and then must be approved by the state 

assessment authority. Designing these tasks and supporting students to successfully engage 

with them required new skills. The PSMT was designed to evaluate a student’s ability to 

respond to an investigative mathematical scenario or stimulus in relation to the mathematical 

concepts they have learned against four assessment criteria: Formulate, Solve, Evaluate and 

verify, and Communicate (QCAA, 2021). In most cases, the key feature of this task has been 

to provide for a response that addresses a real-life application of mathematics. Indeed, rich 

mathematical understanding goes beyond being able to correctly complete mathematical 

exercises, but also to make connections and transfer learning to unfamiliar problems (Skemp, 

1978; Sullivan, 2011). As Peter Sullivan (2011) advised, “One of the major constraints that 

teachers experience when utilising such tasks is that many students avoid risk taking and do not 

persist with the challenges that are required in order to complete the task.” (p. 38). 

In this paper, we reflect on how our department in a state secondary school, in which the 

two authors were teacher leaders at the time, sought to facilitate this process for teachers and 

students. We drew on research and partnered with a university researcher, using a framework 

and seeking strategies to support students to build problem solving competence on complex, 

unfamiliar problems to allow us to reflect on, improve, and evaluate our progress. 

Initial Practice of PSMTs 

With the introduction of the new senior syllabi, our mathematics department wanted to 

ensure students were given every opportunity to perform well in the PSMT. A decision was 

made to introduce a practice PSMT as part of the problem-solving proficiency of the Australian 

curriculum at Year 10 to strengthen transition from junior to senior secondary mathematics 

courses. While we gave plenty of scaffolding on how to set out the response and developed 

understanding of the valued features outlined in the marking criteria, many students struggled 

to complete the task and wanted to be shown how to find the answer (Sullivan, 2011). This 

expectation was in line with the students’ experiences of class work, but could not be provided 

in a PSMT setting where students are required to develop their own unique response to the set 

problem. 

We noticed that our initial PSMT results in 2019 indicated that our high achieving students, 

who were preparing to study Mathematical Methods (Cohort A), generally performed well, with 
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88% passing (grade of C or better); whereas students who were preparing to study General 

Mathematics (Cohort B) did not have the same level of success, with only 63% passing. To 

better understand where our students were struggling, we followed up with some students to 

seek their feedback. Many told us that they simply did not know what to do and the teachers 

could not tell them, so they gave up. Essentially, they did not know how to start, and if they did 

attempt the problem and got stuck, they struggled to look for alternative approaches. We 

wondered how to help students with the challenge, ‘What do you do when you don’t know what 

to do?’, so that they would have the confidence and skills to solve the unfamiliar problems 

posed by PSMTs. 

A New Approach 

We realised that it was necessary to employ a different pedagogical approach to improve 

student success and disposition. We were teaching mathematics using direct instruction with 

a gradual release of responsibility and a move from simple to complex questions. We also had 

an established problem-solving approach. However, these approaches were not helping students 

address unfamiliar, open-ended tasks like PSMTs. That is, our pedagogies were based on 

students being modelled how to do the mathematics first, before moving to a related application 

or a question they were less familiar with; however, even in these instances, the problems we 

gave students were fairly well-defined and typically had a single correct answer. The difference 

the PSMT posed was that students needed to come up with a way of responding to the task that 

was not directly modelled first by the teacher; and to find a solution to a task that did not come 

with an answer page to reassure them of their accuracy. 

We decided to explore different pedagogical approaches that may help address students’ 

unwillingness to make a start on the PSMT and complete it without teacher guidance. We 

conducted a search for solutions and identified research on the pedagogy of mathematical 

inquiry. Mathematical inquiry is an approach to solving complex, open-ended problems that 

relied on mathematical evidence (Makar, 2012). (Excerpts are from a video case study created 

about our journey by the Queensland Department of Education for the M-in-STEM Professional 

Learning Suite.) 

Guided inquiry [is] responding to the question, ‘What do you do when you don’t know what to do?’ 

Complex open-ended problems like problem-solving and modelling tasks ask students to negotiate, 

adapt and revise their solution. This can be a real challenge for students. (K. Makar, quoted in 

Queensland Department of Education, 2022, 02:56) 

We contacted the researcher, who agreed to discuss their research with us and act as 

a critical friend. We were particularly interested in their 5D model (Discover, Devise, Develop, 

Defend, Diverge; Allmond et al., 2010), which seemed to align well with the criteria already 

used with PSMTs. The Discover phase in the 5D model extends the QCAA modelling criteria 

by providing students with extra scaffolding to get started with the problem. It also engaged 

students with the problem context in a low-stakes setting before starting to plan a possible 

solution. This seemed particularly helpful when students did not know how to start the PSMT. 

Together with the researcher, we (second author) designed an inquiry approach to support 

students in approaching the PSMT confidently and appropriately, using the 5D model as 

a guiding framework. We observed how students responded and plans to evaluate student data 

on improvement: 

In the past, our students have struggled to engage because of the size of the [PSMT] task. What we 

are seeing now, is that by using the 5Ds, students are less stressed and more engaged with the 

problem-solving and modelling tasks, and in turn, more willing to engage with [the] assessment. 

Next, would be a checkpoint at the halfway mark to see how much of the task students have 
completed. We can compare this directly with previous assessment pieces. Thirdly, we’ll be 

comparing student achievement data. (K. Lambie, quoted in Queensland Department of Education, 

2022, 05:54) 
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From 2020, we also began giving our Year 9 students inquiry tasks similar to PSMTs to 

give them additional practice, each time using the 5D framework as a scaffold. In particular, 

five lessons were developed to assist Year 9 students in unpacking a PSMT-like task using the 

5D inquiry model. This approach sought to: 

• Give students an opportunity to experience risk in a low stakes environment; 

• Reduce the size of the task; 

• Reduce student stress; 

• Include a ‘checkpoint’ opportunity, where students shared their interim progress and 

discussed difficulties they were encountering with peers to generate possible ideas. 

The benefit of providing students with an age-appropriate and curriculum-aligned inquiry 

task in Year 9 was that the students became much more confident by Year 10 because they had 

gone through a similar process the year before. As students were initially unfamiliar with this 

assessment style, the Year 9 task was designed to give students confidence moving forward and 

from the beginning, the Year 9 cohort demonstrated a high passing rate (93%). They also 

transitioned well into the more challenging Year 10 practice PSMT. We looked at the practice 

PSMTs again to see whether our Year 10 students felt more confident. Indeed, within these two 

years, students’ practice PSMTs significantly improved (Table 1), particularly the Year 10 

lower-performing students (Cohort B) who increased their passing rate from 63% in 2019 to 

96% in 2021. 

Table 1 

Practice PSMT Aggregated Results From our Year 10 Cohort 

 PSMT percentage of students passing (grade C or better) 

Subject 2019 2021 

Cohort A  88% 99% 

Cohort B 63% 96% 

Building Thinking Classrooms 

Following our work above, we have continued to seek ways to improve students’ learning 

and their confidence to tackle complex, unfamiliar tasks. We recently attended a two-day 

professional development workshop provided by the Department on how to build thinking 

classrooms in mathematics (Liljedahl, 2020). The Building Thinking Classrooms workshop, 

delivered by Professor Peter Liljedahl represented the next step in our journey to increase 

problem-solving opportunities and success for students in our classrooms. Liljedahl’s approach 

to mathematics teaching emphasised a combination of group work, open-ended questions and 

opportunities to explore and test understanding in a low-risk environment. The combination of 

random grouping, the use of vertical whiteboards and the collaborative solving of problems that 

had not been previously modelled provided a fun-filled and engaging opportunity to solve 

mathematics problems in a safe and supportive environment. One of the difficulties we continue 

to have is getting students to make a start on solving problems when they are not sure if their 

selected methods will lead them to the answer. Liljedahl’s work provided us with further 

strategies to address this challenge with our students. 

Following the workshop, we shared two different activities with the other teachers at our 

mathematics meetings and we have written a number of Building Thinking Classrooms 

activities into our mathematics plan. As we move towards the implementation of Australian 

Curriculum: Mathematics (Version 9), we have identified opportunities to embed these 

practices across all year levels, and our teachers are on board with this new approach, already 

incorporating the activities in their classrooms across all year levels. Teachers are motivated to 
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learn more about the approach and how they can continue to support student engagement and 

success in mathematical problem-solving. 

Conclusion 

As a school, we are always interested in improving student learning. In particular, we were 

wanting to support students to respond to the challenge of “What do you do when you don’t 

know what to do?” The inclusion of mathematical processes in the newly revised Australian 

Curriculum: Mathematics (v9.0) (Australian Curriculum, Assessment and Reporting Authority 

[ACARA], 2022) provides increased opportunities for students to address this challenge. “The 

mathematical processes ... are mathematical problem-solving and investigation processes that 

students learn to use in mathematics, and that draw upon students’ mathematical process skills 

and proficiency in mathematics in an interconnected way” (ACARA, 2022, Mathematics, Key 

Considerations, Mathematical Processes section). We have been encouraged by the Year 10 

practice Problem-solving and Modelling Tasks (PSMTs) in their capacity to increase student 

confidence, persistence, and skills in addressing complex, unfamiliar problems. Three 

approaches have assisted us to support students in this way: Drawing on research and working 

with a researcher as critical friend to guide the direction of our improvements to be evidence-

based; engaging with the 5D framework (Allmond et al., 2010) and Thinking Classrooms 

material (Liljedahl, 2020) to improve our problem-solving pedagogy; and using data to reflect 

on, improve and evaluate our progress. 
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Teaching resources and professional development based on mathematics education 

research have the potential to support teachers to develop and sustain improved 

pedagogies. The Queensland Department of Education provided online professional 

learning modules for teachers of Prep (Foundation) to Year 10 mathematics . To support 

implementation of the Australian Curriculum: Mathematics this evidence-based 

resource would assist teachers in understanding the curriculum and providing support 

for quality teaching and learning. This resource exemplifies the partnerships between 

the department, researchers and teachers in building capability in mathematics teaching. 

The notion of curriculum is not static, with distinctions made between what is intended by 

curriculum writers and how curriculum is enacted in the classroom (Remillard & Heck, 2014). 

Teacher resources can greatly influence how teachers interpret the curriculum, and innovative 

resource materials have long been used to support teachers adopt more effective pedagogies 

(Ball & Cohen, 1996; Pepin, 2018). “The characteristics of these innovative materials 

ultimately influence teachers’ instructional practices, including their use of curriculum 

materials” (Choppin, 2011, p. 332). Because of their potential impact on teachers’ pedagogy, it 

is essential for resource materials draw on evidence of effective practice and based on 

contemporary research (Irgens et al., 2023; Munter, 2014; Roesken-Winter et al., 2021; 

Sullivan, 2011). 

In this paper, we outline how a state education department developed an evidence-based 

online teacher capability to support beginning, returning and out of field teachers in diverse 

school and community contexts to implement Australian Curriculum: Mathematics by 

partnering with university researchers and teachers as co-constructors. 

Promoting System-Wide Capability Development in Mathematics Pedagogy 

The Queensland Department of Education (the Department) outlines its commitment to 

realizing the potential of every student, including the prioritising achievement in mathematics, 

in the education strategy, Equity and Excellence. Version 9.0 of the Australian Curriculum 

highlighted the need for state-wide capability-building for teachers of mathematics. The 

challenge was also identified in providing systematic and contextualised capability 

development in mathematics pedagogy for a range of teacher needs that draws on contemporary 

research. These challenges have been identified in research beyond Australia as well: 

Mathematics teachers face challenges in modifying their teaching to incorporate effective 

pedagogical practices, technology tools, and new curricula resources. They also face challenges in 

making changes to address updated standards and expectations for mathematics. … Teachers often 

have limited resources to support professional development to learn how to make these changes. 

Many teachers are seeking out online professional development opportunities. … Evidence suggests 

online professional development (PD) that is accessible, meaningful, collaborative, and addresses 

varied needs and abilities of participants can lead to changes in teachers’ instructional practices. 

(Hollebrands & Lee, 2020, pp. 859–860) 

A universal, online resource would provide foundational instruction tailored to beginning, 

returning, and out of field teachers of mathematics, and accessible to all state school teachers 

in Queensland. This was realised through the redevelopment of the ‘How to Teach Mathematics 

Toolkit’ (the toolkit). To maximise relevance and engagement for teachers, the resource offers 

online, self-directed modules with research-validated information and advice to build teacher 

knowledge, skills, and understanding of mathematics curriculum and pedagogy embedded in 
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the context of teachers’ classrooms and supported with peers (Kleiman et al., 2015; Powell & 

Bodur, 2019). Teachers’ engagement in substantial professional learning resources such as this 

has been shown across multiple studies to have substantial improvement in student learning 

(Yoon et al., 2007). 

The Department has a long history of creating and sustaining partnerships with researchers 

on the improvement journey of mathematics curriculum and pedagogy (Horne & Makar, 2013). 

Existing and new research partnerships were activated to ensure the resource was informed by 

leading edge evidence of effective pedagogy in mathematics (cf. Berger & Baker, 2008; 

Lillejord & Børte, 2016). Collaborative research partnerships were instrumental to this resource 

in three ways: knowledge translation, critical friends, and content co-developers (Irgens et al., 

2023). Collaborative teacher partnerships were equally important providing lesson plans and 

videos demonstrating examples of content, mathematical guided inquires and related 

assessment. 

Designing a Capability Resource Using Evidence-Based Practices 

The toolkit is focused on evidence-based research and is organised over eight modules. The 

modules address current teaching and learning, the structure of the Australian Curriculum: 

Mathematics—including the mathematical proficiencies (Understanding, Fluency, Problem 

solving, Reasoning), and the importance of ongoing teacher personalised learning (Figure 1). 

Figure 1 

How to Teach Mathematics Toolkit Professional Development Modules 

 

Research on teacher professional learning has highlighted that teachers value professional 

development that includes a focus on content, active learning, alignment with curriculum, and 

engagement over time (Haug & Mork, 2021). In the Teaching and Learning modules (1–3), 

teachers will explore: 

• Teaching Mathematics: Mathematical opportunities, knowing and planning the 

curriculum and mathematical content, knowing how to plan a lesson; 

• Mathematics in the classroom: Addressing you own self-efficacy, understanding your 

school’s context, knowing your students with a focus on assessment and differentiation 

and how to support mathematical language within the classroom; 
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• Teaching practices: Understanding effective teaching of mathematics, focusing on 

positive dispositions, orchestrating classroom discourse, supporting student 

engagement and pedagogy in the mathematics classroom. 

Modules 4–7 model the structure of the Australian Curriculum: Mathematics. By unpacking 

the mathematical proficiencies (Understanding, Fluency, Problem solving, Reasoning). Within 

each proficiency, the modules use content strands in teaching, learning, and assessing the 

proficiency with lessons and assessment ideas for each phase of schooling (Prep to Year 2, 

Year 3 to 6 and Years 7 to 10). 

Finally, Personalised learning supports teachers in their understanding of continued 

learning in teaching and learning mathematics and reflect on their own self-efficacy. 

The toolkit modules are self-paced and combine online learning and offline self-reflection 

and practical application. Importantly, there are opportunities for participants to consolidate 

and extend their learning through collaborative activities with a mentor, thus allowing a 

contextualised approach (Fantilli & McDougall, 2009). The toolkit encourages further reading 

and engagement with research through the resources lists included at the end of each module. 

The toolkit modules are designed to align to the Australian Institute for Professional 

Standards (AITSL) so that completion of the course contributes to teachers’ continuing 

professional development requirement for registration. This validates participants’ investment 

of time in completing the toolkit. Teachers have the opportunity to collect evidence of their 

participation by recording reflections, mentoring discussions, implementation trials in the 

classroom, peer observations and student observations and work samples. 

Next Steps—Supporting Mentoring and Scaling up Effective Practice 

In the context of widespread teacher shortages the Department recognises the critical 

importance of universal access to high quality professional learning in mathematics, scaling up 

effective practice, sharing expertise through clusters and attending to teacher wellbeing (Haug 

& Mork, 2021; Irgens et al., 2023; Powell & Bodur, 2019). There are opportunities to support 

mentoring partnerships through: 

• Mobilising suitable expertise as mentors within/across the department and in research 

organisations; 

• Facilitate clusters to share expertise—strengthen and expand the network of 

mathematics educators by supporting partnerships between teachers and researchers as 

mentors. 

There are opportunities to embed toolkit modules in initial teacher education programs to 

support transition of beginning teachers into mathematics classrooms in Queensland state 

schools. 

Conclusion 

The How to Teach Mathematics Toolkit is an evidence-based resource to promote system-

wide capability development in mathematics pedagogy in Queensland state schools. It supports 

the implementation of Australian Curriculum: Mathematics in F–10, and combines both 

universal access and contextualised implementation to maximise reach and impact. It builds 

and shares expertise in mathematics pedagogy through collaborative partnerships to build 

capability of teachers to deliver quality teaching and learning in mathematics. 
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Concern regarding the prevalence of out-of-field teaching continues to grow, as does 

the body of literature calling for a better understanding of the nuanced complexities 

associated with out-of-field teaching. In this paper, we extend our previous analysis of 

data from a survey of the profession teaching Years 7–10 mathematics in South 

Australia. Analysing the data through an identity lens indicates that out-of-field teachers 

who self-identify as mathematics teachers and express a preference for teaching 

mathematics are more likely to exhibit levels of interest, enjoyment, confidence, and 

commitment that align with those of in-field teachers. 

Out-of-field teaching, where educators are assigned subjects beyond their qualifications or 

training, is a phenomenon observed in many countries around the world. In Australia, data from 

2013 indicates 17% of mathematics classes in Years 7–10 were taught by out-of-field teachers, 

intensifying in remote areas where the percentage rises to 26% (Weldon, 2016). Figures like 

these are often reported in the media to imply that out-of-field teaching is responsible for poor 

outcomes in standardised assessment such as NAPLAN, PISA, and TIMSS. However, 

definitions of out-of-field teaching that focus on the criteria used to qualify and/or register 

teachers (often describing them at the start of their careers) fail to recognise that teachers 

develop and grow throughout their career as they gain confidence, experience, and perhaps 

further qualifications. For example, a teacher might not have been initially trained in 

mathematics but may have subsequently engaged in self-study and attended professional 

development, becoming comfortable and competent in the subject. This evolution challenges 

the appropriateness of the ‘out-of-field’ label and its implications for teaching efficacy. 

Hobbs et al. (2022) designed a multi-faceted definition of out-of-field teaching to help better 

understand and manage the out-of-field phenomenon, informed by the existing literature on in-

field and out-of-field teaching. The definition has four dimensions: out-of-field by qualification 

(a mismatch between current teaching and discipline qualification, school level qualification, 

or both), out-of-field by specialisation (a misalignment at the sub-discipline level), out-of-field 

by workload (proportion, stability, and type of load), and out-of-field by capability (recognising 

that teachers may feel out-of-field depending on factors including experience and identity). 

The approach by Hobbs et al. (2022) shifts the focus of ‘out-of-fieldness’ from the teacher 

to the context of teaching. For example, being out-of-field by workload recognises that it is the 

assignment of work to the teacher, not the teacher themselves, that is mismatched. Out-of-field 

by capability refers to a teacher’s growing identity within a new context. The authors define 

a highly capable out-of-field teacher as one who is capable in the out-of-field subject, has a high 

degree of confidence, has personal interest in the subject, is professionally committed to 

developing and reflecting on their practice, self-identifies as proximal to the subject, and has 

accepted the role long-term, expanding their professional identity to include the role. In earlier 

work, Hobbs (2013) refers to this as ‘boundary crossing’, suggesting that teachers who are 

technically out-of-field can identify as in-field if they have sufficient support to enable them to 

feel confident and competent in their teaching. Conversely, teachers who are in-field by 

qualification can feel out-of-field by capability when placed in a new context. Ingersoll (2019) 

highlights how experienced and qualified teachers may become “highly unqualified if they are 

assigned to teach subjects for which they have little training or education” (p. 22). 
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The identity of teachers is significant and has been shown to influence their practice. For 

instance, the literature review by Heyd-Metzuyanim et al. (2016) revealed that most of the 

studies reviewed demonstrated an interaction between teachers’ identities and their practices, 

indicating that changes in one can affect the other. Similarly, Willis et al. (2023) found that 

identity as a teacher of mathematics and participation in professional learning were correlated. 

A number of studies have demonstrated the significance of teacher identity for out-of-field 

teachers of mathematics (e.g., Hobbs, 2013; Ní Ríordáin et al., 2022). Goos et al. (2019) 

emphasised the importance of further research into understanding the development of teacher 

knowledge and its influence on the identities of out-of-field teachers of mathematics. Such 

research will create a better understanding of teacher learning, which in turn can better inform 

approaches to professional learning. For instance, while studies such as Ní Ríordáin et al. (2019) 

highlight the importance of professional learning aimed at out-of-field teaching to enhance 

teachers’ content knowledge alongside their pedagogical content knowledge, other research, 

such as that by Bosse and Törner (2015) highlight the importance of attending to teachers’ 

“subject-related identity” (p. 8). 

Research Background 

This section summarises previously reported research to contextualise the research 

questions asked in this paper; see O’Keeffe & Albrecht (2023), Albrecht et al. (2023), and 

Albrecht and O’Keeffe (2024) for more details. 

An anonymous online survey was distributed in late 2022 by the SA Department for 

Education for one month, with all Years 7–10 teachers invited to participate. The survey design 

was informed by Hobbs et al.’s (2022) classifications of ‘out-of-field’, AITSL’s (2021) report 

on the SA teacher workforce, and Weldon’s (2016) study of out-of-field teaching in Australian 

secondary schools. Of the 232 survey participants, 196 had taught Years 7–10 mathematics at 

some stage. The survey collected information on teacher demographics, teaching qualifications, 

professional learning, teaching context and experience, employment status, and workload. It 

also probed teacher identity in multiple ways, including two questions: (1) Do you consider 

yourself a mathematics teacher? (In other words, are you comfortable calling yourself 

a mathematics teacher?); and (2) Do you consider yourself an out-of-field mathematics teacher? 

Of the 165 teachers who responded to both questions, 60 were classified as in-field by 

qualification (QIN) while the remaining 105 were deemed out-of-field by qualification 

(QOOF). As might be expected, nearly all QIN teachers identified as mathematics teachers 

(98%, n = 59), whereas only 68% (n = 71) of QOOF teachers did. Similarly, almost all QIN 

teachers identified as ‘not out-of-field’ (which we refer to as identifying as in-field, for 

convenience). Surprisingly, about 50% of QOOF teachers (n = 52) also saw themselves as in-

field, despite being out-of-field by qualification. 

The survey also collected data on affective dimensions such as teachers’ personal interest 

in mathematics, enjoyment teaching mathematics, confidence in their mathematical content 

knowledge (CK), confidence in their pedagogical approaches for teaching mathematics (PCK), 

and personal commitment to developing their CK and PCK. Teachers gave responses on a scale 

from 0 (low) to 5 (high). Teacher identity was shown to have an impact on interest, enjoyment, 

confidence, and commitment to teaching mathematics with those not identifying as 

mathematics teachers reporting the lowest means across all categories (Albrecht et al., 2023). 

Finally, the survey explored confidence in teaching various aspects of the Australian 

Curriculum: Mathematics (AC:M) with respondents rating their confidence as low, medium, or 

high for: teaching each year level (Years 7–10), teaching each strand in each year level, 

integrating each of the four mathematical proficiencies, and integrating each of the four 

mathematical processes. Again, those not identifying as mathematics teachers reported the 

lowest means across all categories (O’Keeffe & Albrecht, 2023). 
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A third aspect of teacher identity, preference for teaching mathematics, was examined by 

Albrecht and O’Keeffe (2024) and gathered from the question ‘What is your preferred learning 

area(s) to teach?’ by including those that mentioned mathematics. Overlaying these indicators 

onto workload indicated that QOOF teachers with more than 50% of their teaching in 

mathematics predominantly saw themselves as mathematics teachers and with a preference for 

teaching mathematics. This led us to speculate that these ‘out-of-field’ teachers may have 

acquired the personas of in-field teachers of mathematics. 

Research Question 

The aim of the research reported in this paper is to further explore aspects of teacher identity, 

in particular: self-identifies as in-field, self-identifies as a mathematics teacher, and preference 

for teaching mathematics. The research question guiding the aspects reported in this paper is: 

• Are various cohorts of QOOF teachers statistically indistinguishable from QIN teachers 

when considering factors such as interest, enjoyment, confidence, and commitment to 

teaching mathematics among Years 7–10 mathematics teachers in South Australia? 

Findings 

Comparing QIN and QOOF Teachers 

We used two-tailed Mann-Whitney U tests (equal variance not assumed) to determine if the 

mean differences between QIN and QOOF teachers were statistically significant. Table 1 

presents mean responses and p-values across eighteen dimensions, with p ≤ 0.05 shaded grey 

to indicate statistical significance. The data indicates statistically significant differences 

between the means of QIN and QOOF teachers who self-identify as in-field for all dimensions 

except for enjoyment in teaching mathematics and confidence teaching Year 7 mathematics. 

QIN teachers demonstrated lower confidence in Year 7 mathematics, which is mostly likely 

attributed to the transition of Year 7 to secondary schools in South Australia occurring just 

a year prior to the survey being distributed. 

Table 1 reveals an interesting pattern in the number of statistically significant differences 

between the means of various teacher cohorts. When comparing QIN teachers to QOOF 

teachers who self-identify as in-field, 16 out of the 18 dimensions show significant differences. 

However, this number decreases when comparing QIN teachers to QOOF teachers who self-

identify as mathematics teachers (14 out of 18) and further reduces when comparing QIN 

teachers to QOOF teachers with a preference for teaching mathematics (10 out of 18). For those 

who self-identify as mathematics teachers, no statistically significant differences in means were 

observed for enjoyment teaching mathematics and commitment to developing CK and PCK. 

For those preferring to teach mathematics, no statistically significant differences in means were 

observed regarding their personal interest in mathematics, enjoyment teaching mathematics, 

commitment to developing CK and PCK, confidence teaching Years 7 and 8, or the problem 

solving and reasoning proficiencies. 

Within the QOOF teachers, comparing those who self-identify as mathematics teachers to 

those who self-identify as in-field reveals that the former group has higher means for 16 of the 

18 dimensions, with the only exceptions being confidence in CK (both groups have means of 

4.10) and confidence in teaching Year 10 (the in-field group has a marginally higher mean of 

3.10 compared to 3.08). A similar pattern emerges when comparing QOOF teachers with 

a preference for teaching mathematics to those who self-identify as in-field, with the group 

preferring to teach mathematics having higher means for 15 of the 18 dimensions. The 

exceptions in this case are confidence in teaching Year 7 (both groups have means of 4.21), 

confidence in teaching Year 9 (the in-field group has a slightly higher mean of 3.74 compared 

to 3.71), and confidence in teaching Year 10 (3.10 compared to 2.93). 
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In summary, the analysis reveals that QOOF teachers who self-identify as mathematics 

teachers or prefer teaching mathematics have more similarities to QIN teachers across various 

dimensions compared to those who self-identify as in-field. Within the QOOF cohort, those 

who self-identify as mathematics teachers or prefer teaching mathematics generally exhibit 

higher means across most dimensions compared to those who self-identify as in-field. 

Table 1 

QIN and QOOF Teachers’ Mean Interest, Enjoyment, Confidence, and Commitment by Identity 

Grouping 

Dimension Identifies as  

in-field 

Identifies as  

a maths teacher 

Prefers to  

teach mathematics 

 QIN 

(59) 

QOOF  

(52) 

p-

value 

QIN 

(59) 

QOOF 

(71) 

p-

value 

QIN 

(51) 

QOOF 

(57) 

p-

value 

Personal interest math 4.59 4.00 0.015 4.61 4.29 0.045 4.69 4.55 0.209 

Enjoy teaching math 4.37 3.96 0.213 4.41 4.33 0.592 4.47 4.69 0.415 

Confidence in CK 4.73 4.10 0.000 4.71 4.10 0.000 4.78 4.22 0.000 

Confidence in PCK 4.27 3.69 0.019 4.25 3.94 0.036 4.33 4.09 0.073 

Commit to develop CK 4.37 3.86 0.027 4.41 4.29 0.244 4.51 4.51 0.548 

Commit to develop 

PCK 

4.54 3.82 0.012 4.59 4.35 0.227 4.67 4.60 0.740 

Year 7 mathematics 4.16 4.21 0.736 4.16 4.37 0.318 4.23 4.21 0.923 

Year 8 mathematics 4.68 4.16 0.009 4.68 4.41 0.048 4.63 4.24 0.054 

Year 9 mathematics 4.57 3.74 0.001 4.53 3.85 0.001 4.50 3.71 0.006 

Year 10 mathematics 4.59 3.10 0.000 4.55 3.08 0.000 4.62 2.93 0.000 

Problem solving 4.39 4.00 0.031 4.37 4.01 0.012 4.37 4.11 0.059 

Understanding 4.73 4.06 0.000 4.71 4.19 0.000 4.73 4.25 0.000 

Reasoning 4.37 3.86 0.009 4.37 3.97 0.007 4.37 4.07 0.069 

Fluency 4.71 4.24 0.002 4.69 4.36 0.003 4.69 4.36 0.020 

Math. modelling 4.20 3.63 0.009 4.17 3.64 0.004 4.22 3.71 0.011 

Comp. thinking 4.08 3.48 0.013 4.05 3.59 0.010 4.10 3.71 0.035 

Stat. investigations 4.36 3.57 0.001 4.34 3.71 0.000 4.35 3.69 0.001 

Prob. experiments 4.25 3.55 0.002 4.24 3.72 0.004 4.22 3.76 0.016 

Cohorts Within QOOF Teachers 

To better understand the importance of each identity factor, we looked closer at the data for 

QOOF teachers only. Two-tailed Mann-Whitney U tests (equal variance not assumed) were 

used to determine statistically significant differences between the means. Table 2 presents mean 

responses and p-values across the eighteen dimensions, with p ≤ 0.05 shaded grey to indicate 

statistical significance. The analysis in Table 2 confirms our hypothesis that self-identification 

as a mathematics teacher amongst QOOF teachers is significant, with statistically significant 

differences in means across all dimensions. A similar impact is observed for those with a 

preference for teaching mathematics. However, self-identity as in-field seems less influential, 

showing no significant differences in commitment to developing CK and PCK, confidence in 

teaching Years 7 and 8, or integrating the reasoning proficiency into their teaching. 
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Table 2 

QOOF Teachers’ Mean Interest, Enjoyment, Confidence, and Commitment by Identity Grouping 

Dimension QOOF identifies  

as in-field 

QOOF identifies as  

a maths teacher 

QOOF prefers to  

teach mathematics 

 Yes 

(52) 

No 

(53) 

p-

value 

Yes 

(71) 

No 

(34) 

p-

value 

Yes 

(57) 

No 

(48) 

p-

value 

Personal interest in math. 4.00 3.19 0.003 4.29 2.18 0.000 4.55 2.50 0.000 

Enjoyment teaching math. 3.96 3.35 0.014 4.33 2.26 0.000 4.69 2.46 0.000 

Confidence in CK 4.10 2.98 0.000 4.10 2.38 0.000 4.22 2.75 0.000 

Confidence in PCK 3.69 3.00 0.006 3.94 2.12 0.000 4.09 2.48 0.000 

Commit. to develop CK 3.86 3.33 0.069 4.29 2.18 0.000 4.51 2.54 0.000 

Commit. to develop PCK 3.82 3.27 0.097 4.35 1.91 0.000 4.60 2.33 0.000 

Year 7 mathematics 4.21 3.86 0.151 4.37 3.34 0.000 4.21 3.82 0.147 

Year 8 mathematics 4.16 3.77 0.079 4.41 3.04 0.000 4.24 3.65 0.011 

Year 9 mathematics 3.74 2.71 0.005 3.85 1.90 0.000 3.71 2.64 0.001 

Year 10 mathematics 3.10 1.97 0.006 3.08 1.37 0.000 2.93 2.05 0.025 

Problem solving 4.00 3.53 0.029 4.01 3.22 0.002 4.11 3.35 0.001 

Understanding 4.06 3.45 0.001 4.19 2.81 0.000 4.25 3.15 0.000 

Reasoning 3.86 3.45 0.094 3.97 2.97 0.000 4.07 3.15 0.000 

Fluency 4.24 3.51 0.001 4.36 2.77 0.000 4.36 3.27 0.000 

Mathematical modelling 3.63 2.92 0.008 3.64 2.41 0.000 3.71 2.72 0.001 

Computational thinking 3.48 2.88 0.019 3.59 2.23 0.000 3.71 2.52 0.000 

Statistical investigations 3.57 3.10 0.047 3.71 2.45 0.000 3.69 2.88 0.012 

Probability experiments 3.55 3.12 0.089 3.72 2.41 0.000 3.76 2.79 0.002 

We then grouped respondents into one of eight ‘identity’ cohorts (summarised in Table 3) 

and conducted chi-square tests of independence to assess the strength of association between 

the three variables. This analysis revealed statistically significant associations as follows: 

• Identifying as a mathematics teacher and a preference for teaching mathematics: 

χ²(1, n = 105) = 39.211, p < 0.001. The effect size, measured using Cramér’s V, was 

found to be V = 0.611, indicating a strong association; 

• Identifying as in-field and identifying as a mathematics teacher: χ²(1, n = 105) = 6.990, 

p = .008 with effect size of V = 0.258 indicating a weak to moderate association; 

• Identifying as in-field and a preference for teaching mathematics: 

χ²(1, n = 105) = 6.038, p = .014 with effect size of V = 0.240 indicating a weak to 

moderate association. 

Based on the analysis thus far, we exclude ‘self-identifies as in-field’ from the remainder of 

this paper for three reasons: (1) its less significant impact, as observed in Table 2, (2) the wide 

variety of QOOF teachers’ definitions of out-of-field (see Albrecht and O’Keeffe, 2024), and 

(3) chi-square tests of independence revealing only weak to moderate associations with the 

other two variables. In contrast, self-identification as a mathematics teacher and a preference 

for teaching mathematics are strongly associated and significantly influence interest, 

enjoyment, confidence, and commitment. 
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Table 3 

Eight Cohorts of QOOF Teachers by Self-Identity as In-Field, Self-Identity as a Mathematics Teacher, 

and Preference for Teaching Mathematics 

Self-identifies as in-

field or out-of-field 

Self-identifies as a 

mathematics teacher  

Prefers to teach 

mathematics 

Total 

In-field Mathematics teacher Yes 35 

In-field Mathematics teacher No 7 

In-field Not mathematics teacher Yes 0 

In-field Not mathematics teacher No 10 

Out-of-field Mathematics teacher Yes 19 

Out-of-field Mathematics teacher No 10 

Out-of-field Not mathematics teacher Yes 3 

Out-of-field Not mathematics teacher No 21 

Table 4 

Four Cohorts of QOOF Teachers by Self-Identity as a Mathematics Teacher and Preference for 

Teaching Mathematics 

 Self-identifies as a 

mathematics teacher  

Prefers to teach 

mathematics 

Total 

Cohort 1 Mathematics teacher Yes 54 

Cohort 2 Mathematics teacher No 17 

Cohort 3 Not mathematics teacher Yes 3 

Cohort 4 Not mathematics teacher No 31 

Pairwise testing of the four cohorts in Table 4 with two-tailed Mann-Whitney U tests (equal 

variance not assumed) was used to check for statistically significant differences between means. 

Unsurprisingly, Cohort 1 exhibited the highest means across 16 of the 18 factors. The two 

exceptions are confidence in teaching Year 7 and Year 8. Cohort 2, which self-identifies as 

mathematics teachers but does not prefer teaching mathematics, exhibits the highest means for 

both Year 7 and Year 8. Cohort 3, consisting of only three teachers, is intriguing as they do not 

consider themselves mathematics teachers (and view themselves as out-of-field) and yet 

express a preference for teaching mathematics. With only three teachers in this group, it is 

difficult to draw conclusions. It is unsurprising that Cohort 4, which does not self-identify as 

mathematics teachers and does not prefer teaching mathematics, demonstrated markedly low 

means (ranging from 1.71 to 2.29) across personal interest in mathematics, enjoyment in 

teaching mathematics, and confidence in and commitment to developing CK and PCK. 

A comparison of Cohorts 1 and 2, which self-identify as mathematics teachers but differ in 

their preference for teaching mathematics, showed statistically significant differences in 12 of 

the 18 dimensions. Notably, there were no statistically significant differences in confidence in 

teaching Years 7 to Year 10, nor in statistical investigations and probability experiments. 

A comparison of the two diametrically opposed cohorts, 1 and 4, revealed statistically 

significant differences across all 18 dimensions, as might be expected. 

A comparison of Cohorts 2 and 4, which do not prefer teaching mathematics but differ in 

their self-identification as mathematics teachers, showed statistically significant differences in 

14 of the 18 dimensions. There were no statistically significant differences in problem solving, 

reasoning, mathematical modelling or computational thinking. Cohort 3 was excluded from the 

pairwise comparisons due its small size of three teachers. 
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Comparing Cohort 1 With QIN Teachers 

The pairwise comparisons suggest that Cohort 1 is distinct from the other cohorts, so we 

compared Cohort 1 with QIN teachers. Table 5 indicates that Cohort 1 have mean scores similar 

to, and sometimes higher than, QIN teachers. The only statistically significant differences relate 

to confidence in CK, Years 9 and 10 (arguably when content becomes more challenging), the 

understanding proficiency (arguably tied to content knowledge) and three of the four processes. 

(Note that QIN teacher confidence in the fourth process, computational thinking, is also low.) 

The data suggests that Cohort 1 shares identity characteristics with their in-field colleagues. 

Table 5 

QIN and QOOF Teachers Identifying as Mathematics Teachers and Preferring to Teach Mathematics 

Dimension Identifies as mathematics teacher  

and prefers to teach mathematics 

 QIN (51) QOOF (54) p-value 

Personal interest in mathematics 4.69 4.58 0.303 

Enjoyment teaching mathematics 4.47 4.69 0.406 

Confidence in CK 4.78 4.27 0.000 

Confidence in PCK 4.33 4.15 0.135 

Commitment to developing CK 4.51 4.54 0.686 

Commitment to developing PCK 4.67 4.63 0.961 

Year 7 mathematics 4.23 4.23 0.754 

Year 8 mathematics 4.63 4.36 0.134 

Year 9 mathematics 4.50 3.87 0.018 

Year 10 mathematics 4.62 3.05 0.000 

Problem solving 4.37 4.15 0.108 

Understanding 4.73 4.33 0.001 

Reasoning 4.37 4.10 0.083 

Fluency 4.69 4.48 0.059 

Mathematical modelling 4.22 3.79 0.024 

Computational thinking 4.10 3.81 0.076 

Statistical investigations 4.35 3.75 0.002 

Probability experiments 4.22 3.83 0.031 

Summary and Conclusion 

The importance of teacher identity in influencing and shaping teacher practice is well 

established. The findings in this study align with Neumayer-Depiper’s (2013) assertion about 

the importance of understanding how identity is situated and negotiated by teachers in different 

contexts. While the QOOF teachers in this study may not be in a position to change their initial 

qualifications or access additional ones, this does not preclude them from positioning 

themselves as competent mathematics teachers. 

As discussed, QOOF teachers who self-identify as mathematics teachers and prefer teaching 

mathematics have a high degree of confidence across many dimensions, are interested in the 

subject, and are professionally committed to developing and reflecting on their practice, sharing 

many identity characteristics with their in-field colleagues. This suggests they should not be 

considered out-of-field by capability. What remains unclear at this stage of our analysis are the 

factors that contribute to teachers identifying in this way. Nonetheless, the analysis to date 

shows the significance of identity in reauthoring oneself as a teacher of mathematics. 
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It would be fair to say that there are still very important questions to be asked about out-of-

field teachers’ competence and effectiveness, but those questions should be asked about all 

teachers. Professional learning and support is relevant to all teachers; it might just need to look, 

sound, and feel different depending on the individual teacher. Understanding teacher identities 

can help inform approaches to professional learning for these different cohorts of teachers. 
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Research has shown that many primary students experience transition barriers between 

additive and multiplicative thinking. This paper analysed responses from 253 Years 3 

to 6 students to a diagnostic assessment which consists of whole number multiplication 

and division problems involving equal groups, arrays, multiplicative comparison and 

Cartesian product situations. Based on the Rasch analysis, item responses were 

differentiated into five developmental Stages indicating a wide range of understanding 

and pointing to different transition barriers that students experience. The reasons for 

these are discussed in the paper and some advice is presented for teachers. 

This paper intends to share some of the findings from a larger study aimed at identifying 

Years 3 to 6 students’ transition barriers between additive and multiplicative thinking by 

analysing students’ written responses from the Multiplicative Thinking Diagnostic Assessment 

through Rasch analysis. The study was stimulated by previous research findings indicating that 

students in the middle years of schooling experience transition barriers while moving from 

additive thinking to multiplicative thinking (e.g., Bao, 2023; Hurst & Hurrell, 2016). 

Introduction 

The transition from additive to multiplicative thinking is a slow climb, involving a 

conceptual leap which constitutes an obstacle for many students (Siemon et al., 2006). There is 

a considerable body of research pointing to the transition barriers students experience during 

their development. Early studies (e.g., Jacob & Willis, 2003; Mulligan & Mitchelmore, 1997) 

claimed that recognising the equal grouping structure (groups of equal size and the number of 

groups) is a barrier for many students. Others such as Sophian and Madrid (2003) and Downton 

et al. (2022) pointed out that students have difficulty in understanding the abstract concept of 

many-to-one correspondence. For example, to understand 5×3, students need to understand five 

units of one is distributed over the elements of one unit of three (Steffe, 1994). Studies such as 

Larsson (2016) suggested that repeated addition as a procedure to solve whole number 

multiplication problems can potentially hinder students’ development. Larsson (2016) also 

reported another barrier for making inappropriate generalisations while solving two-digit by 

two-digit multiplication where students solve 19×26 as 10×20+9×6. Other studies by, for 

example, Hurst and Hurell (2016), added that procedural based learning could limit students’ 

ability to recognise multiplicative relationships and apply their properties to solve problems. 

Research by Downton and Sullivan (2017) and Bao (2023) also noted that students have 

difficulties in solving multiplicative problems involving Cartesian product situation. 

Transition from early notion to sophisticated thinking about a targeted concept is a process 

of cognitive change along a developmental stage where cognitive difficulties are encountered 

(Tzur, 2019). Cognitive difficulties are critical transition points throughout the stages of concept 

development (Griffin, 2020). Many researchers (e.g., Tzur, 2019; Griffin, 2020) have argued 

that these transition points appear to be boundaries between two stages of a developmental 

progression. Therefore, the construction and testing of a developmental progression for 

multiplicative thinking is a vital step to reveal students’ transition barriers. 

mailto:baolei@deakin.edu.au
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The Research Project 

The research reported here aimed at investigating Years 3 to 6 students’ understanding of 

multiplicative thinking to reveal their transition barriers. This study is framed in terms of the 

need to identify students’ transition barriers and build on what is known. It used a design-based 

research approach involving an iterative process of construction, evaluation, and refining of 

assessment (e.g., Plomp & Nieveen, 2013) and the use of Rasch modelling (Masters, 1982) for 

the pilot study in phase 1 and implementing the assessment in the current phase. This paper 

reports some key findings indicating what transition barriers students across Years 3 to 6 

experience during their development of multiplicative thinking. 

Method 

The Multiplicative Thinking Diagnostic Assessment (Table 1) was tried out on a purposeful 

sample of 253 Years 3 to 6 students from six government schools in the Geelong region, 

Victoria, Australia. There were 42 Year 3 students, 71 Year 4 students, 68 Year 5 students and 

72 Year 6 students. A sample of this size provided a substantive amount of data on students’ 

responses to the test and allowed important generalisations to be made about students’ 

performance (Rogers, 2014). Students were from a mixed of high, medium, and low social-

demographic backgrounds which are a representation of the key characteristics of the 

population. This adds weight to the generalisability of the results (Rogers, 2014). 

Between November 2022 and March 2023, teachers from research schools administered the 

assessment based on instructions provided by the researcher. Students completed the 

assessment within 45 minutes during class time. Their responses were collected, coded, and 

scored by the researcher to ensure the process was as systematic and objective as possible. 

Table 1 

Multiplication and Division Word Problems 

Multiplicative thinking diagnostic assessment items 

1a. The value of five 20c coins is same as one $1 coin. How many 20c coins are the same 

as $4?  

1b. If you have 45 20c coins, how many $1 coins can you make?  

2a. Michelle bakes 40 biscuits. She puts them in rows of 8 biscuits on a baking tray. How 

many rows of biscuits does Michelle bake? 

2b. Michelle puts party pies on a baking tray like in the picture and fills the tray. How many 

party pies does Michelle bake?  

2c. Michelle bakes 18 pies. She also bakes 4 times as many sausage rolls as pies. How many sausage 

rolls does Michelle bake? 

2d. Michelle sold 15 pies on Friday and 60 pies on Saturday. How many times as many pies were sold on 

Saturday? 

2e. Michelle needs 25 boxes to pack 200 pies. How many pies are in each box? 

3a To work out the total number of cupcakes, Beth divided the cupcakes into 3 sections 

like in the picture. How did Beth work out the total number of cupcakes?  

3b. Beth baked 12 rows of cookies with 15 cookies in each row. To work out the total number of 

cookies, Sam did 12 × 15 = 10 × 17 = 170. Tom did 12 × 15 = 10 × 10 +2 × 5 = 110. Emily did 

12 × 15 = 6 × 30 = 180. Who do you think is correct? Why? 

4a. Sam has 4 jumpers and 3 shorts. If Sam chose a blue jumper, what 

might be Sam’s choice of outfits?  

4b. Sam has 4 jumpers and 3 shorts. How many different outfits are there in total? 

4c. Sam has 5 jumpers and 30 outfits. How many shorts does Sam have? 
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Multiplicative thinking diagnostic assessment items 

4d. Sam’s Dad has 18 jumpers and 13 shorts so he has 234 different outfits. Sam’s younger brother has 

13 jumpers and 18 shorts. How many different outfits does Sam’s younger brother have? 

4e. Sam’s older brother has 13 jumpers and 19 shorts. How many different outfits does Sam’s older 

brother have? 

An earlier study Bao (2023) provided a detailed rationale for each of the above items 

showing how each is supported by relevant research literature. Following established 

procedures for using Rasch analysis (Bhatti, et al., 2023; Callingham & Watson, 2005; Siemon 

et al., 2021), each item has two scoring rubrics: one was designed to score dichotomous data 

where the item was scored 0 or 1(correct or incorrect) and another was to score polytomous 

data where the same item was scored 0, 1, 2 etc. for different levels and types of thinking. The 

numerical scoring code assigned to each response ranged from 0–1 to 0–4. The number of codes 

for each item depended on the complexity of responses to particular items which was 

determined by qualitative analysis of students’ responses taken from previous studies, as well 

as Rasch analysis in the pilot study in Phase 1. Scoring rubrics designed to fit Rasch Partial 

Credit Model did not need to have the same number of categories (Callingham & Watson, 

2005). Scoring rubrics aim not only to differentiate cognitive skills between answering the item 

correctly with a correct reasoning and giving a correct answer without explanation but are also 

able to acknowledge students’ partially correct thinking (Arieli-Attali & Liu, 2016). Scoring 

rubrics for Task 2d are shown in Figure 1 below. 

Figure 1 

Task 2d and Scoring Rubrics in Michelle’s Bakery 

 

Analysis 

The data was calibrated using the Winsteps 5.3.3.1 (Linacre, 2022) to fit the Rasch Partial 

Credit Model (Masters, 1982) based on the scoring rubrics for each item. This allowed both 

students’ performance and item responses’ difficulties to be measured and placed on the same 

scale. The Winsteps program evaluates the fit of the data to the Rasch model, showing the mean 

Infit MNSQ for each item value is between 0.73 and 1.26 which are within the default 

acceptable value (between 0.7 and 1.3) and indicates that the data fit to the model. The values 

of the Separation Reliability for both items and persons were high, indicating consistent 

behaviours of both items and persons. 
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Figure 2 

The Variable Map Based on Rasch-Thurstonian Thresholds 

 

The variable map based on Rasch-Thurstonian thresholds is shown in Figure 2. It produced 

an overall list of item thresholds which differentiated items based on students’ responses. In 

Rasch analysis, students who appear on the scale at about the same logit value as an item 

response have a 50% chance of exhibiting that level of thinking. For an item response above 

the student’s position on the scale there is less than 50% chance of demonstrating that level of 

thinking for that item and for item response below the student’s position the chance is greater 

than 50%. The ‘#s’ represent the distribution of the students according to their ability estimate. 

Each person is shown by ‘#’ and the position on the scale indicates the ability measure. The 

right-hand side of the figure shows the distribution of the test items with responses on the same 

scale in reference to their difficulty estimates. Easier and more accessible items had relatively 

low item thresholds. For example, the item threshold (1a2.1) associated with a score 1 for part 

2 of the item 1a of the Australian Coin Task (possible scores 0, 1, 2 or 3) was -3.16 where 

students used drawing and one-to-one correspondence. The item threshold (3b2.4) associated 

with a score of 4 on part 2 of the item 3b of the Beth’s Cupcakes task (possible scores 0, 1, 2, 3 

or 4) was 4.4 where students needed to demonstrate understanding of associative property. 

The Rasch model used has the capacity to order assessment items from the least difficult to 

the most difficult with logit scores along the scale. According to Griffin (2020), locating 

substantive change in item difficulty based on logit scores can determine the transition points 

or “natural breaks” where a change in cognitive skills occurs. Griffin (2020) described this 

method as criterion-referenced interpretation. This is an empirically grounded method in many 

different mathematical research topics (e.g., Griffin, 2020; Rogers, 2014; Siemon et al., 2021). 

Using this method, the test data were used to derive the developmental progression for 

multiplicative thinking. Since Rasch analysis connects differences in the logit scores of related 
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items to increased cognitive demands imposed on students (Griffin, 2020), transition barriers 

can be identified where Rasch analysis shows a substantive difference in the logit scores of 

related items between stages along a developmental progression. 

Firstly, each item response was ordered from the least to the most difficult according to the 

Rasch data. It was classified according to the underpinning cognitive skills that the item exhibits 

(Griffin, 2020). Next, the difference between the difficulties of adjacent item response was 

calculated to determine the location of substantive changes in item difficulty as “natural break” 

where a change in the cognitive skills appears to be required to correctly answer items (Griffin, 

2020). Based on logit difference, substantive changes between adjacent item response were 

identified: 4d2.3 and 4a2.2 (0.45); 4c2.3 and 1b2.4 (0.15); 4d2.2 and 4c2.1 (0.07); 3b2.2 and 

4a2.1 (0.2); 2c2.2 and 3a2.1 (0.28); 2c2.1 and 1a1.1 (0.57). Locating substantive changes allows 

item responses to be clustered together in Stages (Griffin, 2020) which is shown in Figure 2. 

The horizontal double lines on the map indicate the points where there appeared to be some 

significant change in the cognitive demands of the item responses and the single horizontal 

lines indicate a less pronounced change (in the judgement of the researcher). These points were 

confirmed after considering the content of the items, the skills required for correctly answering 

the items, and apparent discontinuities in the difficulty levels. Then, item responses within each 

stage need to be analysed qualitatively to determine if they exhibit a common substantive 

interpretation (Griffin, 2020). According to Rogers (2014) the clustered item responses at each 

stage should differ distinctly from those at other stages so that a hierarchy of students’ 

understanding can be implied and allow exploration of transition barriers between the 

developmental stages of multiplicative thinking. 

Results 

Identifying where students lie on the scale and interpreting the nature of the item responses 

around the same location, common skills and similar demands from the items can be identified 

(Griffin, 2020; Siemon et al., 2021). A detailed content analysis of item responses led to the 

identification of eight substantive changes consisting of several sub-stages which sit within five 

relatively discrete Stages. Table 2 provides a succinct summary of item responses and their 

underpinning multiplicative knowledge and thinking skills required for each Stage. 

In Stage 1 students generally relied on drawing and one-to-one correspondence to solve 

problems involving familiar situations such as equal groups and arrays. Stage 1 includes two 

sub-stages: 1a and 1b. From sub-stage 1a to 1b, there is a change in size of numbers in item 

response 3a2.1 and 2c2.1 (Figure 2) which involve single and two-digit factors. Students 

classified in Stage 1 had difficulty in recognising the equal grouping structure. In sub-stage1b, 

students showed overreliance of additive thinking while dealing with multiplicative comparison 

situation involving single-digit by two-digit multiplication where students had difficulty in 

understanding the notion of “times as many”. According to Table 2, item responses with 

thresholds ranging from -1 to 0 were grouped together to form a discrete Stage 2 where students 

used skip counting or repeated addition to solve single-digit by two-digit multiplication 

problems involving equal groups, arrays and multiplicative comparison situations, but switched 

to one-to-one correspondence for division problems with single and two-digit factors involving 

equal group situation. In Stage 2, even though students recognised groups of equal size and the 

number of groups, they still failed to recognise the abstract multiplicative relationship, many-

to-one correspondence. Students still showed overreliance of additive thinking in item 2d2 

(Figure 1) for multiplicative comparison situation involving division operation. Many 

responses in Stage 2 showed inappropriate generalisation of additive thinking (Squire et al., 

2004; Larsson, 2016). For instance, in item response 3b2.1, students wrote 12 × 15 = 10 × 17 

by moving 2 to 15 or 12 × 15 = 10 × 10 + 2 × 5 by splitting 12 into 10 and 2, and splitting 15 

into 10 and 5. The barrier for these students is that they apply place value partitioning 
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incorrectly for multiplication problems. The Rasch analysis confirms that inappropriately using 

partitioning is a serious barrier to the development of multiplicative thinking. 

Table 2 

The Developmental Stages for Multiplicative Thinking 

Stages Thinking skills and knowledge 

1a Using drawing and one-to-one correspondence to solve single-digit by single-digit 

multiplication problems involving arrays and equal groups situations 

1b Using drawing and one-to-one correspondence to solve multiplication and division problems 

with single and two-digit factors involving arrays and equal groups but showing an error of 

overreliance on additive thinking while attempting multiplicative comparison situations 

problem involving multiplication operation 

2 Using skip counting or repeated addition to solve single-digit by two-digit multiplication 

problems involving equal groups, arrays and multiplicative comparison situations, switching to 

one-to-one correspondence for division problem with single and two-digit factors involving 

equal groups situation; showing an error of overreliance of additive thinking for division 

problem with single and two-digit factors involving multiplicative comparison situation; 

showing an error of inappropriate generalisation of additive thinking for two-digit by two-digit 

multiplication problems involving arrays situation 

3a Using multiplicative strategies such as spitting or doubling, multiplication facts to solve 

single-digit by two-digit multiplication problems involving equal groups, arrays and 

multiplicative comparison situations; switching to one-to-one correspondence for single-digit 

by single-digit multiplication problem involving Cartesian product situation with a visual 

diagram 

3b Using multiplicative strategies to solve multiplication and division problems with single and 

two-digit factors involving equal groups, arrays and multiplicative comparison situations; 

switching to skip counting or repeated addition for two-digit by two-digit multiplication 

involving equal groups situation and one-to-one correspondence for multiplication and 

division problems with 2 single-digit factors involving Cartesian product situation; showing an 

error of inappropriate generalisation of additive thinking for two-digit by two-digit 

multiplication problems involving Cartesian product situation 

4a Using procedural based multiplicative approaches to solve multiplication and division 

problems with 2 two-digit factors involving equal groups and arrays situations; switching to 

additive strategies for Cartesian production situation. Showing a procedural understanding of 

commutativity 

4b Using procedural based multiplicative approaches to solve multiplication and division 

problems involving various multiplicative situations 

5 Applying properties of multiplication such as commutativity, distributivity and associativity to 

solve multiplicative problems involving various multiplicative situations 

According to Table 2, students experienced more difficulty in understanding multiplicative 

relationships involving division operations than multiplication operations; and identifying the 

equal grouping structure in division items appears to be a barrier for students. Hurst and Linsell 

(2020) also draw attention the fact that many students in the middle primary years fail to notice 

the inverse relationship between multiplication and division. In Stage 3 students also 

experienced more difficulty in understanding multiplicative comparison situation than equal 

groups and arrays as students had to switch multiplicative strategies to repeated addition or skip 

counting. The analysis shows that Cartesian product situations present a clear barrier for many 

students who could not access simple Cartesian product situation items until Stage 3a with item 

responses 4a1.1 and 4a2.1 where they relied on drawing and one-to-one correspondence 

strategy. Another key transition barrier between Stage 3 and 4 relates to students’ ability to deal 

with two-digit by two-digit multiplication problems. This is evident in item response 4e2.1 

when students wrote 13 × 19 = 234 + 1 = 235 because in item 4d 13 × 18 = 234 and 
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19 is 1 more than 18. In Stage 4, even though students were fluent with procedural methods to 

solve multiplication and division problems, many failed to understand the relationship between 

13 × 18 and 13 × 19 which requires adding another group of 13. Instead, these students used 

vertical multiplication to solve 13 × 19 as a new problem. Similarly in item 3b2, further barrier 

was evident when students did not see the relationship between12 × 15 and 6 × 30, instead 

relying procedural methods to solve the problem. The Rasch analysis shows that Stage 5 

requires an understanding of properties of multiplication such as distributivity and associativity. 

Conclusion 

Understanding areas where students encounter difficulties should inform ways and means 

to overcome these barriers (Hurst & Hurell, 2016). Siemon et al. (2021) argue that identifying 

students’ transition barriers and building on their prior knowledge is the key to improve learning 

outcomes. Based on the Rasch analysis, the detailed item response analysis reported in this 

paper identified eight substantive changes, comprising five developmental Stages of 

multiplicative thinking which provides a more detailed and richer description of transition 

points between Stages along the developmental progression of multiplicative thinking. 

The Rasch analysis also shows the importance of recognising the equal grouping structure 

and understanding of the concept of many-to-one correspondence at the early Stages of the 

development. Also important are size of numbers and multiplicative contexts such as two-digit 

by two-digit multiplication problems and Cartesian product situation during students’ 

development for multiplicative thinking. It is possible that some students had limited encounters 

with Cartesian product situations which involve repeated equal sets, unlike equal groups and 

arrays. This may create a barrier for these students. The Rasch analysis clearly confirms 

students’ lack of knowledge in the properties of multiplication. Understanding of the 

distributive and associative properties of multiplication clearly remains a barrier for middle and 

upper primary students. This study shows that reliance on procedural based methods may 

provide correct answers but limit students’ ability to see underlying multiplicative relationships, 

including properties of multiplication between the pairs of quantities involved in the operation. 

It is important to assist students to see the structural properties of multiplication and to be able 

to identify and explain correct and incorrect solutions to multiplicative situations. Equally 

important is that for students being able to use the known results to arrive at a new result without 

having to do a full calculation, which remains a challenge for these students. The Multiplicative 

Thinking Diagnostic Assessment test was designed to explore these barriers and transition 

points. The Rasch analysis has confirmed the presence of these barriers and draws attention of 

teachers and educators to key transition points in the development of multiplicative thinking. 
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The exploratory study combined an online survey and interviews with Australian 

primary and secondary mathematics teachers to examine their views on Active, Bodily 

experience Mathematics learning activities. The research sought to identify teachers’ 

expectations, challenges, and limitation for their implementation. Initial results indicate 

teachers recognise the value of such activities in deepening students’ understanding and 

increasing engagement but encounter obstacles such as time constraints, insufficient 

resources, and difficulties in managing the classroom, underscoring the need for further 

investigation into effectively incorporating these activities into teaching practices. 

The educational field broadly recognises the importance of integrating physical movement 

and bodily experience into mathematics education, drawing on various research backgrounds 

(Abrahamson et al., 2020). Over the years, both theoretical and experimental studies coming 

from general pedagogical and mathematics education traditions, the philosophy of 

mathematics, neurosciences, and cognitive psychology research fields have consistently shown 

the benefits of actively engaging students in experiential activities and the significant impact of 

movement and sensory experiences on learning math. Theories of embodied, enactive, 

embedded, and extended cognition (Lakoff & Núñez, 2000; Varela et al., 1991) have inspired 

diverse research directions in mathematics education, and multiple research groups have 

designed learning activities, materials, and tools to enhance the teaching and learning strategies 

in this direction (Palatnik et al., 2023). Although there is not an explicit reference to the 

implementation of activities designed from an enactive-embodied perspective in the Australian 

curriculum (ACARA, 2022), there are some aspects that can be linked to them. Indeed, within 

the curriculum, a specific focus is on the dynamic use of digital tools for virtual manipulation, 

and some general references to “experience with mathematical concepts using multisensory 

methods to stimulate thinking skills” and “access to familiar objects to represent and solve 

mathematical problems”, in order to meet the needs of diverse learners. Looking at specific 

strands within the curriculum, in the strand Space it is mentioned “the ability to make pictures, 

diagrams, maps, projections, networks, models, and graphics that enable the manipulation and 

analysis of shapes and objects through actions and the senses”. In the strand Probability, 

something is said about learning that is based on “experimentation through exploration and 

play-based learning in the early years”. Even if some general guidelines, possibly relating to 

the implementation of activities embodied designed (Abrahamson et al., 2020), are illustrated 

in the curriculum, more has to be inquired on the school realm and the integration of these 

approaches in teaching practice (Boscolo, 2023). In line with the approaches of Implementation 

Research in Mathematics Education (IRME) (Jankvist et al., 2017), our study intends to make 

an initial exploratory move in this direction. In our research, we refer to activities designed for 

enactive-embodied learning or, more broadly, any activities that involve students actively 

exploring mathematical concepts through the use of manipulatives, tools (either virtual or 

physical), or simply body movements, as Active, Bodily Experience Mathematics Learning 

(ABM) activities. These ABM activities are grounded in the belief that experiencing 

mathematical meanings with the body and senses can enhance their understanding and 

retention. The use of an all-embracing construct, which includes a wide range of activities, and 

has also roots in different research perspectives, is essential for closely aligning with and 
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investigating the realities of the school practice (Boscolo, 2022). Particularly, due to teachers’ 

pivotal role in the implementation of educational innovation (Century & Cassata, 2016), we 

focus on the investigation of teachers’ perspectives on the implementation of ABM activities 

in their teaching practice. We aim to uncover what teachers expect from integrating ABM 

activities, as well as the main challenges, constraints, and limitations they anticipate when 

integrating them into educational settings. 

Research Design and Methodology 

The explorative study consists of a teacher survey. Primary and secondary school 

mathematics teachers were invited to fill out an online questionnaire and, after completing it, 

they were asked if they would be willing to participate in an individual interview intended to 

elaborate on the issues raised in the survey responses. The administration of the questionnaire 

took place between November 2021 and May 2022. Primary and secondary schools’ 

mathematics teachers were recruited from across Australia, via National and State mathematics 

teacher professional associations’ Facebook pages/groups, or associations’ newsletters. This 

entailed posting an anonymous link to the questionnaire on Facebook pages/groups/newsletters 

with a request for it to be completed by participants. In addition to advertising via Australian 

mathematics associations’ Facebook organisations newsletters, we sought to advertise through 

umbrella organisations (for example, the Independent Schools Queensland; Catholic Education 

Offices), and broader teacher organisations bringing together Australian teachers (e.g., the 

Australian Teachers Association). Furthermore, we sent the questionnaire to a list of 

mathematics educators who have indicated their interest in participating in ILSTE (Institute for 

Learning Sciences & Teacher Education) mathematics research projects. Following multiple 

strategies, we reach a convenience sample of 81 mathematics teachers. Upon completion of the 

questionnaire, 16 teachers provided their email indicating that they were willing to be contacted 

again by the researchers to conduct an individual follow-up interview. With nine of them, it 

was possible to arrange a 30-minute interview between April 2022 and May 2022. 

The Questionnaire 

The survey items cover dimensions derived from the literature concerning teachers’ beliefs 

on mathematics teaching and learning (Van Zoest et al., 1994; Dionne, 1993; Ernest, 1989), 

conceptions of educational material usage (Skoumios & Skoumpourdi, 2021), and beliefs and 

instructional practices with manipulatives (Carbonneau & Marley, 2015; Golafshani, 2013). 

Other items were adapted from items on existing surveys (e.g., OECD TALIS 2018, IEA 

TIMSS 2019), along with new items concerning explorative dimensions from our research on 

ABM activities, framed on the results of a former study in which international researchers were 

interviewed to explore their beliefs about ABM activities implementation and research direction 

for the teacher survey (Boscolo, 2022). The survey, tailored for both primary and secondary 

school teachers through two parallel versions with slight modifications to better align with their 

teaching contexts, is structured into five main sections: 

1. The School—Collects basic information about the teacher’s current school, including its 

type (government/non-government), educational approach, as well as the levels taught. 

2. General—Gathers details on the teacher’s educational background and experience. 

3. Beliefs (general)—Explores general beliefs about teaching and learning mathematics, 

such as the role of teachers and peers. 

4. Beliefs (ABM activities)—Focuses on specific beliefs about ABM activities, including 

their appropriateness for different school levels, expected impact, limitations and 

constraints, and assessment strategies. 

5. Implementation Inquiry—After a filter question about the use of ABM activities in 

teaching, the survey splits based on the response (Yes/No), asking for reasons, other 

effective strategies, and comments on implementation if applicable. 
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The questionnaire is a web-based tool created with Qualtrics software, and it combines 

Likert-type, multiple-choice, short open-response, and vignette items; a copy of the questionnaire 

can be found online (Boscolo, n.d.). The estimated time for filling out the questionnaire is around 

20 minutes. 

The Sample 

The convenience sample consists of 81 respondents, however only 39 completed the entire 

questionnaire. Among the ones who answered the first part, 15 were primary school teachers 

and 64 were secondary school teachers. Most of them work in Government schools (45), while 

more than a third (29) are in Catholic or Independent schools. While 58 teachers work in 

Comprehensive (open) schools, 11 respondents were working in schools with streamed classes 

into attainment groupings, and 5 were in selective, special, specialist, or international schools. 

Almost all (71) work in traditional method schools. Concerning their expertise, the majority 

(43) are expert teachers (more than ten years of experience), 15 are middle-expertise teachers 

(4–10 years of exp.), and 15 are new to the teaching profession (1–3 years of exp.). 

Follow-Up Interviews 

Although the online questionnaire enabled us to reach a certain sample of teachers, the 

information gathered, especially through closed-ended items, deserved to be further 

investigated with follow-up interviews, in order to deepen the interpretation of the main themes 

and trends that emerged. For this reason, we sought to explore in depth some significant issues 

with some of the teachers who completed the questionnaire, through a semi-structured online 

interview. These interviews began with an introduction of the respondents, including their 

teaching expertise and their school contexts, followed by a discussion on their experiences of 

completing the questionnaire. The conversation then shifted to a comprehensive investigation 

of the teacher’s experience and key beliefs concerning ABM activities. This included inquiries 

into examples of ABM activities they had implemented (if any), their reasons for valuing these 

activities, and the outcomes they anticipated. Additionally, we explored the challenges and 

limitations they encountered in integrating ABM activities into their classrooms, the difficulties 

faced during implementation (both from the students’ and the teacher’s perspectives), and the 

strategies employed to address these challenges. The discussion also covered instances of 

unsuccessful implementation, teaching strategies, and instructional guidance believed to be 

crucial for the effectiveness of ABM activities. Finally, we discussed factors that hindered or 

facilitated the integration of ABM activities, personal motivations for adopting such activities, 

constraints that may have limited their implementation, and the role of collaboration and 

support in this context. 

Description of Interviewees 

Table 1 shows a brief description of the interviewed teachers’ profiles. The majority of the 

interviewees are highly experienced teachers currently working in non-government secondary 

schools, in different states of Australia (with a prevalence from Queensland). Some of them 

work with students with a middle-high socio-economic background but others with students of 

low socio-economic situation and non-English speaking (e.g., O). 

Discussion of Results 

Due to space constraints, this section focuses on key insights from the survey, concerning 

exclusively the beliefs on expected outcomes of ABM activities implementation and the 

perceived obstacles to their integration in classrooms. Additionally, it emphasises how follow-

up interviews have further delved into these topics, offering deeper understanding and 

perspectives. 
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Table 1 

Teachers’ Profiles Description 

Teacher Where is the 

school 

Type of school Year levels 

taught 

Teaching 

experience 

G Canberra Government, Traditional, 

Open entry, Secondary school 

11–12 38 years 

K Gunnedah Non-Government (Christian 

Catholic), Secondary school 

7–10 30 years 

R Brisbane Non-Government,  

Single sex (girls), Open entry, 

from Prep to 12 school 

7–12 25 years 

St Sydney Independent (Roman Catholic), 

Single sex (girls), Boarding and 

day, Secondary school 

7, 8 

10 (high 

achievers) 

11,12 (specialists) 

37 years 

Su Queensland Non-government (Catholic school), 

Single-sex (boys), Secondary school 

7–12 40 years 

T Brisbane Independent, Boarding and day, 

Single sex (girls) school, 

from Kindergarten to Year 12 

11–12 Long-time 

experience 

X Canberra Government, Traditional, Streamed 

classes, 

Secondary school 

7–12 Over 20 years 

O Melbourne Non-Government (Catholic School), 

Open entry, 

Secondary school 

11–12 25 years 

J Near Brisbane Non-Government, Traditional 

school, from Prep to 12 

5, 10, 12 21 years 

Importance and Expected Outcomes 

Examining the responses to Likert-type item Q16, teachers in our study report that ABM 

activities significantly enhance deep conceptual understanding, improve mathematical 

visualization skills, and effectively engage students’ interest. However, there is less consensus 

on the effectiveness of ABM activities in boosting students’ performance in standardised tests. 

Additionally, when considering other anticipated impacts (Q17), most teachers believe ABM 

activities enrich their understanding of students’ learning processes but are less effective in 

including students with special educational needs. This perspective is further supported by 

a response to Q18, where one teacher (in the alternative Other) noted, “Students with special 

needs are often ‘lost’ in these tasks even with peer and teacher support. They benefit more from 

direct instruction and explaining”. In the follow-up interviews, similar themes recur and are 

further explored. For teachers, promoting deep learning involves having a long-lasting imprint 

in students’ minds, “I think the more senses and the more parts of your body you use, the greater 

the, the retention of the knowledge, and the skills is going to be” (Teacher Su). 

I also just think that the more senses that are involved in your learning, which, moving … involves 

your feelings and stepping out something. I just think you are involving more of your brain … it’s 

more memorable that we talked about. So … it stays deeper in their consciousness, I think. 

(Teacher K) 

They will learn it a lot better and, basically, rather than just writing something down, and trying to 

learn it by rote, if they’re actually involved in carrying out the activity, it will have a lasting imprint 

on their minds and all that makes you remember it a lot more clearly. And, yeah, it should be more 

relevant, too. (Teacher St) 
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Further, Teacher R emphasised how, in experiencing ABM activities, students can build 

cognitive roots, essential to recalling mathematics concepts: 

I think muscle memory is very important. … I think also the experiential, learning experiences that 

kids have, where it’s embedded in their memory, they can recall it, and then the teacher, at a later 

time, can also then recall it, and, talk about “well, remember when we did this” … So, you’re 

drawing on their personal account of their personal experience, and I think that’s a very valuable 

learning experience for the kids. (Teacher R) 

Finally, having a deep understanding includes having a more meaningful learning: 

Give meaning. So they get a sense of either number, measurement, umm, what these abstract things 

are … understand the concepts better … avoid misconceptions. So, if they, for example, drew an 

angle and they, they turn, you know, and they realise that the angle is a turn, it’s the size of the turn, 

it’s not being anything to do with the lines. They always think about the lines—as the lines are big 

and all that. So, I hope that it gives them an understanding of the concept. Initial concept, yeah. 

(Teacher O) 

Even in interviews, expected outcomes also concerns to enhance students’ interest, 

“learning should be, engage you, should be interesting, should be fun and the more senses that 

you can use, the more you involve the student in any learning, the better they will learn” 

(Teacher K), for instance showing the relation of mathematics and the world, “it also helps them 

see that maths is connected to life, to the world” (Teacher K), “they can see the real world—

you know, like why they’re doing something. So, I think that’s important for students to 

understand that, yeah, it’s not just pen and paper” (Teacher J). 

Limitation and Constraints 

Looking at question Q18: In your experience, what are the most relevant limitations for this 

type of learning activities’ implementation? (to answer, respondents could select up to 3 options 

from a list, the total number of answers was 157), the main limitations highlighted in the 

questionnaire were classroom management (42 respondents), time factors (41 respondents), and 

lack of resources and appropriate spaces (36 respondents). These themes also recur in follow-

up interviews. Concerning classroom management, the interviewees mentioned, in particular, 

the number of students in classrooms and the diversity of students within the same classroom, 

“I think a big issue is the, ah, difference in understanding within a class” (Teacher X), and the 

behaviour of students, such as loudness during ABM implementation, “Because they’re noisy 

that they’re not on task” (Teacher St). The class size issue is also related to the availability of 

appropriate spaces and resources: 

When you first do this with students it can get noisy, it can get a bit chaotic, and it also depends on 

the class size, … So how can we approach this? Maybe having a classroom designated for this, 

where you can have some time al-, where you’re away from the rest of maths classrooms, where the 

noise is not going to be an issue—next to the drama room, or something—dance room or whatever. 

(Teacher Su) 

And the other limitation is cost because you can propose lots of activities that, that require costly 

materials or costly equipment to implement, and so, we’re restricted by budget to some degree as to 

how far we can go with activities, but we can do a lot with what we’ve got. (Teacher G) 

One other main limitation identified in the responses to the questionnaire was the time 

factor. This theme emerged in the wide majority of interviews, concerning two different time 

constraints. On the one hand, it concerned the time required for the activities preparation (i.e., 

designing the activities, searching for resources, structuring, and integrating the activity into 

the curricular program), e.g., “A lot of preparation to adapt to the class that is in front of the 

teacher” (Teacher G), “I think it’s mainly the time to talk about ideas and map them into the 

curriculum, into lessons. So, having time to share best practices … One of the biggest barriers 

is just communication with each other and time to be able to collaborate and come up with 

ideas” (Teacher J). On the other hand, the time factor concerned class time spent in performing 

the activity (i.e., the ABM activities are quite time-consuming), “the time it takes. We don’t 
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have a lot of time to get through a lot of content” (Teacher J). Indeed, time considerations were 

almost always related to the difficulty of addressing all curricular contents: 

The theoretical limit is you still have a certain amount of curriculum to cover in the time. And some 

of these activities take more time than traditional teaching, so there’s a limitation on how many of 

these activities you could fit into a term or a semester. (Teacher G) 

Here in Australia, given that we have a very content driven curriculum, that is extremely challenging, 

and particularly in secondary. And it’s almost imposs-, I would go so far as to say that in senior 

secondary, in our Year 11 and our Year 12, here in Queensland, it’s virtually impossible to have 

hands-on activities and sort of activity-type situations. Because it’s just, it’s s- so heavily content-

driven. (Teacher R) 

Along with a content-driven curriculum, preparation for mathematics tests was identified 

as a fostering factor: 

But I often have this tension between time and the curriculum content and making up new activities 

and engaging activities that might take us even off track from that content. I think most maths 

teachers would say that there is some kind of tension there with teaching to the tests that we know 

children are going to encounter, but trying to engage them in thinking and learning and being 

involved in their learning. That’s a bit more open-ended. … We seem to be very locked in to pen 

and paper formative testing. (Teacher K) 

A further constraint, mentioned in interviews, is an unsupportive school culture with 

mathematical views on what is expected of a math lesson, which can be an obstacle: 

Parents’ and kids’ views of what mathematics is [is a limitation] as well. Umm, they have a particular 

view of what mathematics is and if what you do doesn’t fit within that view, then (in our school 

anyway) they’re very vocal about, you know, this, this is not what it should be. So, there’s a fine 

line that you’ve got to walk with, getting kids involved, and also making sure that, umm, see the 

other side of it is that, whatever I do, everybody’s got to do it. (Teacher T) 

Implementation 

Answering Q21: Do you include the ABM activities in your instructional practice?, 

41 teachers stated that they included such activities (eight from primary and 33 from secondary 

school) while 16 answered no (only one from primary and 15 from secondary school). Asking 

(Q22 Alternative) the reasons why they did not implement, the principal factors were the lack 

of time, the lack of resources, tools and materials, the difficulties in classroom management, 

and the belief they are not appropriate for one’s school level. Looking at the interviews, some 

teachers indicated that they do have wide expertise with ABM activities, while others (Teachers 

St, J, X) stated that they were only familiar with such activities on a theoretical level: 

Far removed from my reality. In the ideal world, it would be wonderful to be able to offer that. There 

are lots of working parts, there are lots of activities going on that impact on the students. Umm, lots 

of little things that interrupt throughout. [..] It’s not taking into consideration the reality of my 

experience of schooling. (Teacher X) 

The answers in the questionnaire showed a tendency for greater resistance to the proposal 

of ABM activities for secondary school teachers than for primary school teachers. Indeed, the 

general belief that these activities may be suitable only for children in the lower grades emerged 

also in follow-up interviews, “In the high school setting, the active body idea really makes it 

tokenistic. … I think it’s more for the early conceptualisation of, basic ideas, in the primary 

years” (Teacher X). Concerning primary school, teachers described a different situation, “In 

primary school, they do lots of—I would say they use lots of materials and movement in maths, 

but then when they get to high school, it just stops, that’s it. And it’s just books, writing, 

reading” (Teacher O). Teachers pointed out that in secondary school ABM activities were 

generally rarer and less suitable, for example, not necessarily applicable to much content, “In 

my experience, there are few topics that high schools allow themselves to be presented that way 

without it becoming tokenistic” (Teacher X), “being honest, two lessons out of the 50 are hands-
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on and the rest is traditional” (Teacher J). Generally, teachers claimed that they did not carry 

out ABM activities as often as they would like or give as much space for exploration as desired: 

I think we don’t do enough movement. … Occasionally we’ll do something with movement in the 

school, but Yeah, … I can remember reading it and thinking ‘oh, we really need to do more of this’ 

of what you could see what you were asking in the questions and I was thinking ‘yeah, we don’t do 

enough movement’. (Teacher J) 

Conclusion 

The survey highlighted teachers’ beliefs in the positive impacts of ABM activities, 

particularly in promoting deep conceptual understanding, enhancing mathematical visualization 

capabilities, and fostering student interest. Follow-up interviews delved deeper, revealing that 

teachers believe ABM activities have a long-lasting impact on students’ memory by involving 

multiple senses. Teachers also emphasised the importance of experiential learning for building 

cognitive roots essential for recalling mathematical concepts and the role of ABM activities in 

making learning meaningful and engaging, connecting mathematics to the real world. However, 

several limitations and constraints for implementing ABM activities were identified. One of the 

main limitations pointed out by teachers is the lack of available time. In the follow-up 

interviews, we were able to get a better understanding of what teachers meant: on the one hand, 

the activities require a lot of time both in the classroom and in research and planning; on the 

other hand, with the time available for face-to-face instruction it is difficult to implement such 

activities, more time-consuming than traditional transmissive approaches, aiming to cover 

curricular contents. These statements highlight many subtexts, which can also be deduced from 

the analysis of other issues. Indeed, teachers do not seem to be so convinced that these activities 

bring results that are then reflected in standardised tests. Instead, good results in these tests are 

often the main goal of schools, which tend to measure themselves against NAPLAN 

assessments and align with the view of mathematics that students and parents have. It is 

therefore clear that the proposal is perceived by many teachers as ancillary to the planning and 

goals they are called upon to achieve, particularly in secondary school. Indeed, despite the 

recognised benefits, there was a tendency among secondary school teachers to view ABM 

activities as less appropriate compared to their primary school counterparts. This perception 

was partly due to the curriculum demands. Nevertheless, some teachers expressed a desire to 

incorporate more ABM activities into their teaching but felt hindered by various practical 

constraints, such as classroom management and resource availability. This relates both to 

affordability and, again, to the availability of materials and resources, without spending a lot of 

time looking for them. 

In summary, the exploratory study highlighted that while ABM activities are believed by 

teachers to be of value for their potential to enhance learning experiences, their integration into 

classroom practice faces significant barriers, including logistical challenges, curriculum 

pressures, and differing perceptions of their suitability across educational levels. While the 

context may therefore limit the implementation of ABM activities, the beliefs of teachers in 

prioritizing more traditional teaching methods geared toward content transmission, to cover the 

curriculum and prepare for mathematics tests, should not be underestimated. Although about 

one-third of students in Australia attend non-government schools, the over-representation in the 

sample of non-government, especially Catholic, school teachers, as well as highly experienced 

teachers, must be taken into account for the exploratory teacher survey results interpretation. 
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For students to engage in mathematical thinking, a greater emphasis is needed on the 

expectations of students, by themselves and others, as active listeners and explainers. 

As student responsibility for mathematical thinking and participation increases, the roles 

of the teacher and learner change. A qualitative study of changing classroom 

expectations in a Grade 2 class was conducted. The teacher saw her role shifting to that 

of facilitator and the students’ expectations were as active listeners and explainers. The 

type of questions asked by the teacher was instrumental in whether justification and 

mathematical reasoning was elicited from all learners. 

With a focus on classroom expectations of the teacher and students in primary classrooms, 

Wood (2002) argued that differences in teaching impact what mathematics students value and 

learn. From observing classrooms, Wood’s research group were led to appreciate the 

importance of the quality of students’ “explanations and justifications they were required to 

give for their solution processes. Furthermore, these differences were found to affect the quality 

of [students’] thinking and reasoning about mathematics” (Wood, 2002, p. 61). More recently, 

Dorier and Maass (2020) have reiterated the necessity for this focus on student-centred learning 

and the critical role of the teacher. They describe student-centred learning as being when 

students work in ways similar to mathematicians, including asking questions, focussing on 

mathematical ways of thinking about questions, discussing, interpreting, evaluating, and 

communicating solutions in effective ways. Following Wood (2002), the focus of this paper is 

on the expectations of teachers and students in such classrooms and what role the students 

perceive and enact in such a classroom. 

A Mathematical Community of Inquiry 

Drawing on extensive video-recordings of Grade 2 and 3 mathematics classes in the USA, 

Wood and Turner-Vorbeck (2001) closely examined teacher questioning and students’ 

mathematical reasoning. Wood (2002) reported that differences in students’ reasoning were 

correlated with the type of questions teachers asked, the cognitive demand these questions 

placed on students’ mathematical reasoning, and the expectations for students’ participation. 

Dorier and Maass (2020) note the role of the teacher in such classrooms, “includes making 

constructive use of students’ prior knowledge, challenging students through effective, probing 

questions, managing small group and whole class discussions, encouraging the discussion of 

alternative viewpoints, and helping students to make connections between their ideas” (p. 385). 

According to Wood (2002), the key is not so much on the style of question, as it is on the 

expectations placed on students, as listeners and explainers, by themselves and others, in 

particular, the expectation that they be actively listening and explaining, that bring this change 

in student thinking and reasoning. Makar et al. (2015) report that the uptake of inquiry focused 

lessons in mathematics has been slow. They suggest this is a result of the challenges for both 

teachers and students. 

In setting up a classroom culture fostering the development of mathematical thinking, the 

responsibility for thinking mathematically by students can be increased as the discussion 

context implemented by the teacher changes according to Wood (2002). Wood described three 

discussion contexts (above and beyond the traditional reporting answers context), as reporting 

strategies → inquiry → argument whereby student responsibility for thinking and participation 

mailto:jill.brown@deakin.edu.au
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increases. Similarly, responsibility for participation increases as the expectations of the role of 

the student changes from being a student explainer to an active student listener. 

The first row of Table 1 is described as a conventional classroom culture (Wood, 2002). 

The following rows describe these increasingly sophisticated discussion contexts: strategy 

reporting, inquiry, and argumentation, described by Wood as reform classrooms. As the 

discussion context increases in complexity, the roles of explainers and listeners expand (e.g., 

an inquiry discussion context includes reporting of strategies and more). Furthermore, the 

responsibility for mathematical thinking and responsibility for participation increasingly shift 

from the teacher to the students. The role of the teacher does not diminish, rather it shifts to 

becoming a key member of the mathematical community of inquiry (Dorier & Maass, 2020). 

Expectations for the role of the student shift from being a passive to an active listener and 

having a vital part to play in discussions. Providing genuine opportunities for mathematical 

reasoning “requires a shift of role for both educators and students” (Hunter et al., 2020, p. 312). 

Table 1 

Theoretical Framework for Teaching and Learning Based on Wood (2002) 

Discussion 

context 

Mathematical 

thinking 

Role(s) of explainers 

(student) 

Role(s) of listeners 

Teacher Student 

Reporting of 

correct answers 

Recall answers 

Recall procedures 

Tell answers 

Tell procedures 

 Evaluate 

Ask testing questions 

Pay attention 

(passive) 

   

R
esp

o
n

sib
ility

 fo
r T

h
in

k
in

g
 

Responsibility for Participation 
 

Reporting of 

Strategies 

Comparing 

Contrasting 

Tell different ways Accept solutions 

Elaborate solutions 

Compare/ contrast 

solutions 

Inquiry Comparing 

Contrasting 

Reasoning 

Questioning 

Tell different ways 

 

Clarify solutions 

Give reasons 

Accept solutions 

Elaborate solutions 

[Ask questions] 

[Provide answers] 

Compare/ contrast 

solutions 

[Ask questions] 

Argument Comparing 

Contrasting 

Reasoning 

Questioning 

Justifying 

Challenging 

Tell different ways 

 

Clarify solutions 

Give reasons 

Justify 

Defend solutions 

Accept solutions 

Elaborate solutions 

[Ask questions] 

[Provide answers] 

Make challenges 

Compare/ contrast 

solutions 

[Ask questions] 

 

Disagree 

Make challenges 

 

 

Questioning 

Teacher questioning is thus an important aspect of shifting responsibility for mathematical 

thinking in the classroom from the teacher to the students. The NCTM (2014, p. 35) elaborates 

that effective teaching is associated with purposeful teacher questions that both advance and 

assess reasoning and sense by students. Bauserfeld (1992) argued that to generate the flexibility 

of thinking necessary for problem solving, “it would seem more promising to develop the art 

of mathematical interpreting, rather than the usual funnel-like limiting to prepared, unequivocal 

reactions” (p. 469). Furthermore, to develop such flexibility students need to reflect on their 

own mathematical thinking. Hence, teachers need to provide opportunities whereby students 

are expected to make explicit their ways of thinking as they engage with complex tasks. 

Wood (1998) noted that although well intentioned, many teachers—once a student offers a 

method representative of what they intend students to use—emphasise their preferred method 

thus inadvertently communicating to students a single approach to obtaining a desired solution. 

Bauersfeld (1992) described this as funnelling. The need to become more purposeful in 
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mathematical classroom discourse remains an issue (Hunter et al., 2020). In contrast to the 

funnelling approach, Wood (1998) argued for a more dialogical approach whereby “a variety 

of solutions are accepted and valued … [with the intention being] to help students notice an 

idea” (p. 168). In this focussing pattern of discourse, students participate more equally in the 

discussion. Focusing occurs when “the teacher expects the students to think about the 

mathematics. To figure things out for themselves, and to discuss their ideas with others” 

(p. 176) and the students are aware of this expectation. A study by Hagenah et al. (2018) in 

Year 9 science classrooms found focussing (rather than funnelling) question use to be aligned 

to increased student learning outcomes and confidence. 

Reasoning 

Mathematical content knowledge (MCK) contains what Kilpatrick et al. (2001) describe as 

five strands that are the basis of students’ mathematical proficiency: conceptual understanding, 

procedural fluency, strategic competence, adaptive reasoning, and productive disposition. In 

the Australian (and Victorian) Curriculum: Mathematics (ACARA, 2022) these are modified to 

understanding, fluency, problem solving, and reasoning. One important point is that the 

‘content’ of MCK extends beyond number, algebra, geometry, measurement, probability, and 

statistics to ways of thinking mathematically. The proficiencies describe what students ‘do’ 

including compare, contrast, explain, identify, justify, and reflect. Kilpatrick et al. (2001) 

stressed the proficiency strands “are not independent; they represent different aspects of a 

complex whole … [they are] interwoven and interdependent” (p. 115). 

The interwoven nature of the proficiencies in the enacted Australian curriculum and 

emphasis on each has been challenged by Australasian researchers, as has student capacity to 

reason. Analysis of the Australian Curriculum: Mathematics by McCluskey et al. (2016) 

suggests the intentions of the curriculum writers for the proficiencies to be integrated with 

conceptual understanding has not been met, and reasoning is the least emphasised proficiency. 

Given that Ball and Bass (2003) argue that understanding without reasoning is “meaningless” 

(p. 28), this apparent lack of emphasis on reasoning is a concern. International studies 

consistently show that Australian Year 4–9 students have difficulty explaining and justifying 

their mathematical thinking. 

The Study 

The data for the analysis of the primary mathematics class presented here were collected as 

part of the Teacher as Learner Research (TALR) project that examined teaching and learning 

in one Victorian state primary school. The project objectives were for teachers to promote the 

understanding of mathematical concepts through student discussion and reflection following 

Wood (2002). The development of mathematical content knowledge and mathematical 

pedagogical content knowledge (building on the work of Shulman, 1986) by the teachers, and 

hence classroom practices, including establishing classroom expectations of teachers to 

enhance student learning, were the focus. Tasks and approaches were developed collaboratively 

emphasising both the content and processes of mathematics, including ways of working 

mathematically such as conjecturing, convincing, and justifying that underpin mathematical 

thinking. Both questioning style and eliciting reasoning were of high importance in the project. 

Key elements of the project included: demonstration days (each term the researcher taught 

several lessons observed by some teachers and discussed by all teachers at the end of the school 

day, following Clarke et al., 2013), professional learning (a two hour session each term 

focusing on elements of MCK and PCK including task design and development, questioning, 

and reasoning), teacher lesson diaries (TLD) documenting two focus lessons per term taught 

by the teacher), and reflection. The lesson diary included a record of the lesson intention, the 

lesson enacted, and a reflective component focussing on what the teacher learnt from the lesson. 
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Before these lessons were implemented, teachers selected three ‘typical’ students to document 

their thinking. The students selected were not the ‘best’ three students but from those expected 

to have difficulties with the learning focus. The diary included specific details regarding these 

students’ contributions to classroom discussions and their progress on tasks. To facilitate 

articulation of student thinking and provide enhanced opportunities for teacher reflection, 

teachers used the iPad ShowMe app. This app allowed a photograph of student work to be taken 

and then used to facilitate students’ explaining their thinking. The photograph was annotated 

during this reflective discussion with the teacher, which the app also audio-recorded. Post-

lesson viewing facilitated the teacher’s reflective process—a key part of the TLD. 

A qualitative approach was followed to provide a comprehensive picture of what was 

occurring in the classroom. Following Stake (1995), a case study using an instrumental 

approach was undertaken, as the interest is what we can learn from this case about other 

classrooms. Data were coded from the perspective of teacher and student expectations for roles 

in discussion from Wood’s Framework and mathematical thinking as specified via the 

proficiencies. The analysis was similar to that of Strauss and Corbin (1990) in developing 

categories from the data. A rich description was essential for the expectations of the classroom 

to be evident. The research questions addressed were: (1) From participation in a ‘teacher and 

researcher’ community of inquiry, what expectations does a teacher develop in a classroom 

community of mathematical inquiry? (2) From these expectations, what do students perceive as 

their role in the mathematics classroom and to what extent is this realised? 

At the end of year, as part of the reflective aspect of the TALR project, all teachers were 

asked to implement a short survey with their class. Students responded to the question, “What 

do you think your role or job in maths is?” with the prompt, if needed, “What things are you 

expected to do in maths?” From these responses, one Year 2 class was chosen for analysis based 

on the response of one student. Muridi wrote, “My job is to listen to the maths, … listen to the 

shape figures and non-examples and the maths”. Not only had 8-year-old Muridi (all names are 

pseudonyms) recognised the importance of listening in his learning of mathematics, but also, 

he used the geometric language of figure and identified the importance of non-examples in his 

developing understanding. This response prompted an analysis of the classroom experiences 

and expectations that led him to articulate this view. Thus the case is the classroom expectations 

of the teacher and students in Muridi’s mathematics class. 

Muridi, along with his classmates, attended three demonstration day lessons (taught by the 

researcher) during the year. Over the year, seven TLD lessons were taught and documented by 

Muridi’s teacher. Eleven of the 23 students in the class were selected as the focus student over 

this time for her diary. Muridi was a focus student on three occasions. To add to the richness of 

the data, two additional students, Ada and Madi, were selected as this meant every TLD 

included at least one of these students. In describing her “role or job in maths”, Ada nominated 

solving problems, figuring it out, understanding, show you know, and checking. She also noted 

“you could get it wrong” and suggested using “the maths equipment if it is hard or you get 

confused”. Madi included answering hard questions and solving challenging activities. Hence, 

three Grade 2 students, Muridi, Ada, and Madi are the main focus of the analysis reported. 

Whilst Muridi’s words prompted this class’s selection, it is critical to remember he is one 

student in a mathematical community of inquiry with other students and his teacher. 

The data used were collected over four consecutive school terms and drew mainly on the 

TLDs. Table 2 summarises the lesson focus. Teacher reflection during and after demonstration 

days, and teacher reflection after professional learning sessions were used to substantiate the 

analysis as needed. For example, an analysis of student work collected by teachers during the 

year from the TLD lessons and the demonstration day lessons confirmed the three selected 

students were not the ‘best three’ in the grade. 
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Table 2 

Overview of Teacher Lesson Dairies Lessons and Selected Focus Students 

Lesson 

diaryα  

Focus students 
Task title and brief details 

Muridi Ada Madi 

1    One is a snail, ten is a crab: I saw 10 feet, what might I have seen … 

2a     One change train: Use attribute blocks to create a ‘train’ where 

adjacent pieces differ by one attribute 

2b     Caterpillar Problem: 

Investigate caterpillar 

growth over time 
  

3a     The Rubbish Bin Problem1 Convince Me: Some digits 

from a rubbish bin number were found. What house 

number could the bin have come from? 

 

3a      Equality: 

 = 64 − 9 

Reasoning 

Cartoon 

 

4a      Minibeasts What’s the favourite minibeast in our class? 

4b      Which is the Odd One Out? Why? 39 37 79  

αThe number in column 1 indicates the term (e.g., 3b is the 2nd Lesson Diary in term 3). 

Results and Discussion 

The lesson in focus for the first teacher lesson diary (TLD1) is presented in sufficient detail 

for the reader to gain a good sense of the classroom expectations that are the focus of the 

research. Student comments are presented as recorded by the classroom teacher. The lesson for 

the Grade 2 class occurred in week six (of eight) of term 1. The lesson focused on problem 

posing and solving based on the picture book One is a snail, ten is a crab (Sayre & Sayre, n.d.). 

The focus task was ‘I saw a total of ten feet. What animals might I have seen? How many 

possible combinations of animals are there? How are you going to know when you have them 

all?’ The teacher expected students would use different ways of recording and documenting their 

understandings—drawings, words, numbers, equations, or a combination; make use of a range of 

strategies to solve the problem; apply thinking strategies; and articulate their learning approach 

for the problem using partner sharing and the ShowMe app if selected as a focus student. These 

expectations remained the same throughout term two as well. 

When the storybook cover was presented at the start of the whole class discussion, the 

students recognised the type of task to come which they said was “Jill maths” drawing on their 

participation in a lesson on Demonstration Day 1 earlier in the term. When asked to explain, 

comments included “Jill gives us lots of maths things to do” (Madi), “challenges and questions” 

(Ada), “she gives us all sorts of new things that we don’t know yet” and “gives us a problem 

and we try and work it out”. According to her diaries the teacher used this connection regularly 

to how the students’ experienced the demonstration lessons to reinforce her classroom 

environment expectations for students and to convey that their role included explaining and 

engaging with mathematical thinking as they worked on similar tasks. 

After reading the book, checking for understanding (“a crab has 10 feet and a snail only one 

foot”), and discussing a simpler version of the task for 6 legs, the students set to work 

individually for 30 minutes, followed by ten minutes where they partnered to share their work, 

and then returned to individual work on the task. The teacher noted (TLD1) that throughout the 
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lesson she frequently asked students, “Have you found all the possibilities? How do you know?” 

and implored them to “Convince us! Check for duplicates”. 

Muridi wrote, “I had eight combinations. I putted numbers on everything I drawed.” During 

the lesson his teacher also recorded some of Muridi’s thoughts on his sheet. These included 

“I counted by twos so that is 10 altogether” in explaining his solution using 10 people. For his 

solution of 2 people, 2 snails and a dog, his teacher recorded “I did 2 people for 2, 4 then 

I counted 2 more, then I did 4 then 8. 2 people and 2 snails equals 6 then I added the dog, 

6 + 4 = 10.” Muridi was the only student who recorded the number of combinations he found. 

His comment regarding putting numbers with his drawings is inferred as an attempt to explain 

his solutions were correct rather than to argue he had found all possibilities. Although it is 

impossible to tell the order in which Muridi recorded his solutions, his work showed evidence 

of a systematic approach. He clearly was also able to keep in mind a focus on how many 

possibilities there were and that this required him as the task solver to make a note of this. 

Five students appreciated the need to argue they had found all combinations. None stated 

how many they found and their argumentation skills were still developing. Madi, for example, 

found eight solutions and wrote “I think there are know (sic) more combinations”. Ada noted 

she “counted by twos because ten is even”, checked for duplicates and “there were only two”, 

and used her facts to ten. She claimed, “I know I have them all. I tried thinking and thinking 

and I couldn’t find anything more. I looked at the animals I looked [at the] legs and feet and 

added on numbers”. She recorded drawings with numerical equations to represent her findings. 

She thus fulfilled her teacher’s expectation that multiple representations would be used. 

Data presented from this term 1 lesson (TLD1) clearly indicated that Muridi, Ada, and Madi 

were in a classroom where students were expected to ‘have a go’ and to try different approaches, 

in this case different representations—drawings, numerals, words, equations, to look for 

duplicates and find more than one solution to a problem. As has been shown these expectations 

were clearly discerned and students were seeing their role as doers of mathematics, expressers 

of mathematical thinking, and documenters of that thinking even if at this point in the school 

year they were still developing their skills to do so. 

Given space restrictions, the remaining teacher lesson diaries (two per term for terms 2–4) 

will not be detailed in full. In each lesson diary there was evidence of students realising their 

role included explaining both task and solution. After making and drawing a “train” with his 

partner for the One Change Train Task (noted in TLD2a), Muridi recorded his reasoning as “it 

is a one change train, one was skinny and one was fat, one was big and one was short” as he 

described his train of alternating rhombuses using pattern block pieces. He and his partner were 

one of three pairs that recognised a simple train could be made using an ABAB pattern. When 

asked about task difficulty, he said the task was “easy because I used the same shape”. Ada 

articulated her approach clearly, “I am not changing anything except the colour—not the size, 

the length or anything except the colour”. Madi also described the task as easy clearly believing 

that identifying mistakes and revisiting the task were part of learning, “because I worked with 

a partner, and we started it with getting some blocks and made it into a train and figured out it 

wasn’t right and then made another one that was right”. 

In her term 2 professional learning reflection, the teacher noted her intention for an 

increased focus on “continually encourage[ing] students to unpack what they already know and 

discuss/elaborate/convince peers of their thinking”. By term 3, the teacher had added additional 

expectations to those she expressed in TLD1 and specifically noted her own changed role. In 

her first lesson diary for term 3 (TLD3a), she was explicit about her classroom expectations 

progressing to “setting up community of learners (justifying, reasoning, questioning, learning 

from each other’s [questioning]—changed teacher role as facilitator)”. In addition to the other 

expectations, she had identified previously, she expected students to be articulating the way 

they solved the problem. In the second lesson diary (TLD3b) she reiterated, she expected 
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students to be actively listening to, and to be open to, the thought processes of peers, articulation 

of their thinking—orally and written, and being able to write mathematical understandings. 

Challenging other students was also part of the classroom culture. Reasoning cartoons were 

often used in demonstration lessons to support this, where challenging an unknown student 

(e.g., Grey TLD3b) supported subsequently challenging peers and explaining the thinking of 

others. During the Caterpillar Task (TLD2b), at one stage after making the Day 6 caterpillar, 

students were discussing the Day 5 caterpillar. They were asked to explain their thinking to 

a partner “to justify their reasoning”. Muridi’s partner, Hugo, proposed there were 11 triangles 

and 5 squares, but he was unable to explain his thinking. Muridi immediately challenged this 

thinking, demonstrating his preparedness to disagree, claiming, “It is not 11, it is 12.” 

In some tasks, students chose the level of challenge. In the Caterpillar Task (TLD2b), after 

considering the Day 6 caterpillar, Muridi chose the Day 11 caterpillar. The colouring of his 

drawing (shading triangles only on one side—see Table 2 row 3) suggests he recognised 

a doubling pattern as part of his reasoning, but he did not articulate this. Madi working with the 

Day 10 caterpillar was better able to explain how, if not why. She wrote, “The rule is 

10 + 10 = 20 so when you add the 2 more all together there is 22 [triangles]”. She also showed 

evidence of checking using an alternative approach (i.e., count all). Ada was able to articulate 

her reasoning including relating her rule to the day (15), “The rule is you double the amount of 

days the caterpillar is … and add two”, and correctly identified the number of triangles required. 

In the Minibeasts Task (TLD4a), 17 of the 23 students contributed to a discussion in 

response to What do you think the task is about? Madi suggested, “data on most popular out of 

lots of minibeasts”. Muridi pointed out, “[we] need an axis so we could write about what kind 

of minibeasts so we could go around and see what is the most”. Post-lesson Show-me questions 

to Muridi (and another boy), focused on telling type questions (e.g., What did you do? 

Tell/show me), sufficed to allow articulation of the way the problem was solved but elicited no 

evidence of reasoning although Muridi did use comparative language. For the third student, the 

teacher took on a facilitator role deftly asking questions that elicited reasoning and justification. 

Whether in a discussion context with the whole class, talking to a partner, or responding to 

a task using concrete materials, diagrams, words or symbols, the students in this class, as 

evidenced by the experiences of Muridi, Ada, and Madi seemed to view their role in the 

mathematics classroom was to actively listen, tell different ways, clarify, reason and to convince 

others that their mathematical thinking was correct as expected by Wood (2002) and others 

(e.g., Hunter et al., 2020; Kilpatrick et al., 2001; McCluskey et al., 2016). This was true even 

when they found a task challenging and/or struggled to explain their thinking. 

Concluding Remarks 

In this paper, a qualitative study has reported on one classroom where the teacher articulated 

her role in developing a community of mathematical inquiry. The data indicated she saw her 

role had to change to facilitator rather than evaluator of student learning and the learners should 

be increasingly responsible for active participation in their learning. The expectations of Muridi 

and his classmates, both by the teacher and of each other, were as active listeners and explainers 

with responsibility for mathematical thinking and participation, although this was not always 

realised. Teachers can bring about change in students’ mathematical thinking by increasing 

expectations of learners as active listeners and explainers. Students in such environments 

perceive themselves as having responsibility for participation and mathematical thinking. To 

sustain these expectations, teachers need to focus on asking inquiry questions (that require 

explainers to clarify their solution and provide reasons for their decisions and actions) that 

position learners as mathematical reasoners and argumentation questions (that disagree with, 

or challenge, the explainer) that position explainers as justifiers and defenders of their solution 

to all students. The type of question asked positions the explainers in the different roles (Wood, 
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2002). Questions requiring explainers only to tell answers and procedures do not encourage 

mathematical reasoning nor indicate expectations for this. However, “powerful and innovative 

pedagogies such as rich and robust dialogical interaction are challenging for teachers to develop 

in their classroom” (p. 296). The role of the teacher in asking questions of all students that 

require clarification, reasoning, and justification cannot be underestimated, nor the challenge 

for teachers in sustaining such practice. This study contributes to a greater understanding of the 

challenges for both teachers and students in describing and sustaining classroom expectations 

for mathematical thinking. 
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This position paper examines the phenomenon of the McNamara Fallacy to analyse 

flawed conceptions of “success” in mathematics learning, normalised assessment 

structures and their implications for mathematics education. The established presence 

of the McNamara Fallacy and the ramifications of this statistical fallacy provide 

a foundation to demonstrate its existence and parallels within mathematics education, 

including NAPLAN and other common assessment structures. Viewing such 

assessments through the lens of the McNamara Fallacy allows educators to recognise, 

explain, and potentially address their negative consequences. 

Various forms of formal and informal assessment play a prominent role in enabling 

judgments to be made about students’ success in learning mathematics. For example, national 

and international assessments such as NAPLAN tests of numeracy achievement and PISA tests 

of mathematical literacy provide high-level information about the effectiveness of education 

provision across a country or for demographic sub-groups, while classroom assessment can 

monitor the progress of individual students and generate feedback to inform teaching. However, 

the results of mathematics assessments are often used for other unintended purposes—often 

with damaging consequences for students, teachers, and schools. 

In this paper, we apply the McNamara Fallacy to critique such assessments in mathematics 

education. This term was coined by sociologist Daniel Yankelovich in 1972 as an eponym for 

US Secretary of Defence Robert McNamara’s (1961–1968) statistical approach to the Vietnam 

War. The McNamara Fallacy refers to the logical yet flawed tendency to draw conclusions or 

reach a hypothesis derived from easy-to-measure quantitative data while also disregarding 

important variables that are nevertheless more difficult to quantify. This statistical fallacy can 

lead to misleading conclusions, oversimplified perspectives, cognitive bias, distorted truth, and 

overconfidence in unfounded decision-making. The aim of this position paper is to use the 

McNamara Fallacy to analyse flawed conceptions of “success” in mathematics learning and 

assessment and their implications for mathematics education. This paper will first explore the 

origins of the McNamara Fallacy before recognising its established presence within the 

healthcare fields to demonstrate parallels with mathematics education. This paper will continue 

to investigate other possible areas of mathematics education assessment impacted by the 

McNamara Fallacy. 

The Origins of the McNamara Fallacy 

Robert McNamara (1916–2007) is noted as a great logical economist and a remarkable 

statistical mind with an impressive resume and many notable achievements. In 1943, 

McNamara enlisted as a Captain in the United States (US) Army’s Department of Statistical 

Control, where his profound statistical methodology dramatically improved the planning and 

execution of aerial bombing missions during World World II (Kelleher, 2021). After three years 

of active duty and an elevated rank of Lieutenant Colonel, McNamara and other ex-military 

statisticians were recruited by the troubled giant Ford Motor Corporation (United States 

Department of Defence, n.d.). McNamara’s considerable talents in statistical analysis and 

financial management were critical to the triumph of Ford’s expansion and restored profit 

margins in post-war times (United States Department of Defence, n.d.). McNamara’s planning 
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and management prowess resulted in his advancement through various high-level management 

positions, including a short stint as the President of the Ford Corporation (Kelleher, 2021; 

United States Department of Defence, n.d.). Because of McNamara’s prominent reputation, 

then US President-Elect John F. Kennedy offered McNamara a cabinet position, which saw 

McNamara reject the initial offer of Treasury Secretary but accept the Secretary of Defence 

post (O’Mahony, 2017). Despite his distinguished career up to this point, McNamara’s rational 

and statistical approach to ‘problems’ is now more commonly attached to costly decisions in 

prosecuting the Vietnam War. 

Following his former successes, McNamara continued to demonstrate his aptitude for 

statistical analysis and quantitative decision-making in the approach of the US to the Vietnam 

War. A key measure of the success of McNamara’s military strategy was ensuring the number 

of enemy casualties and fatalities exceeded those of the US. This strategy of taking casualty 

and fatality figures as the measure of success led to a massive escalation of the number of US 

soldiers in Vietnam. However, the data used by McNamara were flawed. O’Mahony (2017) 

explains how “the South Vietnamese army reported what they thought the Pentagon wanted to 

hear—they were ‘gaming’ the figures—and the US did not question the numbers” (p. 281). 

Kelleher (2021) writes how, increasingly, the ‘body count’ metric became the “preferred way 

for US Generals to rank the effectiveness of different American combat units” (p. 260), 

including the determination of promotions, ensuing ‘gaming’ data practices in which previously 

recorded fatalities were re-tallied to inflate numbers. 

Later, McNamara exhibited remorse and doubt in his military strategy and, as O’Mahony 

(2017) writes, “conceded that excessive emphasis on a single crude metric over-simplified the 

complexities of conflict” (p. 281). The Vietnam War was the first modern-day and significant 

conflict that depended upon guerrilla warfare. Guerrilla warfare refers to accumulative small-

scale yet intense acts of combat via irregular methods or unconventional tactics and is typically 

carried out by grassroots or irregular members fighting against larger and more traditional 

powers (Lebo et al., 2021). Consequently, there were limitations in relying on quantitative 

measurements to evaluate large actions, especially when boundaries are indistinguishable, 

unpredictable or unstable. The complexities of people and their actions do not always fit into 

formerly defined boxes as times change, as do technologies, resources, and the evolution of 

people’s motivations (O’Mahony, 2017). As the war stretched, then U.S. President Lyndon B. 

Johnson and McNamara’s views on further strategies did not align, which was amplified by the 

public opposition (Kelleher, 2021; O’Mahony, 2017). McNamara resigned in 1967 and, within 

six months, became the President of the World Bank, where he remained until the early 1980s 

(United States Department of Defence, n.d.). 

Despite being a capable and clever man with many prestigious posts, McNamara’s 

reputation has been forever linked to the failure of military strategy in the Vietnam War, 

a “problem that did not submit itself to numerical analysis” (O’Mahony, 2017, p. 281). In 

coining the term, ‘the McNamara Fallacy’, Yankelovich (1972) succinctly described its flawed 

logic as follows: 

The first step is to measure whatever can easily be measured. This is OK as far as it goes. The second 

step is to disregard that which can’t be easily measured or to give it an arbitrary quantitative value. 

This is artificial and misleading. The third step is to presume that what can’t be measured easily 

really isn’t important. This is blindness. The fourth step is to say that what can’t be easily measured 

really doesn’t exist. This is suicide. (Yankelovich, 1972, as cited in O’Mahoney, 2017 pp. 281–282) 

We argue that the flawed logic inherent in the McNamara Fallacy is readily observable in 

approaches to assessment in mathematics education and the educational practices and decisions 

informed by the results of these assessments. However, despite its relevance and prevalence, 

little literature currently connects the McNamara Fallacy to mathematics education. 

Nevertheless, in fields such as medicine and medical education, the McNamara Fallacy is 
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connected to worrying trends towards inappropriate reliance on quantitative measures. In the 

next section, we briefly review the literature on the McNamara Fallacy from the medical field 

as a starting point for considering its implications for mathematics education. 

The McNamara Fallacy in Medicine and Health Care 

Literature sources (e.g., Hirkani, 2023; O’Mahony, 2017; Singh & Shah, 2023) within the 

medical field have applied the McNamara Fallacy to demonstrate the negative consequences of 

over-dependence on quantitative measures, including the decline of patient care, 

professionalism, and appropriate objectives. They contend that the complexities of medicine 

cannot be accounted for and controlled by crude numerical analysis. They stressed that setting 

harmful “arbitrary targets” (O’Mahony, 2017, p. 282) does not improve care for patients and 

consequently results in the neglect of other important unquantifiable attributes such as 

communication and compassion (O’Mahony, 2017). Similarly, Kelleher (2021) describes the 

dismissed ‘immeasurables’ within dentistry, such as clinical judgment, artistry, consistency, 

and manual gentleness of touch. He describes how, instead of prioritising a patient’s long-term 

dental health, UK dentists are pressured to meet specific quotas or risk financial penalties 

(Kelleher, 2021). O’Mahony (2017) also describes how doctors could be pressured by “audit 

and quality assurance programmes … to carry out treatments that are not in the patient’s best 

interest” (p. 282). A similar UK initiative aims to judge the overall performance of British 

hospitals based on overall mortality rates gleaned through specific calculations, which are 

subject to distortion and reality bias (O’Mahony, 2017). 

All of these studies applied the McNamara Fallacy to demonstrate the propensity to select 

easy-to-measure variables—that disregard many other more difficult-to-measure or 

unconsidered variables—in the effort to make conclusive judgements about performance and 

professionalism. In doing so, the authors highlighted the unintended consequences that have 

repercussions for the everyday people cared for by health professionals. Discussing the 

McNamara Fallacy, Singh & Shah (2023) also describe the medical education of future doctors 

in India and how assessment structures that “focus on numbers alone gives the wrong message 

to [medical] students” (p. 3) about the profession, their medical training, and the characteristics 

of competent and compassionate doctors of India. For example, marks on an examination do 

not equate to medical students’ ability to ethically “apply knowledge appropriately in the given 

context” with honour, integrity, or emotional intelligence, nor the ability to work in a team 

(Singh & Shah, 2023, p. 3). Although drawing too many literal comparisons between the fields 

of medicine and mathematics education is unwise, there are obvious parallels between these 

fields in the unintended consequences of making decisions about “success” based solely on 

quantitative observations of one or a few variables. 

Applying the McNamara Fallacy to Mathematics Education 

Many examples from the medical field share parallels with factors and experiences within 

current educational assessments and success metrics within mathematics education. The most 

obvious parallel is the continued misuse of Australia’s National Assessment Program—

Literacy and Numeracy (NAPLAN) regime. Since 2008, Australian students in Years 3, 5, 7, 

and 9 have participated in NAPLAN, a series of nationwide mandatory standardised tests that 

assess performance in Mathematics and English aligned with the content strands of the 

Australian curriculum. Though standardised assessment is a common educational tool 

worldwide, many doubts have been raised about NAPLAN’s purpose, implementation, and 

perverse consequences (Thompson & Cook, 2014; Wu, 2010). 

The (mis)representation of NAPLAN data also carries traits of the McNamara Fallacy. Like 

other standardised assessments, the test design is based on a probabilistic psychometric analysis 

called the Rasch model, which determines students’ performance based on the probability of 
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answering questions strategically designed to demonstrate generalised underlying traits or 

presumed indicators (Australian Curriculum, Assessment and Reporting Authority [ACARA], 

n.d.; Burtenshaw, 2022). NAPLAN’s numeracy test contains approximately 40 questions to 

sample numerous mathematics concepts across multiple-year levels from the Australian 

curriculum. Despite ACARA (2010) telling parents that NAPLAN’s data can “measure how 

their child is performing against the national average”, these claims have been refuted due to 

statistical and measurement errors (e.g., expected margins of error) not illustrated within 

representations sent home to parents (Wu, 2010). Without proper explanation, the placement of 

dots and markers on a calibrated scale could be considered arbitrary, artificial, or misleading, 

as outlined by Yankelovich’s (1972) descriptions of the McNamara Fallacy. These statistical 

considerations are better mitigated with larger collective data representations for government 

or system-level use. Nevertheless, similar to McNamara’s strategies in the Vietnam War, this 

one-point-in-time data is being utilised in such a manner to draw sweeping conclusions about 

a student, a cohort, or an entire school, including assumptions about and factors that are not 

assessed. 

Understanding the role of the McNamara Fallacy within NAPLAN’s culture can aid in 

comprehending and distinguishing relevant criticisms and addressing such criticism, such as 

the overemphasis and overreliance on NAPLAN data to make consequential judgements. 

Though NAPLAN specifically focuses on mathematics, viewing its repercussions through the 

lens of the McNamara Fallacy shows that it prioritises particular aspects of mathematics and 

leads to practices that narrow the curriculum to fulfil NAPLAN’s illusory objectives. Instead 

of supporting authentic and holistic explorations of mathematics concepts, NAPLAN 

preparation is often focused on fragmented content exposure, best achieved through rote-

learning methods of instruction and drill-like practice (Serow et al., 2016; Thompson & Cook, 

2014). Such approaches are typically void of creativity, higher-order or critical thinking, or 

ethical or social applicability (Klenowski & Wyatt-Smith, 2012). In many classrooms, 

preparation for NAPLAN also includes explicitly teaching students contingency strategies to 

approaching questions, such as how to narrow the multiple-choice options by removing 

apparent incorrect responses, and ‘when in doubt, guess because at least you have a 25% chance 

of getting it right’. This raises questions about whether the data NAPLAN produces—though 

easy to measure in content and method—should be appropriately relied upon to draw broad 

conclusions, especially if the metrics are so readily perceived by schools as gameable. 

Furthermore, beyond mathematics education, critics of NAPLAN argue how its overemphasis 

has overshadowed and disregarded other learning areas, such as The Arts (Garvis & Pendergast, 

2010). Acknowledging the impact of the McNamara Fallacy within NAPLAN’s culture can 

help distinguish the actual challenges we face as a wider education system. The real focus of 

concern is not mathematics—or the perceived version of mathematics portrayed by NAPLAN 

interpretations—but the need to unite in addressing the flaws associated with the McNamara 

Fallacy. 

The parallelism between the medical field and the education system continues with the 

findings and claims about the harmful or unintended consequences of flawed conclusions 

fuelled by the McNamara Fallacy. Much like NAPLAN, initiatives in health care were driven 

by expectations of accountability and measurements for comparison purposes to determine 

whether the country can have confidence in their systems (O’Mahony, 2017; Singh & Shah, 

2023). However, simplified initiatives that could not capture the complexities of medical and 

patient care have provoked perverse professional cultures, misallocation of foci, and 

oversimplified statistics with far-reaching ramifications (O’Mahony, 2017; Singh & Shah, 

2023). A 2015 U.K. report, ‘Uses and Abuses of Performance Data in Healthcare’, listed 

various consequences of metric-based clinical targets, including tunnel vision, inequity, 

bullying, erosion of professional motivation, gaming of data, and deflection from less-
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favourable data (Shaw et al., 2015). Mathematics education is witnessing similar claims in the 

narrowing of curriculum, the possibility of wasted resources, the commodification of schools, 

oversimplified league tables, unsubstantiated comparison disregarding natural cohort variances 

(e.g., per school, per cohort, etc.), and questioning whether teachers core business is education 

or to fulfil political or neoliberal agendas (Klenowski & Wyatt-Smith, 2012; Serow et al., 2016; 

Thompson & Cook, 2014; Wu, 2010). Both fields have seen the upsurge of manipulated data, 

the media’s misguided attention, public “naming and shaming”, obsessive data overuse, and 

small-unit data analysis unfitting to its collection’s intent (O’Mahony, 2017; Klenowski & 

Wyatt-Smith, 2012; Serow et al., 2016; Singh & Shah, 2023). Serow et al. (2016) conclude that 

currently, “the value of mathematics to society is reflected in the extent to which it is externally 

accessed—that is assessed by agents external to the classroom and outside of the teachers’ 

control” (p. 239). Daliri-Ngametua and Hardy (2022) write how NAPLAN’s ‘performativity’ 

has resulted in the demoralisation of teachers, teacher dropout, and the ‘naturalisation’ of 

accountability discourses and ‘dataveillance’. Medical and health professionals from multiple 

countries share similar concerns about the consequences of directives and initiatives that fall 

short to statistical fallacies. The same could be said about NAPLAN, as other countries (like 

the US and the UK) have noted similar unintended consequences from their standardised testing 

regimes years before Australia initially decided to go down this path (Hursh, 2005). 

Examining the shared parallels between flawed measurement metrics in the medical field 

and NAPLAN demonstrates that the McNamara Fallacy exists within the landscape of 

mathematics education. Nevertheless, NAPLAN merely serves as a starting point. Other 

instances of the fallacy persist within conventional or widely accepted assessment structures in 

mathematics education. The following section aims to shed light on these additional examples 

for consideration. 

Applying the McNamara Fallacy to Mathematics Education Assessment 

The misleading logic of the McNamara Fallacy is evident within common assessment 

methods adopted in mathematics classrooms. This includes the tradition of mathematics exams 

that quiz students on fragmented mathematical content or selective mathematical activities yet 

are then used to form overarching conclusions about students’ mathematical capabilities (Watt, 

2005). Burtenshaw (2023) contends that such traditional approaches to mathematics learning 

and popular methods of data collection are possibly intertwined with deeply engrained beliefs 

or behaviourist ideologies, which suggest learning is achieved through the replication or 

reproduction of rules or procedures and demonstrated through performance that is “distinctly 

observable and objectively measurable” (p. 125). Objectivity continues to be a highly valued 

and widely acknowledged characteristic of reliable, “good” assessment (Watt, 2005; Shepard, 

2000; Zane, 2009). However, objectivity may not necessarily warrant the degree of emphasis it 

receives. Nonetheless, an inherent aspect of objectivity lies in its facilitation of straightforward 

measurement, achieved through established limits, defined properties, and reduced chances for 

subjective complexities. The marking of right and wrong answers to exam questions could be 

considered an easy method to measure learning, especially if the purpose of such questions is 

to determine whether a specific skill or chunk of knowledge is demonstrated. However, this 

approach to measuring mathematics learning only skims the surface of what mathematics is and 

broader mathematical capabilities. 

An inherent aspect of the McNamara Fallacy involves a cognitive bias wherein selected 

metrics are sufficient or appropriate enough to draw broad conclusions. This can be seen 

through narrow assessments like exams being relied upon too heavily to determine students’ 

overall mathematical proficiency. Watt (2005) found an astounding overreliance on written 

tests despite research participants also indicating how “traditional mathematics tests cannot be 

used to infer more general mathematical ability” (p. 23). Not only does this continue to 
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minimise what mathematics and mathematics learning entails, but the possible inaccuracies of 

such judgment formation can contribute to students’ beliefs about themselves and their 

mathematical abilities, reinforcing values, attitudes, and opportunities in life beyond the 

mathematics classroom (Nardi & Steward, 2003; Thanheiser, 2023). Yet, such judgments and 

measures are often collated into assigning grades on report cards. These codified A–E grades 

only further contribute to oversimplified measures that construct broad assumptions with far-

reaching effects. Clarke (1997) writes how grades are a “means of coding assessment 

information” and how the condensing and categorising into one single grade or score sacrifices 

the all-encompassed “detail that might contribute most constructively to the subsequent actions 

of teacher, student, or parent” (p. 65). Therefore, this also raises questions about whether the 

purposes of assessment are retained when afflicted by the McNamara Fallacy and if reporting 

structures might also be cultivating the McNamara Fallacy. 

In Australia, teachers of mathematics are legally required to report to the Australian 

Curriculum’s Achievement Standard for a student’s specific year level (Department of 

Education, 2023). The Achievement Standards identify what must be measured, and—viewed 

through the lens of the McNamara Fallacy—what is therefore important. However, the 

mathematics Achievement Standards underscore a predominant focus on the output of skills 

and content, characterised by a limited range of objective-inclined verbs. A preliminary 

comparison with Achievement Standards from the English curriculum, for example, hints at 

chances for experimentation, the incorporation of dispositions, fostering critical orientations, 

enabling student autonomy in the exploration of content and a broader array of verbs, some of 

which are not purely objective (ACARA, 2022a). The choice of words to describe an 

Achievement Standard could subliminally reinforce actions and beliefs that prompt certain 

forms of assessment to ascertain student mathematical ‘achievement’. For example, the verb 

‘experiment’ is within the Years 9 and 10 English Achievement Standards but not within the 

Mathematics Achievement Standard (ACARA, 2022b). Across all year levels’ Achievement 

Standards for Mathematics, the verb ‘experiment’ is only stated once within the Year 3 

Achievement Standard. 

Long since industrialised approaches to mathematics learning were the only option, 

cognitive science and mathematics education research has repeatedly found the importance of 

constructivist, explorative and meaning-making approaches to learning mathematics (Shepard, 

2000; Thanheiser, 2023). This includes similar themes of experimentation, problem-solving, 

critical thinking, learning in communities of practice, and the impact of attitudes and 

dispositions (Thanheiser, 2023). These traits and characteristics of mathematics learning denote 

more complexity in thinking and acting and, therefore, more complexity in determining or 

assessing such learning. Teachers may find embedding research-informed pedagogical 

practices that require more complex and creative approaches to mathematics assessment more 

challenging if these approaches are not adequately represented in the wording of the 

curriculum’s Achievement Standards. Here, we observe the potential effects of McNamara’s 

Fallacy, which suggests “what can’t be measured easily really isn’t important” or does not exist. 

Mathematics education needs to move on from such flawed prioritisation of the easy-to-

measure metrics to consider more accurate and more holistic alternative approaches to 

assessment. 

Conclusions and Implications for Mathematics Education 

Clarke (1997) writes how “assessment should model the mathematical activity we value” 

(p. 8). Mathematics is seldom performed in isolation without context, nor rarely is mathematics 

beyond the classroom approached in a singular way with a singular outcome—or alternatively, 

easy solutions for easy problems. Assessment—formative or summative—should be seen as 

the opportunity to gauge how well students can handle the messy, ill-structured real world in 
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novel yet relevant ways, instead of atomised knowledge and decontextualised behaviours 

(Clarke, 1997; Zane, 2009). Therefore, it seems fit that measures of mathematics learning 

should be complex enough to capture the complexities of student thinking and acting. That is 

not to say such an assessment does not exist. There are many examples of good assessment 

practices in mathematics that measure the complexities of mathematical learning and qualitative 

elements of performance. This could include the MCTP Assessment Alternatives in 

Mathematics book written by David Clarke and published as part of the Mathematics 

Curriculum and Teaching Program (MCTP) in the 1980s. The Language of Functions and 

Graphs package was developed by the Shell Centre for Mathematical Education in Nottingham 

around the same time. These assessment examples allow for the complexities of mathematics 

learning to be captured. Clarke (1997) writes how, in the process of assessment, it is “the 

students’ responsibility to demonstrate understanding and the teacher’s responsibility to 

provide the opportunity and the means for that demonstration” (p. 24). However, we need to 

consider the barriers preventing this, such as the mathematics education assessments’ 

susceptibility to the McNamara Fallacy. 

The McNamara Fallacy plays a role within mathematics education assessment, and the 

ramifications stretch far beyond assessment, such as the worth placed on measurement and 

metrics, the illustration of values and the portrayal of messages—explicit or hidden. For 

example, suppose the selection of mathematical content and the methods of measuring content 

are grounded purely by the logical preference to measure what is easy to measure (or not). In 

that case, this communicates many hidden messages to students about mathematics, the 

classroom and mathematics education. Furthermore, narrow metrics provide narrow 

opportunities for success and narrow perceptions of success in mathematics education. Narrow 

opportunities and perceptions of success play a role in students’ developing beliefs about 

themselves and their mathematical abilities, reinforcing values, attitudes, and opportunities in 

life beyond the mathematics classroom (Nardi & Steward, 2003; Thanheiser, 2023). 

Assessment methods, such as exams and standardised testing, have their place in the 

education system’s toolkits. However, the misuse and overconfidence in the measures and 

consequential data is a problem. We need to remind teachers that they have agency in their 

classrooms, and good examples of assessment practice will reveal the valuable and valued 

thinking that students do. But, for these alternatives to be considered, we must also become 

comfortable calling out the status quo and flawed statistical decision-making, such as what the 

McNamara Fallacy describes. As Thanheiser (2023) notes, this may include “dismantling 

structures that impede student success and participation rather than setting achievement, or lack 

thereof, at the feet of students” (p. 6). What is normalised is not necessarily right. 
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This paper reports changes in the extent to which a group of Year 11 students used 

a Computer Algebra System (CAS), pen-and-paper (P&P), or a combination of both, 

when solving routine problems across seven months in four different topics. Comparing 

the frequency of CAS use across topics shows students made greater use of CAS in the 

topics of Linear, quadratic, and cubic functions and Exponential and logarithmic 

functions than in the topics of Trigonometry and circular functions and Calculus. These 

differences suggest that students either made different choices about the use of CAS in 

these topics or used CAS less frequently as they gained experience with CAS. 

Students with access to a Computer Algebra System (CAS) need to make effective decisions 

about when to use CAS, pen-and-paper (P&P), or a combination of both, when solving 

mathematics problems (Pierce, 2001). These decisions could be based upon considerations such 

as their perceptions of the speed of CAS, the difficulty of the problem, and their P&P facility 

(e.g., Ball & Stacey, 2005). However, making effective choices about the use of CAS can be 

problematic for students who are new to working with CAS (Thomas et al., 2004). Despite this 

difficulty, few studies (e.g., Guin & Trouche, 1999; Orellana, 2016) have explored how 

students’ choices about the use, or non-use, of CAS change as they gain experience. 

For the students in this study, technology (i.e., a handheld CAS) was to be embedded into 

the teaching, learning, and assessment of mathematics (VCAA, 2015). Consequently, students 

needed to make decisions about when the use of CAS would be useful for supporting their 

learning of mathematics and solving of problems. This paper builds upon existing literature by 

exploring changes in students’ use, or non-use, of CAS across seven months in one school year. 

Literature Review 

Artigue (2002) uses theory of instrumental genesis to explain how an artefact is transformed 

into an instrument through the dual processes of instrumentation and instrumentalisation. An 

artefact describes an object that can be used as a tool to complete tasks (e.g., a calculator, pencil, 

or algebraic symbol), while an instrument is “… a mixed entity, part artefact, part cognitive 

schemes” (p. 250). These cognitive schemes, formed through the instrumentation process, link 

an individuals’ mathematical thinking and their gestures, where gestures describe the actions 

(i.e., functions used, buttons pressed) that are used to complete a given task (Trouche, 2005). 

The development of these schemes requires (i) technical understanding of how the technology 

can be used (e.g., knowing there is a Solve command that can solve equations); 

(ii) understanding of the affordances of the technology (e.g., CAS can perform routine 

calculations quickly and thus save time); and (iii) understanding of the constraints of the 

technology. Together, these understandings shape the use of an instrument. 

The instrumental genesis of CAS has been described as a “time consuming and lengthy 

process” (Bukhove & Drijvers, 2010, p. 48), as students need to develop new cognitive schemes 
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that allow them to complete tasks, while also considering how CAS should be used (Trouche, 

2005). Through instrumentation, schemes are either developed personally or adopted from pre-

existing social schemes, such as uses demonstrated by a teacher or peer (Artigue, 2002). While 

there can be a social element to instrumental genesis, the overall development of schemes and 

techniques is unique to an individual (e.g., van Dijke-Droogers et al., 2021). Consequently, 

different students may make different choices about whether to use CAS based on their 

cognitive schemes, knowledge of techniques, technical facility, and understanding of 

affordances and constraints of CAS. 

When working with CAS, students can experience an “explosion of possible techniques” 

(Artigue, 2002, p. 260) that can be used to complete tasks due to the availability of a range of 

CAS techniques that can be added to existing P&P techniques. Where multiple techniques are 

available, students select one based on their evaluation of the pragmatic and epistemic value 

assigned to each technique (Artigue, 2002). In the early stages of instrumental genesis, some 

students tend to favour the use of CAS rather than P&P (Guin & Trouche, 1999). As students 

progress through instrumental genesis, they become more selective in their use of CAS and 

reintroduce P&P techniques (Guin & Trouche, 1999). The reintroduction of P&P techniques, 

and subsequent need to choose between CAS or P&P, requires judicious use of CAS which 

involves consideration of the effectiveness of CAS approaches for solving problems and 

making effective choices about the use of CAS based on these considerations (Pierce, 2001). 

Several studies have explored students’ CAS use from a range of perspectives. Analysis of 

self-reported frequency of CAS use suggests that students believe they frequently use CAS in 

class (Kissane et al., 2015; Orellana, 2016). Analysis of actual CAS use, through asking 

students to indicate where CAS has been used to perform a calculation, identified different ways 

that students used CAS when solving calculus problems (Thomas & Hong, 2005) and analysis 

of written responses to selected examination problems suggested that Year 12 students 

frequently used CAS to complete problems involving routine procedures (Ball, 2015). While 

these studies provide important insights into how students use CAS, existing studies were 

conducted in the context of a single unit of work (e.g., Thomas & Hong, 2005), with a single 

cohort of students who were experienced with CAS (e.g., Ball, 2015), or from different cohorts 

with different levels of experience (e.g., Orellana, 2016). These studies provide insight into how 

students use CAS in a particular topic, or how their frequency of CAS use changes with 

experience. This study builds on this literature by investigating whether students make different 

choices about the use of CAS when completing problems in different topics. 

The research question for this study is: For Year 11 Mathematics students, how does their 

frequency of CAS use differ across the topics of: (i) Linear, quadratic, and cubic functions; 

(ii) Exponential and logarithmic functions; (iii) Trigonometry and circular functions; and 

(iv) Calculus? In this paper, “CAS” refers only to the symbolic functionalities of a CAS 

calculator and “P&P” refers to the completion of a calculation using mental or pen-and-paper 

procedures. 

Methodology and Research Design 

The participants for this study were the students (𝑛 = 13) of a single Year 11 Mathematical 

Methods (VCAA, 2015) class in a suburban school in Victoria, Australia. The school was 

selected for the larger study as students were not required to use CAS prior to Year 11. This 

provided a suitable context for a larger study which investigated changes in CAS use in different 

topics (reported here) and as students gained experience with CAS (see Cameron, 2023). All 

students were novice CAS users with eight not using CAS prior to Year 11, and the remaining 

five making limited use of CAS prior to Year 11. Data were collected through four worksheets, 

completed across a period of approximately seven months in one school year, to determine how 

CAS use differed with experience and across the four major topics studied (see Table 1). All 
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students used a Texas Instruments (TI) Nspire CX series CAS calculator. The use of CAS was 

supported by the teacher who had extensive experience in teaching mathematics with CAS. 

Table 1 

Worksheet Topics and Timing of Data Collection 

Worksheet Topic Date of data collection 

1 Linear, quadratic, and cubic functions Week 5 of Term 2 

2 Exponential and logarithmic functions Week 5 of Term 3 

3 Trigonometry and circular functions Week 2 of Term 4 

4 Calculus Week 6 of Term 4 

Development of Worksheets 

Four worksheets were developed (i.e., one per topic). The lead author developed worksheet 

items based on a review of curriculum documents and student textbooks; these items were 

reviewed by co-authors and the teacher. Items were predominantly routine and reflected the 

content that students had been learning in class. Worksheets included both problems where 

students could choose between CAS or P&P and others where it was expected that students 

could only solve the problem with CAS (i.e., where problems were outside the expected pen-

and-paper range of students). The latter type of problems enabled investigation of the types of 

features of CAS used by students when solving problems within or outside the anticipated range 

of their P&P skills; this analysis is reported in Cameron (2023). Students completed the 

worksheets, under test conditions, at the conclusion of each topic. Students could choose to use 

CAS (or not) when completing items on each worksheet. 

Collection of CAS Screenshots 

While students were completing the worksheets, the TI Navigator system was used to record 

screenshots of the display of each student’s CAS calculator (see Figure 1). The use of the 

Navigator system required the provision of a TI Nspire CX CAS calculator on each student’s 

desk as the researcher needed to setup the Navigator system prior to students commencing the 

worksheet. While the provision of a calculator on the desk may have prompted CAS use, 

overall, this method was non-intrusive as it did not interfere with students’ usual ways of 

working with CAS. Students were asked not to delete or clear any calculations so the researcher 

could download and review their CAS use following completion of the worksheet in the case 

where the Navigator system failed (as occurred when collecting data for Worksheets 2 and 3). 

Figure 1 

A Screenshot of a Student’s CAS Display Collected With the Navigator System 
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Analysis of Worksheet and Screenshot Data 

In the initial phase of analysis, written responses recorded on the worksheets and data 

collected from screenshots were analysed independently. Each student’s written response for 

each worksheet item was analysed using Ball’s (2015) indicators of CAS use. The indicators 

enabled CAS use to be inferred based on the appearance or absence of specific features in the 

written response (e.g., the appearance of CAS syntax, the absence of anticipated P&P working). 

This provided initial categorisation for each solution (Table 2). CAS screenshots were then 

reviewed for each student to identify evidence of a calculation being attempted with CAS (e.g., 

the use of CAS to solve in Figure 1). Following these independent analyses, evidence of CAS 

use in written responses and screenshots were compared for each student and for each problem 

to code the student’s approach to the problem as one of five calculation methods (see Table 2). 

Figure 2 provides an example of this analysis. This comparison provided a form of methods 

triangulation which serves to support the credibility and trustworthiness of the findings reported 

here (Hastings, 2014). Following coding of each students’ approach to each problem on each 

worksheet, the frequency, and percentage for each calculation method for all students on each 

worksheet were calculated; this enabled differences in use or non-use of CAS to be identified. 

Table 2 

Description of Calculation Methods 

Calculation method Description 

CAS only A written response was/was not provided 

There are indicators of CAS use in the written response and/or screenshots 

provide evidence of CAS use 

No intermediate P&P working was recorded 

CAS with P&P A written response was provided 

There are indicators of CAS use in the written response and/or screenshots 

provide evidence of CAS use 

Intermediate P&P working was recorded 

P&P A written response was provided 

There are no indicators of CAS use in the written response 

Screenshots do not provide evidence of CAS use 

Intermediate P&P working was recorded 

Graphical A written response was/was not provided 

There are no indicators of CAS use in the written response 

Screenshots provide evidence that graphical functionalities were used 

No data A written response was not provided 

Screenshots do not provide evidence of CAS use 

Figure 2 

An example of ‘CAS only'. Although a Written Response is Provided, the Absence of Intermediate 

Working Suggests CAS was Used; This was Confirmed With the CAS Screenshot 
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Results and Discussion 

Table 3 provides the frequency and percentage of the calculation methods evident in 

students’ approaches to the problems on each worksheet. In the first worksheet, 190 instances 

of CAS only were identified, and this is 56% of the total 338. Combining the top two rows for 

Worksheet 1 gives a total of 75% for CAS [Total], as shown in the last row. Comparing the 

percentage of CAS [Total] across the four worksheets provides a broad understanding of how 

students’ CAS use changed across the four worksheets. Despite the different topics, the 

frequency of CAS use was similar for problems from the topics of Linear, quadratic, and cubic 

functions and Logarithmic and exponential functions (75% cf. 73%). In contrast, CAS was used 

less frequently when completing problems from Trigonometry and circular functions and 

Calculus (19%, 27% respectively). The decreased percentage of CAS [Total] in the topics of 

Trigonometry and circular functions and Calculus is explained by an increase in the frequency 

of P&P only on these worksheets compared to the other two topics. Overall, this broad analysis 

suggests students less frequently used CAS as they gained experience, however, as discussed 

below, this change may be a result of the different topics. When comparing the frequency of 

calculation methods across worksheets, it is important to note the increased percentage of No 

data for Trigonometry and circular functions and Calculus. Many of these increases are 

attributable to student absences (rather than students not attempting problems) as two students 

did not complete Worksheet 3, and one did not complete Worksheet 4, so all calculation 

methods in these topics are underreported. Further, there was an unavoidable delay between 

students studying Trigonometry and circular functions and completing the worksheet; this delay 

may have resulted in an increased incidence of students not completing the more challenging 

problems due to a loss of proficiency. 

Table 3 

Summary of Calculation Methods for Four Worksheets 

Calculation 

method 

1. Linear, 

quadratic, and 

cubic functions 

(𝒏𝟏 = 𝟑𝟑𝟖) 

2. Logarithmic 

and exponential 

functions 

(𝒏𝟐 = 𝟏𝟖𝟐) 

3. Trigonometry 

and circular 

functions 

(𝒏𝟑 = 𝟐𝟔𝟎) 

4. Calculus 

 
 
(𝒏𝟒 = 𝟏𝟗𝟓) 

CAS only  190 (56%) 101 (55%) 50 (19%) 19 (10%) 

CAS with P&P 64 (19%) 33 (18%) 0 (0%) 33 (17%) 

P&P only 53 (16%) 41 (23%) 116 (45%) 105 (54%) 

Graphical 0 (0%) 4 (2%) 2 (1%) 1 (0%) 

No data 31 (9%) 3 (2%) 92 (35%) 38 (19%) 

Total 338 (100%) 182 (100%) 260 (100%) 195 (100%) 

CAS [Total] 254 (75%) 134 (73%) 50 (19%) 52 (27%) 

Note. 𝑛 is calculated by multiplying the number of items on a worksheet by 13. CAS [Total] is the sum of CAS 

only and CAS with P&P. Shading indicates the modal calculation method. 

There are two different perspectives which may explain the variation in frequency of CAS 

use evident across the four worksheets, either (i) the mathematical content of each worksheet, 

or (ii) increased experience with CAS. 

Potential Influence of the Mathematical Content of Each Worksheet 

Differences in the frequency of CAS use across the four worksheets suggested that the 

topics Linear, quadratic, and cubic functions and Exponential and logarithmic functions (i.e., 

Worksheets 1 and 2) may have had more opportunities to use CAS than Trigonometry and 

circular functions and Calculus (i.e., Worksheets 3 and 4). All worksheets were designed to 



Cameron, Ball, & Steinle 

132 

allow students to choose between CAS and P&P for all items, so the reduced frequency of CAS 

use on Worksheets 3 and 4 did not stem from the design of the worksheets. 

A teacher’s choices about the use of CAS or P&P, including the bounds placed around 

student CAS use, can impact student CAS use (Kendal & Stacey, 2001). Therefore, if the 

teacher made different choices about how they and the students should use CAS in different 

topics, it could be expected that students would make different choices about how and when to 

use CAS on each of the four worksheets. Although data were not collected from the teacher, 

students described the teacher demonstrating CAS features and supporting CAS use throughout 

the study (Cameron, 2023), so it is unlikely that different choices made by the teacher caused 

the differences observed on the worksheets. 

Each of the topics studied by students required the learning and use of a range of different 

CAS commands and syntax. Learning how to use CAS commands and syntax can present 

barriers that impact students’ CAS use. For example, Meagher (2012) reported students who 

avoided the use of CAS due to anxiety caused by difficulty in navigating and using CAS 

commands. Different topics may present different difficulties for students, with Pierce (2001) 

reporting that university students more frequently experienced difficulties with CAS when 

studying trigonometry than for other topics. Considering Meagher’s and Pierce’s findings, it is 

possible that the students in this study found the use of CAS more difficult in the topics of 

Trigonometry and circular function and Calculus (two topics that were new to students), and 

thus used CAS less frequently on these worksheets to avoid these difficulties. 

Cameron et al. (2023) reported the students’ beliefs about useful features of CAS (as part 

of a larger study). These beliefs reflected their overall experiences of working with CAS as 

a tool for the everyday learning of mathematics and many students believed that CAS was 

useful in mathematics across the study. Approximately half of the students believed that it was 

easier to use CAS than P&P to solve problems (5 of 11 at the start of the study cf. 7 of 11 at the 

end), so it is unlikely that students experienced greater difficulties when completing problems 

with CAS in Calculus compared to Linear, quadratic, and cubic functions. Overall, this suggests 

that the mathematical content of the worksheets did not influence students to make different 

choices about the use of CAS when solving problems from different topics. 

Potential Influence of Experience on Frequency of CAS Use 

An alternative explanation for the decreased frequency of CAS use on Worksheets 3 and 4 

compared to Worksheets 1 and 2 is that students less frequently used CAS as they gained 

experience with CAS. It was expected that the P&P facility of these students would increase 

throughout the study as the development of P&P skills features explicitly in the outcomes of 

MM, with several key skills for Units 1 and 2 specifying the use of ‘by hand’ approaches 

(VCAA, 2015). Hence, a decrease in the frequency of CAS use could be expected as students 

develop facility with P&P skills. We also anticipated an increase in CAS facility throughout the 

study as students learnt more about CAS and how it could be used. Through the process of 

instrumental genesis, students are expected to become more selective in their choice of 

techniques (Artigue, 2002). As students gain experience with CAS and progress through the 

instrumentation process, they reintroduce P&P techniques despite displaying a propensity for 

working with CAS in the initial phase of the instrumentation process (Guin & Trouche, 1999). 

The reintroduction of P&P techniques may result in a decrease in the frequency of CAS use. 

The differences reported here suggest that, for many students, this change occurred 

approximately six months after commencing learning mathematics with CAS. 

Students’ Limited Use of CAS with P&P 

Another trend event in the data was the comparatively infrequent use of CAS with P&P 

when compared to CAS only or P&P only in all topics except Calculus. The CAS with P&P 
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calculation method involved the use of both CAS and P&P when completing a problem (see 

Figure 2). These approaches are reported to be less common than the use of only CAS or P&P 

methods (Thomas & Hong, 2005; Weigand & Weller, 2001). Results from Worksheets 2 and 3 

are consistent with the findings of Thomas and Hong (2005) and Weigand and Weller (2001), 

as CAS with P&P was evident in a smaller percentage of approaches than CAS only and P&P 

only (18% cf. 55% and 23% for Worksheet 2; 0% cf. 19% and 45% for Worksheet 3). However, 

results from Worksheets 1 and 4 provide a contrast with both CAS with P&P and P&P only 

evident in a similar percentage of approaches on Worksheet 1 (19% cf. 16%), and with CAS 

with P&P evident in a greater percentage of approaches than CAS only on Worksheet 4 (17% 

cf. 10%). It is important to note that few items, except for some on Worksheets 1 and 4, required 

the application of more than one mathematical procedure, so it was difficult for students to 

concurrently use CAS and P&P when completing a problem. Overall, when excluding 

Worksheet 3, CAS with P&P accounted for approximately one-fifth of approaches to problems 

on each worksheet, which contrasts with Weigand and Weller’s finding that use of an 

“integrated working style” is “rare” (p. 99). In many cases, responses categorised as CAS with 

P&P reflect students completing a problem with P&P and using CAS to check their answer 

(Cameron, 2023), so CAS and P&P were used independently as students completed a problem. 

Conclusion 

In summary, CAS only was the most frequently identified method in students’ responses to 

problems on Linear, quadratic and cubic functions and Exponential and logarithmic functions, 

while P&P only was the most frequently identified method for Trigonometry and circular 

functions and Calculus. This change corresponded with a reduction in the frequency of CAS 

use (as evidenced by a reduction in the percentage of CAS [Total] on Worksheets 3 and 4 when 

compared to Worksheets 1 and 2) and suggested a change from preferencing the use of CAS to 

the use of P&P. The most likely explanation for the differences in the frequency with which 

CAS was used on the worksheets was that students were becoming more selective in their CAS 

use as they progressed through the instrumentation process rather than due to the topic being 

studied. Guin and Trouche (1999) reported that students in the first phase of instrumental 

genesis often demonstrate a dependence on CAS, prior to the second phase where P&P methods 

are reintroduced and there is less reliance on CAS. In contrast to what was expected, students 

did not demonstrate a prolonged dependence on CAS, with the use of P&P calculation methods 

being more common than CAS within approximately six months of commencing to learn 

mathematics with CAS. 

Prior studies have reported either increases in frequency of CAS use with experience 

(Weigand & Bichler, 2010) or no relationship between frequency of CAS use and experience 

(Orellana, 2016). In contrast, this study found a decrease in CAS use as students gained 

experience. Although there might be a concern that students working with CAS defer to CAS 

for solving all problems, rather than make choices about use of CAS or P&P, the results 

presented here show that for the small sample of 11 students in this study this concern would 

be unwarranted. Further research could investigate whether the results presented here, where 

use of CAS decreased as students developed P&P facility, was a wider phenomenon and 

applicable to other cohorts. 
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In their daily work teachers are responsible for several complex tasks; might AI be 

harnessed to support teachers in the challenging work of planning lessons? In this paper 

we investigate the use of an AI tool, namely ChatGPT, to generate a lesson plan that 

may be of use to teachers in their planning. A carefully worded prompt, informed by 

research, was used to generate four lesson plans for the teaching of division of fractions 

to students in years 7 or 8. We analysed the plans’ structures and encoded practices. AI-

generated lesson plans appeared suitable for identifying what should be taught but 

lacked detail of practices that support teachers to teach meaningfully. 

Generative Artificial Intelligence (AI) tools (e.g., OpenAI ChatGPT, Google Gemini) have 

the potential to revolutionise teaching and learning through their capacity to generate a range 

of text types in a matter of moments (Sabzalieva & Valentini, 2023). When considering 

educational contexts, AI can be assigned a range of roles. AI can act as a ‘guide on the side’ 

when used to support teachers in the generation of classroom materials and advise on the 

learning sequence of specific concepts. AI can also act as a ‘co-designer’ of teaching materials 

when prompted to provide input into the design of curriculum materials (Sabzalieva & 

Valentini, 2023). Given the significant workload associated with the development of teaching 

materials (Hunter & Sonnemann, 2022), and the desire from teachers to have more time for 

lesson planning rather than using stock lesson plans (Stacey et al., 2023), the use of AI to 

generate teaching materials, including lesson plans, may be beneficial to teachers. We posit that 

teachers might be able to develop a lesson plan efficiently through using AI to develop a draft 

that is then refined for use in their classroom. 

Although AI can generate a range of materials to support teaching and learning, the 

classroom teacher remains the expert in selecting instructional materials for use in their class. 

Often, teachers’ choices are based on their pedagogical alignment with the content or focus of 

the instructional materials (Remillard, 2005). However, AI tools may be likened to a ‘black 

box’ where users cannot see or understand how outputs were generated, or the choices that 

resulted in a given output (Bearman & Ajjawi, 2023), thus potentially making it difficult for 

teachers to identify the pedagogies that informed the AI output. This paper reports a preliminary 

attempt to identify the preferred pedagogical practices of a generative AI tool. 

Literature Review 

Working with AI 

AI tools use large language models to learn from a range of training material to complete 

tasks as requested by an end user. In the case of ChatGPT, the model has been trained on a 

range of material that is either publicly available on the internet, licenced from third parties, or 

provided by users and human trainers (Open AI, n.d.). Given the range of publicly available 

online teaching resources, we expect that this training material has captured an extensive array 

of lesson plans, curricula, and teaching materials. By analysing these data and identifying word 

associations, AI tools can generate text in response to a request by a consumer. 

mailto:scameron@unimelb.edu.au.smith@utopia.edu.au
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Generative AI tools produce text in response to a stimulus. The output contains “a 

judgement about an optimal course of action” (Bearman & Ajjawi, 2023, p. 1160) informed by 

the content of the training material. Given the complexity of the algorithms that result in such 

outputs, Bearman and Ajjawi argue that the decisions that underpin this course of action cannot 

be observed by the end user. Consequently, it is left to the consumer to develop an approach 

for working with AI tools. This view is shared by the Commonwealth of Australia (2023) who 

recognise the role of teacher expertise in using generative AI tools to support and enhance 

teaching and learning; teachers (and not AI) are recognised as the subject matter experts within 

the classroom. When working with AI, teachers will need to familiarise themselves with its 

potential affordances and constraints before they are able to capitalise its use (Su & Yang, 

2023). This familiarisation involves new knowledge, such as the development of effective 

prompts for different tasks, and critical skills for interpreting and refining AI outputs 

(Commonwealth of Australia, 2023). The establishment of an evidence base, critical in 

supporting the work of teachers in using AI, is currently lacking across a range of educational 

contexts (Su & Yang, 2023). The preliminary work reported in this paper aims to assist teachers 

in understanding and interpreting AI-generated lesson plans. 

Teachers as Pedagogical Experts 

Alexander (2008) defines pedagogy as the act of teaching and connects this practice with 

discourses of educational theories, values, and evidence, “It is what one needs to know, and the 

skills one needs to command, in order to make and justify the many different kinds of decisions 

of which teaching is constituted” (p. 47). Shulman (1987) agrees that expert teaching is 

characterised by careful management of students and of ideas within classroom discourse. 

Together, these descriptions of teaching practice highlight the complexity of classroom 

practices where educational objectives are mitigated by specific skills and knowledge that are 

necessary requirements for the act of teaching. Alexander’s metaphorical description of 

pedagogy as a “deep pool” (2015, p. 253) recognises the inherent challenge of capturing and 

defining these classroom practices that enable and support both teaching and learning processes. 

Teachers develop sophisticated practices that represent the accumulated ‘wisdom’ of their 

professional experiences in the classroom (Shulman, 1987). We understand that this 

pedagogical expertise is formed, refined and powerfully influenced by one’s experiences as 

learners (Schweisfurth, 2015), as teachers (Shulman 1987), and the professional practical 

experience in training developed to strengthen novices understanding of the nexus between 

theory and the practice of teaching (Darling-Hammond, 2017). 

In contrast, the expected practices evident in AI generated lesson plans will be drawn from 

existing text-based resources and will be detached from any experiential learning. 

Consequently, there may be a disconnect between the pedagogical practices of AI and the 

pedagogical practices of an experienced classroom teacher. 

Research Design 

The following research question drove the preliminary research presented in this paper: 

• What pedagogical practices are preferenced by ChatGPT in the development of lesson 

plans relating to the division of two fractions? 

Rationale for Choice of AI Tool and Lesson Focus 

ChatGPT was selected as the AI tool for this study as it is freely available and accessible to 

teachers. ChatGPT continues to be the most frequently visited AI tool on the internet 

(Similarweb, n.d.), thus suggesting that ChatGPT would be the most likely AI tool of choice if 

teachers were to use AI tools to support their lesson planning. 



What kind of mathematics teacher is ChatGPT? 

137 

Division of fractions was chosen as the context for this preliminary research as this area of 

the curriculum is considered difficult for students to learn, and challenging for teachers to teach 

(e.g., Siemon et al., 2015). Consequently, division of fractions presents as a suitable topic for 

this analysis as teachers are more likely to draw upon a range of resources to develop their 

teaching ideas and pedagogical content knowledge; AI presents as one such resource. 

Data Generation 

We used ChatGPT to prepare four lesson plans on the division of fractions. ChatGPT 

explains that its responses “can vary based on a variety of factors, including the context of our 

conversation, the details you provide in your questions, and any updates or changes to my 

training data” (OpenAI, 2024a). To account for this potential variation, the same prompt was 

used, and each lesson plan was requested in a different conversation. Lesson plans were 

generated on different days to allow for any differences in updates or training data to become 

apparent as it was expected that these changes may shift the preferred practices of ChatGPT. 

Preliminary research by Spasić & Janković (2023) has explored how the structure of the 

input prompt shapes the quality of the generated lesson plan. Informed by their findings, we 

developed a prompt (see Figure 1) which specifies a role for ChatGPT and includes 

instructions and seed words. The inclusion of a role, instructions and seed words results in the 

generation of a lesson plan that is more detailed than if any of the three elements of the prompts 

are absent. 

Figure 1 

Prompt Used to Generate Lesson Plans 

 

Coding of Lesson Plans 

Four lesson plans were generated using the prompt in Figure 1. We used findings from The 

International Classroom Lexicon Project (Mesiti, Artigue, et al., 2021) that identified a set of 

pedagogical terms, the Australian Lexicon, which teachers use to describe the practices of 

mathematics classrooms (Mesiti, Hollingsworth, et al., 2021). When offered the 61 terms from 

the Australian Lexicon, 52 Victorian mathematics teachers were asked to reduce the terms to 

‘ten essential terms’ (Mesiti et al., 2019). The responses were sorted according to frequency 

and a set of 15 terms were identified: Assessment, Demonstrating, Differentiating, Engaging, 

Feedback, Formative Assessment, Group Discussion, Group Work, Modelling, Practising, 

Questioning, Reasoning, Reflecting, Scaffolding and Worked Example. Each of these 

pedagogical terms have been operationalised with a short description, examples, and non-

examples elsewhere (Mesiti et al., 2021b). These 15 terms were adopted as codes for the AI-

generated lesson plans. The lesson plans that were generated in response to the prompt listed 

general ‘instructions’ under organisational headings. For example, the ‘Warm Up’ for Lesson 

Plan 1 stated: 

• Review the concept of multiplying fractions briefly; 

• Ask students to solve a multiplication problem involving fractions, such as 
2

3
×

3

4
; 

• Discuss the steps involved in multiplying fractions (OpenAI, 2024b). 
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For two of the lesson plans, each instruction was coded by both researchers as they 

negotiated their understanding of the pedagogical terms. The other two lessons were coded 

independently. Coding was determined by the alignment of text from the lesson plan with the 

operationalised definition of the terms. For example, “Ask students to solve a multiplication 

problem involving fractions” was coded as Questioning and Practising. 

Results and Discussion 

The following sections report the results of two analyses related to the structure of, and 

pedagogical practices evident in, the four AI-generated lesson plans. 

Lesson Plan Structure 

The structure of each of the four lesson plans, determined from the section headings from 

the generated responses, is summarised in Table 1. 

Table 1 

Lesson Structure Headings in AI-Generated Lesson Plans 

Heading  Lesson plan 1 Lesson plan 2 Lesson plan 3 Lesson plan 4 

Pre-

lesson 

plan 

headings 

 Title Topic  

 Grade level Grade level  

 Subject Subject  

 Duration Duration  

Objective Objective Objective Objective 

Materials needed Materials Materials needed Materials needed 

Lesson 

plan 

headings 

Warm up Warm up   

Introduction to 

division of fractions 

Introduction Lesson introduction Introduction 

   Reciprocal fractions 

 Direct instruction  Example problems 

Guided practice Guided practice Guided practice Guided practice 

Independent practice Independent practice Independent practice Independent practice 

Real-world 

application 

 Real-world 

application 

 

Closure Closure Closure Closure 

Post-

lesson 

plan 

headings 

Extension activity Extension (optional) Extension Extension activity 

(optional) 

Assessment Assessment Assessment Assessment 

Differentiation Differentiation Differentiation Differentiation 

  Integration  

Homework Homework  Homework 

Reflection   Reflection 

While the AI lesson plans appear to adhere to a structural formula, particularly in the pre- 

and post-lesson sections, there is some variation in the sequence and content of the main body 

of the lesson plan. The provision of objectives aligns with the advice to teachers about the 

importance of establishing and providing learning goals that define for students the purpose of 

the lesson and desired achievements (e.g., State of Victoria, 2017). Where a warm up was 

provided, these focussed on a review of multiplication of fractions, thus incorporating the 

practice of connecting to prior knowledge which has been shown to support learning (Lovitt & 

Clarke, 2011). Common to all lesson plans were introductions focussed on reviewing the 
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concept of fractions and/or division. For example, particular emphasis was given to division of 

whole numbers in Lesson Plan 4 (LP4), and conceptual understanding of division in LP3. In 

contrast, LP1 and LP2 focussed on explaining how fraction division is similar to multiplication, 

albeit with a “slight twist” (LP2). 

All four lesson plans outline a step-by-step approach for the division of two fractions, 

namely, the common rule ‘invert and multiply’ (Davis & Pearn, 2009). This approach was 

included in the introduction (for LP1 and LP3), in a section named direct instruction (for LP2), 

and in a section named reciprocal fractions (for LP4). Similarly, the inclusion of example 

problems in LP4 is encapsulated within the guided practice sections of the other lesson plans. 

These two examples suggest a default in the pedagogical approaches generated by ChatGPT 

despite the different language expressions and structures of the lesson plans. The inclusion of 

example problems and guided practice is consistent with the identification of worked examples 

as an important teaching strategy (e.g., State of Victoria, 2017) and reflects research findings 

that highlights the common use of worked examples in the mathematics classroom (Große, 

2015). Notably, only LP1 and LP4 specified the examples that should be used (
2

3
÷

1

4
 in LP1; 

1

2
÷

1

4
 in LP4). The absence of several worked examples in these lesson plans, possibly a 

ChatGPT default, indicates a significant aspect of the lesson plan which would require teachers 

to draw upon their expertise and understanding of the affordances of worked examples (e.g., 

Chick, 2007) before delivering the lesson. Indeed, the example offered to illustrate division of 

fractions in LP1, is not necessarily an example that would be used by an expert teacher in the 

very first instance (see also Davis & Pearn, 2009). 

The inclusion of post-lesson materials was unprompted, and the consistency of structure 

again suggests a standard approach for the generation of lesson plans. In all lesson plans, the 

only evidence of extension and differentiation is in these post-lesson sections. 

Practices Evident in the Lesson Plans 

Table 2 and Figure 2 summarise the results of the coding of the four lesson plans against 

the essential terms of the Australian Lexicon, offering insight into the pedagogical practices 

preferenced in the development of these lesson plans. The most frequent code, Group 

Discussion (𝑛 = 36), reflects a significant proportion of instructions in the lesson plans that 

require either a whole classroom discussion or a teacher explanation. The instructions in the 

lesson plans are brief and do not identify an agent, so we were required to anticipate the most 

likely classroom activity and setting. Accordingly, it was assumed that such discussions and 

explanations would involve Reasoning, contributing to its high frequency (𝑛 = 25). 

Notwithstanding these, included in the lesson plans were specific instances where Reasoning 

was identified as the key code, “Encourage students to explain their reasoning as they solve 

each problem” (LP2). The frequency of codes Demonstrating (𝑛 = 13), Modelling (𝑛 = 11) 

and Questioning (𝑛 = 15), align with a pedagogical preference for the use of ‘explicit 

teaching’, a High Impact Teaching Strategy (State of Victoria, 2017), for classroom instruction 

of division of fractions. 

Practising, the third most coded essential term (𝑛 = 23), identifies student activity. 

Instructions coded against this essential term involved instructing students to complete 

problems, as well as those classroom activities where both the teacher and the students complete 

problems together. The appearance of this practice is consistent with the notion of ‘collaborative 

learning’; another High Impact Teaching Strategy (State of Victoria, 2017). 
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Table 2 

Number of Essential Terms Coded in AI-Generated Lesson Plans 

Essential terms Lesson plan 1 

(391 words) 

Lesson plan 2 

(298 words) 

Lesson plan 3 

(367 words) 

Lesson plan 4 

(406 words) 

Total 

Assessment 1 1 3 1 6 

Demonstrating 3 2 3 5 13 

Differentiating 2 3 3 4 12 

Engaging 0 0 0 0 0 

Feedback 2 2 2 3 9 

Formative 

Assessment 

2 2 1 3 8 

Group discussion 9 7 11 9 36 

Group work 2 0 0 1 3 

Modelling 2 1 4 4 11 

Practising 6 5 5 7 23 

Questioning 7 4 2 2 15 

Reasoning 11 7 4 3 25 

Reflecting 0 0 0 0 0 

Scaffolding 1 1 2 1 5 

Worked example 2 2 4 4 12 

Total 50 37 44 47 178 

Figure 2 

Number of Essential Terms Coded in AI-Generated Lesson Plans 

 

Notably all but three essential terms were present in all lesson plans (Engaging, Reflecting 

and Group Work). The practice of Engaging, defined as “A student is actively involved with an 

educational experience, whereby he/she acts to maintain or extend their contact with the 

stimulus (typically, in order to increase their knowledge of it)" (Mesiti et al., 2021b, p. 44), is 

likely perceptible from teacher/student and student/student interactions rather than from lesson 

plans documenting the scope and structure of a lesson. The practice of Reflecting, defined as 



What kind of mathematics teacher is ChatGPT? 

141 

“An activity in which students consider the effectiveness or progress of their learning (i.e., their 

developing knowledge, skills, and understandings)” (p. 49), was also absent, despite all lesson 

plans including a closure. The instructions related to the sections named closure generally 

involved reviewing and summarising what was covered in the lesson and assigning of 

homework. Group Work, whereby “Students work together to complete a given activity” (p. 45) 

was not evident in two of the four lesson plans. This absence may be due to the brevity of the 

lesson plans (ranging from 298 to 406 words) and although the instructions included in the 

lesson plans specified what should be taught, the how of teaching was more difficult to discern. 

Conclusion 

This paper sought to identify the pedagogical practices favoured by the AI tool, ChatGPT, 

when tasked with generating a lesson plan. The use of the fifteen essential terms (Mesiti et al., 

2019), a subset of the Australian Lexicon (Mesiti, Hollingsworth, et al., 2021), proved useful 

in providing a framework through which the AI-generated lesson plans could be coded, and 

aided in the identification of pedagogical practices present and preferenced in the four lesson 

plans. Further analysis using the 61 terms of the entire lexicon would enable a more detailed 

description of the pedagogical practices preferenced in ChatGPT outputs and, we expect, further 

highlight the important role of teacher expertise in refining and implementing AI-generated 

lesson plans. It is worth noting the impact of prompts on outputs. Further research could explore 

the impact of different prompts on the development of lesson plans and provide guidance to 

teachers so they may develop effective prompts that support the generation of a lesson plan 

with greater detail with respect to explanations, examples, and suitable problems. 

Despite slight differences in structure, the four lesson plans favoured the following 

pedagogical approach: key procedures or concepts are introduced, key steps and skills are 

demonstrated and illustrated with worked examples, and additional problems are set for 

students to complete. The key concept of ‘division of fractions’ was illustrated with the ‘invert 

and multiply approach’ separated from any meaningful representation. While this approach 

may be suitable in some contexts, it reflects a narrow view of the potential for mathematics 

teaching by appearing to favour traditional ‘telling’, stating of information or demonstrating of 

procedures (Smith, 1996), and practices for developing deep thinking, reflection and 

justification by students, remain absent. While several practices align with evidence-based 

approaches for teaching, these practices were general and did not incorporate evidence-based 

approaches that can support the learning of division of fractions (e.g., the use of a bar model; 

Yeap, 2011). The absence of such mathematical approaches, along with the absence of specific 

examples, explanations, and problems highlight the considerable expertise needed by teachers 

to refine and implement AI-generated lesson plans. In the case of lesson plans generated by 

ChatGPT, advice is provided for teachers on what to teach, but not how to teach it. 
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Leading primary school mathematics involves stimulating teacher learning for the 

purpose of improving students’ mathematical outcomes. Currently there are staff 

shortages and school mathematics leadership may have changed. The results of a semi-

structured interview with an experienced School Mathematics Leader who reflected on 

her work are reported here. She was asked about her “classroom work” and to describe 

her goals for mathematics learning. Fullan’s (2001) Framework for Leadership was 

used to shape conclusions to the study around: moral purpose, knowledge building and 

sharing, coherence making, understanding change and relationship building. 

We hypothesise that teachers learn “on the job” and, in fact, the job changes as societies 

change. The recent experiences of teachers during the pandemic have shaped and impacted on 

their teaching and on the learning of mathematics by students. The consequences of these 

experiences for the leaders of mathematics teachers are largely undocumented. This paper 

documents the views of a single leader as she reflected on her current work. 

The research literature notes that School Mathematics Leaders influence mathematics 

teaching and learning in classrooms and schools by improving teacher practice (Faragher & 

Clarke, 2014). These leaders are knowledgeable, on-site practitioners who support teachers in 

mathematics teaching with curriculum assistance, lesson planning, evaluation of student work 

and assessment (Campbell & Malkus, 2013). School Mathematics Leaders provide the 

necessary support for teachers to learn and develop high-quality teaching practices through on-

site, job-embedded professional learning opportunities (Gibbons & Cobb, 2017). Additionally, 

these leaders have the capacity to create positive, practical, and sustainable change and as 

curriculum leaders they play a key role in providing in-class support and professional learning 

related to mathematics content and pedagogy (Grootenboer et al., 2015). 

Authors of studies such as Ingvarson (2005) and Tharp and Gallimore (1989), have 

examined the types of support primary School Mathematics Leaders provide. Supportive 

techniques such as modelling, questioning, explaining, management strategies, feedback, 

demonstration lessons, professional readings and the “opportunity to observe effective 

examples and effective practitioners” (Tharp & Gallimore, 1989, p. 24) have been noted. Males, 

et al. (2010) also found that mathematics teachers benefited from the experiences of 

conversations focused on student learning and data. Further, Gibbons and Cobb (2017) listed 

activities leaders used to support teachers, including: working with groups of teachers, engaging 

in the discipline, examining student work, analysing classroom video, engaging in lesson study, 

and working with individual teachers by co-teaching, and by modelling instruction. 

While it is generally accepted that continuous professional learning is key to improving 

practice, it is important to understand ways in which teachers learn to develop and refine their 

teaching practice (Hollingsworth & Clarke, 2017). Teachers in several studies indicated the 

importance of support from School Mathematics Leaders in their classrooms (e.g., Butler et al., 

cited in Clarke et al., 2013). Supportive practices such as observation, modelling, and lesson 

debriefing were viewed as some of the most valuable components of teachers’ professional 

learning (Clarke et al., 2013). According to Ingvarson (2005) young teachers highly value the 

chance to see expert teachers at work and to get feedback from them about their own teaching. 

By working “shoulder to shoulder” the School Mathematics Leader can access and influence 

planning and teaching, model new practices, and provide informal feedback to teachers. 
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Leaders can create a protected environment where teachers feel confident to take risks and to 

learn. The intent of this study was to document details of a leader’s work in the current 

environment. 

Fullan (2001) claimed that ongoing improvement requires teachers and leaders work 

together as agents of change. The theoretical framework developed by Fullan (2001) and used 

to underpin large-scale reform of education in Canada and the United Kingdom and elsewhere, 

was used as a theoretical framework for the present study. In summary, the framework 

involving leaders is described as having five core components. These components include 

moral purpose which involves having a commitment to making a positive difference; 

understanding change which can be slow and difficult; relationship building whereby leaders 

foster purposeful interactions and the respect of others with diverse views; knowledge creation 

and sharing as an important component of effective leadership and coherence making which is 

complex and elusive. Pursuing moral purpose, understanding the change process, cultivating 

relationships, and building deep knowledge lead to greater coherence making (see Figure 1). 

These components are represented as a circular region of the framework with the personal 

characteristics of energy, enthusiasm and hope surrounding them as important characteristics 

of effective leaders. 

Figure 1 

A Framework for Leadership—Leaders (Fullan, 2001, p. 4) 

 

The extent to which data reported in this paper can be interpreted with the Framework of 

Leadership will be considered as conclusions to this paper. 

Method 

Initially we had an informal professional conversation with a School Mathematics Leader, 

Kate (a pseudonym). We raised the possibility of conducting a formal interview with her to 

help us to understand her current work as a leader of mathematics in a primary school and Kate 

agreed to participate. The data reported here were collected using a semi-structured interview. 

The questions were designed to collect demographic details of the school, the length of Kate’s 

experience as a School Mathematics Leader, and her approach to leading mathematics in her 

school. She was asked how she decided what to do and to describe her goal(s) for mathematics 

learning. Kate was asked what new learning she would like to see in her teachers and to describe 

any challenges she faced as the leader. The interview was conducted by the second author via 

Zoom. Video records and transcripts were produced by Zoom. The automated transcripts were 
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checked and edited to remove repetitions of speech and provided the data that are described and 

discussed here. Each researcher read and coded the transcripts. Comments which detailed the 

leader’s role, were highlighted and each researcher summarised the main point in a few words 

as margin notes. These brief notes were categorised according to themes which were used as 

headings in the Findings section here. 

Our aim was to identify current features of the process of leading mathematics, collect an 

account of “classroom work”, and create a narrative of the school mathematics leadership. The 

research question we sought to answer was: 

• What can we learn from one leader about current leadership practices in primary school 

mathematics? 

The focus of the interview was an element of her leadership that Kate called her “classroom 

work”. We were interested to know about the components of practice called teaching alongside 

by Driscoll (2021). This practice involves mathematics leaders teaching with a teacher in the 

teacher’s classroom with the teacher’s students. Essentially, we hoped to have Kate describe 

what she did in classrooms to lead mathematics learning with teachers. Findings from the 

interview will be presented in a narrative style. The general points that Kate made will be 

presented succinctly with matched evidence from the transcript. 

Findings and Discussion 

Kate had told us in conversation, and later in interview, how important her “classroom 

work” was to her leadership of mathematics improvement in the school. She described how she 

had used assessment data available to the teachers to analyse the mathematical strengths and 

weaknesses of classes and Year levels across the school. In a large school of 480 students and 

30 teachers she had to use her full-time mathematics leadership role strategically. Initially she 

targeted the classes in which students had very disappointing results on NAPLAN or PAT 

Maths measures. Having doubts about the mathematics content that the students were being 

offered, Kate decided to try to influence mathematics tasks through planning. 

Support Through Planning 

Planning meetings have been shown to be an effective vehicle for teacher professional 

learning (Driscoll, 2021). Kate described attending meetings to discuss “rich” tasks and making 

folders of activities available to teachers on shared drives: 

Planning—with the union [new enterprise bargaining agreements]—I’ve got to be invited into their 

planning time now rather than just come in at a specific time. So, there are some Year levels that are 

quite happy for me to come in. The ones where I want to make a difference, they want to get their 

planning done in their shared planning time … I find that challenging in itself. But I will drop things 

[task ideas] into their planning documents, I’ve got ‘Kate folders’ all over the place and some 

teachers will take the ideas up.  

Kate was hoping that the examples of more open and more problem-solving tasks might 

inspire teachers to choose and use tasks that required deeper mathematical thought “I think in 

my mind it was let’s try and get rich tasks in the classroom first. And then I was thinking the 

next step was to get into the classrooms a little bit more.” 

Kate found that while the tasks might be chosen by her teachers, they were not always 

implemented with the pedagogies that pressed and extended students’ thinking. As Stein et al. 

(2009) had noted, teachers often simplified the problem to make it one that they felt confident 

to use with their students. Kate said, “I find you can do it in planning, and planning is good, but 

then also being able to do it in the classroom has just as much of an impact.” 
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Demonstration Lessons 

Developing their pedagogies to maximise student learning was considered difficult and 

teachers wanted demonstrations of teaching approaches. Kate commented: 

Sometimes the teachers want you to show them exactly how to do everything. So, then the real 

thinking, the evolving all the actual learning and doing it yourself disappears in a sense. … But 

getting the students to articulate what they did, and why they did what they did, is a big thing 

throughout the school. 

Kate had realised that she needed to model tasks in teachers’ classrooms with their students: 

It makes me stop and think and wonder. Teachers don’t get enough opportunity to see other people 

in practice ... It’s one thing (and don’t get me wrong) planning is important and having a good task 

or a good lesson is very important. … But then at the same time, actually modelling that, is also very 

important. 

Kate was aware that teachers were happy for her to take the responsibility for teaching their 

students. However, for them to teach in front of her, or with her, there needed to be a 

relationship built on trust, confidence, and secure mathematical knowledge. She realised 

moving from demonstrated lessons to co-teaching or teaching alongside others was a big step: 

I suppose you get a bit of “Oh, Kate did a really good job with this” and there’s a bit of a vibe. So, 

they’re quite happy for me to come and teach. I suppose the challenge is for them to teach in front 

of me and to get a little bit of feedback. It doesn’t happen that naturally unless they’re quite 

comfortable with me and confident in their own mathematical abilities. 

Kate took heart from one of her teaching team who was a quiet source of encouragement: 

There was one teacher in particular and he was quite happy for me to observe him teach and I just 

worked with the kids as well. But he has been a maths leader before, so probably, his pedagogical 

content knowledge is high enough that he doesn’t feel uncomfortable about me being there. 

Teachers whose students’ assessment results were not high, did not feel the same about 

teaching with Kate: 

The others [whose] PAT Maths data results didn’t show as much growth in that Year cohort, they’re 

more excited to see me teach … It’s very awkward to find out what they’re not doing because they 

don’t like being observed. … Yeah, they don’t want me to critique … they don’t want me to even 

focus on one particular thing. When I go in … I’m trying to teach them something in a very subtle 

way. 

Kate gave an example: 

The kids were sitting on set spots on the floor and I asked her to just cross everybody’s name and as 

I asked questions, I said, “Look, I just want to check my own practice. I want to see if I’m covering 

lots of kids rather than just answering backwards and forwards with one. So, can you please mark 

who I’m actually talking to and how many times backwards and forwards.” So, I do a few little 

things like that. In the end they actually think about it with their own practice as well. 

Kate described the tasks she chose to implement as more challenging than those chosen by 

some teachers. She seemed to be trying to convince her teachers that their students are capable 

of more difficult mathematical thinking—that their expectations were too low. Perhaps straight 

grade school organisation can allow teachers to consider students as all at one place 

mathematically (in the intended curriculum). 

Some teachers still want to tell them [students] how to do it rather than asking them questions to get 

them to think. I get told that I choose tasks that are more challenging for the students than what the 

classroom teachers do. … I’ve noticed it’s one of the challenges. I think teachers put things in boxes 

too much because I hear, oh, that’s the Year 3 curriculum. 

Targeting Parts of the Demonstration Lessons 

A particular part of the lesson Kate mentioned was her work on the conclusion of the 

mathematics lesson where the intended learning is reviewed and the mathematical ideas that 

students have been grappling with are elicited and explained by the students and the teacher: 
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I really focus on the summarise phase and allow that time. I say it’s important and I suppose when 

I’m actually explaining what I’m doing with the students, because they’re not used to me teaching. 

I use some strategies that I just naturally do. Like I say, “Turn and talk” and “Think, pair, share” and 

things like that because then they get an opportunity to talk amongst themselves before they answer 

back to me because that gives the kids confidence. So, I know I’m role modelling those strategies. 

Modelling Curiosity and Experimentation as a Learner 

Kate also modelled being willing to try new ideas by being inquisitive to learn more about 

teaching. She trialled an example of Liljedahl’s (2020) management technique by bringing the 

students and the teacher along as participants: 

I just read something that’s really good by Peter Liljedahl and we’re all going to use the whiteboards 

… partners are going to be randomly selected and I actually tell the students, you know, this is this 

really good mathematician in Canada, and this is what he said and I’m going to give it a go with you 

guys. So, I’m really open with what I do … and we’re going to see how well it works and I’m going 

to ask you what you think about it. So, I take them on the journey, but I’m also taking the teachers 

on the journey at the same time ... There’s a purpose behind it. 

Kate included the students in her willingness to evaluate new interesting tasks and to seek 

their views as well: 

I talk the students through it so that they understand, and I also tell them of tasks that are brand new 

because it’s not like I just keep repeating what I’m doing. I’ll tell the teacher. ... I’ve never taught 

this lesson before and I’ll tell the students, [and ask] what did you think of that? Because they 

honestly sometimes think because I’ve been a maths leader for quite a while, that I’m the one with 

all the answers. 

As well as being explicit about her role as a learner, Kate described some of the qualities 

she thought leaders need to have. She talked about the need to be curious, brave and vulnerable: 

You know, I’m still learning and growing too. So, there’s a bit of that vulnerability but also that idea 

of I’m willing to try out something new in front of them as well so that they understand and explain, 

you know, sort of where it came from or the reasoning behind it. 

Kate recognised that a reluctance to try new things may be due to fear of failure by very 

anxious teachers. She was aware that teachers need to come to terms with their need to build 

their knowledge for teaching: 

I’m the one that’s going to fall or trip over or fail or whatever and especially the ones that are really 

anxious because they feel like, once they get over that fear that they see the students. Student’s 

conversations with me or their responses [are seen] as a true reflection. That’s the first fear. That 

their responses aren’t good enough so it’s a true reflection of their teaching straightaway. Once they 

get over that hurdle … then they can go, oh yeah, well, where do we move on to next? 

Opportunities to Work in Classrooms 

When asked about how often she worked in classrooms, Kate said that she had been in 

classrooms every day often teaching 7 or 8 lessons a week. She spoke about teaching versions 

of the same lesson 3 times across a Year level. Kate explained that, “the teachers are quite open 

to me coming in to teach lessons.” However, Kate explained that on occasions: 

there have been times when I’ve tried to shift [responsibility for teaching], and it depends who the 

teacher is, … certain teachers are quite happy to teach and for me to support. If there was a bit of 

push back and I could see that a certain individual was tense or something I would go well I’m happy 

to come in and teach it for you and then you can see what I’m trying to explain. 

This comment also shows Kate’s awareness of the need to read people and be responsive. 

Kate was aware that change is slow and difficult and that individual teachers needed to feel 

strong and resilient and ready to take a risk. She explained, “The challenge is to work out when 

to press and initiate and suggest and then when to hold back.” Kate said that she had worked 

with teachers long enough to realise that sometimes if they are feeling pressured “they’re not 

willing to take a risk, or they’re more insular or more protective of what they do, so you’ve just 

got to be really careful about how you go about the process and what you’re willing to do.” 
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Kate suggested that you need to “pick your moments and to know when to push and to know 

when to suggest … or keep trying with certain individuals, but the data’s helped me.” One of 

the strategies Kate used to develop improved teacher practice in the classroom was to have a 

conversation based on the student assessment data, “it’s a good thing to have a conversation … 

based on the students’ learning rather than the teachers’ teaching.” 

Reflection on shared classroom experiences was not a systematic part of working in 

classrooms for Kate. Time was seen as a constraint except in her work with new graduates: 

It just depends on the day and what’s happening. I make the effort to go and see them and talk to 

them about it, but there’s no, you don’t get that extra time. The only time that we got to reflect was 

with the graduates with their programs because we just had more time allowed for that. 

External Initiatives for Professional Learning 

Kate noted the impact of participating in an action research project. Having external support 

for a short, focused professional project that looked at questioning and question types used in 

mathematics lessons was a successful initiative in her school. However, Kate said that using a 

similar action research cycle for general improvement was unlikely to be accepted by the staff: 

We did a little bit of focusing on questioning and the types of questions we used. It was one little 

project … I have been involved in a few action research cycles and that’s been really good. They’ve 

come up through my maths Masters [degree] … I feel like I need that support from the outside in to 

implement something like that and if I wanted to do an action research cycle, just purely to improve 

the quality of the teaching I think that I’d be hitting my head against brick wall, to be honest. 

Making a Difference 

Kate described teachers as at different points as learners and reflected on several occasions 

when she felt valued by teachers. She commented, “when they’re asking you for your advice 

and support, you’re halfway there.” Kate felt she was making a difference, particularly while 

working with a graduate teacher, who according to Kate “was absolutely brilliant to work with 

in maths and open tasks.” The influence of professional development and “seeing it [teaching] 

transformed [created] wonderful moments in that sense.” Kate also commented: 

I used to teach with her quite a bit. Yeah, that was good fun in that you could see her questioning, 

using tasks to be open enough to allow all students entry level, and then even having the discussions 

about the students work samples and what we could reflect on by looking at them and the students 

thinking in terms of, you know, the way that they were doing the task like that. …When they’re 

working with you to work out what the summary phase looks like, you know you’re getting 

somewhere. 

Conclusion 

To shape the narrative data, Fullan’s (2001) Framework of Leadership characteristics of 

leaders will be used as headings for some conclusions. 

Personal constellation of energy, enthusiasm and hope. Kate’s personal characteristics of 

energy for her leadership through her “classroom work”, together with her enthusiasm for 

mathematics teaching and learning, and her hope for improvement in learning outcomes in 

mathematics, were plain. 

Moral purpose. Kate referred to improving mathematics learning for all students saying, 

“the conversations are really important from within that sphere of how we can best support all 

students at the school.” However, it is not clear from the interview that the whole school team 

has developed a shared purpose of improving students’ learning in the manner Kate described, 

as the evidence suggests that some teachers are trying to be invisible through a process of 

change. That is not to say that they do not want the best for their students, it may be that they 

do not share Kate’s vision of what is “the best”. 



A school leader’s account of her leadership 

149 

Knowledge building and sharing. The central purpose of Kate’s leadership was to improve 

the quality of mathematics teaching and learning in the school. To achieve this aim, she was 

intent on building the pedagogical content knowledge of the teachers. Initially she examined 

the assessment results to identify the Year level teachers most in need of support. She then 

collaborated with teams of teachers to improve mathematics planning by sharing more complex 

and challenging tasks. However, while teachers were willing to adopt the tasks, they had no 

confidence in implementing them. Kate was asked to demonstrate the open problems and trial 

investigative tasks in classrooms with teaching techniques that required students to reason and 

explain their mathematical thinking. Teachers noticed increased student interest and 

engagement and found students were capable of more complex mathematics than had 

previously been expected of them. One of the teachers observing Kate also became interested 

in the range of question types she used. These questions became a shared topic of discussion 

and focus amongst the staff more broadly. Kate used her involvement in a university project to 

initiate investigative teaching across the year levels with teacher-negotiated goals in mind. She 

used what Clarke and Hollingsworth’s model of professional growth (2002) termed the external 

domain of influence to create a knowledge building environment in a short-term action research 

project. 

Coherence making. It seems that teachers were being influenced by observing 

demonstration lessons with a focus on students and their thinking. Opportunities were created 

for discussion and reflection, learning and participating, by new graduate teachers. It could be 

beneficial to create more opportunities for reflection and discussion across Year levels with 

groups of teachers whose children have been taught the same lesson content. For example, 

several teachers’ observations of their students’ learning could promote an exchange of views 

and analysis of the pedagogical approaches that were demonstrated. An authentic part of 

teachers’ teaching is reflecting (Shulman, 1986) and including opportunities for staff to reflect 

jointly could build coherence and shared knowledge. 

The approaches to mathematics teaching, that were considered by Kate to be productive, 

were modelled for the teachers to observe. Presumably this practice was designed to build 

coherence by showing teachers what actions and knowledge were required to teach mathematics 

well. The questions this approach raises are: Whose methods are valued and privileged? Are 

teachers permitted to teach in different ways? A telling comment was Kate’s view that teachers 

would not accept another action research project like the one they had undertaken previously. 

It seems that in a cost-benefit analysis those teachers had decided the “costs” were too great for 

the perceived benefits that resulted from the projects. 

Understanding change. Change is messy and takes time according to Fullan (2001). Perhaps 

Kate’s preference for using external projects to stimulate change is understandable. However, 

the stimulus to constant change is exhausting. The advantage of setting goals both long-term 

goals and short-term ones that can be readily achieved is that the teaching team has a sense of 

accomplishment in the short term and a sense of the long-term vision of success. Kate may 

reconsider her reluctance to specify goals. 

Relationship building. It was clear from Kate’s comments that she appreciated working in 

a classroom with her experienced and knowledgeable colleague where they shared the 

responsibility for mathematics teaching and learning. In addition, Kate described how she 

mentored the new graduates by having them assist in the classroom with her taking the lead. 

She encouraged their suggestions and spent time reflecting on events they had shared. She 

enjoyed using the experience she had gained developing novice teachers’ skills as their mentor. 

The findings of this study are limited to the reflections of only one leader and further 

research is needed to paint a broad current picture of primary school mathematics leadership. 

In addition, this study raised new issues for investigation. Two in particular-leaders’ access to 

planning meetings under new enterprise bargaining agreements, and developing a shared 
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purpose and coherence across teams of teachers where part-time appointments and job sharing 

is increasing the numbers of teachers and producing a lack of availability for team meetings. 

Apart from the changed work conditions, the results of this study outlined important elements 

of leadership which involved: 

• Supporting quality mathematics through planning; 

• Teaching students in classrooms to provide demonstration lessons for teachers; 

• Modelling professional curiosity as a learner; 

• Using external initiatives to stimulate willingness to change; 

• Imagining ways to make a difference in the mathematical lives of students. 
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Progressing from additive to multiplicative thinking is a key outcome of school 

mathematics, making ratios an essential topic of study in junior secondary. In this study, 

15 Australian Year 8 students were administered a ratio test followed by semi-structured 

interviews to explore their conceptions of ratio prior to formal instruction. In this paper, 

students’ responses to one of the ratio questions are analysed in detail. Analysis of 

incorrect responses was conducted using a modified version of Radatz’s (1979) 

framework. Analysis of correct responses revealed that some students worked 

proficiently with ratio without formal instruction. 

Ratio is termed a “big idea” in mathematics, and appreciation of the multiplicative 

relationship between quantities is fundamental to developing proportional reasoning (Siemon 

et al., 2012). The capacity to reason proportionally and work with ratios is a key outcome of 

high school mathematics (Australian Curriculum, Assessment and Reporting Authority 

[ACARA], 2022). Ratios are an important topic of study in the secondary years since they unify 

the content strands of number, algebra, measurement, geometry, and data analysis and 

probability (Siemon, 2013). Despite the importance of ratios, researchers have considered the 

topic “the most protracted in terms of development, the most difficult to teach, the most 

mathematically complex, [and] the most cognitively challenging” (Lamon, 2007, p. 629). 

Analysis of student performance on the 2019 Trends in International Mathematics and Science 

Study (TIMSS) test confirmed students’ difficulties with ratios. Only 35% of students 

internationally and 40% of Australian students were able to solve a ratio problem involving the 

enlargement of a figure (Mullis et al., 2020). 

Given the importance of ratios and the noted difficulties that students experience when 

learning ratios, this study aimed to investigate Australian students’ approaches to solving ratio 

problems prior to the formal teaching of the topic. Analysing student responses before explicit 

instruction allowed for the observation of students’ natural approaches to ratio problems. This 

provides teachers with insight into the challenges and misconceptions students may experience 

when first introduced to ratios. The research question was “What approaches do junior 

secondary students use when solving ratio problems prior to instruction, and what 

misconceptions do they hold?” 

Ratio Misconceptions 

Although ratios have been identified as an area of challenge for both students and teachers, 

research into students’ misconceptions in this area is limited. International research on ratios 

has mostly focused on misconceptions and difficulties held by primary school students and 

those with mathematical difficulties (e.g., Dougherty et al., 2016). One study analysed 

secondary students’ misconceptions and difficulties with ratios in South Africa (Mahlabela, 

2012), but similar research has not yet been conducted in Australia. On a national level, research 

has focused on diagnostic approaches to assess primary school students’ proportional reasoning 
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(Hilton et al., 2013) and interventionist approaches to promote students’ emerging proportional 

reasoning (Fielding-Wells et al., 2014). Siemon and colleagues have also extensively 

researched the development of students’ multiplicative thinking, but their work was not focused 

on misconceptions (Siemon et al., 2006; Siemon, 2019). Key themes pertaining to students’ 

misconceptions and difficulties with ratios included difficulties transitioning from additive to 

multiplicative thinking, and confusion between fraction and ratio representations when 

analysing the findings from this research. 

Proficiency with ratios is dependent on students’ ability to think multiplicatively as 

proportional reasoning is the most sophisticated form of multiplicative thinking (Callingham & 

Siemon, 2021). During the transition from primary to high school, students’ progression from 

additive to multiplicative thinking is one of the major barriers to learning mathematics, 

including the topic of ratios (Siemon, 2019). Research has shown that 30–55% of Year 8 

students do not think multiplicatively, and differences between students’ overall mathematics 

achievement can be attributed to an inadequate understanding of multiplication, division, 

fractions, decimals, and proportion (Siemon et al., 2006). 

Misconceptions surrounding ratios have also been attributed to difficulties with prerequisite 

knowledge related to fractions (Dougherty et al., 2016). Students can have difficulties 

differentiating the part-part relationship of ratios from the part-whole relationship of fractions 

(Clark et al., 2003). Moseley (2005) also found that students’ conceptual understanding of ratios 

is lacking as they focus on the numbers rather than the relations the numbers represent, as ratios 

are a multiplicative comparison. 

Theoretical Framework 

Categories of ratio errors are currently not well-established in the literature given the limited 

research on students’ misconceptions and difficulties with ratios. This study drew from 

Radatz’s (1979) error analysis framework that described five error categories: errors due to 

language difficulties; errors due to difficulties in obtaining spatial information; errors due to 

developing proficiency in prerequisite skills, facts, and concepts; errors due to incorrect 

associations or rigidity of thinking; and errors due to application of irrelevant rules or strategies. 

Figure 1 

Modified Version of Radatz’s (1979) Error Analysis Framework 
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This framework uses an information-processing approach to classify errors because the 

“mechanisms used in obtaining, processing, retaining and reproducing the information in 

mathematical tasks” are examined (Radatz, 1979, p. 164). This study modified the original 

Radatz framework (Figure 1) through small language changes (removing reference to 

‘deficient’ skills and knowledge to encourage a move away from a deficit view), adding the 

halting signal error (a partially complete response: Brodie & Bergie, 2010), and splitting the 

error category of ‘errors due to the developing proficiency in prerequisite skills, facts, and 

concepts’ into two for clarity (separating concepts and skills/facts). 

Methodology 

Participants were 15 Year 8 students from one class in an Australian independent school. 

The school’s demographic was representative of a higher socioeconomic background, with 

a school ICSEA value of 1087 given the 1000 average. The study was conducted prior to the 

class formally learning ratios. A mixed methods approach was used, drawing on both qualitative 

and quantitative analysis of student error types on an 8-item ratio test. The test was developed 

from an analysis of the local mathematics syllabus (Stage 4 New South Wales Syllabus) which 

allowed for the identification of key ratio concepts and skills covered in Year 8. The test was 

completed in 20 minutes under exam conditions without calculators. In this paper, the findings 

from one of the test items are reported as they allow for a deep analysis of all students’ attempts. 

Following the test, semi-structured interviews were conducted to clarify and confirm the 

researcher’s interpretation of students’ test responses. Interviews enhanced the validity of 

findings, since the different datasets elaborated, enhanced, and clarified each other (Greene et 

al., 1989). When coding students’ incorrect responses, error analysis was conducted. All 

incorrect responses were collaboratively analysed and coded using the modified version of 

Radatz’s framework (Figure 1). 

Findings 

This paper focuses on analysing students’ correct and incorrect responses to one test 

question, “Can 10 people be divided into two groups with a ratio of 1:2? Explain your answer.” 

Overall, the 15 students reported a 26.7% success rate on answering this item; 10 students 

answered incorrectly, and one student did not attempt the question. Students’ challenges in 

answering the test question were expected since they had not yet been taught ratios. There was 

a diverse range of correct and incorrect answers provided by students. 

Correct Responses 

Students’ correct responses reflected varying levels of developing proficiency with ratios, 

although the semi-structured interviews after the ratios test revealed that some students still 

held some misconceptions on the topic. 

In Figure 2, the student added the antecedent (i.e. 1) and consequent (i.e. 2) of the ratio 

together to reach 3. 

Figure 2 

Example of Student’s Correct Response Using Concepts of Division, Factors, and Multiples 
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To check if 10 people can be divided into two groups with a ratio of 1:2, this sum of the 

ratio parts (i.e., 3) must be a factor of the total number of people (i.e., 10), or conversely, the 

total number of people must be a multiple of the sum. The student also provided an 

accompanying diagram showing the first and second group having three and six people 

respectively, and their last uncrossed circle of 10 suggests the leftover person. This strategy for 

solving the question was also encapsulated in the working out of the student in Figure 3. Both 

students drew on key prerequisite knowledge of division and the concept of equal groups, which 

are foundational concepts of ratios. 

Figure 3 

Example of Student’s Correct Response Using an Evenness Argument 

 

Two students provided an alternative explanation that demonstrated a developing 

conceptual understanding of ratios. Instead of providing an explanation involving visuals or 

relating the problem to division, factors and multiples, their answer was that the group division 

would not be possible because the two groups would not be even in number. Although even 

groups were not a criterion of the question, these students identified that when ten is grouped 

in a ratio of 1:2, there would be one person leftover who has not joined a group. The response 

from the first of these two students, shown in Figure 4, shows emerging proficiency with ratios 

but some misconceptions are still held. Although their explanation aligns with the student’s 

explanation in Figure 3, their diagram shows that they have not recognised that 4:6 = 2:3 is not 

equal to the desired 1:2 ratio. 

Figure 4 

Example of Student’s Correct Response Using an Evenness Argument but With Misconceptions 

 

The second student similarly identified that the groups would not be even (Figure 5), and 

when questioned on what they meant by ‘even’, they stated that “if there’s one person on one 

side, for example, and there are two on the other”, the number of people in each group would 

not be even. When the student was probed further, their misconceptions on ratios were revealed. 

After asking them their next steps in their working to ensure no halting signal error “Would you 

have added more people on either side or would you have left it as one person on one side and 

two people on the other?”, the student responded “I would add an extra one to the other side” 
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to make it even. Their thought process behind this was that “[the question] says ‘to be divided 

into two groups’ so it has to probably be even”. 

Figure 5 

Example of Student’s Correct Response but Their Interview Reveals Misconceptions 

 

Incorrect Responses 

While some students correctly solved the ratio problems, some students were not as 

successful. Like the student in Figure 2, the student response in Figure 6 demonstrated that they 

added the ratio parts together to help them solve this problem.  

Figure 6 

Example of Student’s Correct Response but Their Working Reveals Misconceptions 

 

However, instead of using this sum of three to conceptualise putting one person in one group 

and two people in the other group every round, they misinterpreted this as putting 10 people 

into groups of three. They were, however, able to identify that one person would be leftover so 

this division into three groups would be unsuccessful. Although the working here does not 

reflect the expected understanding of splitting a quantity into a ratio, it does indicate some 

developing conceptual understanding of ratios, based on the idea of division into equal groups. 

The root error cause was coded to be the developing proficiency in concepts and language 

difficulties, leading to procedural errors. 
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Figure 7 

Example of a Student Misinterpreting 1:2 to Mean 
1

2
 

 

When given the ratio 1:2, it is speculated that some students misinterpreted the colon sign 

of ratios to mean the same as the vinculum sign of fractions. This is because students lacked 

conceptual understanding of what a ratio is, which led to the language difficulty of 

misinterpreting the colon as a vinculum due to incorrect associations with fractions. An example 

of this misconception is shown in the student response in Figure 7. 

Students also demonstrated conceptual difficulties with working with a fixed number of 

total people (i.e., 10) despite correctly identifying equivalent ratios (Figure 8). 

Figure 8 

Example of Student’s Developing Proficiency in Concepts 

 

Students’ responses also demonstrated that a flow-on error resulting from developing 

proficiency in concepts was the halting signal error, as students only partially completed the 

question (Figure 9). This can be attributed to students not having formally learnt ratios, although 

it reveals their approaches to solving ratio problems. 
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Figure 9 

Examples of Two Students’ Halting Signal Errors 

 

Discussion and Conclusion 

This study aimed to investigate Australian students’ approaches to solving ratio problems 

prior to the formal teaching of the topic and address the research question. For the analysed 

question, it was found that the main root error cause was developing proficiency in ratio 

concepts, leading to other error types including incorrect associations with fractions, application 

of irrelevant procedures and halting signal errors. This was not unexpected as the students had 

not learnt ratios yet. What was particularly interesting for teachers to observe was that several 

students successfully reasoned through the ratio problem despite not having learnt the topic. 

Students’ prior experience with fractions (Dougherty et al., 2016) and emerging multiplicative 

thinking (Siemon et al., 2006) set the foundation for success when learning ratios. The 

implication of this finding is that it is beneficial for teachers to help students connect ratios with 

this prerequisite knowledge, rather than viewing it as a distinct and entirely new topic when 

first introducing it. Moreover, since students may resort to fraction strategies and concepts when 

first approaching ratios, another teaching recommendation is to clarify the similarities and 

differences between fractions and ratios in terms of vocabulary, concepts, and procedures. 

The findings from this study have implications for research investigating student errors in 

mathematics. Through the error analysis conducted in this study, the modified version of 

Radatz’s (1979) framework was shown to be a viable and useful way of coding student errors. 

Potential directions for future research include ascertaining whether the same errors exist before 

and after formal instruction on ratios, and testing whether Radatz’s (1979) error analysis 

framework can be used to hierarchically classify errors for other mathematical topics. 

Although it was anticipated that one class of students would provide adequate data to gain 

insight into students’ understanding of ratios and corresponding errors, generalisability may be 

limited beyond this study because of its dependence on only one class of students. Despite this, 

the demographics of the school and participants provide context for the findings and support 

the reader to make judgements concerning the generalisability of the study to other contexts. 
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This paper reports on the development of complex unfamiliar mathematics questions 

using conventional mathematics questions. The autoethnographic research data 

included retrospective reflections of two educators and review of literature. Data 

analysis resulted in a three-phase development process: identifying conventional 

questions and subject matter to be modified to enhance levels of understandings and 

skills, modifying conventional questions and subject matter to complex unfamiliar 

questions, and identifying enhanced understandings and skills in modified questions. 

The paper then discusses the educators’ insights developing complex unfamiliar 

mathematics questions for the practice of teaching and learning. 

In Australia, the focus on developing students’ mathematics proficiencies of understanding, 

fluency, reasoning, and problem-solving skills is meant to help them develop the capacity to 

solve complex unfamiliar problems (Australian Curriculum, Assessment and Reporting 

Authority [ACARA], 2023). Likewise, in states like Queensland and South Australia students 

are expected to engage with complex unfamiliar or non-routine problems as part of the 

mathematics assessments. Particularly in Queensland, it is expected that about 20% of the 

marks in any general mathematics subject examination at senior secondary level should be 

complex unfamiliar. The subjects are General mathematics, Mathematical Methods and 

Specialist Mathematics and they provide a pathway for different tertiary courses. However 

consistent curriculum and assessment reports (Queensland Curriculum and Assessment 

Authority [QCAA], 2021; 2022; 2023; 2024; South Australia Council of Education [SACE], 

2021) have identified lack of consistency by senior secondary mathematics teachers in 

Queensland and South Australia when it comes to developing complex unfamiliar questions for 

internal examinations. The reports noted that teachers still need to improve in assessing students 

under this level of difficulty. As a result, there has been limited use of complex unfamiliar 

problems in mathematics teaching and learning (Lee & Kim, 2005; Nguyen et al., 2020). Senior 

secondary mathematics teachers in Queensland are expected to include complex unfamiliar 

problems when they set internal assessments that are moderated by Queensland Curriculum and 

Assessment Authority (QCAA). Thus, providing resources that can help develop understanding 

and consistency in developing complex unfamiliar questions is central in promoting quality 

mathematics teaching and learning. This paper employed an auto-ethnographic method to 

report on how complex unfamiliar mathematics questions can be developed using conventional 

(routine) mathematical questions. 

Complex Unfamiliar Mathematics Questions 

There is a general agreement that complex unfamiliar or non-routine mathematics problems 

require deeper understanding of concepts, analytical thinking, interpreting and creativity 

beyond standard algorithm strategies as there is no clear path to the solution (Asman & 

Markovits, 2009; Mullis et al., 2009; Polya, 1966; QCAA, 2018; Schoenfeld, 1992). Complex 

unfamiliar or non-routine questions can take different definitions and forms depending on the 

nature of how they are presented and are solved. Some researchers (see for example Robinson, 

2016) view non-routine problems as open-ended and involving multiple solutions. Similarly, 

other researchers (e.g., Asman & Markovits, 2009; Kloosterman, 1992) identify complex 

unfamiliar problems as having a unique solution but the procedures to solve and the concept 
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the problem is derived from are not readily available. Importantly, “a non-routine problem 

appears when an individual encounters a given situation, intends to reach a required situation, 

but does not know a direct way of accessing or fulfilling his or her goal” (Elia et al., 2009, 

p. 606). Similarly, complex unfamiliar problems require students to demonstrate knowledge 

and understanding of mathematics and application of skills in a situation where: 

• Relationships and interactions have several elements, such that connections are made 

with subject matter within and/or across the domains of mathematics; 

• All the information to solve the problem is not immediately identifiable; that is, the 

required procedure is not clear from the way the problem is posed, and in a context in 

which students have had limited prior experience (QCAA, 2018 p. 44). 

Student engagement with complex unfamiliar or non-routine problems in mathematics is 

said to enhance their development of mathematical knowledge (see Russo, 2019; Sullivan et 

al., 2015). Complex unfamiliar problems are credited for the promotion of strategic thinking 

capacity, integration of concepts and motivating students towards learning (Lampert, 2001). 

Calls to include complex unfamiliar questions in mathematics assessments have been going for 

a long-time (see Clarke, 2011; Ergen, 2020). It is fundamentally important that any mathematics 

activity should provide students with the opportunity to engage with content at different levels 

of sophistication (Clarke, 2011). Clarke went further to posit that mathematics curricula across 

the world is now advocating for inclusion of non-routine (complex unfamiliar) mathematics 

problems as a key goal of school mathematics (Clarke, 2011). 

According to QCAA (2018), complex unfamiliar questions that require more levels of 

cognitive skills should not be equated with elaborate problem-solving tasks and modelling 

questions only. A single-answer, conventional question such as an example from Goos (2014): 

Find the equation of the line passing through the points (2,1) and (1,3); can be adapted to a 

more open-ended question such as: Write the equations of at least five lines passing through the 

point (2,1). This revised question targets the identical subject matter and assesses more and 

advanced cognitive understanding and skills. This means that, development of complex 

unfamiliar questions can start with: (1) identifying conventional mathematical questions and 

subject matter that can be modified to enhance levels of cognitive understandings and skills, 

(2) modifying the conventional questions and subject matter to complex unfamiliar questions, 

and (3) identifying the diverse and enhanced cognitive understandings and skills in the modified 

questions, leading to the development of assessment rubrics or guides to making judgements. 

This study is guided by the process of modifying conventional questions to complex unfamiliar 

questions as highlighted above by QCAA (2018). The paper reports on two educators’ 

perspectives on how complex unfamiliar questions can be developed using conventional 

questions. 

Method 

The paper employed an autoethnographic approach to examine perspectives of two 

mathematics educators on how complex unfamiliar mathematics questions can be developed 

using conventional mathematics questions. According to Adams and colleagues (2017) 

autoethnography is a research method that uses personal experience (“auto”) to describe and 

interpret (“graphy”) cultural texts, experiences, beliefs, and practices (“ethno”). Chang and 

colleagues (2016) highlight that some auto ethnographers focus more on self, while others adopt 

a more analytical stance, focused on understanding and interpreting events and experiences 

involving self. This investigation takes the form of an analytical approach to autoethnography. 

The two educators met fortnightly for an hour over two school terms to articulate how complex 

unfamiliar mathematics questions can be developed using conventional mathematics questions. 

The meetings were reflective interpretations of experience, practice, and review of literature, 

which resulted in a three-phase analysis of the development of complex unfamiliar mathematics 
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questions (Adams et al., 2017). Phase one centred on conventional mathematics questions and 

subject matter that can be modified to enhance levels of cognitive understanding and skills. 

Phase two centred on modification of conventional questions and subject matter to complex 

unfamiliar questions. Phase three centred on diverse and enhanced cognitive understandings 

and skills in modified questions and the development of assessment rubrics or guides to making 

judgements. The next section highlights a summary of the three-phase analysis and 

retrospective reflections of the educators. 

Reflections and Analysis 

This section reports on phases one, two and three retrospective reflections and analyses of 

how complex unfamiliar questions can be developed using conventional mathematics 

questions. Our overall position was that for developed complex unfamiliar questions: students 

will be required to apply their knowledge of multiple concepts to solve each question; the 

method required to solve the question will not be obvious in its wording; the question will most 

likely be in a context that students have not come across before; no scaffolding (for example 

provision of a graph); and that interpretation, clarification, and analysis will be required to 

develop responses to the questions. 

Phase one involved identifying the appropriate conventional mathematics questions and 

subject matter that can be modified to enhance levels of cognitive skills. We suggest starting 

with nominating a single-answer, conventional question; and then highlighting the subject 

matter, routine processes that may be involved, routine calculations that may be involved, and 

formulae and steps to aid the development of a solution that can be immediately applied to the 

solution of the given question. 

For example, in a year 9 measurement question below, the original mathematics concept is 

on volume of a cylinder. The information provided includes the volume in cm³, diameter in cm 

and the unknown height (h) as illustrated in the labelled diagram (Figure 1) below. The question 

also requires students’ knowledge of one decimal place. This is a single-answer conventional 

question, and all students need to do is recall and evaluate the formula of volume of a cylinder: 

Conventional question: Figure 1 is a diagram of a cylinder with a volume of 800 cm³, a diameter of 

9 cm and a height (h). Calculate the height of the cylinder (to one decimal place). 

Figure 1 

Diagram of a Cylinder 
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Phase two involved modifying the conventional questions and subject matter to complex 

unfamiliar questions. We suggest starting with situating the conventional mathematics question 

in a real-world context/story or a context that the students have not seen before. The next step 

will be to remove any implied routine calculations and processes, then removing any labelled 

diagrams, formulae, and recognisable steps that aid the development of a solution. The aim is 

to de-identify routine procedures (no standard algorithm strategies, no clear path to solutions). 

The next step involves making connections of subject matter within and/or across the domains 

of mathematics. This makes the method and procedure to solve the question not immediately 

identifiable from the way the question is now posed. Using the previous year 9 measurement 

question stated above, it can be modified to the following: 

Complex unfamiliar question: A teacher proposes to the school administration to build a drum-

shaped pool with no deep end to minimise the risk of drowning for prep to year 2 students. The pool 

must be bounded by the boundaries of a squared block measuring 3,600 m². How deep will be the 

pool (to two decimal places) for it to contain 2.5 million litres of water? Comment on the 

reasonableness of the teacher’s plan. 

The modified question is now more situated in a real-world context and the labelled cylinder 

diagram has been removed. The question is now multi-stepped and focuses on more than four 

aspects of mathematics, which include identifying 3-dimensional shapes, knowledge of 

calculating different areas of two-dimensional shapes (surface of the pool base) in m² (which 

can be any shape-from a circle, square, rectangle, etc.), different volumes of three-dimensional 

shapes in m³, conversion of volume units to capacity and knowledge of rounding off decimals. 

The question also seeks a contextual mathematical explanation that justifies the reasonableness 

of the answer. 

Phase three involved identifying the diverse and enhanced cognitive understandings and 

skills in modified questions. We suggest identifying the multiple contexts, including diagrams 

and models, procedures and skills involved in solving the modified questions. Importantly, this 

phase hypothesises how diverse responses to the question can be developed. This process leads 

to the development of the assessment rubric or guide to making judgement. In the example 

above, this involves identifying the different areas and volumes of shapes and conversion of 

units. Additionally, having more than one correct answer means students have opportunities to 

justify the reasonableness of their answers and then have something unique to contribute to 

discussions with other students. The question can provide opportunities of generalisations as 

students explore a diverse of possible answers. Moreover, the question can be further modified 

for students to find just one answer, for example in an examination, the second last statement 

in the question can be: ‘How deep can be the pool if it is to cover the maximum possible area 

of the available block?’ Thus, depending on the objective and purpose of the assessment the 

modified complex unfamiliar question can adapt flexibly with very minor changes but still 

catering for the same content and cognitive demands. 

Discussion 

This section discusses our insights developing complex unfamiliar mathematics questions. 

During our reflective exchanges, a major challenge that we encountered was modifying 

complex unfamiliar questions that de-identify context and procedures and at the same time 

develop mathematics proficiencies of understanding, fluency, reasoning, and problem-solving 

skills, which are central to helping students to develop the capacity to solve complex unfamiliar 

problems (ACARA, 2023). Phase one agenda of identifying the conventional question that 

requires at least a three-step solution; highlighting the subject matter, context, diagram(s), 

routine processes that may be involved, routine calculations that may be involved, and formulae 

and steps to aid the development of a solution that can be immediately applied to the solution 

of the given question was the least challenging phase. We found it easy to reach consensus most 

of the times. Similarly, it was easy to reach consensus in phase three identifying the multiple 
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contexts, including diagrams and models, procedures and skills involved in solving the 

modified questions. However, phase two agenda of modifying the conventional questions into 

real-world contexts/stories or unusual ways that students have very limited experience, 

removing implied routine calculations and processes, and making connections of subject matter 

within and/or across the domains of mathematics proved challenging and complex. Lampert 

(2001) suggests that this phase of modifying the conventional questions is central to promotion 

of students’ strategic thinking capacity, integration of concepts and motivation towards 

learning. The challenges arose from finding the appropriate balance between removing 

appropriate levels of implied routine calculations and processes, making appropriate 

connections of subject matter within and/or across the domains of mathematics, and at the same 

time focusing on the mathematics proficiencies. As our reflective exchanges unfolded, it was 

evident that one purpose of our interactions which was to encourage collaboration and 

consensus on the modified products was proving elusive most of the times in phase two. To 

modify such conventional mathematics questions into complex unfamiliar questions requires 

collaborative effort among educators, as highlighted previously, curriculum reports (QCAA, 

2021; 2022; 2023; 2024; SACE, 2021) have identified lack of consistency by mathematics 

teachers when it comes to developing complex unfamiliar questions for internal examinations. 

However, having such consistency and at the same time focus on the mathematics proficiencies 

proved to be very challenging. 

The reflective exchanges and analyses of how complex unfamiliar questions can be 

developed using conventional mathematics questions, was particularly useful in helping us 

focus more on subject matter that can be modified to enhance levels of cognitive understandings 

and skills as well as making connections of subject matter within and/or across the domains of 

mathematics. The aim was to improve our theoretical and practical understanding of the nature 

of complex unfamiliar mathematics questions and the adaptive expertise developing them. In 

particular, developing deeper understanding of not only subject matter and concepts, but the 

required analytical thinking, interpreting and creativity beyond standard algorithm strategies 

(Asman & Markovits, 2009; Mullis et al., 2009; QCAA, 2018) was fundamental. During our 

reflective exchanges, we observed that the modification process might not be straight forward 

from the way the problem is posed and putting it in a context in which students have had limited 

prior experience. For the modification of complex unfamiliar questions, we tended to discuss 

which subject matter was better placed as the starting point for creating complex unfamiliar 

questions and then identifying routine procedures and standard algorithms that were evident in 

the question. We came to a position that a casualty in the whole process was making connections 

of subject matter within and/or across the domains of mathematics if the main focus is making 

the solution not immediately identifiable as suggested by Asman and Markovits (2009). 

Similarly, QCAA (2018) emphasise that the required procedure to solve the question should 

not be clear from the way the problem is posed, and it should be in a context in which students 

have had limited prior experience. Consequently, developing complex unfamiliar mathematics 

questions that connect subject matter within and/or across the domains of mathematics can be 

a challenging process. 

The reflective exchanges and analyses played an important role in building our strategies 

on how to modify conventional mathematics questions to complex unfamiliar. We came to the 

view point that a good complex unfamiliar question tends to have a few of the following features 

but not necessarily all of them: 

• Provides real world context/story; provides information in an unusual way (a context 

that the students haven’t seen before). 

• Can be worked backwards. 

• Combines subject matter.  
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• Does not have a clear path to solutions (no implied routine calculations and processes, 

no labelled diagrams, formulae, and recognisable steps that aid the development of 

a solution).  

• Is multi-stepped and creates different levels of sophistication. 

• Depending on the assessment objectives, the question might have more than one correct 

answer.  

• Asks to evaluate and justify the reasonableness of answers. 

This perspective is not exhaustive; however, it can provide students with the opportunity to 

engage with content at different levels of sophistication, a position postulated by Clarke (2011) 

and Ergen (2020). Such a perspective can help develop understanding and consistency in 

developing complex unfamiliar questions and promote quality mathematics teaching and 

learning. 

Conclusion 

The autoethnography process has enabled us to reflect more deeply on how complex 

unfamiliar questions can be developed using conventional mathematics questions. The 

approach we report resulted in a three-phase analysis of the development of complex unfamiliar 

mathematics questions. Phase one focused on the identification of single-answer, conventional 

mathematics questions and the embedded subject matter that can be modified to enhance levels 

of cognitive understanding and skills. Phase two focused on modification of conventional 

questions and subject matter to complex unfamiliar questions. Phase three focused on the 

enhanced cognitive understandings and skills in modified questions, leading to the development 

of assessment rubrics and guides to making judgements. The autoethnographic process 

highlighted a perspective and the importance of consistency in teacher developed complex 

unfamiliar questions. Our hope is to encourage further research on developing complex 

unfamiliar mathematics questions using different types of mathematics questions to promote 

quality mathematics teaching and learning. 
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Fractions are among the most problematic concepts that children encounter in their 

primary school years because of the many different conceptions of fractions. Textbook 

analyses have tried to provide insights into how fractions are introduced, focusing on 

the different concepts and representations of fractions. In this paper, we contribute to 

these efforts by investigating the way fractions are first introduced using the notion of 

potential concept images as afforded by the textbooks. Analyses of two textbooks, one 

from Northern Ireland and the other from Singapore, will be presented to highlight these 

potential concept images and their implications for practice. 

It is widely argued that fractions are among the most problematic concepts that students 

encounter in the primary school years (Charalambous & Pitta-Pantazi, 2006; Gabriel et al., 

2013; Siegler & Lortie-Forgues, 2017; Smith, 2002). Despite numerous efforts by researchers, 

governments, mathematics educators, and textbook writers to reform the learning of fractions 

over the past few decades, students’ performance on fraction arithmetic tasks has shown little 

improvement (Siegler & Lortie-Forgues, 2017). Fractions, as a “powerful mathematical idea”, 

are difficult to learn because they can be used to “express so many different kinds of 

relationships” (Smith, 2002, p. 4). As Kieren (1976) had suggested, fractions are best 

conceptualised not as a single conception, but as a set of inter-related conceptions: part-whole, 

ratio, operator, quotient, and measure. However, fractions are often introduced only as a part-

whole model in many countries. This is limiting and may have contributed to the difficulties 

faced by students when learning fractions (Simon et al., 2018). Furthermore, textbooks, which 

make up the main instructional or curriculum materials, do not introduce fractions using a 

concept definition; instead, they often present real-world scenarios, such as sharing pizzas, and 

other representations to support students in forming their own concept images (Tall & Vinner, 

1981). Given that textbooks offer examples and representations that may facilitate or hinder 

learners’ formation of useful concept images (Tall & Vinner, 1981; Zhang et al., 2014), it is 

important for mathematics educators to analyse how fraction concepts are presented in 

textbooks. Although there have been textbook analyses on the concept of fractions (e.g., see 

Lee et al., 2021), these analyses focused on the kind of fraction conceptions, tasks, and 

representations presented in the textbooks. In this paper, we contribute to this conversation by 

examining the potential concept images afforded by how fraction concepts are first introduced 

in mathematics textbooks from two relatively different education systems—Northern Ireland 

and Singapore. According to PISA 2022, Singapore remains the world leader in mathematics 

education, whereas pupils in Northern Ireland achieved a score of 475, not significantly 

different to the OECD average score of 472, but significantly lower than the score of 492 

achieved in 2018. Besides international assessment data, the two countries have different 

education systems, which offer opportunities for interesting comparisons. The paper is framed 

by the following question: 

What are the potential concept images of fractions afforded by the textbooks from Northern 

Ireland and Singapore in the way they first introduce fractions? 
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Review of Literature 

We begin by reviewing the different conceptions of fractions and highlighting the 

challenges faced by students as they grapple with these various concepts. Furthermore, the way 

fractions are presented to students (manipulative, pictorial, verbal, real-world, and symbolic) 

may privilege certain conceptions over others. Hence, students’ difficulties when learning 

fractions may be partially explained by the limited concept images they might have (Tall & 

Vinner, 1981; Zhang et al., 2014). As most students develop these mental images through their 

interactions with textbooks, we argue that it is important for us to investigate how fractions are 

introduced and represented in the textbooks. Finally, we suggest the notion of potential concept 

image to better understand how students may perceive fractions from textbooks. 

Conceptualisations and Representations of Fractions 

According to Smith (2002, p. 3), “no area of elementary mathematics is as mathematically 

rich, cognitively complicated, and difficult to teach as fractions, ratios and proportionality”. 

Whilst several factors have been identified as contributing to this difficulty, the multifaceted 

conception of fraction is a key factor associated with the complexities of teaching and learning 

fractions (Kieren, 1976; Lamon, 2012; Simon et al., 2018). Fractions can be conceptualised in 

at least five different ways: part-whole, measure, operator, quotient, and ratio (Kieren, 1976; 

Lamon, 2012). For example, the fraction 2/3 is usually interpreted as two out of three equal 

parts (a part-whole conception). As a measure, 2/3 is perceived as the distance of two 1/3 units 

from zero on the number line, which presents fractions as numbers (Simon et al., 2018). Seeing 

fractions as numbers is also related to the idea that 2/3 is the answer to 2  3 (a quotient). As an 

operator construct, 2/3 of a quantity is found by multiplying the unit by two and dividing the 

result by 3 or dividing the quantity by 3 and multiplying the result by 2. Finally, 2/3 can also 

be seen as a ratio, which represents a multiplicative relationship between two quantities in a 

particular order. These different conceptions make fractions a “powerful mathematical idea” 

because they are used to “express so many different kinds of relationships” (Smith, 2002, p. 4). 

However, these different conceptions are not all well understood by students. For instance, 

Simon et al. (2018) highlight that students often do not see fractions as numbers (measure 

concept); instead, they often perceive fractions as two numbers: the numerator denotes the 

number of shaded parts and the denominator denotes the total number of equal parts (a limited 

understanding of fraction as part-whole). This partial understanding of the various fraction 

conceptions may hinder students’ ability to work with different fraction constructs (Lee & 

Hackenberg, 2014). As argued by Simon et al. (2018), introducing fractions as “part of a whole” 

is limiting and may hinder students in developing more “powerful conceptions of fractions” 

(p. 123). Hence, it is critical for students to encounter these different fraction ideas as part of 

their learning experiences. 

To this end, Cramer et al. (2002) advocated providing opportunities for students to use 

multiple physical models of fractions and translate between and within the different modes of 

representation: pictorial, manipulative, verbal, real-world, and symbolic. Similarly, van de 

Walle et al. (2013) recommended the use of all three types of pedagogical models (area models 

(e.g., fraction discs), linear models (e.g., fraction strips, number lines, etc.), and set models 

(e.g., collection of discrete objects) to support students in developing a more robust 

understanding of fractions. Despite these recommendations, textbooks often favour the use of 

area models over the other representations (Lee et al., 2021; Simon et al., 2018; Watanabe, 

2002), leading to a limited mental image of fractions, which could lead to an erroneous 

understanding of operations involving fractions (see Watanabe, 2002, p. 462 for an example). 
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Concept Images 

Therefore, it is the networking of fraction conceptions and representations that enable 

students to perceive fractions in different ways that are useful to the tasks at hand. Specifically, 

it is crucial for students to have a rich network of mental images associated with the different 

fraction conceptions. These mental images, which could take the form of pictures, diagrams, 

graphs, symbols, or other representations, are called concept images. According to Tall and 

Vinner (1981), a concept image describes “all the cognitive structure in the individual’s mind 

that is associated with a given concept”, including “all the mental pictures and associated 

properties and processes” (pp. 151–152). The complication arises because learners’ concept 

images may not always be aligned to the corresponding formal concept definitions. 

Hershkowitz and Vinner (1980) suggested that students may develop concept images of a 

concept before they can make sense and use an appropriate concept definition. These images 

are developed through the students’ interactions with examples, diagrams, and other 

representations presented in the classrooms. 

But for fractions, there seems to be an over-emphasis on the use of area models, and this 

results in a limited part-whole fraction conception. This limited conception “seemed to generate 

concept images of unit fractions which resulted in students learning much about drawing and 

shading circles, rectangles, and squares, but without developing sound conceptual 

understandings” of unit fractions (Zhang et al., 2014, p. 228). This issue is further exacerbated 

by the fact that most primary school textbooks do not introduce the concept of rational numbers, 

which has a clearly defined concept definition. These findings suggest the importance of 

textbook writers moving away from “area-model representations of unit fractions toward 

multiple embodiments” (p. 228) when writing textbooks. 

We wonder, therefore, how textbooks can facilitate or hinder the development of concept 

images that can be productively evoked for solving fraction tasks. Studies that investigated 

students’ concept images often examined their evoked images when responding to carefully 

designed tasks (Hershkowitz & Vinner, 1980; Tall & Vinner, 1981; Zhang et al., 2014). But, if 

textbooks are seen as “objectively given structure” without considering how the textbooks 

might be used with students (Herbel-Eisenmann, 2007, p. 346), then there is a need to examine 

how textbooks might play a role in enriching or hindering students’ concept images. Most 

textbook analyses focus on characterising the concepts, representations, and tasks presented in 

the textbooks (Charalambous et al., 2010; Choy et al., 2020; Lee et al., 2021). In this paper, we 

want to analyse textbooks through the lens of concept images by using the notion of potential 

concept images. To be clear, we are not looking at evoked concept images; instead, we are 

trying to determine if various combinations of conceptions and representations might afford 

certain concept images, which give rise to opportunities for students to understand fractions. 

Methods 

To derive the potential concept images as afforded by textbooks, we first examined the 

textbooks with respect to the contextual variables of the two countries (Huntley, 2008) before 

we analysed the content and instructional variables (Charalambous et al., 2010; Lee et al., 

2021). We focused on the five fraction conceptions (Kieren, 1976; Lamon, 2012) for the content 

variable and the fraction representations (Cramer et al., 2002; Watanabe, 2002) for the 

instructional variable. 

Contexts of the Two Countries 

In Northern Ireland (NI), it is compulsory for all children to have at least 12 years of 

education (seven years of primary education and five years of post-primary education) and the 

opportunity to obtain school leaving qualifications. The 12 years of compulsory education are 

divided into five Key Stages. Primary education comprises a Foundation Stage (Years 1 and 2), 
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Key Stage 1 (Years 3 and 4) and Key Stage 2 (Years 5, 6 and 7). The NI Primary Curriculum 

(Council for the Curriculum Examinations & Assessment (CCEA), 2007) sets out the minimum 

requirement that should be taught at each of the three stages of primary education: Foundation 

Stage, Key Stage 1 and Key Stage 2. Teachers, however, have considerable flexibility to make 

decisions about how best to interpret and combine the requirements in order to prepare young 

people for the future. In the NI Curriculum for Mathematics and Numeracy, fractions are 

included within the ‘Number’ strand and are first introduced in Key Stage 1. In Key Stage 1, 

pupils “should be enabled to … recognise and use simple everyday fractions’ (p. 62), and in 

Key Stage 2 they ‘should be enabled to … understand and use vulgar fractions, decimal 

fractions and percentages and explore the relationships between them” (p. 65). 

In Singapore, there is compulsory education for primary school education, which comprises 

levels from Primary One (students aged 7) to Primary Six (students aged 12). As a centralised 

education system, there is a standardised curriculum for all primary schools that specify the 

content learning outcomes, learning experiences, pedagogical approaches, and assessment 

requirements for each level (Ministry of Education-Singapore, 2019). Unlike in Northern 

Ireland, Singapore teachers generally follow the standards set out in the curriculum documents 

very closely. However, they have flexibility to decide on the teaching approaches to cater to the 

needs of their learners. Like NI, fractions are introduced as part of the ‘Number and Algebra’ 

content strand and are first introduced in Primary Two. Fraction concepts are progressively 

developed from Primary Two through Primary Six, covering key fraction concepts such as 

fractions as part-whole, equivalent factions, mixed numbers, and improper fractions, as well as 

fraction operations (see Figure1). 

Figure 1 

Development of Fraction Concepts in Singapore (Ministry of Education-Singapore, 2012, p. 36). 

 

Selection of Textbooks 

Schools in NI tend to rely on materials published in the United Kingdom to support their 

mathematics teaching. Anecdotal evidence suggests that, as in England, there is a vast array of 

mathematics curriculum resources in use, including textbook-schemes, online-schemes, and 

teacher-curated resources. For this study, we decided to focus on the New Heinemann Maths 

(NHM) series, a complete mathematics programme for children aged 4 to 11. Produced in 

England, NHM was first developed over 20 years ago and has been one of the more popular 

textbook-schemes in NI. In our analyses, we looked at NHM 3 (Scottish Primary Mathematics 

Group, 2000), where fractions were introduced for the first time in textbooks. 

In contrast, there is only one textbook series, written by the Ministry of Education, to be 

used in Singapore primary schools for the current syllabus (Ministry of Education-Singapore, 

2019), which was implemented in 2021. The former series of textbooks used for the 2013 
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syllabus will be progressively retired as the current syllabus progressively replaces the 2013 

version from 2021 to 2026. As we are looking at how fractions are introduced, we will only 

analyse the current textbook for Primary Two, Primary Mathematics Textbook 2B (PMT 2B), 

published by Star Publications (Curriculum Planning & Development Division, 2022). 

Data Analysis 

With the aim of discerning the potential concept images as afforded by the textbooks, we 

followed Herbel-Eisenmann (2007) in seeing textbooks as “objectively given structure” 

(p. 346) without considering how the textbooks might be used with students. We wanted to 

examine how the examples, diagrams, and explanations might come together in presenting 

certain concept images to the readers. As we were interested in how fractions are first 

introduced in primary schools, we only analysed the relevant chapters that first present fractions 

as a mathematical concept (e.g., we did not analyse the chapter on time where terms such as 

“half past nine in the morning” might suggest some concepts of fractions). Although this may 

appear to be limited, it is important to consider how the foundations are established as this will 

impact how the learner’s knowledge and understanding develops over time and how this 

knowledge and understanding will be used and applied in other contexts. 

Analyses occurred at the item level where we saw each example, question, representation, 

paragraph of explanatory text, or task as an item. We first coded the items using the five 

conceptions of fractions—part-whole, measure, quotient, operator, and ratio (Kieren, 1976; 

Lamon, 2012)—depending on what was explained or needed to complete the item. We then 

coded the representations used (i.e., concrete, pictorial (area, length and set models), verbal, 

and symbolic) using the categorisation used by Lee et al. (2021). Coding was done 

independently in which the first author coded the Singapore textbook while the second author 

coded the NI textbook, before we came together to share and justify our analyses for our 

respective textbooks. Consensus was reached through discussion. We then proposed possible 

concept images based on our analyses of the conceptions and representations by connecting 

these two aspects of textbooks. 

Findings and Discussions 

In this section, we describe, compare, and contrast two key potential concept images 

afforded by the chosen textbooks from the two countries. They are “fractions as equal parts of 

a whole” and “fractions can have different sizes”. As we describe these potential images, we 

also attempt to relate them to students’ learning difficulties in extant literature before we 

conclude with some implications for practice. 

Fractions are Equal Parts of a Whole 

We expected that “fractions are equal parts of a whole [shape]” to be one of the potential 

concept images afforded by the two textbooks. However, we made a nuanced distinction from 

the usual part-whole conception of fractions (Lamon, 2012) by highlighting what students 

might perceive about the equality of parts from the fraction representations. As seen in Figure 2, 

fractions are often represented in area models, comprising circles or rectangles, with equal parts 

that are congruent to each other. This image is also reinforced by explanations such as “The 

circle is divided into 3 equal parts. 2 parts out of three equal parts are coloured. So, 2/3 of the 

circle is coloured” [PMT 2B, p. 55]. 

This conception-pictorial-textual link might be wrongly perceived by students (and even 

teachers) to mean that there is no fraction when the parts are not equal (Choy, 2013). Seeing 

that the correct answers always involve equal parts with congruent parts, it might seem logical 

for students that fractions must always be equal and congruent parts of a whole (Simon et al., 

2018), resulting in this flawed concept image. This flawed concept image may be potentially 
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evoked by students when solving tasks which require students to identify pictures that show a 

given fraction or to identify the fraction in each picture [PMT 2B, p. 54; NHM 3, p. 70]. 

Therefore, our textbooks present at least two potential concept images associated with the part-

whole conception. First, the mental image that a shaded part is 1/n of a given shape (area model) 

because its area is 1/n of the area of the given shape. Second, the flawed mental image that a 

shaded part is 1/n of a given shape because the shape is divided into n congruent parts. 

Figure 2 

Part-Whole Representations of Fractions (Curriculum Planning & Development Division, 2022, p. 55; 

Scottish Primary Mathematics Group, 2000, p. 70) 

 

Fractions can Have Different “Sizes” 

Several items in both the NHM 3 and PMT 2B afford the potential concept image of 

fractions having different sizes. Clearly, as a measure, fractions can be ordered on a number 

line. Here, the NHM 3 included a task that aims to encourage students to count in halves on a 

number line from 0 to 7. This task is followed by another one which provides students 

opportunities to determine which statement is true (see Figure 3). There are two possible 

answers to this task. First, if we take these fractions as a number (measure), then there is a fixed 

answer in that ¼ < ½ < ¾. Second, if we think of each fraction as part of a whole, then we will 

need to be clear about the referent before we can decide. Taken together, these tasks afford the 

potential image of fractions have different sizes because they can be ordered on a number line. 

Figure 3 

Task in NHM 3 on Comparing Fractions (Scottish Primary Mathematics Group, 2000, p. 71) 

 

However, for the PMT 2B, there is no number line to indicate that fractions can be ordered 

independent of context. Instead, the potential concept image with respect to comparing and 

ordering fractions is associated with the size of the shaded area of the figure, which is consistent 

with the focus on the part-whole conception of fraction. Referring to Figure 4, we see that the 

basis for deciding which fraction is greater is the area of the shaded region—the bigger the area, 

the greater the fraction. 
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Although both textbooks offer potential concept images about the possibility of comparing 

and ordering fractions, they differ qualitatively in terms of what counts as size. The use of the 

number line in NHM 3 to illustrate the measure conception of fraction affords students a 

concept image that potentially relates the magnitude of a fraction to its location along the 

number line. Whereas in PMT 2B, the area model provides the basis for comparing and ordering 

fractions using the size (area) of the fraction pieces. This potential concept image may not be 

robust enough to deal with cases where the whole is of different sizes. The NHM 3, on the other 

hand, provides another potential image through the task in Figure 3. 

Figure 4 

Task in PMT 2B on Comparing Fractions (Curriculum Planning & Development Division, 2022, p. 57) 

 

Concluding Remarks 

Our analyses of the two textbooks through the lens of potential concept images is by no 

means comprehensive as there may be other potential concept images. However, they suggest 

a layer of complexity beyond coding for conceptions and representations in textbook analyses: 

the same representation in a textbook can potentially evoke different concept images in 

students. For instance, the heavy focus on the “part-whole” fraction concepts using the area 

models in PMT 2B can give rise to both an acceptable concept image and a flawed one. 

However, the surfacing of flawed potential concept images in a textbook does not mean that 

the textbook is inferior in any way. Nor would the number of potential concept images mean 

anything about the quality of a textbook. What we offer through the notion of potential concept 

images is to provide a way to connect conceptions, representations, and tasks in the textbooks 

for the purpose of highlighting different ways of understanding the same concept. 

These potential concept images, as developed through our content and instructional analyses 

of the textbooks, can be seen as students’ possible understanding of fraction ideas. As suggested 

by Smith (2002), it is useful to “work with students to understand fractions and ratios in their 

own terms first” for the purpose of making sense of the formal concepts of fractions later (p. 5). 

Hence, these potential concept images can serve as teachers’ anticipation of students’ ideas 

about fractions. They also sensitise teachers to the possibilities that students may perceive what 

was written in the textbooks differently. In addition, in the hands of a skilled teacher, an 

awareness of these flawed potential concept images can provide the locus of action for teachers 

to take when planning their instruction. Finally, given the powerful role that textbooks play in 

mathematics teaching and learning, it is vital that textbook writers carefully consider the 

potential concept images that may be evoked from the pedagogical approaches recommended. 

References 
CC 

Charalambous, C. Y., Delaney, S., Hsu, H.-Y., & Mesa, V. (2010). A Comparative analysis of the addition 

and subtraction of fractions in textbooks from three countries. Mathematical Thinking and Learning, 
12(2), 117–151. https://doi.org/10.1080/10986060903460070 

Charalambous, C. Y., & Pitta-Pantazi, D. (2006). Drawing on a theoretical model to study students’ 

understandings of fractions. Educational Studies in Mathematics, 64(3), 293–316.  

https://doi.org/10.1080/10986060903460070


Choy & Moffett 

174 

Choy, B. H. (2013). Productive mathematical noticing: What it is and why it matters. In V. Steinle, L. Ball, 

& C. Bardini (Eds.), Proceedings of 36th annual conference of Mathematics Education Research Group 

of Australasia. (pp. 186–193). MERGA. 

Choy, B. H., Lee, M. Y., & Mizzi, A. (2020). Insights into the teaching of gradient from an exploratory study 

of mathematics textbooks from Germany, Singapore, and South Korea. International Electronic Journal 

of Mathematics Education, 15(3). https://doi.org/10.29333/iejme/8273 

Council for the Curriculum Examinations & Assessment (CCEA). (2007). The Northern Ireland curriculum: 

Primary. CCEA. 

Cramer, K. A., Post, T. R., & delMas, R. C. (2002). Initial fraction learning by fourth- and fifth-grade 

students: A comparison of the effects of using commercial curricula with the effects of using the rational 

number project curriculum. Journal for Research in Mathematics Education, 33(2), 111–144. 

https://doi.org/10.2307/749646 

Curriculum Planning & Development Division. (2022). Primary mathematics textbook 2B. Star Publishing 

Pte Ltd. 

Gabriel, F., Coche, F., Szucs, D., Carette, V., Rey, B., & Content, A. (2013). A componential view of 

children’s difficulties in learning fractions. Frontiers in Psychology, 4, 715. 

https://doi.org/10.3389/fpsyg.2013.00715 

Herbel-Eisenmann, B. A. (2007). From intended curriculum to written curriculum: examining the “voice” of 

a mathematics textbook. Journal for Research in Mathematics Education, 38(4), 344–369. 

Hershkowitz, R., & Vinner, S. (1980). Concept images and common cognitive paths in the development of 

some simple geometrical concepts. In R. Karplus (Ed.), Proceedings of the 4th international conference 
for the Psychology of Mathematics Education (Vol. 1, pp. 177–184). PME. 

Huntley, M. A. (2008). A framework for analyzing differences across mathematics curricula. Journal of 

Mathematics Education Leadership, 10(2), 10–17. 

Kieren, T. E. (1976). On the mathematical, cognitive and instructional foundations of rational numbers. In 

R. Lesh & D. Bradbard (Eds.), Number and measurement: Papers from a research workshop (pp. 101–

144). Information Reference Center (ERIC/IRC), The Ohio State University. 

Lamon, S. J. (2012). Teaching Fractions and ratios for understanding (3rd ed.). Routledge. 

Lee, M. Y., Choy, B. H., & Mizzi, A. (2021). Exploring the introduction of fractions in Germany, Singapore, 

and South Korea mathematics textbooks. Journal of the Korean Society of Mathematics Education Series 

D: Research in Mathematics Education, 24(2), 111–130. https://doi.org/10.7468/jksmed.2021.24.2.111 

Lee, M. Y., & Hackenberg, A. J. (2014). Relationships between fractional knowledge and algebraic 

reasoning: The case of Willa. International Journal of Science and Mathematics Education, 12(4), 975–

1000. https://doi.org/10.1007/s10763-013-9442-8 

Ministry of Education-Singapore. (2012). Primary mathematics teaching and learning syllabus. Curriculum 

Planning and Development Division. 

Ministry of Education-Singapore. (2019). Mathematics teaching and learning syllabus: Primary. Curriculum 

Planning and Development Division. 

Scottish Primary Mathematics Group. (2000). New Heinemann maths (Vol. 3). Heinemann. 

Siegler, R. S., & Lortie-Forgues, H. (2017). Hard lessons: Why rational number arithmetic is so difficult for 

so many people. Current Directions in Psychological Science, 26(4), 346–351. 

https://doi.org/10.1177/0963721417700129 

Simon, M. A., Placa, N., Avitzur, A., & Kara, M. (2018). Promoting a concept of fraction-as-measure: A 

study of the Learning Through Activity research program. The Journal of Mathematical Behavior, 52, 

122–133. https://doi.org/10.1016/j.jmathb.2018.03.004 

Smith, J. P. (2002). The development of students’ knowledge of fractions and ratios. In B. Litwiller & 

G. Bright (Eds.), Making sense of fractions, ratios, and proportions (pp. 3–17). National Council of 

Teachers of Mathematics. 

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference 

to limits and continuity. Educational Studies in Mathematics, 12, 151–169. 

van de Walle, J., Karp, K. S., & Bay-Williams, J. M. (2013). Elementary and middle school mathematics 

teaching developmentally (8th ed.). Pearson. 

Watanabe, T. (2002). Representations in teaching and learning fractions. Teaching Children Mathematics, 

8(8), 457–463. 

Zhang, X., Clements, M. A., & Ellerton, N. F. (2014). Enriching student concept images: Teaching and 
learning fractions through a multiple-embodiment approach. Mathematics Education Research Journal, 

27(2), 201–231. https://doi.org/10.1007/s13394-014-0137-4 

https://doi.org/10.29333/iejme/8273
https://doi.org/10.2307/749646
https://doi.org/10.3389/fpsyg.2013.00715
https://doi.org/10.7468/jksmed.2021.24.2.111
https://doi.org/10.1007/s10763-013-9442-8
https://doi.org/10.1177/0963721417700129
https://doi.org/10.1016/j.jmathb.2018.03.004
https://doi.org/10.1007/s13394-014-0137-4


RESEARCH PAPERS 

(2024). In J. Višňovská, E. Ross, & S. Getenet (Eds.), Surfing the waves of mathematics education. 

Proceedings of the 46th annual conference of the Mathematics Education Research Group of Australasia 

(pp. 175–182). Gold Coast: MERGA. 

Delving Deeply Into Interviews With Timeline Tools 

Ellen Corovic 

Monash University 
ellen.corovic1@monash.edu 

Sharyn Livy 

Monash University 
sharyn.livy@monash.edu 

Ann Downton 

Monash University 
ann.downton@monash.edu 

Ellen Corovic, Sharyn Livy, & Ann Downton 

Semi-structured interviews are used to gain insights into participants’ lived experiences 

and perspectives on issues, but they are open to subjectivity. To address this issue our 

study explored the combination of timeline graphic elicitation tools with semi-

structured interviews as an approach to gain insights into teachers’ experiences of 

mathematics teaching and professional learning. A qualitative study was conducted with 

ten participants from two schools who took part in professional learning activities for 

mathematics teaching. Findings indicated that combining these instruments can support 

researchers in gathering deeper insights into teachers’ lived experiences. 

Oral histories are personal memories and commentaries that hold historical significance and 

are commonly used for research. These memories offer insights from individuals deeply 

involved in the research subject matter (Galletta, 2013). Capturing participants’ oral histories 

via semi-structured interviews offers valuable insights into lived experiences. Through 

a balance of flexible, open-ended questions and well-prepared structured interview questions, 

researchers can delve deeply into participants’ histories (Kervin et al., 2016). Semi-structured 

interviews are a versatile method that allows researchers to explore lived experiences and 

investigate questions arising from existing theories (Galletta, 2013). 

While semi-structured interviews are widely used in research, it can be argued that they 

have limitations. Charmaz (2014) pointed out a “common criticism of interviews is that they 

are tainted by the participants’ subjectivity” (p. 80). Kervin et al. (2016) concur that 

participants’ reflections during interviews may be influenced by limited, biased, or inaccurate 

recollections, as well as varying degrees of articulation. To ensure participants feel safe and 

comfortable, physically, mentally, and socially, it is critical to enhance our understanding of 

how “tools” might support emotions and reflections during interview design. 

Incorporating graphic elicitation tools into the design of semi-structured interviews may 

assist mathematics education researchers in overcoming these limitations. Such tools are 

commonly used in the arts, psychology, and social sciences (Bravington & King, 2019), but are 

only emerging in mathematics education research. Lewis (2013) described them as a novel 

method of reflection while Galetta (2013) claimed they could help to elicit a narrative and shed 

light on participants’ experiences. Providing tools to support mathematics teachers’ reflections 

may deepen interview narratives and provide insight into significant events. 

As part of the first author’s PhD studies, a combination of timeline graphic elicitation tools 

and semi-structured interviews were used to collect data. This paper presents reflections on 

combining these instruments and methods to gain insights into teachers’ experiences of 

mathematics teaching and professional learning (PL). The specific research question is: 

• How might the combination of timeline graphic elicitation tools and semi-structured 

interviews support researchers to gain insights into teachers’ experiences of 

mathematics teaching and professional learning? 

mailto:ellen.corovic1@monash.edu
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Graphic Elicitation Tools 

This section presents the literature review with a focus on graphic elicitation and the use of 

timeline tools in mathematics education research. 

Graphic elicitations are drawings or diagrams that may be produced by the researcher or 

participant as a contemporary addition to a conventional interview (Bagnoli, 2009; Crilly, 

2006). Self-portraits, chain, hub and spoke, and network diagrams, photographs, timelines, and 

continuums are common variations (Bagnoli, 2009; Bravington, & King, 2019). From 

a researcher’s perspective, combining graphic elicitation tools with a semi-structured interview 

“allows one to see things from different perspectives and to look at data in creative ways” 

(Bagnoli, 2009, p. 567) while gathering “rich and nuanced data” (Crilly, 2006, p. 342). From 

a participants’ perspective, graphic elicitation tools may help participants to reflect on their 

experiences when conveying them to the researcher. For example, diagrams are effective tools 

to express one’s thoughts and to communicate those thoughts to others (Crilly, 2006). In 

addition, graphic elicitation tools may provide a basis to elicit a deeper level of communication 

and reflection and encourage thinking in non-standard ways that may be difficult to obtain by 

other means (Bagnoli, 2009; Crilly, 2006). For example, Bagnoli (2009) described the use of 

self-portraits as a useful tool to break the ice in an interview while participants simultaneously 

expressed their identities through drawings. 

Graphic elicitation tools have become increasingly popular among researchers (Bravington 

& King, 2019). Recently graphic elicitation tools in the form of timeline tools have been used 

to aid qualitative mathematics research. Timeline tools may be used to “collect the most 

important turning points and biographical events” (Bagnoli, 2009, p. 561) as seen from 

participants’ perspectives. Lewis (2013) used a timeline tool to capture high school students’ 

reflections of mathematics, whereas Bobis et al. (2021) used a similar timeline tool to explore 

teachers’ development of mathematics identity. Combining a semi-structured interview with a 

timeline tool in this way yields insights into the impact of events that may not have been obvious 

to participants (Bobis et al., 2021). Furthermore, this combination of methods supports 

participants when explaining how and why experiences were considered impactful (Bobis et 

al., 2021. 

As a “novel quantitative” method (Lewis, 2013, p. 76), the timeline tool allows teachers to 

reflect upon their perspectives and past experiences and consider what events were influential 

in developing their mathematics teaching practice. Corovic and Downton (2021) found the 

“inclusion of the timeline tool facilitated questioning to generate rich dialogue and valuable 

reflections” (p. 160). Semi-structured interviews allow for the conversation to be 

simultaneously flexible in design, moving within the flow of conversation, yet holding the 

ability to dig deeper into the research phenomena in a safe and trusting environment. 

Method 

To conduct the research, a qualitative method was used which involved combining 

a timeline graphic elicitation tool (see Figure 1) with semi-structured interviews. 

Context and Participants 

Ten participants were selected from two schools (based on specific characteristics required 

for the PhD study) using a purposive sampling method (Palinkas, 2015). Five teachers from 

each school agreed to participate in the study. They were all involved in a Foundation to Year 2 

mathematics (students aged 5 to 8 years old) PL focused on teaching sequences of challenging 

tasks, facilitated by Emeritus Professor Peter Sullivan. 

At School A (Melbourne Catholic school) teachers were selected by school leaders who 

perceived that the Year 1 team (n = 2) were resistant to changing their practice while the Year 2 
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team (n = 3) at the same school had embraced the PL practices. These five teachers had 

experienced the same PL, school context, and support, yet had different PL outcomes. While 

the PL method varied slightly for School B (Melbourne Government school) these teachers 

were teaching the same year levels as School A (Year 1 teachers n = 2, Year 2 teachers n = 3) 

and were also selected for the study. 

Instruments 

Two instruments were used in this study: a timeline graphic elicitation tool and an open-

ended semi-structured interview. Both are explained next. 

Semi-Structured Interview 

An interview guide informed by Galletta’s (2013) framework was developed. The guide 

had three parts. Part one was designed to discover participants’ previous experience with 

mathematics education and to develop a positive and safe rapport between the interviewee and 

researcher. Part two focussed on open-ended questions to provide opportunities for teachers to 

provide commentary on their PL experiences. Part three was designed to provide time to clarify 

ideas and provide a final reflection. Questions throughout the guide aimed at gathering 

information relating to teachers’ experiences including what the experiences were and their 

impact on teachers’ practice. 

Timeline Graphic Elicitation 

Combining a timeline graphic elicitation tool with semi-structured interviews was inspired 

by the work of Bobis et al. (2021). After careful investigations and deliberation, revisions were 

made to the tool. These revisions were informed by Lewis’ (2013) and Baglioni’s (2009) 

versions and Murdoch and Wilson’s (2004) student reflection timeline tool. Three sample tools 

were developed. After testing, discussing, and modifying, one tool was selected for the PhD 

study and used twice during each participant’s interview, but with a different focus. 

Data Collection and Analysis 

For data collection, the first author conducted interviews with each participant using the 

timeline tool. School A’s interviews were held online via Zoom due to COVID-19 in August 

2021. School B’s interviews were held in person in November 2023. 

Prior to the interviews, participants completed the first timeline tool to elicit information 

about their previous experiences with mathematics education, starting from their preservice 

teacher education up until their recent participation in PL. Responses were brought to the 

interview by the teacher and used to help initiate discussions. Time was allocated during the 

interview (5 minutes approximately) to complete the second timeline tool. This tool focused on 

gathering information about teacher’s experiences in recent mathematics PL. Each interview 

took approximately 45 minutes. Interviews were video recorded and then the audio was 

transcribed for data analysis. The completed timeline tools were also kept for analysis. The 

authors then watched the videos to record the frequency of teacher gestures, specifically 

pointing to the timeline tool. Data collected was used to respond to the research question. 

An inductive thematic analysis was conducted using all forms of data collected: interview 

transcripts, non-verbal communication (pointing gestures), and timeline tools. Braun and 

Clarke’s (2006) six-phase guide to performing thematic analysis was used. Following a phase 

of data familiarisation, initial codes were generated by the researchers. Codes were collected 

and sorted into potential themes such as: breaking the ice, alleviating anxiety, novel methods 

to collect nuanced data, capturing insights that were not immediately obvious, and insights into 

event influence. The themes were defined and named, and finally, extracts were selected to 

communicate the results. For this paper, we report on the use of instruments to gain insights 

into teachers’ experiences of mathematics teaching and PL. 
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Results and Discussion 

This section provides a brief overview of using the timeline tool and semi-structured 

interviews. Five themes will be discussed. Only one timeline tool example is included due to 

page limitations. 

Breaking the Ice 

Completing the timeline tool prior to the interview most likely helped participants prepare 

for the interview by reflecting on experiences that had influenced their mathematics teaching 

practice. This conclusion was confirmed because few prompts by the interviewer were required 

to instigate conversations. Teachers easily explained their recordings on each timeline tool, and 

they were able to take the lead in the conversation. This was evident as teachers pointed to and 

unpacked their responses. Table 1 shows the number of times each teacher participant pointed 

directly to their timeline tool. 

Table 1 

Frequency of Teacher Pointing to the Timeline Tool  

Teacher Timeline tool 1 Timeline tool 2 

Andy 9 5 

Nadia 17 9 

Phoebe  2 3 

Evelyn 2 2 

Olivia 11 11 

Ella 8 5 

Ceilia 22 9 

Celeste 25 6 

Eliza 8 5 

Natalie 8 12 

Average 11.2 6.7 

As shown in Table 1, teachers (pseudonyms used throughout) referred to, by pointing, the 

first timeline tool on average 11.2 times and the second timeline tool 6.7 times. Teachers were 

likely to point to the first tool more as there were more plot points drawn on them compared to 

the second tool. This is largely due to the first tool seeking reflections of teachers’ career 

experiences, whereas the second tool was of a specific duration (two years for School A and 

one year for School B). For example, Ceilia (see Figure 1) drew seven plot points on her first 

timeline tool and three plot points on her second timeline tool. During the interview, participants 

frequently pointed to their recordings which helped them to ‘open-up’ and share reflections of 

their experiences. This suggests that the tool was effective in breaking the ice and encouraging 

conversations, as proposed by Bagnoli and King’s (2009) notion that graphic elicitation can 

support interviews. 

Alleviating Anxiety 

Several teachers were noted to appear highly anxious at the commencement of the 

interview. This was evident in their body language, voice, and their expression of nerves. The 

combination of instruments appeared to help ease anxiety as the teachers drove the conversation 

and elaborated on various teaching events. Ceilia was an example of a teacher who arrived at 

her interview feeling very nervous. During the interview, the interviewer observed that Ceilia’s 

voice was quavering; she laughed nervously and sat with her arms crossed l. However, as soon 
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as the interviewer asked Ceilia to explain her first timeline tool (see Figure 1), she began to 

relax. 

Figure 1 

Ceilia’s Timeline and Written Reflection of Teaching Experience Over Time (First Timeline Tool) 

 

Figure 1 shows Ceilia’s completed timeline tool of experiences that impacted her 

mathematics teaching practice. This response has captured background information related to 

the teaching experience of a particular teacher. It includes the duration of her teaching career, 

the schools she has worked at, the year levels she has taught, and any significant events that 

have influenced her mathematics teaching practice. While Ceilia was nervous to begin with, 

halfway through the first prompt she used her right hand to point to the timeline tool indicating 

the point she was referring to. Soon after she began to use her right hand to gesture. Ceilia 

began using two-handed gestures at 1.26 minutes into the interview. She spoke expressively 

while elaborating on her discussion points. The timeline tool provided an effective instrument 

for gathering Ceilia’s historical data. Moreover, the instruments appeared to assist with 

alleviating anxiety by providing something for her to focus on stimulating the conversation. 

Capturing Insights That Were Not Immediately Obvious 

The combination of tools supported teacher reflections. This was evident as teachers were 

prepared to discuss experiences recorded on their timelines. In addition, most of the teachers 

added further reflections to their remembrances during the interview. At times the conversations 

deviated from a point on the timeline tool and revealed additional insights. Such was the case 

in Evelyn’s interview. She alluded to her colleagues having an impact on her adoption of the 

PL practices. By probing into this additional information, the interviewer was able to capture 

further insights that weren’t immediately obvious: 

Interviewer: Then you’ve gone up again [pointing to planning on the timeline tool]. So, what have been 

some of the positives that have affected you? 

Evelyn: So, I think that that planning, planning with someone. The observation was so helpful and the 

conversation we had afterwards. I know I got a lot out of it. That idea that it’s not just scripted [the PL 

provided resource materials]. So, I think I was getting caught up with some of the other [team] talk which is 

‘oh no we have to go exactly by the book’ 

Interviewer: How was it helpful? 

Evelyn:  I think we’ve [team] kind of got to the point where we weren’t reading the chapters [of the 

PL supplied resource book containing sequences of lessons], we were just looking at the activities. … I think 
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I lost a bit of track because the people around me had lost track. It was really good for me to be brought back 

into it and I think I just needed that refresher. 

Interviewer: So, the team environment is having an impact on your participation in the learning and adoption, 

is that right? 

Evelyn: I wish it was a bit more … I wish I could dive into it properly, but I can’t [due to the teaching 

team environment]. So, it can be a bit demotivating. 

This extract from Evelyn’s interview highlights that while she began discussing an 

experience that had a positive impact on her, planning, she reflected on her needs as she spoke 

and revealed that her teaching team had a negative impact on her adoption of the PL practices. 

This had not been recorded on her timeline tool. Therefore, it was through a conversation about 

planning that she recognised that the team had had a significant impact on her. Due to the nature 

of a semi-structured interview, the interviewer was able to probe deeper into the experience to 

provide additional insights that were not immediately obvious to the participant. The 

combination of instruments supported reflection prior to, and deeper reflection during, the 

interview. 

Rich Data 

The combination of tools assisted in collecting rich data in a novel manner. Teachers’ 

completed timeline tools provided an innovative way to collect historical data and the interview 

provided an opportunity to collect additional data of interest to the interviewer which had not 

yet been captured on the timeline tool. This was evident in Ella’s interview: 

Ella: In 2019 we did a walk-through where teachers had to do a maths lesson and parents and the 

principal watched. 

Interviewer:  What made this experience so impactful? 

Ella:  I think it was really hands on and we made it cross curricular. … We were doing maths, but it 

was linked to our [class] novel. The kids were really into it. 

Interviewer: What grade were you teaching then? 

Ella: Year 3 

From this conversation with Ella, the data gathered included the following: 

• Teaching background: In 2019 Ella was teaching Year 3; 

• Significant events: A mathematics walk-through with parents and the principal; 

• Impact of the event: It was hands-on, cross-curricula, and kids were into it; 

• The degree of the impact: Very highly positively ranked on the timeline tool. 

The extract illustrates how the timeline tool and interview supported data collection related 

to participant background information (teacher experiences) and insights into research 

phenomena (impact on teacher practice). This combined approach to data collection supported 

a rich understanding of the teacher’s experiences. 

Insights into Event Influence 

Completed timeline tools provided an indication of the level of impact experiences had on 

teachers’ practice. Conversations during interviews provided a greater depth of insight into the 

significance of these experiences. This was evident in Nadia’s interview. Her timeline tool 

recordings indicated positive and negative experiences. She recorded the new format 

(pedagogical approach) as significantly low on the vertical axis and the resource book (support 

materials) as mildly low, indicating both were negative experiences for her. In contrast, Nadia 

recorded colleagues as mildly high on the positive side of her timeline tool, indicating a positive 

impact on her teaching practice. The extract below commences with Nadia explaining these 

first three points: 

So, I’ve got the new format to maths lessons being quite raw and uncertain about where I was headed 

… and the introduction of the resource book. 
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Looking at those chapters and really breaking it apart, definitely helped. 

Working with colleagues and I’d say, working with and progressively even better as the year 

developed last year. I know [Maths Leader] was a big help in that way for me ‘cause I really loved 

her modelling. 

This extract shows how the data gathered in the interview complements the timeline tool by 

providing additional insights into Nadia’s experiences. The timeline tool indicated some level 

of impact, however, the interview conversation allowed for further insights into the significance 

of the event. Without the timeline tool, the level of impact would be difficult to ascertain, or 

further questions in the interview would be required. 

Conclusion 

This study intended to explore the combination of timeline graphic elicitation tools with 

semi-structured interviews as a qualitative methodological research approach to gain insights 

into teachers’ lived experiences. The findings demonstrated the effectiveness of this approach 

in facilitating conversations, alleviating perceived interviewee anxiety, and deepening 

reflections. The timeline tools emerged as valuable aids in prompting discussions about 

participants’ teaching backgrounds and experiences with professional learning. Notably, 

participants frequently referenced the recordings they had made on their completed tools, 

underscoring their utility in shaping, and stimulating conversations. 

This research contributes to the evolving landscape of qualitative research methodologies 

in mathematics education by building on Lewis’s (2013) use of timeline tools as a novel method 

of reflection. Our findings suggest that in addition to supporting participants’ reflections, the 

combined method may assist in fostering in-depth exploration of their experiences. As 

educational research increasingly recognises the importance of participants’ perspectives, this 

study offers a valuable method for researchers seeking to employ innovative instruments that 

engage and empower participants. As Bobis et al. (2021) noted, the combination of timeline 

tools “encourages participants to provide rich descriptions of past experiences” (p. 137). 

We acknowledge that a limitation of this study was focussing on one methodological 

approach, which may overlook potential insights gained from comparing or broadening 

approaches. However, the combined use of timeline graphic elicitation and semi-structured 

interviews emerge as an avenue for future investigations, offering researchers an innovative 

tool to capture nuanced data and deep insights into teachers’ lived experiences of teaching, and 

professional learning in mathematics. Future studies that compared interview data captured 

with and without the timeline tool, and the use of other graphic elicitation tools would be of 

benefit. 
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Young children often explore partitioning as the idea of fair sharing in contexts where 

equal parts are created and distributed based on spatial constructs of the objects, rather 

than enumerating parts or collections. However, the presence of spatial reasoning in 

children’s early fraction experiences is implicit within much of the literature and has 

not been explored pedagogically in a range of early schooling contexts. This study 

reports on a selection of data from a larger Design Based Research study that 

demonstrates the power spatial reasoning plays in developing early partitioning. 

Implications for teaching and learning are discussed. 

Partitioning is considered the foundational concept that enables children to develop the 

multiplicative foundations needed to work with an extended range of fractions (Confrey et al., 

2014; Kieren, 1993; Lamon, 2007). Young children typically explore partitioning by creating 

fair shares and equal parts in everyday play experiences (such as sharing a set of counters 

equally or dividing lumps of playdough into equal shares). Siemon (2003) argued that 

partitioning is the missing link between young children’s experiences with fractions in the early 

years of schooling and their performance and capabilities for multiplicative and proportional 

reasoning in later years. While Siemon’s (2003) research reports on data from over 20 years 

ago, these issues still exist in primary and middle school children’s understandings today in 

Australia and internationally (Callingham & Siemon, 2021; Vanluydt et al., 2022). This implies 

that there is still a great need to examine the ways in which young children develop flexible 

understandings about partitioning, and what pedagogical approaches may better support their 

learning. 

Theoretical Framing 

Regardless of the theoretical orientation of young children’s development of fractions, 

partitioning is considered a critical foundation for fraction understanding because it is derived 

from division and reassembly of division (i.e., multiplication). This understanding is required 

to work with the various interpretations of fractions and the broader network of rational number 

concepts (Confrey et al., 2014; Kieren, 1993). The extensive body of research on fractions 

illustrates that it is a complex area of mathematics (Kieren, 1993) however, this paper does not 

have the scope to expand on these theoretical foundations and will focus specifically on young 

children’s development of partitioning as the basis of this mathematical domain. 

To establish a conceptual understanding of partitioning, it needs to be understood beyond 

the physical act of creating equal parts or shares from discrete or continuous objects. One of the 

critical ideas of this concept is understanding the relationship between how parts are formed 

and named; that is, the inverse relationship between the number of parts and their size (Lamon, 

2007). Partitioning, therefore, develops closely in relation to the concepts of unitising (i.e., 

assigning a unit of measure to name a fraction in relation to how the quantity has been 

partitioned), and quantitative equivalence (i.e., fractions can be renamed infinitely) (Kieren, 

1993; Lamon, 2007). Exploring ‘half’ is the typical introduction to fractions young children 

experience when fair sharing in everyday contexts (e.g., cutting a sandwich in half or filling 

a bucket half full of water). Halving is considered a critical entry point for exploring the inverse 

property of partitioning more broadly, as it introduces children to ‘fraction families’ (e.g., 
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halves, quarters, eighths, etc.), which integrates unitising and quantitative equivalence 

understandings (Confrey, 2012; Siemon, 2003). Even in the early years, teachers need to 

possess a deep understanding of how these concepts are connected so that the choice of 

pedagogical approach—including models and representations utilised—assists children in 

developing such connections. Examining current research on young children’s early 

partitioning capabilities, in addition to the typical models, materials, and tasks teachers employ, 

provides an opportunity to re-examine early partitioning instruction. 

Examining Children’s Partitioning Experiences 

Children are often provided with learning experiences that explore partitioning in 

continuous contexts, such as using 2D shapes and pattern blocks, and paper folding (Siemon, 

2003; Clarke et al., 2011). However, research suggests that children will often be prompted to 

count the parts generated from partitioning, rather than examining their magnitude in relation 

to the parts generated, which masks the inverse property of fair sharing (Clarke, 2011; Confrey, 

2012). While such literature emphasises the need for teachers to utilise different continuous 

models to explore the relationship between partitioning and fraction magnitude, the focus 

largely remains on the types of models used for a particular fraction task. Conversely, we must 

consider the underlying foundations of how the models support children in constructing the 

relationship between partitioning, unitising, and equivalence. 

English (1997) advocates that by reframing the representation as the vehicle for 

mathematical reasoning rather than a tool to represent an end product, the opportunity to 

consider how we utilise various models is revealed. For example, taking a Cuisenaire rod or 

pattern block (2D shape) and asking, ‘If this is … [1-half; 1-quarter; 1 and a half], what is 1?’ 

is a common task teachers currently employ in fraction instruction (Clarke et al., 2011). 

However, the power in such models is when they are used as a vehicle to discuss how and why 

different combinations of rods or blocks may represent equivalent fractions. From this 

perspective, the spatial attributes of the materials, such as how the orientation, symmetrical and 

proportional properties of the parts can be used to represent fraction magnitude, are of focus. 

When we consider using the materials in this way, it suggests spatial proportional reasoning is 

critical to how these materials can be used as vehicles to develop early partitioning 

understanding. 

Spatial proportional reasoning is described as the ability to reason about non-symbolic, 

relative quantities (Möhring et al., 2015). Several studies have demonstrated children’s 

capabilities to reason proportionally in activities that involve non-symbolic partitioning 

contexts-such as number line estimation tasks (see Gunderson & Hildebrand, 2021; Möhring et 

al., 2015). Spinillo and Bryant (1991) conducted an experiment where 6–7-year-old children 

were asked to compare a referent rectangle that was partly blue and white (typically half and 

half; three-quarters and quarter combinations of the colours) to two other larger rectangles, one 

of which had the same proportion of blue and white. The results revealed children’s sensitivity 

to the ‘half boundary’, which children consistently used as a visual benchmark to reason 

proportionally about the size of the different coloured parts. Moreover, some of the rectangles 

were presented in different orientations to the referent image (e.g., horizontal versus vertical 

partitioning of the colours). This suggests that spatial visualisation was also a useful skill for 

children to draw on in this context. Spatial visualisation can be defined as the ability to mentally 

transform or manipulate spatial properties of an object or image (Lowrie et al., 2016). In this 

study, the results imply that the children also utilised spatial visualisation to imagine 

‘rearranging’ the coloured parts to make comparisons between the rectangles. It is important to 

note that the children in that study demonstrated little understanding of symbolic notation 

relating to fractions. Thus, these findings suggest a strong connection between children’s 
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conceptualisation of what it means to partition and name a fraction as half through utilising 

spatial proportional reasoning and spatial visualisation in continuous contexts. 

Discrete materials are also critical for the development of partitioning (Siemon, 2003) and 

can support children’s early fraction understandings by emphasising their spatial attributes. 

Typical discrete materials include counters and small blocks to explore how sets can be shared 

fairly. Several studies illustrate that children create different structures and arrangements of 

objects to determine the equality of shares in a discrete context (Confrey, 2012; Wilson et al., 

2012). Such arrangements included arrays or visual patterns (including symmetry and 

congruence of the arrangement of the objects) to justify the fair shares. Therefore, even in 

contexts that may imply a counting strategy is required, children will use a range of ‘non-

numerical’ based strategies that help them reason about the magnitude and relationship of the 

shares created. Using arrays or patterns to create and distribute fair shares from a spatial 

reasoning lens implies that children use spatial structures in early partitioning experiences. 

Mulligan and Mitchelmore (2009) describe spatial structure as an awareness of mathematical 

relationships that are supported by spatial patterns and arrangements. Literature on spatial 

structure and early fraction understanding is limited. However, several studies have found that 

structure and pattern promote a multiplicative understanding of unit structures in measurement 

and whole number contexts (see Battista & Clements, 1996; Mulligan & Mitchelmore, 2009). 

Given the multiplicative relationship that exists between unitising and partitioning in the 

domain of fractions, spatial structuring appears to be an important construct to leverage in the 

teaching and learning of fractions—particularly in discrete contexts. 

In summary, several spatial reasoning constructs have been identified as important in the 

development of children’s early partitioning experiences. Yet, no studies to date have explored 

this connection through a pedagogical approach in the early years of school. The present study 

investigated this issue, and the following question frames this paper: 

• How does spatial reasoning help young children develop a flexible understanding of 

partitioning? 

Research Design 

This doctoral study employed a Design-Based Research (DBR) methodology to iteratively 

explore a teaching intervention that employed a spatial reasoning approach to teaching and 

learning fractions in the early years of primary school. DBR is an important methodology to 

the mathematics education research community because it enables a dual focus on (a) designing 

innovative forms of instruction to explore children’s processes of learning and (b) refining local 

instruction theories through iterative teaching experiments for wider theoretical and practical 

application (Prediger et al., 2015). This paper will report on a subset of data from two teaching 

experiments conducted as part of this study. Data from two junior primary classes from two 

public schools in regional South Australia (referred to as Class B and Class C). Forty-four 

children aged 6–7 years participated in this component of the study. Furthermore, the classroom 

teacher of each class acted as an additional researcher in this project. 

Instruments 

The intervention program comprised 13, 60-minute lessons taught by the researcher. The 

lessons were designed for children to explore continuous and discrete contexts, focusing on 

developing an understanding of the inverse property of partitioning through providing contexts 

that emphasised spatial reasoning strategies. Examples of activities from this intervention will 

be provided in the results and discussion section. 
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Data Collection and Analysis 

The researcher collected and thematically analysed work samples, anecdotal notes, and 

observational data from each lesson during the two teaching experiments. Consistent with DBR, 

the classroom teacher acted as an additional researcher by collating their observations and 

anecdotal notes throughout each lesson for comparison with the researcher. Thematic analysis 

was employed to analyse children’s thinking and behaviour throughout the intervention 

program. Thematic analysis provides researchers with a method for identifying patterns of 

meaning within the data that the researcher deems important concerning the research questions 

(Braun & Clarke, 2013). 

Results and Discussion 

The results of this paper are organised into three themes, which represent how spatial 

reasoning was integral to the development of the various partitioning ideas in discrete and 

continuous contexts. 

Creating Fair Shares 

The first theme that illustrates children’s partitioning behaviours in this study is their ability 

to create fair shares. The first activity for discussion asked the children to collect 12 plastic 

counters that represented ‘cookies’ and explore how they could share them fairly between 

different groups of friends (as discrete collections). In the introduction of the activity, the 

researcher used six counters to model a 3 x 2 array to the class and asked how many counters 

there were and how they knew. Specifically, the children were asked to look at the way the 

counters were arranged and if that helped them describe how many counters were there. This 

was intended to elicit a discussion about how they might describe these parts and the share of 

cookies each person receives based on the structure and arrangement of the counters. Several 

children could articulate that they could see that ‘six is three equal columns; three as a row is 

half of six; six can be shared fairly between three people, there are two equal rows (shares) of 

three cookies’. The children were asked to think about how they might arrange their counters 

to help them describe and ‘see’ how many ways they could share 12 ‘cookies’ fairly. 

During this task, one group of children made three groups, distributing one counter to each 

group in a square-like arrangement (see Figure 1). 

Figure 1 

Children’s Representation of Sharing 12 Cookies Between Three People 

 

The children discussed how many counters there were in each group when sharing with 

three friends. Child 45 explained, “There are four, four and four because I can see a square in 

a group of four counters; my [12] counters make three squares!” This representation and 

description demonstrated how they utilised the spatial structure of the shares within the whole 

set to justify equal parts. That is, their creation of squares as a unit was created through the 

processes of partitioning, in this context, dealing one cookie to each ‘square’ at a time to exhaust 

the collection. However, their description of the 12 counters representing three shares of four 

indicates they unitised twelve as three–fours through the geometrical structure the child 

imposed on the shares. After this group experimented with sharing 12 cookies between four, 

five and six friends, Child 41 also stated that “when you make patterns with the shares, it’s 

easier to tell if they are all the same or not, even when they get smaller because there’s more 
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people”. This indicates that the spatial structure the children utilised within their created models 

was connected to their understanding of the inverse relationship generated through fair sharing. 

In an extension of the cookie-sharing activity, the children were asked if they could share 

12 cookies between 8 people fairly and how much each person would receive. A range of 

materials (paper circles, plastic counters) were provided for the children to work with. Although 

this was challenging for many children, three children worked together to make the following 

representation using the counters and presented it to the class (see Figure 2). 

Figure 2 

Child 57’s Representation 

 

Child 57 explained their representation: 

Child 57: We knew that there would be one cookie for each person, so we decided to line them up like 

this so you can see the four and four rows [gesturing horizontal movements with hand to 

indicate the central two rows of four]. This left four over, but to work it out it’s easy because 

these cookies [referring to the two counters at the top of Figure 2] have to be shared between 

four people (Figure 3). 

Child 57: This one cookie [referring to one of the two cookies at the bottom of Figure 3] also gets broken 

in half and shared to these two people and same with this one [gestures halving the two top 

cookies]. 

Figure 3 

Child 57’s Interpretation of Creating Fair Shares 

 

This explanation highlights how the children imposed a spatial structure again to help them 

conceptualise the shares. However, they also indicated they used spatial visualisation to imagine 

partitioning the remaining four cookies in half to create equal shares of the collection, as the 

plastic counters were not able to be physically partitioned. This is a complex problem for 

children at this age, as mixed fractions are not typically considered appropriate for teaching in 

the early years and are not reflected in the current curriculum standards, at least in Australia. 

Justifying Equal Shares 

The second theme emerging from this study that highlights the connection between spatial 

reasoning and partitioning was children’s ability to justify that they had created equal shares. 

The following activity was based on the context of designing and comparing tablecloths. The 

children were provided with blank paper rectangles and asked if they could design a tablecloth 

that met a specific brief (e.g., a design that had equal parts of blue and green, a design that was 

more purple than orange etc.) Some children chose to cut and fold their rectangles while others 

drew and coloured regions to represent their tablecloth designs. 



Cutting 

188 

Child 67 created the following design (Figure 4a) and stated that they had created equal 

parts of pink and purple on their tablecloth, that is, their tablecloth would be half pink and half 

purple. When asked how they knew the parts were equal, they stated that if they moved the left-

hand pink section to join the pink region on the right-hand side, it would “look the same size as 

the purple part” (see Figure 4b). 

Figure 4 

Child 67’s Tablecloth and Interpretation of Their Visualisation Process 

a)    b)  

This child’s explanation demonstrated a complex visualisation process to justify that their 

parts were equal. The interpretation of this child engaging in spatial visualisation was supported 

by their use of spatial transformation vocabulary; that is, words indicating the child was 

mentally changing parts of the image in some way—such as move and slide—were captured in 

their descriptions. This child also indicated a sensitivity to the ‘half boundary’, consistent with 

Spinillo and Bryant’s (1991) study, by noticing the symmetrical relationship of the parts after 

(mentally) manipulating the tablecloth. Spatial visualisation was also evident in Child 30’s 

discussion about justifying their equal parts “You can have something that has lines all over it, 

and all different shapes, but it’s still a whole, and you can still make a half or a fourth if you 

look inside these patterns and move them in your head.” 

These examples represent how many of the children were engaging in spatial visualisation, 

which allowed them to mentally move and transform parts of the tablecloth to make 

a judgement on the relative proportions of different colours. These findings represent early 

understandings of how fractions can be generated (partitioning), named (unitising), and 

renamed (quantitative equivalence), utilising spatial visualisation and spatial proportional 

reasoning. 

Justifying Proportionally Equal Shares 

The final theme exemplifying children’s partitioning development in this study was their 

use of spatial proportional reasoning when comparing and justifying fractions between unlike 

wholes. An activity that exemplified this theme was based on the context of fictional town maps 

(approximately 1.5m x 2m). The children were provided with a set of clues for where members 

of the public had seen dinosaurs (that had escaped their enclosure). The children had to use the 

clues to work out where the dinosaurs were hiding. The clues involved statements like, “The T-

Rex was spotted halfway between the fountain and the bike path; …two-thirds along the train 

track, etc.). The children were not allowed to use any formal measurement tools as such, as the 

focus was on them considering the spatial elements of the map’s images. 

The second part of the task required children to draw scaled representations of their 

pathways in their workbooks. Child 32 explained to the classroom teacher that the 

representation of their paths were different lengths, “so half is going to look different on each, 

but still in the middle [of each path]”. Teacher B also recorded that the child suggested that for 

the curved path, they had to take into account the impact of the curves in relation to the length 

of the whole path. In other words, the child could not just consider halfway between the 

destinations ‘as the crow flies’ but had to visualise the length of the entire pathway in relation 

to its orientation to determine the equal parts. 
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Figure 5 

Child 45’s Work Sample 

 

Child 45 demonstrated a spatial proportional awareness of half in their explanation of “my 

lines [pathways] are all crazy, but there’s still two same-size parts,” referring to each half as 

proportionally equal to its relevant whole (Figure 5). With this explanation, the child used 

a gesture that suggested they were visualising straightening out the 2-halves of the curvy path 

at the top of their picture like it was a piece of string they were flattening out with the palms of 

their hands. This example also illustrates the close connection between spatial visualisation and 

spatial proportional reasoning in the creation and justification of equal parts. Finally, Child 32 

concluded this activity with the following point in a whole class discussion: 

I could imagine that I can walk from here to far, far away, and its only half to where I’m going—

like Adelaide or something. But I could walk from here to that table, and it’s halfway of this room. 

You have to think about what the end is to know how big you’ve walked. 

This is evidence that spatial visualisation and spatial proportional reasoning assisted the 

children in developing flexible understandings of partitioning. The ideas and understanding the 

children expressed in these statements are also consistent with Spinillo and Bryant’s (1991) 

description of the ‘half boundary’ idea, which they argue young children utilise to judge the 

magnitude of parts within an object. Through emphasising spatial visualisation and spatial 

proportional reasoning, the children demonstrated the ability to justify the equality of the parts 

created, rather than seeing ‘half’ (or other fractions) as a quantity that is fixed to a particular 

object. This evidence demonstrates that utilising spatial reasoning is a powerful vehicle for 

developing early partitioning generalisations, that is, the inverse property of fractions. This is 

a critical finding as, according to the current literature, anticipating the outcome of partitioning 

and recognising the multiplicative foundations of fractions are ideas that many older children 

fail to comprehend (Callingham & Siemon, 2021). 

Conclusion and Implications 

This study demonstrates that the young children in this study were very capable of exploring 

early multiplicative and proportional foundations of partitioning through spatial contexts. That 

is, spatial reasoning enabled children to visualise the outcome of performing different partitions 

and determine the relationships between the part size and number of parts generated of like and 

unlike quantities. Furthermore, children’s understanding of partitioning and the tightly 

connected concepts of unitising and equivalence was evident through focusing on structural and 

proportional comparisons of the objects and sets of objects they were partitioning. This paper 

is intended to be used as an opportunity for teachers and researchers to consider young 

children’s capabilities for exploring the foundations for fractions, as the tasks presented in this 

study are not unlike activities and materials that are commonly used in primary classrooms for 

the teaching and learning of early fraction understanding. However, an implication of this study 

suggests that it is the way spatial reasoning was employed pedagogically that enabled children 

to make these connections about the foundations of partitioning, meaning teachers need to be 
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supported on how to employ such an approach to provide rich opportunities for their students, 

whilst still meeting curriculum requirements. The evidence presented in this study is based on 

a modest sample, and therefore, more research is needed to explore the impact such an approach 

may have in the early years of schooling and beyond. Nevertheless, this study provides strong 

support for how spatial reasoning can be used as a powerful teaching and learning tool for 

developing flexible and sophisticated understandings of partitioning. 
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Research on mathematics learner identity often relies on interview data and presents 

case studies of individuals. This method allows an in-depth understanding of the person 

and their relationship with mathematics, but fails to generate a larger picture of identity 

with more breadth. In this paper we propose a method that blurs the boundaries of fiction 

and fact by creating fictional characters and a playscript derived from questionnaire 

response data of senior secondary mathematics students. We argue that this method 

allows for a wide representation of learner identity without sacrificing the individual 

voice that may resonate for various stakeholders within mathematics education. 

Increasing student enrolment in tertiary mathematics (or STEM fields) remains a focus 

within mathematics education; requiring that senior secondary school students retain an interest 

in the subject and consider it to be something they might continue in the future. Mathematics 

learner identity is a conceptual lens that has often been applied to this retention problem, 

offering insights into why individual students may choose, or opt out of, continuing their 

mathematics study (Braathe & Solomon, 2015; Hernandez-Martinez & Williams, 2011; 

Solomon et al., 2016; Ward-Penny et al., 2011). These studies examine the stories students tell 

as they ‘self-author’ their relationship with mathematics (Braathe & Solomon, 2015). Identity 

provides the lens to consider aspects such as their experiences of transition to college/university 

(Hernandez-Martinez & Williams, 2011), reasons for leaving (Ward-Penny et al., 2011), or 

motivations for choosing further study (Black et al., 2010). Often the stories require some form 

of negotiation, e.g., the tension between liking and a fear of mathematics (Braathe & Solomon, 

2015) or differing identities such as woman and mathematician (Solomon et al., 2016). 

Research on mathematics learner identity seeking to understand students’ decisions to 

engage with further mathematics, largely does so with individual cases. The studies mentioned 

above, for example, feature just one, two, or four participants in each case. Thus, whilst this 

body of research gives important and deep insights into how identity is implicated in students’ 

affiliation with mathematics, it does not often gain a wider perspective from a broad range of 

students due to the methods typically employed in identity research (Darragh, 2016; Graven & 

Heyd-Metzuyanim, 2019). We consider it a worthwhile challenge to explore how we might 

create new methods for gaining the perspective of large groups of students without losing the 

richness of data that comes from looking at learner identity of individual cases. 

Additionally, research exploring the reasons students may choose to (or not to) continue 

with further mathematics, may not reach beyond academic circles into practitioner groups. 

Careers advisors, mathematics teachers, and students may not have the interest nor access to 

read academic reports, especially those presented in a ‘dry’ manner. Developing innovative 

methods for the presentation of findings may go some way to extend the reach of the research. 

In this paper we propose a method that aims to address such issues as described above. We 

draw from responses of a questionnaire sent to senior secondary students in schools across 

Aotearoa New Zealand. Following a more typical content analysis of the 641 respondents, we 

engaged in a methodological process that blurred the boundary between fiction and factual 

representation of data. Our aim was to present our data in a manner that resonated for the reader, 

yet also represented the broad range of responses, all the while maintaining a deeper sense of 

the person, as fitting a study on learner identity. 

mailto:l.darragh@auckland.ac.nz
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Our main purpose in this paper is to present the method we employed to synthesise the data 

and generate a playscript which we believe captured the main themes, albeit using a non-

traditional presentation method. In the sections to follow we review literature that has similarly 

played with fiction in data; we detail our method; and we present an excerpt of the resultant 

playscript, together with a discussion of what might be read from these findings. 

Research Using Fiction and Narrative 

Fiction- or narrative-based approaches to qualitative data analysis have been popular for 

some time (Ollerenshaw & Creswell, 2002). According to Ollerenshaw and Creswell (2002), 

the stories that emerge as a product of narrative-based research methods tend to involve “a first-

person oral telling or retelling of events related to the personal or social experiences of an 

individual” (p. 332). There are advantages to these methods, including that they enable us to 

convey the richness of the data through storytelling (Nardi, 2016), and permit learning to occur 

through the sharing of individuals’ stories and experiences (Ollerenshaw & Creswell, 2002). 

Narrative re-storying involves qualitative data, such as that from interviews or surveys, 

being analysed to identify potential story elements among responses, before being rearranged 

to form a new story (Ollerenshaw & Creswell, 2002). There are numerous ways in which re-

storied data can be presented, affording researchers the flexibility to choose the shape they want 

their narrative to take based on their audience or purpose. In mathematics education, some 

fictional narratives produced through re-storying have taken the form of dialogues (da Costa et 

al., 2019; Nardi, 2016), inner monologues (de Freitas, 2004; Hannula, 2003), and movie 

synopses (Darragh & Radovic, 2019). 

It is noted that re-storied data is ultimately shaped by the shared relationships and 

experiences of the participants and researchers (da Costa Neto et al., 2019). Nardi (2016) re-

storied interviews verbatim to create a dialogue between a mathematician and mathematics 

education researcher, expressing that fictionalising the data in this way “assimilates the 

multiplicity of voices (researchers’ and research participants’ …) without suppressing or 

eliminating this multiplicity” (p. 364). Narrative-based approaches’ ability to capture numerous 

perspectives was also commented on by da Costa Neto et al. (2019) who, like Nardi (2016), 

presented their re-storied interview data as a fictional dialogue between a researcher and retired 

mathematics lecturers. They highlighted that the re-storying method enabled them to 

amalgamate quotes from the interview transcripts of four separate participants into a single, 

coherent debate, whilst still showcasing similarities and differences among the interviewees’ 

perspectives (da Costa Neto et al., 2019). Hence, fiction-based methods provide “a possible 

version of this story, through the lens of its actors” (da Costa Neto et al., 2019, p. 4) due to 

qualitative data analysis being “by definition a form of re-storying” (Nardi, 2016, p. 364). 

Narrative formats also provide the opportunity for data to be situated in a context or setting 

that is relevant to the participants and their experiences (Ollerenshaw & Creswell, 2002). 

Hannula (2003) and de Freitas (2004) re-storied their respective student and teacher interview 

data into interior narratives set in mathematics classrooms to reflect the typical context in which 

mathematics teaching and learning takes place. Similarly, Darragh and Radovic (2019) situated 

their re-storied movie synopsis in Chile as it permitted them to “examine common societal 

discourses” (p. 518) that emerged from their interviews with Chilean primary school teachers 

and explore the identity of Chilean teachers more broadly. Because fiction-based methods act 

as “bridges between the different worlds of subjective experiences” (Hannula, 2003, p. 32), 

they enable readers and researchers to access, interpret, and learn from others’ experiences and 

settings (Ollerenshaw & Creswell, 2002; Hannula, 2003). Thus, re-storying may be “a potent 

communicative tool” (Nardi, 2016, p. 364) in mathematics education research. 
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Methods 

The questionnaire forming the data set elaborated in this paper was just one part of a larger 

project that aimed to understand mathematics learner identity, with a specific focus on the 

context of online instructional platforms for learning mathematics. Ethics were obtained for all 

aspects of the study. A mathematics learner identity can broadly be defined as: 

A socially produced way of being, as enacted and recognized in relation to learning mathematics. It 

involves stories, discourses and actions, decisions, and affiliations that people use to construct who 

they are in relation to mathematics, but also in interaction with multiple other simultaneously lived 

identities. This incorporates how they are treated and seen by others, how the local practice is defined 

and what social discourses are drawn upon regarding mathematics and the self. (Darragh & Radovic, 

2018, para. 1) 

For the purpose of this paper, we also note that identity is temporal: Student responses to 

a questionnaire prompt may be seen as one small identity act in that one moment of time. 

Following the definition of identity we use, stories or recounts of experience may be read in 

terms of the wider societal discourses that are drawn from, the affiliations made with the subject 

of mathematics, how mathematics learning is constructed in practice, and the ways in which 

others recognise the learner of mathematics. 

The questionnaire was designed for senior secondary school students, for whom we 

assumed their identity would be somewhat consolidated, in order to gain a broad picture of 

common discourses or narratives about the learning of mathematics, both in-class and online, 

and an understanding of the various “local practices” in these contexts. The questionnaire 

included four opened-ended prompts; the final two questions were, “Thinking back over all 

your experiences learning mathematics, which would be the highlight? Please explain why.” 

and “Thinking back over all your experiences learning mathematics, which would be the low 

point? Please explain why.” These prompts solicited stories from the respondents that could be 

read in terms of identity, albeit just one enactment of identity in a moment of time. Secondary 

schools around Aotearoa New Zealand were invited to participate, and seven schools agreed. 

The schools were diverse in terms of geographical location, demographic makeup, and socio-

economic area. From these schools, 641 students responded to the questionnaire and most 

(98.3%) were taking a senior mathematics or statistics class. 

First we completed a broad statistical analysis of closed questionnaire prompts, comparing 

differences in student ratings of their mathematics ability, their relationship with mathematics, 

and their perceived usefulness of mathematics by demographic groups and whether or not they 

planned a STEM career. Secondly, we conducted a content analysis of the open-ended 

responses. The first author worked with two research assistants to code every response 

following these steps: (1) The team read the first 50 responses together and identified codes; 

(2) Independently we coded the next 100 responses then met together to discuss and clarify any 

differences in our coding and decide if we needed to establish additional codes; (3) The 

remaining responses were divided amongst the three coders so that each response was coded 

by two people; and (4) We met a final time to discuss any conflicting codes and come to an 

agreement. This process was repeated with each of the four open ended responses. 

The categories and counts we developed through these two analytical processes certainly 

summarised the data gained in the questionnaire, yet we felt the breadth of data came at a cost 

to depth. We had noted what we thought were heartfelt storied responses to the questionnaire 

prompts and we wanted to do better justice to the messages that were told and to bring this data 

to life in a way that might resonate for a broader audience. 

Consequently, we completed a second wave analysis of the students’ responses to the final 

two open-ended questions, using them to create characters and to form the basis of a play, as 

described below. Five researchers took part in the character development process. We formed 

a diverse group by ethnicity (Pākehā, Māori, and Korean), by gender, and by age (from recent 
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high-school graduates to those with high-school aged children). From the whole data set of 

responses to these two questions, we independently each chose one or two quotes that resonated 

with us. We then imagined who the person who wrote that response might be, imagining them 

as a mathematics learner. Next, we found other excerpts from the corpus of responses that we 

felt fit with the character we had created. Finally, we returned to the questionnaire data and 

found the corresponding demographic information for each participant for whom we had 

identified a ‘resonating quote’. We looked at their self-identified ethnicity, gender, age, current 

mathematics education status and career aspirations, and we gave each character a name. 

After creating the characters, we reviewed the dataset again to identify other responses that 

we felt matched each character and ‘assigned’ to them further quotes. At this point we also 

identified any types of response that we felt could not connect to one of the characters we had 

created. We concluded that there was scope for three additional characters: one who had no 

strong feelings about mathematics, one who had disengaged with mathematics, and one who 

expressed feelings of anxiety toward mathematics. Again we began with the quote that 

expressed the character before looking to their demographic information. Finally, during the 

coding process, we also decided to merge characters together due to similarities in the types of 

responses we were allocating to their character description. This left us with eight student 

characters altogether. This cast was a little larger than desirable from a playwriting perspective, 

but we felt it was the minimum necessary to be able to allocate the full data set of 641 individual 

responses to the various characters in a coherent manner. 

Before re-storying our responses (Nardi, 2016), we decided that the play’s setting should 

be a school careers expo as we could imagine conversations about mathematics experiences 

taking place in this environment. Using the selected responses for each character, we arranged 

whole or part quotes to create a fictional dialogue between our characters derived from the 

student survey responses. It is important to note that while the dialogue was fictional, the 

content of each utterance in the play was directly derived from the real data collected in the 

questionnaire. Modifications were made to some responses, including tense corrections, 

spelling corrections, and adding words or linking phrases for clarity and flow. These changes 

are denoted in the play by square brackets. For example, two responses to the questionnaire 

prompt about highlights were, “A positive learning environment” and “Class, I have a very 

strong bong with them.” These were re-presented in the play as “A positive learning 

environment [is a highlight in maths]. I have a very strong [bond] with [my class.]” The question 

context, a typo correction, and a grammatical change are shown in square brackets, but it can 

be seen the meaning of the two responses are retained. Finally, we also decided to include an 

additional student advisor character to guide the students’ conversation. This character is 

entirely fictional—although it represents the university voice, such as the authors of this paper. 

The draft playscript was given to a few mathematics educators to read and we asked them 

for feedback on the play. This feedback process allowed us to make informed adjustments to 

the play based on the educators’ uncertainties, improving the study’s trustworthiness (Stahl & 

King, 2020) and credibility (Shenton, 2004). One main adjustment we made was to give the 

advisor more of an agenda to match the rationale of the paper. 

Findings: A Playscript of Mathematics Learner Identity 

Whilst most respondents (97.7%) rated themselves as average or above average ability in 

mathematics, much fewer (64.1%) saw mathematics and statistics as useful for their future. 

Those who planned to go into a STEM career saw mathematics as more useful than those who 

did not, but these students accounted for only 35% of the respondents. 

The content analysis of the open-ended prompts revealed 140 responses that mentioned 

achievement as a highlight, 116 mentioned understanding the content, 96 were coded as related 

to affect, and 79 mentioned assessments or end-of-year exams. Seventy-five responses 
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described pedagogy as a highlight of learning mathematics, and 64 said the teacher had been 

the highlight. Similar themes were also prominent in the responses to the prompt asking for 

a description of the low point of mathematics learning experiences. Of these, 175 mentioned 

lacking understanding as a low point, 98 mentioned affect, 92 mentioned assessment, and 89 

mentioned achievement. The low point pertained to pedagogy in 83 responses and the teacher 

in 69. As mentioned earlier, we felt a lot was lost in this categorisation and counting of the 

dataset. Whilst example quotes could be presented in a list format, we suggest that the playscript 

may help the responses to come alive for the reader. 

The final play script on mathematics learner identity is lengthy and contains nine characters: 

eight students and one student advisor who is entirely fictitious. The length enabled us to 

incorporate a range of student responses from the original survey and weave several prominent 

themes from the survey responses into the discussion between our fictional characters. The 

student advisor character enabled our setting to reflect the rationale. The themes included in the 

playscript reflect those themes found in the content analysis of the questionnaire data set, yet 

also included statements about affiliating with mathematics. 

The playscript length meant that we could not feature it here in its entirety. Instead, we 

present one excerpt during which the characters are mostly discussing the topics of competitions 

and peer support. To access the full play script, see Darragh and Smith (2024). When reading 

the playscript it is useful to remember that every comment by one of the characters, excluding 

the advisor, was in fact a written response to one of the two open-response prompts from the 

questionnaire. Topics of conversation in the full playscript include: affiliation with mathematics 

(or not), assessment, algebra and statistics learning, the usefulness of mathematics, teachers, 

competitions, peer support, and the classroom environment. Woven throughout the play are 

also a number of affective comments related to confidence, stress, and anxiety as well as 

a tension between struggle and understanding of mathematics content. Taken together, the play 

content gives some insight into societal discourses and local practices of learning mathematics 

that were drawn on in the students’ responses to the questionnaire. 

A group of students are at their school’s careers evening. The students walk around the school hall together, 

surveying their potential career options as they wander. A student advisor from a nearby university waits at 

his stall for students to talk to him about STEM career pathways at his university 

[The play begins with the students talking about their own feelings of mathematics learning, ability grouping, 

experiences learning algebra and statistics, before moving on to various teachers they have had] 

Bao:  Bad teachers don’t really inspire me to try… 

Advisor:  Sympathetically [That’s understandable.] 

Manawa: Or they’re mean and I just don’t want to bother with their negativity. 

Riley places the engineering pamphlet back on the table 

Aisha:  Sounding frustrated [Me neither! My] teachers forced me to do mathematics competitions. 

Margaret: Sounding surprised [Oh…] I enjoyed participating in the Mathex competitions in years 7–10. 

Riley:  Nodding [So did I]. 

Aisha:  Looking at Advisor The competitions slowly made me hate mathematics… 

Advisor:  Sounding intrigued [Oh…] 

Aisha:  And since they weren’t optional, I would be punished if I hadn’t participated in the ‘personally 

paid’ exams. 

Advisor:  Sounding confused [I thought competitions like that were meant to be fun?] 

Riley:  Looking at Advisor [Yeah! I always thought competitions] were a fun way to learn and compete 

with friends, classmates, and people from other schools [and] figure out where you are in terms 

of understanding maths. 

Margaret: Nodding [Yeah,] the sense of accomplishment and the team relationships were very rewarding. 

Aisha shrugs and starts having a conversation with Bao in the background about the neighbouring 

psychology careers stall. 
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Advisor: Looking at Riley and Margaret [Supportive environments like that must be beneficial for your 

learning.] 

Margaret: Looking at Advisor Having a positive learning environment [is a highlight in maths]. I have a 

very strong [bond] with [my class.] 

Manawa: Nodding [Me too!] 

Aisha and Bao drift away from the group slightly to get a better look at the psychology stall. 

Margaret: Discussing questions with peers throughout the year strengthened our relationships and 

[deepened] our understanding of math at the same time. 

Manawa: Looking at Margaret [Absolutely! I’ve been] helping some of my friends that weren’t fully 

interested in math to succeed and get good grades. 

Margaret: Looking at Manawa [Same here! I was] able to help my peers in my class who were also 

struggling just like I was. 

Manawa: Getting to help other people either with others struggling in class, tutoring younger years, or 

teaching younger siblings [is really cool.] 

Riley: Enthusiastically [Being] able to explain [complex concepts] to other people gives [me] a feeling 

of achieving. 

Manawa: I just think it’s such a nice feeling being able to pass someone a set of information you know 

[and] help them with things they struggle with. 

Margaret:  Nodding [Totally! I could be] there for them when they felt like they were going to give up. 

Advisor: Looking at Margaret [How awesome!] Turns to Aisha and Bao who are still chatting in the 

background [Do you agree that supportive class environments are important when you’re 

learning maths?] 

Aisha and Bao see the Advisor talking to them and stop their conversation. Margaret and Manawa continue 

chatting to each other in the background. 

Aisha: Nodding [Definitely!] Not having a supportive teacher [can be] a big struggle. 

Bao: Looking at Aisha [I agree.] When I am in a situation where I am unable to receive the assistance 

I need, I just [feel] lost and clueless [and] worse about my maths ability. 

Sefo:  Sympathetically It doesn’t make you feel great [when you can’t understand something]. 

Aisha:  [Especially when there’s an embedded] stereotype from an early age that [maths is] really hard. 

Advisor: [That’s very true!] 

Aisha: Looking at Advisor [I like supportive classrooms because] it [often] takes me longer to 

understand things than others in my class… 

Sefo: [Me too!] 

Margaret and Manawa’s conversation ends and they turn back to the group. 

Aisha: [But] after assistance [from my teacher and friends, I’m] able to be back on track. 

Jackson: Shrugging I [don’t] care enough to ask for help. 

Sefo: Sounding surprised [Really?] 

Jackson: Yeah, I don’t want to learn. 

Manawa: Looking at Advisor [Well, I think it’s nice having] good support in terms of friends who [can] 

help. 

Sefo: [Yeah totally, and] after two years of consecutive not so great maths teaching and learning, 

[having a supportive teacher has made me] aware of how important maths is for my future. 

Jackson nudges Margaret and suggests they go look at some of the other stalls. 

Advisor: Looking at Sefo [That’s great to hear.] 

Margaret and Jackson slowly start walking away from the group. The Advisor spots them leaving and panics 

slightly. 

Advisor: Addressing the whole group but sounding slightly flustered [It’s been great chatting to you guys 

but before you go, would any of you be interested in signing up for one the STEM courses at 

our university next year?] 

Margaret and Jackson continue walking away in the direction of the police stall. 
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Riley: Enthusiastically [Absolutely!] 

The Advisor smiles with relief and hands Riley a sign-up sheet. Riley writes her name down and takes the 

engineering pamphlet she was looking at earlier as she leaves. 

Advisor: Looking optimistically at the remaining students Anyone else? 

[…] 

Discussion 

Our main purpose in writing this paper was to explore the potential of this fictional format 

for presentation of data, particularly the affordances and limitations. To that end, we wish to 

draw attention to a few noteworthy aspects we believe the method has demonstrated. Firstly, 

the play excerpt presented above explores the themes of competition and peer 

support/classroom environment, and in a more subtle manner we may also see the characters’ 

planned careers coming through in their actions of picking up a pamphlet from the advisor’s 

stall, versus their wandering off to other stalls, such as psychology or policing (these were 

desired careers stated in the demographic information for Bao, Aisha and Margaret’s 

characters). The advisor’s panic that very few people were signing up for STEM reflects the 

rationale mentioned at the beginning of this paper and highlights the affordance of creating a 

fictional setting that is relevant to this problem (Ollerenshaw & Creswell, 2002). In this manner 

the questionnaire data may be explicitly tied to the research purposes through its being pitched 

at an audience, beyond other researchers, who are stakeholders in the issue. 

Secondly, the character development process (also described in Darragh et al., 2023), 

enabled a ‘face’ given to the anonymous data obtained in the questionnaire, perhaps lending it 

a certain authenticity. By choosing a resonating quote, we allowed student voice to surface after 

the content analysis reduced the data to categories and numbers. It could be suggested that 

choosing a quote in this way generated subjectivity in the data, however, we argue that this kind 

of subjectivity is always generated when selecting quotes to represent themes. We recognise 

the risks involved in giving our characters names that indicate ethnicity and gender. We did not 

randomly select the character demographics, these were responses connected to the initial 

‘resonating’ quotes we picked to begin the process. We wish to emphasise that our characters 

are not intended to represent others in their ethnic or gender groups, however they do 

demonstrate the fact the questionnaire reached a diverse range of respondents. We wonder if 

the tension between resonating and representing data is worthy of further discussion—this is 

something likely present, yet hidden, in any data presentation that includes illustrative quotes. 

We also wonder if in assigning other quotes to the character ‘type’ we diminished the 

complexity one might see in a real person. These questions are worthy of further discussion. 

In many ways, the presentation of data here differs little from typical qualitative research. 

Themes were found and quotes were selected to present those themes. However, we hope that 

the playscript presentation brings the questionnaire data ‘to life’ so that the implications of 

findings might be more apparent than otherwise, and may be more engaging for a wider 

audience. We suggest that issues of retention and students’ choice to continue studying 

mathematics (or not) might be unpacked with senior mathematics teachers using a playscript 

such as ours. The success of this strategy would certainly be an area for future research. 
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Probability requires teaching approaches that allow children to predict, observe and 

experiment with concreate materials, games and simulations. In this study, we explored 

one teacher’s beliefs and practices of teaching probability using game-based 

approaches. We employed a design-based research approach to explore how our case 

study teacher engaged with an hour-long professional learning on using a game-based 

probability teaching sequence. We found that our case study teacher’s espoused beliefs 

and self-reported practices aligned with knowledge of teaching probability 

demonstrated during the professional learning activity. 

In probability teaching, teacher beliefs, and knowledge are one area of concern (Batanero 

et al., 2004). Issues such as over emphasis on teaching procedural tricks, and lack of confidence 

in teaching probability exist, which lead to a lack of understanding and motivation for learners. 

(Sharma, 2015). According to Batanero et al. (2004), there are six main areas of teacher 

knowledge for teaching probability. Epistemic content represents knowledge of probability and 

statistics content, while cognitive and affective components broadly represent what Shulman 

(1987) called knowledge of student cognitions. The other three categories are media, 

interactional and ecological components. These components highlight some of the main 

pedagogical resources that are required by teachers. Unlike other branches of mathematics, 

probability requires relatively greater use of technological resources and an understanding of a 

wider range of applicability of the content in our everyday and professional lives (Estrada Roca 

& Batanero, 2020). 

An important part of teacher knowledge includes having a productive disposition towards 

teaching probability. According to Estrada Roca and Batanero (2020), success of curriculum 

depends on teachers’ interest in teaching probability. Estrada et al., (2020) provide a useful 

framework for understanding teachers’ beliefs. Their framework explores beliefs about 

probability as well as the teaching of probability under three domains: affective (for example, 

teachers’ emotions towards probability and its teaching), cognitive competence (for example, 

teacher’s self-awareness of probability concepts and how to teach them) and behavioural (for 

example, is the teacher eager to teach probability). An added domain is value towards 

probability and its teaching (for example, does the teacher give importance to probability as a 

subject). Teacher knowledge and beliefs can be enhanced if they are exposed to a variety of 

teaching approaches (Koparan, 2022). 

In this paper, we explored one Fijian secondary mathematics teacher’s beliefs towards 

probability teaching before and during participation in professional development on a games-

based teaching approach. Current approaches to teaching probability in the Fijian secondary 

classroom context generally rely on the traditional chalk-and-board style of teaching. In other 

words, probability teaching in the Fijian context does not take advantage of game-based 

teaching approaches that have connections with students’ everyday experiences. This study is 

important because engaging teachers in games is likely to help develop their knowledge. 

mailto:s.smith@utopia.edu.au
mailto:krishan.kumar@usp.ac.fj
mailto:sashi.sharma@waikato.ac.nz
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Theoretical Orientation of the Study 

We used Vygotsky’s socio-cultural theory which states that knowledge is socially situated 

and constructed through interactions with people (Vygotsky & Cole, 1978). In other words, 

knowledge construction requires tools such as language and cultural artefacts such as games. 

The socio-cultural views of learning see the role of the knowledgeable other such as peers as 

important. Also, viewed from a socio-cultural lens, teaching is a social activity that requires co-

construction that often involves scaffolding from the knowledgeable other (Bell, 2010). 

In other words, working together in collaborative practices and engaging in formative 

interactions with one another can enhance teachers’ cognitive growth (Vygotsky & Cole, 1978). 

In our larger study, the teacher participants and the researchers provided the platform for our 

case study teacher to engage with a game-based probability teaching sequence and reflect on 

its usefulness. Our study involved an hour-long professional learning session and the socio-

cultural view of learning gives us an opportunity to see how our case study participant 

contributed to knowledge construction of others. Given that probability teaching involves 

different dimensions of knowledge, including affective dimension, the socio-cultural theory 

provided us with a useful lens to explore our participants’ beliefs towards probability as well, 

because human behaviour is highly influenced by cultural contexts and interactions (Moll, 

2013, p. 16). 

Literature Review 

Two major interpretations of probability exist. Firstly, the theoretical viewpoint claims that 

all possible outcomes can be attributed to their own probabilities. On the other hand, the 

experimental probability acknowledges that the probability of an event happening can be 

determined by conducting experiments (Jones et al., 2007). Research literature provides some 

useful instances of how games can provide a useful context for exploring different 

interpretations and contexts suggested by Jones et al. (2007). One such example is provided by 

Batanero et al. (2004) who show how different probability teaching contexts can be explored 

using game-based teaching approaches. Having engaged a group of teachers in a game 

involving different coloured dice, they speculate that teachers do acquire knowledge that would 

be beneficial in their later professional work. Most of the research conducted with teachers, 

including prospective teachers, suggest that teachers find teaching probability and statistics 

difficult or challenging (Batanero et al., 2004; Leavy et al., 2013). Findings from a small sample 

study conducted by Leavy et al. (2013) in Ireland suggest that prospective secondary 

mathematics teachers perceive statistics as a challenge due to, among other factors, the need to 

think and reason statistically. Some studies also report similar findings with respect to both 

prospective and practicing teachers’ understandings of probability (Estrada Roca & Batanero, 

2020; Kazak & Pratt, 2017) as well as their understandings of teaching probability (Batanero 

& Álvarez-Arroyo, 2024; Batanero et al., 2010). Many studies have reported that children find 

probability to be a difficult topic and as a result show a number of misconceptions (Koparan, 

2022; Sharma, 2015). 

While the literature points out many challenges with respect to probability teaching and 

learning, it also points to some initiatives that can help overcome some of these challenges. 

Introducing teachers to activities that help uncover the relationship between theoretical and 

experimental aspects of probability is one such area. Typical activities proposed in the literature 

range from ‘classical paradoxes that appeared in the history of probability’ (Batanero et al., 

2010; Estrada Roca & Batanero, 2020) to more recent innovations such as games (for example, 

tokens, cards, lotto, board, embodied, or cultural games) (Dayal & Sharma, 2021) or computer-

generated games and simulations (Koparan, 2022). The use of a varied range of teaching 

activities such as games and computer-based simulations, models and experiments can provide 

excellent contexts for teaching probability (Dayal & Sharma, 2021), help teachers make links 
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between statistics and probability (Estrada Roca & Batanero, 2020), and mediate theoretical 

and experimental probability (Kazak & Pratt, 2017). Estrada Roca and Batanero (2020) claim 

that many teachers have studied theoretical probability, which is one reason they may lack 

expertise in designing rich games and activities for the classroom. Exposure to rich activities 

has led to positive beliefs in teachers (Estrada Roca & Batanero, 2020). Other studies such as 

Batanero and Álvarez-Arroyo (2024), Batanero et al., (2010), Kazak and Pratt (2017) and 

Koparan (2022) confirm the many benefits of engaging teachers in such rich activities. Other 

studies, such as Veloo and Chairhany (2013) and Sullivan (2020), confirm the benefits of 

engaging children in such games. 

Teaching probability and statistics is also a challenge for Pacific Island teachers. Dayal and 

Sharma (2020) reported that pre-service secondary mathematics teachers made incorrect 

predictions on a probability teaching sequence initially but were able to correct those 

misconceptions after conducting the experiments. Findings also revealed that pre-service 

teachers enjoyed the game-based teaching sequence because of the affective and cognitive 

learning challenges and opportunities it provided, as well as providing ideas for future teaching 

(Dayal & Sharma, 2021). This study hopes to add to our understanding of how in-service 

teachers can derive potential teaching ideas for both theoretical and experimental aspects of 

probability. The literature seems to suggest general prevalence of teaching challenges as well 

as an acknowledgement of the potential benefits of teaching using games. The current study 

also aims to add to our understanding of in-service teachers’ perceptions of the degree of 

usefulness of games in teaching from a Pacific Islands context. 

Methodology 

For the purpose of this paper, we used a case study research methodology. Case study is the 

study of a unique stance in action (Cohen et al., 2007). In this study, a case study approach 

helped us provide a ‘close-up reality’ of the beliefs, knowledge and lived experiences of 

teaching probability of one secondary mathematics teacher. 

The study reported in this paper involves only one teacher. Our participant, Jone, is a 

relatively inexperienced teacher with only two years of teaching experience at a single urban 

school. He recently graduated with a Bachelor of Science and Graduate Certificate in Education 

(BSCGCED) majoring in mathematics and physics. During the professional learning workshop, 

Jone partnered with another teacher from his school. The larger study consisted of 15 Fijian 

secondary mathematics teachers who went through three related phases: a pre-workshop one-

to-one interview; an hour-long workshop; and a post workshop written reflection and interview. 

Details of the workshop can be seen in Table 1. A case study methodology was suitable because 

it allowed us to study one teacher’s views and practices (Yin, 2009) in greater detail. The data 

collection was done in multiple ways that included a 15-minute-long interview, followed by an 

hour-long professional learning workshop. The final source of data reported in this study came 

from written reflections and a short interview at the end of the workshop. All interview data 

was audio recorded while the professional learning workshop was video recorded. Jone’s 

interviews were analysed by deriving themes from different focus areas in the interviews. In 

describing Jone’s workshop participation, we describe his actions based on the different parts 

of the workshop such as posing a problem, playing the game in pairs and planning and 

exploring. We purposively chose Jone as our case-study for this paper for two reasons: firstly, 

Jone was the least experienced of the 15 participants. Secondly, Jone had expressed his strong 

support for using games-based approaches in teaching during the initial interview, and as we 

report in the next section, Jone was highly influential during the workshop as well. The findings 

are presented next, in the same order as the research unfolded. 
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Table 1 

A Game-Based Probability Teaching Sequence 

Parts Activities Reflection and discussion 

1: Posing a problem 

(Approximately 10 minutes) 

Esha and Sarah decide to play a 

die rolling game. They take 

turns to roll two fair dice and 

calculate the difference (bigger 

number minus the smaller 

number) of the numbers shown. 

If the difference score is 0,1,2 

Esha wins. If the difference 

score is 3, 4, 5, Sarah wins 

Is the game fair? 

Why do you think the game is fair 

(or unfair). Explain your thinking 

2: Playing the game in pairs 

(Approximately 20 minutes) 

In pairs (or groups), teachers 

play the game with at least 20 

trials 

Is the game fair? Why or why not? 

3: Planning and exploring 

(Approximately 30 minutes) 

Pairs (or groups) make a plan to 

collect, record and analyse more 

data 

Is the game fair? Why or why not? 

Think of the activity you just did. 

Can you share your views about 

this activity? Would you use this 

type of teaching sequence in your 

teaching? Where and how? 

What would be some of the benefits 

and challenges? 

Findings 

Jone’s Views and Practices about Teaching Probability 

During the interview, Jone began by acknowledging that he was new to the mathematics 

teaching profession. At the same time, he expressed having confidence in teaching probability. 

He stated that probability was a relevant topic for students because of its importance ‘to our 

daily lives’. He argued that probability is closely linked to our day to day living and students 

tend to enjoy this topic in comparison to other mathematical topics. Jone also expressed that 

probability is one topic that involves both practical and theory. As such, he expressed strong 

views that probability be taught using practical activities along with normal pen-paper 

questions, “for me, it is something that we cannot just teach on paper … I have always used 

practical and demonstrative methods to teach students.” He continued by sharing examples of 

using “certain coins, dice or spinner” to teach his students. He reiterated the need for teachers 

to “get the hands on experience” or using “real life examples of using weather or using the 

probability of an event they can relate to.” Jone also showed greater understanding of the 

probability curriculum and mentioned that he has actually compared some aspects of the Fijian 

and NZ mathematics curriculum. 

Upon further probing, Jone revealed that he has already conducted practical activities with 

his year 10 class. This activity involved a single die “we did play a few games and that involved 

a game of … we used to roll a die and students noted down the outcomes and we compared the 

outcomes and how frequently do we get a particular outcome.” 

When asked to share if he had used any other activity, Jone described the following: 

Each group was paper, pens to write and two dice. And the students were asked to roll the dice and 

to note down the outcome for each roll and for both dice and then we compared what is the difference 

in the outcome of both dice. 
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Jone reported that this activity was carried out with Year 10 students and they (the students) 

were able to find the sum and difference of two dice successfully. This was an interesting 

finding because the same idea of ‘difference of two dice’ formed the basis of our professional 

learning workshop. The workshop activity then provided us with an opportunity to learn more 

about Jone’s self-reported teaching practices and validate his claim, especially the fact that he 

had some ideas about using the difference between the two die activities from his teaching 

experience with Year 10. How Jone participated in the workshop is described next. 

Jone’s Workshop Participation 

During the workshop, we noticed that Jone became a resource not only for his group, but 

his initial predictions and his demonstrations during the workshop were found to be useful by 

other teachers that participated in the workshop 

Figure 1 

Jone’s Trial Data 

 

 

In ‘posing the problem’ part, Jone was the only teacher who was able to state that the game 

was not fair. He stated that “the game is not fair because they don’t have an equal probability 

of winning. Most cases, the game favours Esha, since the difference of lower numbers is more”. 

In part 2 of the activity, Jone conducted 33 trials with his team members and recorded the data, 

as shown in Figure 1. In order to convince his team member, Jone and his partner did some 

more trials until the team member was convinced that Esha was winning more often. Jone was 

able to offer a theoretical explanation by listing all the possible outcomes when two fair dice 

are tossed (see Figure 2). Next, he created a figure that showed the numerical difference 

between the outcomes of the two dice from Figure 2. The outcomes for Sarah were circled as 

shown in Figure 3 while the ones crossed were outcomes for Esha. The theoretical probabilities 

for both Esha and Sarah were counted out of the possible 36 outcomes and reduced to the 

simplest fraction. 
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Figure 2 

Jone’s Representation of Possible Outcomes When Tossing two Dice 

 

Figure 3 

Jone’s Understanding of Calculating Theoretical Probability When Tossing two Dice 

 

Jone’s Final Reflections 

At the end of the workshop, we asked Jone to share his view on the probability teaching 

sequence, its applicability to classroom teaching, and associated challenges and benefits, and 

his intentions about using such techniques in future teaching. He expressed that the probability 

teaching sequence was a good opportunity for the teachers to learn to analyse the fairness of a 

game. He was able to suggest a number of activities that could be derived from this probability 

teaching sequence. For example, one of the interesting suggestions included using the same 

probability teaching sequence to teach about ‘unfair gaming systems’ and about outcomes that 

are ‘not equally likely’ outcomes. In addition, some common probability concepts listed were 

sample space, probability of an event, and probability distribution of each outcome. He was 

able to relate some of his ideas to actual classroom topics when he mentioned “Year 10-trials 

and experiments’ and ‘year 11-probability of an event”. Jone stated several benefits such as 

“concrete learning, active learning, visual representation and engagement”. In addition, he 

noted challenges such as large class sizes and varying levels of student understanding. He 

acknowledged that the probability experiments might be difficult for some students because 
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they might find it difficult to “understand the results of the activity”. Despite these challenges, 

Jone said that he will be using the probability teaching sequence in his teaching in the future 

and talked about sharing the idea with other department teachers at his school. 

Discussion 

This study examined one teacher’s beliefs about teaching probability and his self-reported 

teaching practices, followed by an hour-long engagement with a game-based probability 

teaching sequence. The findings of this study reveal that Jone held strong views about the 

usefulness of probability and argued in favour of using games and demonstrations in teaching 

probability. He showed an awareness that probability demands a slightly different approach to 

teaching because it involves theoretical and experimental aspects. Jone, in reporting his style 

of teaching probability had revealed that he had already tried the probability teaching sequence 

with his Year 10 class. 

The findings are interesting because previous studies done in Fiji and NZ using the same 

probability teaching sequence (Dayal & Sharma, 2021; Dayal & Sharma, 2020) albeit with pre-

service teachers, show that pre-service teachers were not able to make the correct prediction at 

the start. They were, however, able to correct their responses after carrying out the trials. Our 

personal experiences of conducting professional learning workshops with secondary 

mathematics teachers in Fiji over the last couple of years reveal similar findings-i.e., practicing 

mathematics teachers see the game as fair and perceive the difference scores to be equally 

distributed. Another interesting aspect is that while pre-service teachers struggled to mention 

how they could use the probability teaching sequence in their actual teaching (Dayal & Sharma, 

2020), Jone was able to state at least five quick ways of applying the lessons learnt from the 

workshop to his classroom teaching. Also, in his interviews, he stated that he was using similar 

activities for Year 10 students. In the Fijian mathematics teaching context, this is somewhat 

rare as previous studies in Fiji (Dayal & Sharma, 2020) and elsewhere (Batanero et al., 2004; 

Estrada Roca et al., 2020; Koparan, 2022) reveal that teachers themselves find such game-based 

probability teaching sequence quite challenging. Studies done with students also reveal that 

students find probability to be a challenging topic (Koparan, 2022). On the contrary, Jone 

reported that students in his class generally enjoyed probability. When asked to list some 

challenges when implementing this probability teaching sequence in Fijian classrooms, Jone 

acknowledged that some students might find the activity difficult. We speculate that teachers 

are unlikely to use game-like activities as teaching resources if they are uncomfortable in 

carrying out the activities themselves. 

Conclusion 

The research finding reported in this paper is based on a single case study. One limitation 

of the study is that its findings cannot be generalised. The findings provide us better insights 

into one teacher’s beliefs, his self-reported practices and epistemic content knowledge as well 

as cognitive and affective components of knowledge for teaching probability (Batanero et al., 

2010). The study’s findings also support the need for teachers to have other dimensions of 

knowledge for teaching probability such as having a productive disposition towards teaching 

probability. Studies such as Estrada Roca and Batanero (2020) state the importance of factors 

such as teachers’ interest in teaching probability. Previous research findings suggest that 

effective teaching of probability requires making greater use of resources in teaching 

probability such as using media, interactional and ecological components of teacher knowledge 

(Batanero et al., 2010). Our case study teacher, who held productive beliefs about teaching 

probability, and claimed to have made use of greater resources showed an advanced 

understanding of probability teaching through his participation in our probability teaching 

sequence. We speculate that our case study teacher would have interacted more with media, 

interactional and ecological components in order to build his knowledge of probability teaching. 



Dayal, Kumar, & Sharma 

206 

We conclude that exposure to rich activities can lead to improved knowledge for teaching 

probability, including positive beliefs towards teaching. 
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We report on findings from a study involving 15 secondary mathematics teachers from 

Fiji. The aim of the study is to describe teachers’ current approaches to teaching 

probability and statistics; and to share their views on using game-based teaching 

approaches. We report briefly on the first stage of follow-up on one teacher who agreed 

to develop and implement a lesson. The findings suggest teachers use of concrete 

materials is limited to conducting simple demonstrations. In statistics, teachers reported 

using data derived from real life scenarios. Teachers also registered strong support for 

using game-based teaching. Lack of time was listed as the major inhibiting factor. 

Probability and statistics is one of the strands in mathematics where students as well as 

teachers face a lot of difficulties (Batanero et al., 2004; Koparan, 2022; Leavy et al., 2013). One 

of the possible explanations for the challenges can be attributed to the need to think and reason 

statistically. This is because probability and statistics are areas of mathematics that rely heavily 

on our day-to-day activities, including making predictions about uncertain events related to our 

lives, such as predicting the weather or the winner of a sporting match. A related reason for 

such difficulty for students could be linked to the traditional chalk-board teaching approaches 

used to teach the topic (Koparan, 2022). 

One of the ways to build a deeper understanding of probability and statistical literacy is 

through engaging learners in game-based teaching scenarios. As Koparan (2022) points out, 

games, including technology-based games, “has become one of the interests of the students” 

(p. 2333). Koparan (2022) adds that reducing the authoritarian teaching methods and offering 

more opportunities for active learning, where learners can discuss, visualise, estimate, control 

and experiment with probability and statistics situations can help with enhancing probability 

and statistics literacy. In light of this, there is an increasing need for additional research on 

teachers because most teachers teach probability and statistics like other mathematical strands 

with a heavy focus on procedures alone rather than on probabilistic or statistical reasoning 

(Koparan, 2022). There is also a need to investigate further into teachers’ beliefs and attitudes 

as these can easily be transmitted into their actions (Batanero & Álvarez-Arroyo, 2024; 

Koparan, 2022). 

In this study, we report findings on a small sample of Fijian secondary mathematics 

teachers’ views and experiences about teaching probability and statistics. We also report on 

their perspectives about a game-based probability teaching sequence that they were exposed to 

during the study, including the perceived challenges and opportunities for including such 

games-based approaches in their actual teaching. We report on one of our participants’ desire 

to plan and implement one such lesson in her classroom. The research questions addressed in 

this study are: What are Fijian secondary mathematics teachers’ views and their self-reported 

practices about teaching probability and statistics? To what extent do they find the probability 

teaching sequence useful? An additional research question to which we offer partial answer is: 

How well does one participant plan a lesson on using a game-based strategy? After presenting 

the theoretical framework of the study, a literature review and the study’s context and 
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methodology are presented. This is followed by the main findings of the study. A short 

discussion and conclusion sum up this paper. 

Theoretical Orientation of the Study 

In this study, we used the socio-cultural learning theory. According to Cobb (2007), the 

socio-cultural theory seeks to “investigate the participation of the individual-in-cultural-

practice” (p. 22, emphasis in original). According to this view, a learner learns based on his or 

her interactions, and using appropriate tools, with an adult or a more learned peer. This enables 

learning to move towards independent learning, a movement from the “plane of social 

interaction” towards the “plane of individual thought” (Cobb, 2007, p. 22). This notion of 

learning rests on the idea of the zone of proximal development (ZPD) which refers to the level 

of potential development which a learner is able to move to under the guidance of a more 

knowledgeable person (Heritage, 2013). Following Vygotsky and Cole (1978), the socio-

cultural theorist sees cognition as “extending out into the world and as being inherently social” 

(Cobb, 2007, p. 23). 

In this study, we focus on secondary mathematics teachers as learners. A socio-cultural view 

of adult learning is relevant because we propose a new design-based teaching approach to our 

participants after gaining an understanding of their current teaching practices. We then look at 

how or what our participants have learnt through our intervention. We also explore the 

limitations and opportunities our participants see in this new teaching approach. While socio-

cultural theorists see learning as deeply rooted in participants’ established classroom practices, 

these practices are subject to transformation and subject to potential new learnings that our 

participants might gather from our intervention. In our follow-up phase, we hope to continue 

working with some participants in future. In this way, the current study paves the way for 

establishing a community of practice by bringing individuals together to work on new 

instructional designs. According to Koparan (2022), it is important to support teachers to create 

different learning environments for their learners. 

Literature Review 

Research on teaching probability and statistics points out many unique challenges that 

teachers and students encounter. For example, findings from studies on pre-service mathematics 

teachers show that pre-service mathematics teachers find probability and statistics as difficult. 

A study by Leavy et al. (2013) for example noted how pre-service teachers found probability 

and statistics reasoning to be surrounded with uncertainties in comparison to other areas of 

mainstream mathematics. Similar findings have been noted in studies like Batanero et al., 

(2004) and Koparan (2019). Studies such as Koparan (2022) point out that students find 

probability as a difficult topic. 

The literature also points out some of the effective ways in which teachers could overcome 

the challenges of teaching probability and statistics. One of the notable approaches seems to be 

the use of challenging teaching scenarios such as games (Batanero et al., 2004; Koparan, 2019, 

2022; Sharma et al., 2021). In probability teaching, game-based learning involves situations 

where learners engage in a play-like scenario involving some aspects of probability. For 

example, the stone-paper-scissors is a common game that could be used to teach certain aspects 

of probability. Research shows multiple benefits of teaching using game-based strategies, such 

as improved student motivation and ability to work in groups (Koparan, 2022). Research on the 

use of such challenging game-based scenarios is generally focused on pre-service teachers. For 

example, one recent study involving 94 prospective mathematics teachers involving a quasi-

experimental research design with pre-and-post tests showed that there was a significant 

difference in achievement and attitudes of prospective teachers in the experimental group who 

were exposed to a variety of materials such as worksheets, concrete materials, games and 
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simulations. Koparan (2022) concluded probabilistic and statistical reasoning can be improved 

using activities “that push students to conduct research, make predictions, think, assess and to 

explain the logic they observe” (p. 2333). Similarly, a review on literature on teaching and 

learning probability noted that activities such as modelling can help teachers develop their 

content and pedagogical content knowledge (Batanero & Álvarez-Arroyo, 2024). In summary, 

there is tremendous support present in the existing research literature on using a variety of 

activities, including game-based scenarios, although most of these studies were focused on pre-

service teachers (Dayal & Sharma, 2021; Dayal & Sharma, 2020; Kazak & Pratt, 2017). 

In one study involving a small sample of six secondary in-service mathematics teachers, 

Sánchez (2002) reports findings about teachers’ views on a simulation software for developing 

probability concepts. The study’s participants reported having a better understanding of 

probability concepts, recognising simulations as a useful technique to solving probability 

problems. However, the participants could not suggest situations closer to students’ reality 

where simulations could be applied. From a Pacific Islands context, Dayal and Sharma (2020) 

report on how pre-service teachers were unable to make correct predictions on a game-based 

activity. The study noted that after doing the activity in full, pre-service teachers reported 

having a deeper understanding of the game-based teaching sequence. This study, while based 

in a Pacific Islands context, hopes to add to our understanding of how practicing mathematics 

teachers teach probability and statistics as well as what they feel about using game-based 

teaching approaches given that there are relatively fewer studies reported on in-service 

mathematics teachers. 

Context and Methodology 

Context 

This study was part of a larger study carried out with mathematics teachers from five schools 

in the Western part of Fiji. The larger study unfolded in three phases, and involved 15 secondary 

mathematics teachers. Phase one involved one-to-one interviews with teachers. In phase two, 

the teachers took part in a two-hour workshop where they were exposed to the probability 

teaching sequence. Phase three involved post-workshop reflections. In the Fijian mathematics 

curriculum, the probability and statistics strand is known as Chance and Data. Chance and Data 

strand appears right from Year 1 curriculum. As early as Year 1, children are expected to 

discuss the likelihood or chances in an event, and draw and show simple data using a bar graph. 

Making predictions is one process that appears strongly from primary year levels. For example, 

in the Year 1 Numeracy curriculum, one of the activities requires students to throw stone into 

a circle made on the ground. Students first make predictions on how many stones will land 

inside the circle, then carry out the experiment and record data on their predicted and actual 

outcomes of the trials (Ministry of Education, 2017). In secondary schools, Chance and Data is 

offered from Years 10 to 13. Similar to primary school curriculum, teachers are expected to 

teach both content and processes such as statistical or probabilistic reasoning. For example, at 

Year 10, students are expected to demonstrate probability experiments by using a coin, die and 

pack of cards and list the respective outcome (Ministry of Education, 2014). 

Methodology 

We adopted a design-based research approach whereby our participant teachers were 

involved in a cyclic process involving action and reflection (Cobb & McClain, 2004). In this 

study, we report on phase one and phase three findings. In phase one, through one-to-one 

interviews, we explored participants' views about teaching and their preferred styles of 

teaching. We posed questions such as: How do you normally teach this strand? Do you ever 

use any kind of game-based teaching? In phase two, we conducted a two-hour professional 

learning workshop with the 15 participants. In this session, our participants were taken through 
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the probability teaching sequence which involved a scenario where two players play a dice 

rolling game. Upon each throw, the difference between the two dice is noted. If the difference 

is 0, 1, or 2, player A wins. If the difference of the scores is 3, 4, or 5, player B wins. At the 

start of the probability teaching sequence, our participants were asked to predict whether the 

game was fair or not. Later they played the games in groups and calculated the experimental 

probabilities and reconciled these with the theoretical probabilities. After the probability 

teaching sequence workshop, all participants took part in written reflections that focused on 

questions: Can you share your views about this activity? Would you use this type of teaching 

sequence in your teaching? What would be some of the benefits and challenges? Consistent 

with design-based research, we included a follow-up phase where we requested our participants 

to develop lesson plans that could be used in their actual classrooms. 

All the interviews were audio recorded and we conducted a thematic analysis on all 

interviews and written reflections (Braun, et al., 2022). For example, in analysing participants 

self-reported teaching practices we used categories such as ‘no games used’, “use of concrete 

materials or real-life data/activities’ and ‘use of games’ and added participant’s examples to the 

latter two categories. Similarly, in analysing their post-workshop reflections, we looked at 

teaching areas they had identified, as well as their anticipated challenges and opportunities. 

There were seven male and eight female participants in this study. Their educational 

qualifications ranged from a Diploma in Education (one participant), a bachelor of education 

with mathematics as one major (12 participants) and a postgraduate qualification in 

mathematics or education (two participants). On average, the participants had 11.5 years of 

teaching experience. 

Findings 

The first part of this section presents participants’ views and experiences on teaching 

probability and statistics. The next sub-section presents participants’ reflections and the 

teaching ideas they could derive from the probability teaching sequence. Finally, we present 

findings on how one participant developed a lesson plan based on a game scenario. 

Participants’ Views and Experiences on Teaching 

All fifteen participants agreed that the teaching probability and statistics required teachers 

to cover both theoretical and practical dimensions of the subject, with all agreeing that using 

practical activities was better method because “when they do experiments on their own, they 

understand what is happening” (Hafiza’s interview). Also, some participants strongly agreed 

that probability and statistics is one area of mathematics that rests heavily of daily activities. 

They mentioned daily activities such as sporting activities, weather patterns, or winning 

lotteries. Most of the participants said that they include practical aspects in their teaching 

although this was limited to certain activities, topics and year levels. Participants were able to 

share more examples of practical activities under the Statistics strand. Almost every participant 

shared data gathering activities which would lead to students creating different representations 

of the data. The examples teachers gave focused on students’ real-life scenarios such as 

measuring height or weight (Anit’s interview), tracking attendance and punctuality records of 

their class or school (Ratu’s interview), or the modes of transport for students in a class (Sen’s 

interview). However, all the participants agreed that the amount of time spent on such activities 

was small in comparison to the time used on traditional text book-based teaching methods that 

involved giving notes and examples and lots of questions to solve. Some participants, especially 

those teaching examination classes agreed to using lot of past year examination papers (Hafiza’s 

interview). Three participants said they would use YouTube videos occasionally to demonstrate 

some concepts, while one participant said that she encouraged students to prepare PowerPoint 

presentations and engaged students in peer teaching. 
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Under the probability strand, all the participants said they used concrete objects such as 

coins, dice and playing cards, although teachers from two particular schools said they did not 

use these because of religious restrictions placed by their school on using any form of gaming 

materials in their teaching. Some teachers from the two schools said that they used coins, dice 

and cards only after seeking permission from their school principals. Almost every participant 

gave an example that made use of coins, dice or playing cards. For example, use of coins to 

conduct experiments or trials to find out the frequency of certain events (Ela, Rose, Ratu, Kaju’s 

interview) or using a die to play a game of snakes and ladders (Kaju & Sheni’s interview) or 

using a deck of cards (Navi’s interview) were some of the examples given by the participants. 

While some of the participants could link the activities to student learning outcomes in 

probability such as finding the sample space when a coin or a die is tossed a given number of 

times, a few participants could not link the activities to any student learning outcomes. For 

instance, Sheni stated that she used coins and dice “just to give them a feel of it” when she 

began her lessons. Others such as Navi or Atish stated that coins or dice were used “for 

demonstrations”. Only one participant explicitly said that she did not use any coins or dice for 

demonstrations simply because she was pressed for time to cover the syllabus (Hafiza’s 

interview). 

While all (except Hafiza) made use of simple activities involving concrete objects described 

above, 13 out of the 15 participants said they did not use any kind of games in their teaching. 

Reasons provided for not using games was often linked to the syllabi. In other words, the 

participants said that there were too many concepts to teach and thus a lack of time to cater for 

any kinds of games-based teaching. They also stated that the current curriculum did not support 

the use of games as only certain examples (such as conducting trials using two coins) are given 

in the curriculum and the textbooks. In other words, as the current curriculum did not support 

the use of games-based teaching approaches. As one participant stated, “the current curriculum 

is outdated, the text-book is way outdated” (Navi’s interview). Another participant said that she 

“didn’t see any games” in the curriculum (Hafiza’s interview). For some other participants such 

as Jone and Mata, they said they developed their own games or activities. Jone and Mata were 

the only two participants who stated they had used some type of game-based scenarios in their 

teaching. 

For example, Mata mentioned using crossword puzzles in her probability teaching but her 

description was not explicit. Similarly, she gave another example of involving students in 

throwing a pair of dice and adding the sum of the outcomes on each throw. According to Mata’s 

description, the game would be played in groups of four and students roll a pair of die and add 

the outcomes on each throw. According to her, “if the group throws a “one”, their total goes 

back to zero. The group that gets the highest total sum wins”. When probed further on what 

learning outcomes this game would lead to, she explained that “they learn about the chances of 

getting a one”. Jone stated that he used a similar game, but the students would calculate the 

difference of throwing a pair or die. He explained that “each group was given a paper and two 

die and they compared the outcomes for each roll of the two dice. We compared what is the 

difference of the two”. When asked to link it to learning outcomes, Jone stated that “they would 

learn about trials and sample space”. He argued that students would get a better understanding 

of these terminologies (such as a trial, event or sample space) if they were exposed to playing 

such games. All the participants took part in the probability teaching sequence after their initial 

interviews. 

Participants’ Reflections on the Probability Teaching Sequence 

All the participants found the probability teaching sequence workshop a rewarding 

experience. It made participants reflect on their own probability knowledge as well as 

pedagogical knowledge. In other words, the participants reflected on how it made them aware 
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of their own understanding of such games-based probability events. One of the reasons stated 

was that the workshop made participants ‘actually see what happens’ after making an initial 

prediction (Hafiza’s reflection). For another participant, it was a ‘good way to relate theory to 

practical’ (Jone’s reflection). One participant realised that the importance of understanding the 

context of the game as he mentioned that “catch was in the rule of the game itself (Navi’s 

reflection). As another participant stated, ‘predictions do not mean it will always be correct’ 

(Sen’s reflection). All the participants (except Jone) made predictions that were incorrect. In 

their reflections, some of the participants expressed how the activity them aware of the fairness 

of the game only after they had a chance to play the game. 

Reflections on Probability Teaching Ideas 

All the participants were able to list at least one teaching idea. Teaching ideas that appeared 

more frequently had to do with the use of coins or a deck of cards to conduct trials and to find 

out probabilities of simple events such as a head or tail. In addition to this, only a few 

participants noted other teaching areas such as sample space or checking on fair and bias games. 

Only one participant listed relating probability to statistics by using tally, frequency and other 

ways of recording data. However, two of the participants listed teaching areas that seemed 

incomplete. For example, one participant gave example of a volleyball game context and said 

students could calculate chances of hitting the volleyball (Sen’s reflection). All the participants 

insisted the activity was useful because it will help students to make predictions, play games, 

and find the actual outcomes for themselves. It would help children get on hands on activities 

and develop their probability thinking. As one participant wrote, while both the dice are fair, 

the event was not fair. Carrying such experiments during class will “help students to learn that 

even though the die is fair and the probability of each throw is same, the chances of achieving 

each outcome was different.” (Navi’s reflection). Apart from these perceived advantages, one 

participant noted how the activity could involve everyone in the class (Rose’s reflection). For 

example, some could play, some would record and all could discuss the outcomes. For two 

other participants, this activity would generate student interest in probability and statistics 

(Atish’s and Mata’s reflection). 

When asked about some of the perceived challenges, lack of time came out as the main 

challenge. Many participants thought the activity was time consuming and may not be possible 

in one teaching period. Some participants saw large class size as a potential issue. Apart from 

time factor, two of the participants felt that the activity could be confusing to some students 

because it is a contradicting experiment about fairness (Kafi and Mata’s reflection). Another 

teacher added that ‘outcome is fair but difference in outcome is not fair’ and this could be a 

contradictory point for some students to understand (Mata’s reflection). 

Developing and Implementing a Game-Based Lesson—A Follow-Up with One 

Participant 

At the end of the workshop, we invited the participants to develop lesson plans on any 

teaching ideas that they derived from the workshop which they would likely use in their actual 

classroom teaching. At the time of writing, we had email correspondence from two teachers 

who are from the same school. Regrettably, one of the participants later resigned from teaching. 

The other participant, Rose, had emailed us her teaching ideas in the form of a lesson plan for 

a Year 10 probability lesson. While her initial lesson plan is only one page long resembling the 

typical lesson planning style in Fijian schools, the intended lesson goals are “Compute the 

probability from an experiment consisting of equally likely outcomes”. Her description of 

student’s activity contained only a short description on “Participate in group activity, throwing 

a pair of dice, and taking note of the results”. We are currently working with her on how to add 

more details on student’s activity section of her lesson plan. 
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Discussion and Conclusion 

The aim of the study reported in this paper was to explore teachers’ self-reported teaching 

strategies and their views on a game-based teaching activity. While our sample size was small, 

this study makes a useful contribution in terms of involving secondary practising teachers. As 

noted in the literature, there are limited studies involving secondary practising teachers 

(Batanero & Álvarez-Arroyo, 2024). With respect to our first research question, the study’s 

findings suggest that all the participants agreed that probability and statistics require more 

activity-based teaching rather than chalk-and-board type teaching. In terms of their current 

teaching strategies and the extent of use of game-based activities, only two participants said 

they had used games in their teaching. The rest of the participants stated using common artefacts 

such as coin or die, but mainly for simple demonstrations. In teaching statistics, more 

participants could provide examples of using real-life examples and data derived from real-life 

scenarios. One of the possible reasons for the use of more real-life examples and data in the 

statistics strand could be related to the curriculum resources, such as textbooks having worked 

examples. The same cannot be said for the probability strand because, as many of our 

participants suggested, there were some concerns at the lack of support from the curriculum 

itself on the use of activity-based teaching approaches in probability. For example, some 

participants mentioned lack of examples or activities listed in the syllabi or the text book. We 

note that the Fijian Year 10 Probability Syllabi only mentions use of coins or dice for simple 

demonstrations (Ministry of Education, 2014). Also, teachers in Fiji generally have to cover the 

syllabus in preparation for external examinations. This reason was shared by some of the 

research participants. However, not all year levels have to take an external examination at the 

end of that academic year. There may be other reasons that prevent teachers from using game-

based teaching strategies especially in the non-examination classes. For example, an added 

reason for a lack of involvement in game-based teaching could be attributed to a lack of 

understanding on how to integrate games in the lessons. Previous studies such as Dayal and 

Sharma (2020) and Koparan (2022) lend support for such arguments. 

With respect to participants’ views on the probability teaching sequence, there was 

overwhelming support about the value of using such game-based activities. Reasons provided 

by the participants included ‘better student involvement’ and ‘improved student motivation’. 

These findings are consistent with the findings about the benefits of game-based teaching 

approaches in the literature (Dayal & Sharma, 2021; Koparan, 2022). In terms of the anticipated 

challenges, the findings indicated that lack of time would prevent the participants from using 

game-based teaching approaches. We speculate that teachers will need more support in creating 

and implementing lessons that make use of a wide range of activities such as games. This study 

has provided us with some initial insights on our first stage of follow-up phase where only two 

participants out of the 15 communicated to us, via email, their intentions of planning and using 

a game-based lesson. 

We hope to work with one participant in the follow-up phase. Our participant has submitted 

her first lesson plan. While the proposed lesson’s learning outcome seemed appropriate for 

Year 10, we have provided some feedback on how to include clearer steps for a deeper level of 

student engagement in the proposed lesson. From a socio-cultural perspective, this is 

encouraging since this collaboration gives some support to the claim that teachers can gradually 

adopt activity-based teaching when given appropriate support. Researchers need to continue to 

work together with teachers to find ways to help teachers develop probabilistic and statistical 

thinking. 
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The revised Australian curriculum presents a new emphasis in primary schools on the 

process of Mathematical Modelling. A modelling focus brings close attention to 

confidence and capability with a potentially new problem-solving process, associated 

language, and pedagogical processes. This paper presents a Year 4 classroom modelling 

experience that arose as students planned their end-of-year party through Guided 

Mathematical Inquiry. Classroom video data captured two students working on vertical 

whiteboards as they formulated and solved a problem involving carrot sticks and dip. 

Findings reflect the students as doers of mathematics, engaged in productive struggle. 

Mathematical modelling is presented in the revised Australian Curriculum: Mathematics as 

a new process that extends through all year levels from Prep to Year 6. The new emphasis 

supports students through problem solving to make connections between mathematics and real-

life situations, between mathematical topics, and to strengthen interdisciplinary links 

(Australian Curriculum, Assessment and Reporting Authority [ACARA], 2023). Previously in 

primary classrooms, such connections and links may have struggled to surface, especially when 

the focus in mathematics lessons remains on replicating taught procedures to correctly answer 

closed problem situations. The revised Curriculum presents an opportunity for students to ‘use 

mathematics to gain insights into, and make predictions about real-world phenomena’ to 

‘inform judgements and make decisions in personal, civic and work life’ (ACARA, 2023). Prior 

to the release of the revised Curriculum, mathematical modelling as a problem-solving process 

in the primary years was not explicit. For example, previously in Foundation to Year 3, content 

descriptions included students modelling addition and sharing, modelling large numbers, and 

modelling unit fractions (ACARA, 2010). This content did not explicitly link to the proficiency 

of problem solving. The change to surface this mathematical process presents a significant shift 

for primary classroom teachers and brings competency with mathematical modelling to the 

forefront of professional development to support these experiences in the classroom. Although 

much literature offers excellent classroom modelling examples in secondary contexts (Geiger 

et al., 2022) and in STEM in the primary years (English, 2021), these examples do not address 

the current mathematical goals, nor specifically do they meet the needs of classroom teachers 

seeking classroom examples exploring the potential of modelling in Australian primary 

classrooms. 

This paper offers insights into one Year 4 classroom as students problem solved through 

the inquiry, How much does a class party really cost?, addressing revised Curriculum 

requirements. The researcher and classroom teacher-researcher (first and second authors) were 

keen to make mathematical modelling explicit in this mathematics classroom, having never 

taught the process before, and felt that the class party context would offer a real-life situation 

in which to support the modelling process. We wondered, (RQ1) what modelling opportunities 

could exist for Year 4 students planning their class party through Guided Mathematical Inquiry, 

and (RQ2) how might Year 4 students in one classroom approach mathematical modelling for 

the first time. 

mailto:k.fry@griffith.edu.au
mailto:jhill98@eq.edu.au
mailto:rhonda.horne@qed.qld.gov.au
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Mathematical Modelling in the Primary Years 

Mathematical modelling is a well-researched topic and many explanations of the modelling 

process exist. Blum’s (2011) model is well accepted and presents 7 steps for structuring 

classroom mathematical modelling. Briefly, this involves starting with (1) a real situation to 

frame the construction of a problem which is then (2) simplified to create a situation model, 

and further structuring of the situation leads to a real model that can be (3) mathematised. A 

mathematical model of the problem (e.g., equations) allows the solver to (4) work 

mathematically to generate mathematical results. Problem solvers then return to the real-life 

context to (5) interpret their results to inform decision making. If results are (6) validated, the 

problem solver can decide whether further mathematising is needed to address other variables 

until the final solution is (7) exposed or communicated. A key tenet of modelling is the 

connection between mathematics and reality thereby reminding problem solvers of the 

usefulness of mathematics to their lives. This is especially important given the current school 

curricula focus on solving word problems that do not reflect the complexity of real-life 

problems (Maass et al., 2022). Real problems are messy and so in modelling, investigation 

progresses through multiple cycles of interpretation and explanation to inform decision making 

(Doerr & English, 2003). The design of modelling tasks attempts to capture real-life complexity 

through the inclusion of an open-ended approach (Geiger et al., 2022) and careful attention is 

paid to scaffolding, to ‘unstick’ blockages students may encounter when working to solve the 

problem (Park, 2023). To emphasise relevance, recent depictions of modelling processes 

integrate mathematics with socio-scientific issues and STEM knowledge, including the 

development of concrete materials that explore controversial issues, to progress the role of 

mathematics in STEM and to include a citizenship focus (English, 2021; Maass et al., 2019; 

Makar & Doerr, 2020). Student competence with mathematical modelling to address global 

challenge is important yet it can also be helpful for children with little modelling experience to 

initially explore and develop competence with closer contexts, as is the case in this paper. 

Links made between mathematical modelling and inquiry-related processes articulate how 

both problem-solving approaches involve a collaborative approach between teacher and learner, 

that values creating questions, asking probing questions, using mathematical representations, 

iterations of refinement and improvement, and a sense of discovery (Maass et al., 2019; Maass 

et al., 2022; Makar & Doerr, 2020). Specific to Guided Mathematics Inquiry, is the use of an 

ill-structured question to support an extended nature, with opportunities for students to engage 

in productive struggle, and where the classroom culture aims to challenge and advance a 

student’s conceptual development (Fielding & Makar, 2022). In the classroom depicted here, 

students were engaged in the inquiry How much does a class party really cost? to encourage 

thinking about and modelling the cost of foods, even when that food is made with products in 

the pantry. Solutions would present the amounts of money spent in each household of students 

who contribute a plate of food on party day. Due to the open nature of the question, many 

mathematical topics could be addressed, including measurement (e.g., cups of flour in one 

packet), additive and multiplicative operations (e.g., each carrot can be cut into 8–10 sticks for 

dipping. How many sticks can I get from 3–4 carrots?), and financial mathematics (e.g., the 

total cost of making chocolate brownies for 28 people). The modelling experience depicted in 

this paper centres focus on one aspect of the investigation; how much it might cost to provide 

carrot sticks and dip for the class to share. This was a simplified situation model that could be 

mathematised, where results could inform decision making. If dishes cost a family more than 

$10 to prepare, would it make better sense to order takeaway food for each person to be 

delivered to the classroom for the same price? 

Key to both Guided Mathematics Inquiry and mathematical modelling, is a focus on 

problem solving. To clarify, the problem solving depicted in this paper illustrates students 

working mathematically on solutions where they did not know the solution process. The 
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boundaries and constraints of this task offered students the freedom to explore how the problem 

could be approached, through solution pathways that appeared to be non-routine. For the 

students, the problem solving was challenging and, in this instance, a collaborative experience 

that promoted mathematical discussion and reasoning. The task outlined in this paper involved 

the use of Liljedahl and colleagues’ (2021) vertical whiteboards approach to encourage students 

to discuss their thinking, to persist through mathematical challenge. The pedagogical aim was 

for students to learn through problem solving and to be engaged in thinking mathematically. 

Research Design 

A wider program of design research (Cobb et al., 2003) frames this case study, focused on 

understanding and improving the mathematical process of modelling in inquiry settings. The 

classroom teacher was experienced with Guided Mathematical Inquiry and a participant in the 

ongoing research. The aim of the larger study was to conceptualise and operationalise terms 

that contribute to ontological innovation (di Sessa & Cobb, 2004), with refinement and 

extension of developing theory. In this case specifically, we were interested in the modelling 

contexts that naturally arose from the inquiry and instead of teaching modelling, we wanted to 

know what the students could do when modelling, including the design of their solutions. 

Guided Mathematics Inquiry presented a suitable pedagogy in this instance to support the 

teacher with introducing mathematical content knowledge and processes using teaching 

through problem solving approach that is student-centred. The classroom episode reported on 

here as a case study, took place in the final term of the school year and the classroom teacher 

had already established a classroom culture that valued mathematical thinking and reasoning, 

including socio-mathematical norms of building on the ideas of others and active listening. 

The Year 4 (8–9-year-olds) classroom depicted here was situated in a large Queensland 

metropolitan school. There were 30 students (co-educational) in the class, and only two of these 

students chose not to participate in the study. Consent was fluid in that students could opt-in or 

out to suit their level of comfortability once parent consent was received. The students were 

finding out through inquiry, how much having their end-of-year class party really cost, and to 

capture the messy nature of realistic classroom processes, the researcher used a video camera 

on a tripod to film lessons (6 sessions over 6 weeks, > 6 hours), accompanied by an iPad to 

capture student discussion in groupwork. An additional invite by the children meant the 

researcher also attended the party although this was not filmed. 

Analysis 

Videotape methodology (Powel et al., 2003) has been established as suitable for this kind 

of observational research in mathematics education. Analysis involves the research team 

frequently and flexibly viewing excerpts. To identify the case presented here, the researcher 

and teacher, who had been involved in all classroom lessons, reflected on and identified four 

instances in the inquiry that they felt were mathematical modelling experiences. These involved 

students formulating a problem from the real-life situation using number sentences and 

involving multiplicative thinking, to meet curriculum goals. To distinguish from the inquiry, 

student solutions to modelling problems were based on assumptions (that 3 serves of a menu 

item is a suitable amount for a student to eat, for instance) rather than being refined to suit the 

specific context (my data showed that one person wants 15 serves of this item so three won’t 

be enough!). In an inquiry, assumptions often become the line of focus and interrogation. For 

example, rather than assume that three carrot sticks per person will cater for the class, a 

classroom inquiry involving statistics might find out more closely whether this is a reasonable 

serving size for Year 4 classmates. 

Of the four instances identified, the problem involving carrot sticks and hummus was 

selected as a strong modelling example. The researcher, teacher, and the research assistant 

attentively viewed the selected video excerpt (from the third classroom session) independently, 
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aided by a transcript of this section of the lesson, to identify critical events. The researcher and 

teacher then flexibly viewed the video again together, and narrowed focus to the critical event 

presented here, involving two girls working together on a vertical whiteboard surface, to work 

out how much it will cost to purchase enough carrots for the class to enjoy carrot sticks dipped 

in hummus at the end of year party. To respond to the second research question, coding focused 

on the content of the critical event, how Paris and Cristina approached modelling, related to the 

difficulties these students faced with mathematising the problem situation, and the feedback 

they received to support them towards a successful solution. The identified collection of events 

within the student-to-student discursive interaction offers an emerging narrative about the data 

and the storyline is presented in the following section. 

Findings and Discussion 

Modelling Task 

By the third session of the inquiry, children had confirmed with their families and 

nominated a menu item that they would bring to the party. Each child was tasked with finding 

out the cost of making the dish that would be prepared at home. When asked for pricing for 

ingredients, Hayden revealed his research efforts: a bag of carrots cost $1.99, and he would 

only need 3 or 4 carrots to cut into sticks for his carrot-stick and hummus-dip dish. He also 

shared that he could cut 8–10 sticks from each carrot. In response, and in an impromptu manner, 

the teacher added that when she last bought a bag of carrots, there were 8 carrots in the bag. 

She rounded the $1.99 to $2 and posed the following questions: 

(17m 8s) Teacher: So you guys now, can you work out how much it’s going to cost for the carrots that we 

need? Now think about if there are eight to ten carrot sticks from each carrot, consider how many you might 

want for the class (pauses). You’ve said three or four. Work out how many carrot sticks that’s gonna give us. 

Whereas the inquiry was focused on finding out the costs and designs of dishes to share 

with 28 people at a party, based on their tastes and dietary requirements, this problem task 

reduced the focus on personal preference. 

Table 1 

Characteristics of Carrot Stick Modelling Task, Informed by Blum’s Model (2011) 

Modelling phase Elements of carrot stick task  

Real situation Inquiry: How much does a class party really cost? 

Situation model Simplified to: number of sticks per carrot, number of carrots per bag, and cost of 

one bag of carrots 

Real model Mathematised as a series of equations involving multiplicative thinking 

Working 

mathematically 

Solving equations 

Interpret results Does the solution sound reasonable? What might this look like? 

Validation Through drawing, peer and teacher feedback, checking interpretations (5 iterations). 

Communication Solutions are displayed on vertical whiteboards and peers explain solution 

pathways. 

To solve the carrot problem, students would work on the following assumptions: each carrot 

would be large enough in size to cut into 8–10 sticks, the carrot sticks would be large enough 

for dipping, everyone was going to choose to eat carrot sticks on party day and the total number 

of carrot sticks would be shared equally (the same number of sticks per person). Put simply, the 

problem now seemed to meet the characteristics of a modelling task (Table 1) that would align 

with curriculum goals. By the end of Year 4, students use mathematical modelling to solve 

financial and other practical problems, formulating the problem using number sentences, 
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solving the problem choosing efficient strategies and interpreting results in terms of the 

situation (ACARA, 2022). 

During analysis, focus turned to how the carrot stick problem was posed to the students as 

this framed the open nature of the task and how the students might approach the modelling 

situation. The transcript above outlines the moment the problem is identified and shared by the 

teacher, and when students are invited to help their peer, Hayden, work out a solution. Figure 1 

is a photo taken of the board displaying the key information for students, recorded by the 

teachers as she posed the task. This is not displayed as a formal question. 

Figure 1 

Key Components of the Problem Recorded on the Board 

 

Three key components are included in the excerpt (task proposal) and were recorded as key 

information for students to refer to (Figure 1). The first component is the first question posed 

by the teacher, how much it’s going to cost for the carrots that (the class) need. To solve this 

part of the problem, two pieces of information are required: students would need to determine 

how many carrots are needed, then use this amount to determine a fraction of the cost of one 

bag. The second component is a consideration for the students, reminding them that they will 

need to determine how many you might want (carrot sticks) for the class. A solution might 

include: the number of carrots needed (3 or 4, as advised by Hayden), divided by 8 carrots 

(number of carrots in one bag), multiplied by the cost of one bag (rounded to $2). Such a 

problem is complex, and it is not obvious to students where to focus their attention first. To 

further complicate this task, the number of carrots would be determined by the third component; 

a question posed which is to work out how many carrot sticks that’s gonna give us. This part 

of the problem opens the task in that one carrot may be cut into 8, 9, or 10 sticks (depending on 

the size of the carrot). Students could rely on Hayden’s advice that 3 or 4 carrots would be 

needed, but it wasn’t yet clear whether this would produce a reasonable number of carrot sticks 

for the class to share at a party (number of students = 28). How Paris and Cristina approach this 

problem is elaborated on in the following section. 

Problem Solving 

In less than one minute after introducing the task, students were moving to find a partner to 

problem solve with and a vertical surface on which to record their solutions. Paris and Cristina 

commenced by recording key information on their vertical surface, “each carrots $2, 8 carrots” 

followed by the equation, 2 x 8 = 16 (examples of students’ written efforts on vertical surfaces 

includes student spelling and grammatical errors). Clarifying their progress, Paris notes to her 

partner that this should be sixteen dollars (the cost of 8 carrots) and they rewrite this as $2 x 

$8 = 16. Paris rubs the dollar sign off the board next to the 8, then rubs the entire equation of 

the board. Eventually they settle on the equation $2 x 8 = $16. In this brief start, we see the 
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students are attempting to formulate the problem as an equation involving the two numbers they 

have already recorded on the board. 

Following this first attempt, the two students check the board beside them where the teacher 

has recorded the components of the problem posed (Figure 1). The researcher with the camera 

is standing nearby and prompts the students by asking them to explain their thinking. They 

restate the number sentence they have recorded on the board, for the camera. 

1 Researcher: You mean each carrot is $2? 

2 Paris: I mean each carrot bag (rubs out $2 next to carrots and writes ‘bag’) 

3 Cristina: So now we do 2 times 8 

4 Researcher: So that’s 2 times 8? (points to the board) 

5 Cristina: Because there’s 8 carrots. 

6 Researcher: Yeah. So what are you finding out? 

7 Paris: (Muffled. She looks to the key information written by the teacher which is beside them. She 

points 8 to each piece of information as she reads it.) Oh no wait! We did it wrong! We only need 3 

or 4! 

9 Researcher: Right! 

10 Paris: (To Cristina) We need 3 or 4. (She rubs off the 8 on the board and replaces it with the number 

4.) 

11 Cristina: Ok. 

12 Paris: That means we’re wrong. (Rubs off the answer ‘$16’) Now it’s (muffled-reads the equation) 

13 Cristina: (records answer on the board, ‘$8’) 

Figure 2 displays the recording done on the vertical whiteboard by Paris and Cristina up to 

this point. 

Figure 2 

Vertical Surface Attempts by Paris and Cristina 

 

In this next stage of problem solving, Paris has identified an error: $2 is the cost of a bag of 

carrots (Line 2). The students were prompted twice by the researcher to explain their efforts 

(Lines 1 and 4), and when the students checked the key components of the problem recorded 

on the board beside them (Lines 7 and 8, see Figure 1 also), they acknowledged another error 

in their efforts. The mistakes by Paris and Cristina take place during the very early stages of 

problem solving through modelling. In their initial attempts, we see the two students have 

devoted time to doing mathematics involving the quantities from the real-life situation. The 

students illustrate correcting each other when a mistake is made, using self-checking strategies 

such as checking key components of the problem written on the board, and respond when 

prompted by the researcher to interrogate their efforts by relating attempts to the real situation. 

The students continued working on the problem for close to 14 minutes, exploring the 

different components of the situation, or variables, to solve the problem. Only the initial 

attempts have been presented here to illustrate what a teacher might expect to see in a Year 4 

classroom when students approach mathematical modelling for the first time. Without direction 
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on how to approach the problem, or teacher guidance on efficient strategies to use, we see two 

students at the end of Year 4 struggle with formulating the problem using number sentences. 

This highlights difficulties some students might face when simplifying and mathematising a 

real situation to create a situation model (Steps 1, 2, and 3 (Blum, 2011)) even when embedding 

the problem in an inquiry context. However, the inquiry framing the modelling experience 

(How much does a class party really cost?) may have supported students at this early stage of 

problem solving to interpret their results as invalid (steps 5 and 6 (Blum, 2011), generating 

feedback about how to progress with solving the problem of how much it would cost to buy the 

carrots they needed for the class. 

Conclusion 

In this classroom episode, we see all students working collaboratively on the same ill-

structured problem, focussed on helping Hayden work out how much it will cost to purchase 

enough carrots for 28 students to enjoy at their end-of-year class party. The problem is framed 

by a Guided Mathematical Inquiry, and posed by the teacher in response to a real situation for 

one student. The teacher identified the carrot-stick problem as an opportunity to simplify a real 

situation as a modelling task for the class to solve that is aligned with Curriculum goals and is 

presented as a series of key components (variables, Figure 1). The task was open-ended 

(solutions would differ depending on whether each carrot was cut into 8, 9, or 10 sticks) and 

had open solution pathways (it was not clear to students which component needed to be 

addressed first). The problem involved a financial context, and the teacher has presented the 

key components of the problem in a way that challenges students to formulate the problem 

using number sentences, to choose their own strategies, and to interpret the results in terms of 

the situation (ACARA, 2022). The carrot-stick problem involved no ‘correct’ solution method 

and is combined with vertical surfaces to foster confidence through a collaborative approach. 

The task seems challenging to the two students presented in this paper, yet the struggle they 

face is productive when they employ their own ideas and strategies to mathematise a real-life 

situation and begin to identify themselves as doers of mathematics (Van de Walle et al., 2019). 

We focus on the efforts of Paris and Cristina as they attempt to mathematise a real-life 

situation involving carrot sticks. Their efforts have been selected here to show the difficulties 

for students in completing this task, and how collaborative approaches can support students in 

the early stages of modelling. Blum and colleagues (2011) note constructing, as the first step in 

modelling, as difficult for students. Similarly, we see these students ignoring the context as they 

initially choose to multiply the values. Working on a vertical surface (Liljedahl et al., 2021) 

promoted collaboration between the girls as they sought to understand the problem through 

conversation. Researcher prompts for students to explain their efforts (So what are you finding 

out? (Line 6)) reminded students to check key components of the problem and progress through 

the modelling process. This prompt could be used by teachers when students construct situation 

models in their first attempts at modelling (mathematising the situation), to scaffold student 

progress. 

We hope the problem is a useful example for teachers who are beginning to design their 

own modelling tasks to meet Curriculum requirements. We acknowledge that the context is not 

a universal issue, nor relevant to children everywhere. However, this example demonstrates 

how a teacher might capitalise on problems from students’ lifeworlds that can connect to 

mathematics. We also hope that we have made a distinction through presentation of the carrot-

stick problem, between inquiry in the mathematics classroom and mathematical modelling. In 

the inquiry, problem solving was complex and focused on the specific class of students with 

specific dietary requests and preferences. In the modelling task, assumptions generalised 

aspects of the problem-solving focus, simplifying the problem situation. However, inquiry and 
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the process of modelling emphasise designing solution strategies that are purposeful rather than 

a focus solely on computation. 
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Research shows primary teachers report negative dispositions towards teaching 

mathematics, impacting their confidence and student outcomes. One approach to 

improve teacher and student enthusiasm is using picturebooks. While research supports 

the use of picturebooks in mathematics learning, specific guidance for teachers to 

implement this practice effectively is lacking. Using a methodology of metalogue, we 

developed a framework to support teachers in providing engaging mathematics 

activities through aesthetic perceptions. We reflect on the development of the 

theoretically informed framework and discuss how it might support teachers’ work. 

Research shows that teachers and preservice teachers often lack confidence to teach 

mathematics (Albay & Çetin, 2023), and struggle to teach mathematics engagingly (Pennell et 

al., 2021), in ways that highlight its aesthetic value. Consequently, this struggle impacts teacher 

self-efficacy, with many educators reporting negative dispositions towards teaching 

mathematics (Albay & Çetin, 2023). One approach offered in the literature to improve 

confidence in teaching mathematics is using quality children’s picturebooks (Cox, 2016). 

Research explores the use of children’s books with perceived, explicit, or embedded content 

(Marston, 2010). Perceived content is the unintentional and incidental inclusion of 

mathematical concepts in authentic texts. Explicit content is where books, such as mathematical 

picturebooks, are written explicitly to teach a mathematical concept. Embedded content occurs 

where books have been written to entertain but include purposefully embedded mathematics 

concepts. Further research explores frameworks to support teachers in selecting appropriate 

books (c.f. Marston, 2010). Frameworks can support teachers to implement the use of literature 

in the mathematics classroom by guiding them to design mathematical activities (c.f. van den 

Heuvel-Panhuizen & Elia, 2012) that support student learning. However, many teachers are still 

unsure about how to effectively use quality children’s picturebooks in mathematics activities 

and lessons, highlighting the aesthetics of mathematics (Cox, 2016). 

In his seminal theory of aesthetics, Dewey (1934) emphasises the vital importance of a 

teacher’s role in preparing students to notice and appreciate aesthetic attributes. By recognising 

the inherent aesthetic qualities in mathematics, such as depth or symmetry, educators can foster 

a deeper connection between mathematical concepts and students’ learning experiences. This 

conference paper begins with an analysis of research on the use of children’s picturebooks in 

mathematics, and existing frameworks designed to support teachers’ effective use of 

picturebooks in mathematics. Based on this literature and a process of metalogue, we answer 

the research question: How can we develop a framework that would be useful in guiding 

teachers to authentically incorporate children’s literature into mathematics lessons, and to take 

an aesthetic stance for enhanced engagement and improved outcomes? 
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Consequently, we designed an innovative Beauty of Numeracy (BoN) framework that 

teachers and preservice teachers can use as a guide when teaching mathematics engagingly in 

classroom contexts. Our framework is informed by Dewey’s (1934) theory of aesthetics and 

the transformative potential of aesthetic education. It is also informed by the work of Krathwohl 

et al (1964) on a classification of educational objectives in the affective domain. This project 

specifically focuses on the aesthetic value of mathematics (Gadanidis et al., 2016). After 

reviewing the literature, we discuss the design process of our proposed BoN framework as 

experienced in its development and suggest how it might best support teachers’ work. 

Overview of Literature: Teaching Mathematics Through Picturebooks 

Children’s literature is a useful resource for mathematics instruction (van den Heuvel-

Panhuizen & Elia, 2012) and can provide a diverse range of contexts to demonstrate 

mathematical concepts and applications, and foster connections to real-world scenarios. 

Selecting high-quality literature for mathematics tasks, designing practical activities, and 

challenging problem-solving tasks, leads to active learning processes (Cox, 2016). Active 

learning encourages students to explore mathematical concepts independently (Peter-Koop, 

2005), and can be effective in helping students develop a deeper understanding of mathematical 

concepts (Cox, 2016). We examined research on the use of children’s books to teach 

mathematics, identifying ways research supports teachers to use children’s literature in the 

classroom. Research fell into three themes: (1) research that highlights storytelling to provide 

context for and support of students’ understanding of mathematical concepts; (2) research that 

provides examples of activities and lessons for specific books; or (3) research on frameworks 

incorporating children’s literature in mathematics instruction. 

Research That Highlights Storytelling to Provide Context for and Support of 

Students’ Understanding of Mathematical Concepts 

Storytelling is a vital form of communication (Cox, 2016; Griffiths & Clyne, 1991). 

Mathematical stories can be used to focus student attention on mathematical ideas, although 

Cox (2016) argues that quality children’s literature, without a mathematical focus, can be used 

to connect ideas for teaching mathematics in the classroom. Griffiths and Clyne (1991) state 

many concepts are embedded in stories, such as human relations, geography, and morality, but 

often, mathematics is not considered, making it difficult to embed literature in the mathematics 

classroom. Cox (2016) suggests teachers identify less obvious content within literature using 

Fermi problems (Peter-Koop, 2005) ─ non-traditional problems without numbers but with open 

beginnings and endings. Fermi problems encourage investigations and problem-solving 

amongst students. Cox (2016) argues they support teachers to integrate children’s literature in 

mathematics, engaging students in meaningful, nonroutine mathematics explorations. 

The power of story supports student engagement in the affective domain by learning 

mathematics through emotionalised and imaginative thinking (Griffiths & Clyne, 1991). In their 

work in Victorian schools (Australia), these researchers argued stories can: a) provide a context, 

b) provide a model, c) pose a problem, and d) stimulate an investigation or illustrate a concept. 

Stories can humanise mathematics, helping students see it as an integral part of everyday life 

and experience its aesthetic value. By using children’s literature, teachers can vary concepts or 

topics, provide practice with different materials and methods, and provide opportunities for 

students to share ideas. This storied approach allows students to see how peers: solve problems, 

challenges students’ thinking, and provides opportunity to reflect on learning. While providing 

a variety of examples, using specific books with explicit mathematics content, the research fails 

to provide a clear approach for teachers to see the mathematical and aesthetic potential of any 

children’s book. 
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In a USA study (Barber & Neff, 2019), preservice teachers established Math Night events 

for students and their families. After completing studies in their university course on the use of 

picturebooks in mathematics, preservice teachers developed games and activities, potentially 

highlighting the aesthetic value of the chosen texts. While examples are provided of the 

mathematical goal of the chosen books, the process of developing activities is not described in 

this article. Research in this section demonstrates the value of children’s literature in providing 

context and stimulus for mathematical thinking but does not provide clear guidance to teachers 

on how to implement the practice in the classroom. 

Research That Provides Examples of Activities and Lessons From Specific Books 

Some research describes mathematical tasks and lessons that use specific children’s books, 

providing teachers with practical assistance in the mathematics classroom. For example, Larson 

and Rumsey (2018) used a picturebook and mathematics manipulatives, to integrate literacy 

skills into mathematics instruction. Their lesson vignette demonstrated how the book, combined 

with hands-on activities, supported learning goals and improved outcomes in both literacy and 

numeracy. The use of picturebooks and manipulatives progressed learning, “students [moved] 

beyond traditional, passive practices of learning by incorporating creativity, critical thinking, 

and the presentation of ideas” (Larson & Rumsey, 2018, p. 595). This approach supports 

teachers to “focus on mathematics worthy of attention, worthy of conversation, worthy of 

children’s incredible minds (Gadanidis et al., 2016, p. 225) Further, Jenkins (2010) 

demonstrated the development of students’ understanding of position, direction, and mapping 

skills using four picturebooks. Providing a range of activities suited to different year levels and 

linked with the NSW curriculum relevant at the time (Board of Studies NSW, 2002), Jenkins 

(2010) pointed out that the suggested texts “also lend themselves to mathematical discussions 

that cover a variety of other strands” (p. 31). Jenkins’ work highlights the need for teachers to 

explore more deeply the mathematical content within children’s literature ─ beyond what might 

be immediately obvious in the book. 

Marston (2018) explored an explicit mathematical picturebook that was specifically 

developed and marketed to teach the concept of doubling. Marston analysed the mathematical 

content of the book using her framework (Marston, 2010) and found only 28% of the text related 

to the concept. Also identified in the text were: number, measurement, and geometry concepts. 

Three teachers in the UK and Australia used the book with three groups of 6–7-year-olds 

through a shared reading activity. Teachers were not given instructions on how to use the book. 

After the shared reading, the researcher asked students to “draw a picture or write about what 

comes into your mind when you think about the story” (Marston, 2018, p. 22). She then 

interviewed students and teachers. Teachers focused on the concept of doubling but had not 

considered the other concepts within the text. They used strategies such as pausing reading to 

explain mathematical content but provided limited opportunities for deep mathematical 

discussions arising from the content. Students’ visual or written responses mostly reflected the 

doubling concept focused on by the teachers. While the explicit mathematical content in the 

text provided support for the teachers to integrate literature into mathematics, Marston (2018) 

found opportunities for deep mathematical exploration were missed, with students mostly 

engaging in teacher led questioning and discussion. While this research supports the value of 

children’s literature to develop mathematical thinking in students, it also highlights the need for 

teacher support in effective implementation of picturebooks in mathematics instruction. 

Research That Applies Frameworks to Incorporate Children’s Literature in 

Mathematics 

Recognising the need for implementation support, other research has developed frameworks 

to assist teachers. For example, Marston’s (2010) framework guides teachers in selection of 

appropriate picturebooks to teach mathematics concepts. With an analysis of 122 award-
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winning children’s books, Marston categorised mathematical content into perceived, explicit, 

or embedded categories to support teachers in evaluating the appropriateness of a text for 

teaching and learning in mathematics. The resultant framework includes sub-categories of 

mathematical content, problem-solving, reasoning, and pedagogical implementation. While 

Marston’s framework provides a tool for teachers to consider texts for mathematics, limited 

detail on how to implement literature into the mathematics classroom is provided. 

Interactive read alouds using picturebooks can enhance mathematical learning. Courtade et 

al. (2013) demonstrated the value of interactive read alouds using picturebooks in supporting 

students with moderate to severe disabilities to build mathematical knowledge. By selecting 

children’s books that pose interesting problems and showcase solutions, the authors suggested 

that educators can integrate real-world connections into mathematical concepts. A special 

education teacher and a mainstream Year 3 teacher, worked with a Year 3 student with an 

intellectual disability who was assessed before, during and after an interactive read aloud 

activity within a mainstream classroom setting. The teachers collaboratively planned ways to 

support the student to access the mathematical content within their inclusive classroom. They 

developed four key steps to support teachers to incorporate children’s literature into 

mathematics for students with intellectual disabilities: (1) choosing a book relevant to a 

mathematical concept; (2) adapting it to meet individual student needs; (3) employing concrete 

examples with systematic instruction; and (4) incorporating assessment to guide instructional 

decisions effectively. Using these four key steps, the teachers planned further experiences with 

other texts demonstrating the usefulness of the steps in guiding the incorporation of literature 

into inclusive educational settings for diverse students. 

A problem-solving pedagogy utilising challenging and engaging tasks has shown success 

in recent mathematical research (cf. Stein et al., 2008). One example that has developed from 

this rich research is a recent study by Ingram et al. (2020) who demonstrated a framework to 

support 12 New Zealand primary teachers with implementation of challenging geometric 

reasoning tasks in inclusive classrooms as part of the Encouraging Persistence, Maintaining 

Challenge (EPMC) project. The research team provided professional learning sessions, sample 

problems and resources, and classroom anchor charts to support a problem-solving culture in 

the classroom. This framework proved successful in supporting teachers who stated they are 

now incorporating notions of challenge and struggle across other curriculum areas in their 

planning and teaching. Students reported how teachers focused instruction on the process of 

problem-solving and expected them to solve problems, to support them in their mathematics 

learning. This focus on problem-solving authenticates the development of critical thinking 

skills (Larson & Rumsey, 2018). This research focused on challenging tasks to provide an 

authentic context to develop critical thinking skills. How to provide the meaningful context to 

engage students in problem solving remains a challenge. 

Using picturebooks provides meaningful contexts for mathematical learning and supports 

students’ active engagement leading to better conceptual understanding. Forbringer et al. (2016) 

conducted a study in three classrooms; kindergarten, a multi age classroom, and a year 1 class, 

to develop a framework for teachers to use children’s literature in a differentiated mathematics 

lesson. This framework comprises six steps: (1) select book that serves as an inspiration for 

mathematical problem-solving; (2) determine the mathematical focal point of the lesson and 

align it with the curriculum; (3) use the narrative to craft a mathematical problem or question; 

(4) list the concepts or skills that students must possess to successfully solve the problem; (5) 

consider additional questions to differentiate the task; and (6) plan how to facilitate students to 

engage in differentiated problem-solving tasks. Findings showed that the framework supported 

teachers to use children’s literature to teach mathematical concepts, allowing differentiated 

tasks in an inclusive classroom. Research of frameworks demonstrates their potential value in 

mathematics instruction but also reveals some limitations. 
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Limitations of Existing Frameworks 

While research demonstrates that using children’s literature to support mathematical 

development is helpful (e.g., Cox, 2016; Marston, 2018), it provides scant ideas on how teachers 

might implement this practice in the classroom. Some literature provides advice for only 

specific titles (Larson & Rumsey, 2018). While Marston (2010) suggests mathematical content 

is perceived, explicit or embedded, she implies that not all children’s literature could be useful 

in a mathematics classroom. Further, some frameworks provide guidance on the types of 

mathematical activities that support students’ critical thinking skills (Forbringer et al., 2016), 

but explicit support for teacher implementation through children’s literature is limited. 

Research supports the benefits of teachers using picturebooks in mathematics to develop 

engaging and challenging tasks and resources. The aesthetic aspect of this approach, however, 

is largely missing in the research literature. Our study emphasises the significance of aesthetic 

appreciation in mathematics learning (Green et al., In press). We sought to develop a framework 

that progresses student learning in mathematics through perceptions of picturebooks, which 

enhance the aesthetic value of mathematics. This led to our research question: How can we 

develop a framework that would be useful in guiding teachers to authentically incorporate 

children’s literature into mathematics lessons, and to take an aesthetic stance for enhanced 

engagement and improved outcomes? 

Methods 

To collaboratively bring together the different ideas and expertise of the authors, we used 

the methodology of metalogue. Metalogue involves conversation about a problematic matter, 

with subsequent discussion of the conversation in relation to the same matter (Bateson, 1972). 

Both the form and content of the discourse is analysed, and meaning made through reflexive 

practice (Willis et al., 2014). Metalogue is different from a conversation analysis (Toerien, 

2014) in that researchers revisit the experience of an initial conversation through a reflexive 

lens, analysing the subsequent conversation. Emphasis is placed on the aesthetic dimension of 

the discussion (Yared & Davis, 2014). Metalogue provides space for participants to engage in 

generative dialogue, listen, and learn from each other (Willis et al., 2014). We conversed on the 

problematic matter of students’ aesthetic engagement in picturebooks for mathematics learning, 

and then discussed the value of the conversational aesthetic experience (Green et al., in press). 

This reflexive exercise impelled the development of the BoN framework. 

Developing the Beauty of Numeracy (BoN) Framework 

The development of the BoN framework was informed by research on frameworks that 

support children’s literature in mathematics instruction (e.g., Courtade et al., 2016; van den 

Heuvel-Panhuizen & Elia, 2012). This comprised frameworks designed to support teaching in 

mathematics (E.g., Ingram et al., 2020), promote the aesthetic value of mathematics (Gadanidis 

et al., 2016), and meet education objectives in the aesthetic domain (e.g., Krathwohl et al., 

1964). Additionally, the BoN framework is underpinned by Dewey’s (1934) aesthetic theory, 

often drawn on to advance mathematics instruction (e.g., Gadanidis et al., 2016) for its 

enculturating, long-term, transformative potential. Bloom’s taxonomy of educational objectives 

in the affective domain (Krathwohl et al., 1964) also provides theoretical underpinnings. 

The Design Process 

In the first conversation, the first two authors examined their own journeys towards planning 

and designing mathematics activities and challenging tasks. Following the process of metalogue 

(Green et al., in press), each author developed an initial framework. These frameworks were 

then discussed and analysed to identify key areas of innovation, agreement, and disagreement 

in a dynamic and interactive exchange, characterised by a rich diversity of perspectives, ideas, 
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and insights. Through metalogue conflicts were resolved, and the initial six steps of the 

framework developed. Next, all five authors worked on different developmental steps of the 

framework, which were then brought back for further discussions and analysis by the first two 

authors. From the finalised design, the procedures for each step were fine-tuned by the first two 

authors. The final two authors incorporated the steps into an easy-to-follow diagram, displayed 

on an A3 placemat with the framework on one side, and explanations of each step on the other 

(see Figure 1). With the visual representation of the process in the centre of the placemat, brief 

points for each step were provided around the outside. A clear outline of the purpose was 

included at the top of the framework. The front page provides a quick reference guide for 

teachers. On the reverse side of the placemat, detailed explanations of each step were provided 

so that teachers could refer to this if they were unsure of their next steps. 

The BoN framework was designed to provide in-service and pre-service teachers with a 

guide to authentically incorporate children’s literature into mathematics lessons, through taking 

an aesthetic stance for enhanced engagement. The A3 size placemat was easy for teachers to 

keep on their desks to be readily available to support them in their planning and practice. 

Figure 1 

Beauty of Numeracy (BoN) Framework 

 

With the visual representation of the process in the centre of the placemat, a clear outline of 

the purpose of taking an aesthetic approach to mathematics was stepped out into six clear 

principles. The aesthetic approach is the subject of a subsequent publication but briefly, it 

encourages teachers to appreciate and value: 

1. An aware willing, open, and free exploration of mathematical concepts. 

2. Satisfaction in responding to the sensory experience of mathematical inquiry. 

3. Commitment to the development of perception associated with mathematical thinking. 

4. Formation and organisation of ideas associated with mathematical beauty and 

reasoning. 

5. Readiness to revise judgements associated with mathematical observations, evaluations, 

and reasoning. 

6. Internalised, consistent belief in oneself as a highly numerate person who thoroughly 

enjoys mathematics. 
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The front side provides a quick reference guide for teachers with brief points for each step 

provided around the outside. With each step listed below, the key research literature that 

inspired and supported the importance of the inclusion of that step into the framework is listed: 

1. Prepare the physical and mental space for taking an aesthetic stance to read (Gadanidis 

et al., 2016). 

2. Explore high-quality children’s literature with selective attention directed towards 

mathematical concepts (Cox ,2016). 

3. Make connections between the mathematical concepts presented in the book and 

relevant mathematics curriculum content (Marston, 2018). 

4. Identify any relevant General capability: Numeracy elements/sub-elements to broaden 

and extend learning (Forbringer et al., 2016). 

5. Draw inspiration for the children’s book, to develop a challenging learning 

activity/experience/inquiry/problem (Larson & Rumsey, 2018). 

6. Inspired by Ingram et al. (2020): 

o Prepare for aesthetic engagement in reading and mathematics; 

o Launch the mathematical challenge; 

o Explore a range of possible responses; 

o Discuss ideas, potential to build on others’ ideas, reasonableness of ideas and value 

the learning experience. 

The detailed steps of the BoN framework, as shown on the reverse side of the placement, 

provide guidelines to teachers to explore quality children’s literature, make connections to 

mathematical concepts and link that to the curriculum content for the context of their own class. 

Step 6, based on the problem-solving approach of Ingram et al. (2020), provides guidance for 

teachers in planning and implementing problem-based lessons with their students, with a 

reminder to consider an aesthetic stance. To support teachers to effectively implement the BoN 

framework in classroom planning and practice, a series of professional development sessions 

are currently being trialled. The trial is beyond the scope of this paper. 

Discussion 

The process of planning and developing a framework, through collaborative consultation 

and metalogue between all authors supported a progressive fine tuning of the BoN framework. 

The generative process led to a comprehensive and complete framework that is valuable for 

teachers’ curriculum design and enactment. The framework offers support for in-service and 

preservice teachers in taking potentially any quality children’s picturebook and using it as the 

basis for mathematical investigations. The aesthetic stance and problem-solving pedagogical 

approach offer support for both teachers and students to appreciate the aesthetic qualities of 

mathematical concepts, structures and content. This supports both teachers and students to see 

the beauty and value of mathematics in their world. The problem-solving, challenging task 

approach (Ingram et al., 2020) supports creativity and critical thinking as valued by Larson and 

Rumsey (2018), and Dewey (1934). 

The next phase in the research project provides professional development (PD) sessions for 

in-service and pre-service teachers to trial and provide feedback on application of the BoN 

framework for improved engagement and outcomes. Initial feedback from the first two PD 

sessions, in which the BoN framework was introduced and explained, indicated 98% of teachers 

felt they had learnt something new and valuable. Further research will investigate teachers’ 

implementation of the framework in classroom settings as well as impact on engagement and 

outcomes. 
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This paper reports on a study that seeks new insight into how the expertise of specialist 

mathematics intervention teachers might be harnessed to support classroom teachers to 

assist students who experience difficulty learning mathematics. Findings show that the 

classroom teachers’ confidence increased after engaging in co-teaching cycles led by 

the specialists. The most highly ranked helpful actions of the specialist intervention 

teachers were ‘suggesting appropriate tasks for a given topic,’ ‘team teaching with me,’ 

and ‘suggestions about content for the next lesson.’ The findings suggest that teachers’ 

professional learning needs vary and require a personalised response. 

Enabling all students to thrive with learning mathematics is an important goal for teachers. 

However, primary school teachers in Australia are generalists who do not have specific 

expertise or confidence in diagnosing or responding to the difficulties or diverse abilities of 

students. Hence, some schools employ a specialist mathematics teacher to implement a range 

of intervention approaches to support students (Bryant et al., 2008; Gervasoni, 2015; 

Sonnemann & Hunter, 2023). Although intensive intervention programs are effective 

(Gervasoni et al., 2021; Nickow et al., 2020), schools typically cannot resource intervention 

programs for all students who qualify, even if desired. A more strategic and sustainable 

approach may be to increase classroom teachers’ expertise and confidence in providing high-

quality inclusive mathematics teaching that enables all students to thrive. Our study explores 

how this goal might be advanced through professional learning involving co-teaching cycles 

(Sharratt & Fullan, 2012) that harness the expertise of specialist mathematics intervention 

teachers. The research questions addressed in this paper are: (1) How does the mathematics 

teaching confidence of primary teachers change after engaging in co-teaching cycles led by a 

specialist intervention teacher? and (2) What actions of the specialist intervention teachers in 

each phase of the co-teaching cycle do classroom teachers rank most highly to help them to 

support all students’ mathematics learning? A particular focus for our study is considering the 

implications of the findings for designing approaches to assist students who are not currently 

thriving with mathematics learning. 

Background Literature 

Although intensive mathematics interventions are effective for increasing and accelerating 

students (Gervasoni et al., 2019; Nickow et al., 2020), not all students who may benefit are able 

to access these. Intervention approaches typically fall into three tiers (Bryant et al., 2008). Tier 

1 approaches focus on high-quality classroom instruction to meet the needs of all students; Tier 

2 approaches provide small group support for about 15% of students who fall behind; and Tier 

3 approaches include intensive one-on-one support for students who make minimal progress in 

Tier 2 (Sonnemann & Hunter, 2023). With respect to Tier 1, teachers report that differentiating 

instruction to meet the needs of all students is one of the most difficult aspects of mathematics 

teaching (Downton et al., 2022; Gervasoni et al., 2021). Findings from the pilot phase of our 

study suggest that teachers find two aspects challenging when teaching students who are 
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mathematically vulnerable: (1) differentiating instruction effectively; and (2) having sufficient 

time and opportunity in a lesson to work with students who experience difficulty (Gervasoni et 

al., 2023). Hence, building the capability and confidence of classroom teachers to provide high-

quality mathematics instruction for all is vital. 

Teacher Confidence 

It has been long established that teachers’ confidence about teaching mathematics is an 

important influence on their classroom practice (Munby et al., 2001). Indeed, Baxter et al. 

(2014) argue that there is a need to engage teachers in professional learning that supports the 

learning of content and pedagogy, while helping them to develop more confidence in their 

ability to teach mathematics. It is also established that large proportions of pre-service primary 

teachers, including in Australia, have low confidence in teaching mathematics (Norton, 2017) 

which is likely to influence their practice as graduate teachers. Teachers who lack confidence 

in teaching mathematics demonstrate this by avoiding teaching some aspects of mathematics, 

lacking variation in pedagogy, and relying on tightly scripted or unscripted approaches with 

minimal teacher input (Norton, 2017). It is likely that in situ professional learning that utilises 

co-teaching cycles for teachers led by a specialist mathematics teacher will be beneficial for 

building both the confidence and expertise of teachers. 

Teacher Professional Learning and Co-Teaching Cycles 

Previous studies have demonstrated the effectiveness of in-situ professional learning led by 

school mathematics leaders or coaches for enhancing mathematics teaching (Anstey & Clarke, 

2010; Sexton & Downton, 2014), and for increasing student achievement (Bruce et al., 2010). 

Cobb et al. (2019) argued that modelling instruction, co-teaching, co-planning, and debriefing 

were potentially productive activities for mathematics coaches. Teachers have indicated that 

“modelling, observation, and debriefing were the most valuable components” of a professional 

learning model (Butler et al., 2004, p. 447). One model for leading classroom embedded 

professional learning that incorporates these approaches is the co-teaching cycle (Sharratt & 

Fullan, 2012) which comprises co-planning, co-teaching, co-debriefing, and co-reflecting. 

Professional learning based on co-teaching cycles aims to address aspects of practice that 

teachers wish to improve, so has potential for our study. 

Given teachers have indicated that teaching mathematics for students with diverse abilities 

is difficult (Downton et al., 2022; Gervasoni et al., 2021), the use of co-teaching cycles for our 

study will need to address this aspect of practice. Previous research has highlighted that high-

quality inclusive mathematics instruction promotes problem solving, collaboration, dialogue, 

and using tasks with enabling and extending prompts to enable all students to access the task 

(Russo et al., 2020). Further insight is needed about whether co-teaching cycles increase 

teachers’ confidence to effectively differentiate teaching for diverse students, and which actions 

of the specialist intervention teacher are most helpful. 

Context for the Study 

Our study took place in primary schools situated within a System of 58 schools in Sydney 

that has focused on a constructivist aligned and problem-solving approach to mathematics 

education. In 2022 we conducted a pilot study, with a follow-up phase in 2023. The System 

approach to mathematics education has included using a task-based mathematics assessment 

(Clarke et al., 2002) enabling student progress to be monitored annually, and any students who 

were mathematically vulnerable to be identified, and supported through the Extending 

Mathematical Understanding (EMU) intervention program (Gervasoni et al., 2021; Gervasoni, 

2015). The EMU program is taught by certified specialist teachers (ST) who complete a 6-day 

course and ongoing annual professional learning. More than 400 teachers in the system have 
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qualified as EMU specialist teachers. The theoretical underpinnings, lesson structure, and 

teaching approach for the intervention program are described in detail in Gervasoni (2015). 

Given that not all eligible students are able to access an EMU intervention program in 

Year 1, and that there are many students in Year 2 to Year 6 who are mathematically vulnerable 

also, our study seeks to investigate how the expertise of EMU Specialist Teachers (EMU ST) 

may be harnessed to enable classroom teachers to more intentionally support the mathematics 

learning of this group in their classrooms. Through experience with EMU intervention, the 

EMU STs had developed expertise in differentiating instruction for groups of three students, 

guided by diagnostic assessment and the ENRP growth point framework (Clarke, 2013). They 

were also experienced with designing lessons based on problem-solving and engagement with 

open tasks, and identifying concrete models to assist students’ construction of knowledge; 

prompting students to visualise and explain their thinking and strategies for each other; and 

developing students’ confidence and positive dispositions for mathematics. These practices are 

highly relevant for Tier 1 mathematics teaching. 

Method 

Qualitative methods were chosen as most relevant for our study. The research design 

involved EMU STs leading co-teaching cycles for classroom teachers for at least 10 weeks. At 

the conclusion of the co-teaching cycles, teachers were surveyed using an online platform 

(Qualtrics) and interviewed (via Zoom). The research followed the approved ethical guidelines, 

and pseudonyms used. Results and findings for classroom teachers are the focus for this paper. 

Data Collection Instruments and Data Analysis 

The teacher survey included items that invited teachers to rate their confidence in teaching 

mathematics and items that asked teachers to rank the helpfulness of a set of actions for each 

phase of the co-teaching cycle. Teachers were asked to rate their confidence at two time points: 

prior to the series of co-teaching cycles, and after. These time points allowed us to measure 

perceived changes in confidence. To gain insight about whether the teachers’ perceived 

confidence was different when teaching mathematics for students who were struggling to learn, 

or highly capable, we asked them to rate their confidence for teaching these groups of students 

also. Open response items investigated what teachers considered most challenging about 

teaching students who were struggling with mathematics, and any other support from the EMU 

ST that they found valuable. The semi-structured interviews aimed to provide greater depth and 

clarity about the nature of the EMU ST support that teachers received, and their perceptions of 

the impact of the support. The survey responses were summarised. Open response items and 

the transcribed interview data were analysed and excerpts were used to further illustrate the 

survey findings. 

Co-teaching Cycles 

The co-teaching cycles in 2023 involved the EMU specialist teacher (EMU ST) co-planning 

with classroom teachers weekly across two terms, co-teaching a minimum of two mathematics 

lessons each week, and co-debriefing and co-reflecting after the co-teaching lessons. This 

process is known as EMU Level 2 (L2) intervention in our study. A series of professional 

learning sessions, facilitated by the System EMU Professional Learning Leaders, supported the 

EMU STs to lead the co-teaching cycles. Professional learning included role clarification, 

facilitating collaborative mathematics planning, professional readings, and observing and 

reflecting on an L2 co-teaching and co-debriefing session in one of the schools. 

Participants 

The six schools trialling EMU L2 in 2023 were invited to participate in the study. These 

schools had the support and commitment of the school’s principal, were able to resource the 
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intervention with appropriate staffing and time, and an experienced EMU ST on staff who was 

willing to participate. Three schools agreed to participate. School leaders selected the grade 

level for the EMU L2 support based on the proportion of students who were mathematically 

vulnerable, using data from the Mathematics Assessment Interview (Clarke et al., 2002). School 

A chose Grade 2, School B chose Grade 3, and School C chose Grade 4. The proportion of 

students who were vulnerable in at least one whole number domain in each grade was 75%, 

96% and 66% respectively. The participants from the three schools were an EMU ST from each 

school, one Grade 2 teacher (School A), three Grade 3 teachers (School B), and two Grade 4 

teachers (School C). The classroom teachers’ experience ranged from 2 to 19 years, and EMU 

STs had 5 to 8 years of experience teaching EMU programs. 

Results and Findings 

Confidence in Teaching Mathematics 

An aim of the study in 2023 was to gain insight about whether EMU L2 support was 

associated with increases in teacher confidence. At the end of the 2023 school year, classroom 

teachers were invited to rate their confidence as a mathematics teacher prior to the co-teaching 

cycles, and after. Similarly, they rated their confidence for teaching mathematics for students 

who are struggling to learn, and for students who are highly capable. Results are shown in 

Table 1. Note that Teacher 1 did not respond to this question. 

Table 1 

Classroom Teachers Confidence Ratings (Out of 10) for Teaching Mathematics, for Students who 

Struggle and Highly Capable Students, Prior to and Following EMU Level 2 Support 

Teacher Confidence rating as a 

mathematics teacher 

Confidence rating for 

teaching students who 

struggle  

Confidence rating for 

teaching highly capable 

students 

Prior to L2 After L2 Prior to L2 After L2 Prior to L2 After L2 

2 5 7 6 7 4 7 

3 5 7 6 8 4 7 

4 4 7 4 7 3 5 

5 6 8 5 7 6 8 

6 6 9 3 7 5 8 

Mean 5.2 7.6 4.8 7.2 4.4 7.0 

Prior to the EMU L2 support, no teacher rated their confidence highly, with ratings ranging 

from 3–6 for teaching students who struggle, or who are highly capable, and from 4–6 for 

confidence as a mathematics teacher. Following the L2 support, the confidence ratings were 

mostly in the range of 7–8 for all categories, which suggests a positive increase in confidence. 

The mean ratings suggest that the teachers were slightly more confident teaching students who 

struggle than teaching highly capable students. The greatest variation in teachers’ increase in 

confidence was for teaching mathematics for students who struggle (1–4 points). 

Valued Actions of EMU Specialist Teachers 

In the 2023 study, we used analyses of survey items and interviews transcripts to gain deeper 

insight into which EMU ST actions were most helpful in each phase of the co-teaching cycle. 

In the survey, teachers ranked of a set of actions for each phase. In the interviews, teachers 

described the role of the EMU ST during the co-teaching cycles. The results are described 

below. 
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Co-Planning 

For the co-planning phase, the classroom teachers ranked seven actions of the EMU ST, 

according to helpfulness (Table 2). The most highly ranked actions were ‘suggesting 

appropriate tasks for a given topic’ and ‘supporting me to anticipate students’ responses, 

solutions, and misconceptions.’ The least helpful were ‘providing advice about choosing and 

using concrete materials’ and ‘assisting me with understanding the growth points.’ 

Considerable variation in rankings for most statements suggests that the teachers’ needs 

differed. 

Table 2 

Frequency of Classroom Teacher’s Ranking of EMU ST’s Actions During Co-Planning 

EMU ST actions during co-planning Ranking for EMU ST actions 

1 2 3 4 5 6 7 

Assisting me to design enabling and extending prompts 0 2 0 1 2 0 1 

Suggesting appropriate tasks for a given topic 4 1 0 0 1 0 0 

Supporting me to anticipate student 

responses/solutions/misconceptions 

1 1 3 1 0 0 0 

Supporting me to understand the mathematics related to the lesson 0 2 0 2 0 1 1 

Providing advice about choosing and using concrete materials 0 0 1 1 0 2 2 

Providing advice about questions to elicit students’ thinking 1 0 1 1 2 1 0 

Assisting me with understanding the growth points 0 0 1 0 1 2 2 

Data from the interview transcripts provided further insight into how the EMU ST helped teachers 

with suggesting appropriate tasks. For example: We’d be looking at tasks … we’d think about the 

area that we’re … focusing on … then it was about that progression … and to have the enabling 

prompts and the extension prompts … ready to go. (Teacher 6) 

So how do we modify the tasks to allow it to be accessible to other students? How do we engage 

them … so that they are willing to have a go … have the topics of the tasks be something that they’re 

familiar with or …interested in … things like that that Kay was able to facilitate for us. (Teacher 5) 

Teacher 1 described how planning discussions assisted her teaching to be more purposeful: 

There’s more anticipation now about student responses, …the reflection phase [of the lesson] is 

more purposeful. … And rather than us not being prepared for the task, we know perhaps student A 

has thought this …because he doesn’t have the foundational understanding of this concept. 

During Co-Teaching 

The classroom teachers ranked six co-teaching actions by the EMU ST, according to their 

helpfulness. Table 3 shows the results. Note that the final two actions are not typical of co-

teaching actions, but were described by teachers as helpful in the pilot study (Gervasoni et al., 

2023). We included these to gain deeper insight into how teachers ranked these actions. 

All teachers ranked ‘Team teaching with me’ as the most helpful of the six actions. 

‘Modelling the discussion at the end of a task or lesson’ was highly ranked by most teachers. 

‘Modelling a full lesson’ had the lowest overall ranking. 

Excerpts from the interview transcripts provide further insight about the helpfulness of team 

teaching: 

She’d roam across the whole space and she’d come and suggest, “Oh, this work sample is really 

good,” if I needed help, or I’d go to her and ask for advice to see if I’m on the right track. (Teacher 5) 

And I feel like the co-teaching was actually really helpful for me. She [EMU ST] would help with 

selecting work samples to put on the screen, helping make it visual. (Teacher 4) 
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Table 3 

Frequency of Classroom Teacher’s Ranking of EMU ST’s Actions During Co-Teaching 

EMU ST actions during co-teaching Ranking for EMU ST actions 

 1 2 3 4 5 6 

Modelling a full lesson 0 0 0 2 1 3 

Modelling the discussion at the end of the task or lesson 0 4 0 2 0 0 

Team teaching with me 6 0 0 0 0 0 

Observing my teaching and providing feedback 0 0 4 1 0 1 

Withdraw small group, focusing on moving to the next growth 

point 

0 1 1 0 4 0 

Reaching the students I can’t get to in a lesson 0 1 1 1 1 2 

The interview transcript data also illustrated how the EMU ST helped teachers by modelling 

or co-teaching during the discussion at the end of a task or lesson: 

Reflections in maths have always been a struggle for me because I never really know what to focus 

on. Kay [EMU ST] just showed me, … and that’s what we reflect on. So I feel a lot more confident 

in my own teaching because of this. (Teacher 5) 

So on the spot, if we were looking at something … in a student’s book that we wanted to reflect on, 

instead of us giving the game away, [the EMU ST] would often say, ‘How can you prompt the 

students? What can you make them think?’ I think it was the verbal cues. (Teacher 1) 

During Co-Debriefing and Co-Reflecting 

The classroom teachers ranked five actions by the EMU ST when co-debriefing and co-

reflecting, according to their helpfulness. Table 4 shows the results. 

Table 4 

Frequency of Classroom Teacher’s Ranking of EMU ST’s Actions During Co-Debriefing 

EMU ST actions during co-planning Ranking for EMU ST actions 

1 2 3 4 5 

Feedback about what did not go well in the lesson. 1 0 0 1 4 

Feedback about the students who were struggling. 1 0 4 1 0 

Feedback about what worked well in the lesson. 0 1 1 3 1 

Suggestions about content for the next lesson. 1 4 1 0 0 

Suggestions pedagogies that may assist student learning in next 

lesson 

3 1 0 1 1 

The most highly ranked actions were ‘Suggestions about content for the next lesson’ and 

‘Suggestions about pedagogies that may assist students’ learning in the next lesson.’ Although 

four teachers ranked ‘Feedback about what did not go well in the lesson’ as least helpful, one 

teacher ranked it as most helpful. This result highlights the variation in rankings for most 

statements, suggesting that the needs of the teachers during debriefing differed. 

The following interview excerpts further illustrate the helpfulness of debriefing actions: 

I also think the importance of our co-debriefing sessions during the lesson were crucial. After 

roaming, and then the three of us, ‘let’s have a reflection. What’s our next step?’ (Teacher 1) 

Kate [EMU ST] would always make sure that a couple of times a week … we’d be having the 

conversations with her, and she’ll be seeing how we’re going, what’s working well, what can we 

adjust. (Teacher 2) 
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Discussion and Conclusion 

The first research question sought insight into how the mathematics teaching confidence of 

primary teachers changed after engaging in co-teaching cycles led by an EMU specialist 

intervention teacher. The key finding is that engagement in the co-teaching cycles was 

associated with a positive increase in confidence for teaching mathematics for all five teachers, 

including for teaching students who struggle, and for highly capable students. This finding 

suggest that the EMU L2 support assisted teachers to be more confident in differentiating 

teaching for students with diverse knowledge. This finding is promising given the influence of 

confidence on mathematics teaching practice (Munby et al., 2001; Norton, 2017). 

The second research question investigated which EMU ST actions classroom teachers 

ranked most highly, in each phase of the co-teaching cycle. The first key finding was the 

variation in rankings for actions, especially for the co-planning and co-de-briefing phases. This 

suggests that the professional learning needs of the teachers varied, and that a personalised 

approach for co-teaching cycles is warranted. This finding supports the view that co-teaching 

cycles need to address the specific aspects of practice that teachers wish to improve (Sharratt 

& Fullan, 2012). The second finding is the set of helpful EMU ST actions that teachers ranked 

most highly for each phase in the co-teaching cycle. These were: (i) suggesting appropriate 

tasks for a given topic, and supporting teachers to anticipate students’ responses, solutions, and 

misconceptions (co-planning phase); (ii) team teaching, and modelling the discussion at the end 

of a task or lesson (co-teaching phase); and (iii) suggesting content for the next lesson, and 

suggesting pedagogies to assist students’ learning in the next lesson (co-debriefing phase). It 

was clear from the interview data that these actions assisted teachers to become more confident, 

and to more effectively differentiate their teaching in response to the diverse range of student 

knowledge in a classroom. It is likely that these actions will be useful practices for other EMU 

STs to consider when leading co-teaching cycles. This would be a profitable area for further 

research. Also, it would be valuable to explore the impact of the EMU L2 support on the growth 

of students’ mathematics learning and confidence. 

Our study explored whether the expertise of specialist intervention teachers could be 

harnessed to increase the confidence and capability of classroom teachers to support students 

who struggle with mathematics learning. The findings provide new insight about the specific 

actions that teachers find most helpful in supporting their professional growth during co-

teaching cycles. Although the overall goal of our research is to design approaches to assist 

students who are not thriving with mathematics learning, a surprising outcome of our study is 

that the EMU L2 approach also increased teachers’ confidence and expertise in teaching highly 

capable students. This broader impact highlights the value of teachers learning in situ alongside 

a trusted and knowledgeable expert with whom they can engage in dialogue about what they 

are noticing about students’ learning, and how to respond. 
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This study explores the relationship between pre-service teachers’ (PSTs) early 

experiences and their current views on mathematics. The data were collected through 

an online survey from 107 PSTs and were analysed using descriptive statistics and 

Pearson’s Chi-square test. Study results suggest that PSTs’ early mathematics 

experiences relate to their current self-perception of mathematics. The majority of 

participants who loved mathematics as children are confident in using mathematics, 

whereas those who dreaded it at school lack current mathematical confidence. This 

highlights the importance of early mathematics education in shaping future perceptions. 

In education, the influence of early experiences cannot be overstated. For future educators, 

pre-service teachers (PSTs), these early experiences are not only connected with their views of 

education but also their future teaching practices in the classroom (e.g., Sayers, 2013; Yang et 

al., 2020). This study investigates the relationship between PSTs’ early mathematics learning 

experiences and their current view of mathematics in the Australian context. As guided by the 

Australian Curriculum, Assessment, and Reporting Authority (ACARA, 2019), mathematics 

education in Australia emphasises the importance of early numeracy skills as the foundation 

for later mathematical proficiency. The pivotal role of mathematics in students’ academic 

development and the nation’s future workforce underscores the significance understanding of 

how early mathematics experiences influence those prepared to become mathematics educators. 

While the literature on mathematics education is vast, with research on both early mathematics 

education (Björklund et al., 2020) and teacher beliefs and practices, there is a noticeable gap in 

exploring the relationship between early mathematics experiences during one’s own schooling 

years and current view and future teaching in the Australian context. As a result, this study 

seeks to address the following research question: How did PST’s early personal mathematics 

experiences relate to their current view of mathematics? 

Understanding how early mathematics experiences connect with the beliefs and views of 

PSTs has the potential to inform teacher education programs, curriculum development, and 

classroom teaching strategies. It can provide valuable insights into how to nurture confident 

and capable mathematics educators who, in turn, inspire the next generation of mathematics 

learners in Australian schools. 

Background 

Early mathematics education plays a pivotal role in influencing the beliefs and practices of 

future teachers. In Australian schools and elsewhere, the significance of mathematics education 

in the early years cannot be understated, as it lays the foundation for not only students’ 

mathematical proficiency but also informs the pedagogical approaches employed by teachers 

(Björklund et al., 2020). This literature review explores the intricate relationship between early 

mathematics experiences and the development of PSTs’ beliefs and views of mathematics. 
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Early Mathematics Experiences and Beliefs 

Bandura’s Social Cognitive Theory (1986) highlights the concept of self-efficacy as the 

belief or personal judgement about one’s competence in a subject matter relative to a specified 

standard. This concept leads to individuals’ perceptions and behaviour and connects with prior 

experiences, in this case, early mathematics experience. Bandura emphasised the central role of 

self-efficacy in human agency and its influence on the choices of activities, persistence and 

efforts, and flexibility to adversity. For example, heightened self-perception or self-efficacy 

guides individual choices in making decisions, especially in effort expenditure and persistence, 

which may influence PSTs’ beliefs, teaching strategy, and confidence. In contrast, low self-

efficacy could result in unstable behaviour, discourages endurance and effort, and may cause 

total disengagement from learning. Hence, there is a need for continuing research on self-

efficacy, self-perception and early mathematics experiences. 

Early mathematics experiences are the impressions created by individuals about 

mathematics after engaging in learning mathematics during primary education levels. In 

mathematics education, early mathematics experiences can influence individuals’ views about 

the subject. Various studies indicate that the quality and nature of early mathematics 

experiences significantly influence individuals’ beliefs about mathematics (e.g., Sayers, 2013; 

Yang et al., 2020). For example, early positive experiences profoundly reinforce individuals’ 

self-efficacy beliefs, leading to more confident and enthusiastic mathematics learners (Yang et 

al., 2020). Another study by Claessens and Engel (2013) found that early mathematics 

experiences, including exposure to engaging and interactive learning environments or 

traditional pedagogical approaches (Güler et al., 2023), are linked to changes in attitudes 

towards mathematics. Furthermore, Sayers (2013), through multiple case studies, revealed that 

these beliefs, seeded in early mathematical encounters, continue, and reappear in later beliefs 

and practices. Similarly, Ngan et al. (2003), in their study within early year centres, discovered 

that such experiences engender consistent beliefs and practices among kindergarten and 

primary grade teachers, illustrating the enduring influence of these formative encounters. An 

earlier study by Raymond (1993) explored the role of prior school experiences and teacher 

education programs, highlighting the relationship between these early factors and serving 

teachers’ beliefs. Collectively, these studies underline the pivotal role of early mathematics 

experiences in laying the foundation for individuals’ beliefs about mathematics. 

Early Mathematics Experiences and Beliefs on the Current View/Practice 

Relating the early mathematics experience of individuals to their current perception of 

mathematics, various studies consistently showed that the influence of early mathematics 

experiences and beliefs extends into one’s current view and practice (e.g., Philipp et al., 2007; 

Yang et al., 2020). A study conducted by Philipp et al. (2007) demonstrated that individuals 

who actively engaged with children’s mathematical thinking while learning mathematics 

developed more sophisticated beliefs about teaching and learning the subject. This underscores 

how early experiences influence not only beliefs but also teaching approaches. Also, Ampadu 

(2014) showed that teachers’ beliefs and practices are not static but are continually shaped by 

background knowledge, professional development, and school culture, with early experiences 

serving as foundational elements. Moreover, Yang et al. (2020) provided empirical evidence of 

the enduring impact of early beliefs. They revealed that teachers’ knowledge and beliefs, which 

often originate from early experiences, directly and indirectly, influence their current views and 

practices, demonstrating that early experiences continue to influence teaching throughout one’s 

career. On the contrary, Purnomo et al. (2016) found that inconsistencies can emerge between 

beliefs formed in early experiences and actual classroom practices, suggesting that these beliefs 

do not always translate directly into current views or teaching actions. 
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While there is a substantial body of research exploring the relationship between early 

mathematics experiences and teacher beliefs and practices, there is a need for more specific 

investigation within the Australian context. The existing literature predominantly focuses on 

broader international perspectives, with limited attention paid to the unique challenges and 

opportunities the Australian education system presents. Recognising and understanding this 

relationship is crucial for the continuous improvement of mathematics education in the country. 

This study aims to contribute to the existing body of knowledge by exploring this relationship 

in the Australian context. 

Method 

Participants 

This study involved 107 PSTs enrolled in a teacher education program at a regional 

university in Australia. These PSTs were in their third-year initial teacher education program 

to become primary school teachers in Australia. Data for this research was collected from two 

distinct cohorts of PSTs, comprising 68 PSTs from the 2021 cohort and 39 from the 2022 

cohort, representing 59.8% of the total 179 enrolled students. The authors did not collect 

demographic information from the participants. 

Data Collection 

Data were collected through an anonymous online survey comprising three closed-ended 

questions. The three questions were: (1) How did you view mathematics in primary school; 

(2) How do you remember being taught mathematics when you were at school? Select the most 

common ways you were taught; and (3) How do you view yourself as a mathematician/educator 

today? 

Data Analysis 

The initial analysis stage focused on descriptive statistics, including frequency and 

percentage, offering an overview of PSTs’ early experiences and views of mathematics. We 

used cross-tabulation techniques to explore relationships within the data and presented the 

findings using stacked bar charts. These techniques examined the relationships between various 

aspects, such as their current self-view of mathematics and their early mathematics experiences 

and views. Pearson’s Chi-squared test was conducted to discern significant associations 

between primary school and current views and teaching methods across cohorts. 

Results 

Early and Current View of Mathematics 

Analysis of the survey responses revealed several key themes related to the connection 

between early mathematics learning experiences and PSTs’ current mathematics beliefs. 

Table 1 shows the early views of PSTs toward mathematics. 

Table 1 

PST’s View of Mathematics in Primary School 

Item  Frequency Percent 

Loved it 40 37.4 

Could do it but I did not look forward to mathematics lessons 37 34.6 

Just dreaded it! 30 28.0 

Total 107 100 

As shown in Table 1, many PSTs (37.4%) expressed positive views, indicating that they 

loved mathematics during their primary school years. On the other hand, 34.6% of the PSTs 
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had the ability but did not particularly look forward to mathematics lessons, reflecting a neutral 

stance. Notably, 28.0% of the PSTs admitted having dreaded mathematics in primary school. 

These results underscore a range of perceptions among the PSTs, with a substantial portion 

having positive views about mathematics in their early education. In contrast, others held mixed 

or negative views. 

The other theme investigated in this study was the PSTs’ current view of themselves as a 

mathematician/educator. Table 2 summarises how the PSTs perceive themselves as 

mathematicians today. 

Table 2 

PSTs Self-View as a Mathematician Today 

Item Frequency Percent 

Love using mathematics to work out problems and enjoy learning about new 

mathematical ideas 

21 19.6 

Confident to apply mathematics in my everyday life 33 30.8 

Ok, but I often feel like I need to double-check my calculations. 42 39.3 

Not confident. I often avoid having to work things out if mathematics is 

involved. 

11 10.3 

Total 107 100 

As shown in Table 2, 30.8% of the PSTs notably expressed confidence in applying 

mathematics in their daily lives. About 39.3% valued precision, often double-checking 

calculations. Additionally, 19.6% of the PSTs exhibited a strong love for mathematics, enjoying 

problem-solving and exploring new concepts. However, 10.3% of the PSTs lacked confidence 

and often avoided mathematics-related tasks. 

Relationship Between PSTs’ Early View of Mathematics and Their Current View 

as a Mathematician 

Figure 2 reveals the relationship between how PSTs viewed mathematics in primary school 

and their current self-perception as mathematicians. 

Figure 2 

Link Between PSTs’ Early View of Mathematics and Their Current View as a Mathematician 

 

PSTs who loved mathematics during their primary school years predominantly fall into the 

category of “Love using mathematics to work out problems and enjoy learning about new 
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mathematical ideas” today, with 18 out of 21 respondents falling into this group. On the other 

hand, those PSTs who dreaded mathematics in primary school tend to fall into the “Not 

confident, I often avoid having to work things out if mathematics is involved” category today, 

comprising 10 out of 11 the PSTs in this group. Interestingly, there is a relatively even 

distribution among the PSTs who could do mathematics but did not look forward to lessons in 

primary school, as they are spread across various categories of self-perception as 

mathematicians today. In addition, the Pearson Chi-Square value is statistically significant, 

χ2(6, 107) = 61.21, p<0.001. These findings illustrate a connection between early perceptions 

of mathematics and current self-identifications as mathematicians among PSTs, highlighting 

the importance of primary school experiences. 

PSTs Early Mathematics Learning Experiences 

Table 3 provides insights into how PSTs remember being taught mathematics during their 

own school years. 

Table 3 

PSTs Taught Mathematics at Primary School 

Early learning/teaching strategies  Responses Percent of 

cases 
n Percent 

Copying sums from the board to complete after a demonstration of how 

to work an example by the teacher 

103 30.0 96.3 

Using real life materials and situations to learn a mathematical concept 

or apply understanding 

20 5.8 18.7 

Using concrete materials or other manipulatives to understand or work 

through math ideas 

33 9.6% 30.8 

Working on exercises in a textbook 96 28.0 89.7 

Working in groups with other students to learn new math concepts 24 7.0 22.4 

Using a calculator to work out answers 55 16.0 51.4 

Going on math excursions to see real life examples of mathematical 

learning 

2 0.6 1.9 

Visits from experts to demonstrate how they use mathematics  2 0.6 1.9 

Using computer software to make learning more interactive 8 2.3 7.5 

Total  343 100 320.6 

As shown in Table 3, the most prevalent teaching method recalled by the PSTs is “Copying 

sums from the board to complete after a demonstration of how to work an example by the 

teacher,” representing 96.3% of responses. This traditional approach seems deeply deep-seated 

in their memory. Additionally, 89.7% of the PSTs reported “Working on exercises in a 

textbook,” indicating a substantial reliance on textbook-based learning. Interestingly, only a 

smaller percentage, 30.8% of the PSTs, recall using “concrete materials or other manipulatives” 

to understand math concepts. In comparison, 51.4% of the PSTs recall using calculators, 

suggesting a shift toward technology in teaching methods. These findings underscore the 

dominance of traditional teaching approaches in the PSTs’ memories of their own mathematics 

education, with some indications of evolving methods involving technology and hands-on 

learning experiences. 

PSTs Early Mathematics Experience and Their Current View as Mathematician 

Table 4 shows the connection between the PSTs’ memories of their primary school 

mathematics education and their current self-perception as mathematicians. 
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Table 4 

How PSTs Remember Being Taught Mathematics When They Were at School and how They View 

Themselves as a Mathematician Today 

Early learning/teaching 

strategies 

Self-view as a mathematician/educator today Total 

1 2β 3γ 4δ 

Copying sums from the board to 

complete after a demonstration of 

how to work an example by the 

teacher 

19 

(17.8%) 

33 

(30.8%) 

40 

(37.4%) 

11 

(10.3%) 

103 

(96.3%) 

Using real life materials and 

situations to learn a mathematical 

concept or apply understanding 

7 

(6.5%) 

3 

(2.8%) 

9 

(8.4%) 

1 

(0.9%) 

20 

(18.7%) 

Using concrete materials or other 

manipulatives to understand or 

work through math ideas 

9 

(8.4%) 

9 

(8.4%) 

15 

(14.0%) 

0 

(0.0%) 

33 

(30.8%) 

Working on exercises in a 

textbook 

16 

(15.0%) 

32 

(29.9%) 

38 

(35.5%) 

10 

(9.3%) 

96 

(89.7%) 

Working in groups with other 

students to learn new math 

concepts 

4 

(3.7%) 

6 

(5.6%) 

13 

(12.1%) 

1 

(0.9%) 

24 

(22.4%) 

Using a calculator to work out 

answers 

11 

(10.3%) 

19 

(17.8%) 

20 

(18.7%) 

5 

(4.7%) 

55 

(51.4%) 

Going on math excursions to see 

real-life examples of mathematical 

learning 

1 

(0.9%) 

0 

(0.0%) 

1 

(0.9%) 

0 

(0.0%) 

2 

(1.9%) 

Visits from experts to demonstrate 

how they use mathematics  

0 

(0.0%) 

2 

(1.9%) 

0 

(0.0%) 

0 

(0.0%) 

2 

(1.9%) 

Using computer software to make 

learning more interactive 

1 

(0.9%) 

4 

(3.7%) 

2 

(1.9%) 

1 

(0.9%) 

8 

(7.5%) 

Total 21 

(19.6%) 

33 

(30.8%) 

42 

(39.3%) 

11 

(10.3%) 

107 

(100%) 

Love using mathematics to work out problems and enjoy learning about new mathematical ideas; βConfident to 

apply mathematics in my everyday life; γOK, but I often feel like I need to double-check my calculations; and 

δNot confident. I often avoid having to work things out if mathematics is involved. 

The PSTs who recall being taught through traditional methods, such as “Copying sums from 

the board to complete after a demonstration by the teacher” (96.3%), related with two self-

perception categories, “Confident to apply mathematics in my everyday life” (30.8%) and “Ok 

but I often feel like I need to double-check my calculations” (37.4%). This underscores the 

association between traditional teaching techniques and confidence. Similarly, “Working on 

exercises in a textbook” (89.7%) is linked with varied self-perception categories, including “Not 

confident”. I often avoid having to work things out if mathematics is involved” (35.5%). 

Mainly, those taught with calculators for answers (51.4%) display mixed self-perception, but a 

significant portion lean toward “Confident to apply mathematics in my everyday life”. On the 

other hand, hands-on approaches like “Using concrete materials or other manipulatives” and 

“Working in groups with other students” yield more balanced distributions among self-

perception categories of the PSTs. However, the Pearson Chi-Square value between their early 

teaching and learning mathematics experience and their current view as a mathematician is not 

statistically significant, χ2(24, 107) = 35.14, p > 0.001. These findings illustrate the lasting 
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influence of primary school teaching methods on the PSTs’ current self-perception as 

mathematicians, with traditional methods influencing confidence levels but not significant. 

Discussion 

This study investigates the relationship between PSTs’ early mathematics experiences and 

their current self-perceptions as mathematicians/educators. By addressing our research 

question, we have uncovered findings that provide valuable insights into how early mathematics 

experiences connect with future mathematics educators. 

The dominance of traditional teaching methods, as indicated by the substantial recall of 

“Copying sums from the board” and “Working on exercises in a textbook,” underscores the 

deeply in-built nature of these methods in the PSTs’ memories. This alignment with the existing 

literature suggests that traditional approaches have been a consistent feature of mathematics 

education (Güler et al., 2023). This emphasises how early exposure to teaching methods 

influences the self-perceptions of future educators. 

The diverse range of perceptions expressed by the PSTs toward mathematics during their 

primary school years echoes previous research findings (Leder & Forgasz, 2002). While a 

considerable portion recalled “loving” mathematics, a significant percentage exhibited 

neutrality or even disliked the subject. This heterogeneity of perception aligns with the 

established understanding that students’ experiences and views about mathematics during their 

formative years vary widely (Elçi, 2017). Moreover, the study emphasises a distinct link 

between pre-service teachers’ (PSTs’) early experiences in mathematics and their present self-

view as mathematicians. This finding aligns with Bandura’s Social Cognitive Theory (1986), 

which suggests that early experiences influence one’s current self-perception, with a significant 

relationship from the Pearson Chi-Square value, χ2(6, 107) = 61.21, p < 0.001. Those who 

remembered positive primary school mathematics experiences, such as “loving” math, often 

exhibited confident and enthusiastic self-perceptions as mathematicians today, which resonates 

with the notion that early positive experiences can contribute to a stronger identity as a 

mathematics educator or learner (Sayers, 2013). 

The indication of a shift toward technology in teaching methods, as evidenced by the recall 

of using calculators, reflects the evolving landscape of mathematics education. This suggests 

that technology is increasingly integrated into mathematics classroom teaching, influencing 

PSTs’ perceptions and self-identifications as mathematicians in contemporary contexts. 

This study emphasises the continuing influence of early mathematics experiences on PSTs’ 

attitudes and self-perceptions as mathematicians. Traditional teaching methods play a 

significant role in influencing these perceptions, with some indication of evolving methods 

involving technology. Recognising these associations is vital for designing effective 

mathematics education programs that cater to the diverse needs and attitudes of future 

educators. Moreover, fostering positive early mathematics experiences is crucial for cultivating 

confident and passionate mathematicians among PSTs, thus contributing to improving 

mathematics education in schools. 

Conclusion 

The study reveals critical insights into mathematics education and teacher preparation, 

highlighting the need for customised support in teacher education programs for PSTs with 

varied perceptions of mathematics. Many PSTs recall either loving or dreading mathematics in 

primary school, which connects with their current self-perceptions as mathematicians. Those 

with positive early experiences tend to enjoy mathematical problem-solving, while those with 

negative experiences often lack confidence. The study emphasises the lasting relationship 

between primary school experiences and PSTs’ perceptions and identities in mathematics. 
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Limitations 

While this study provides valuable insights into the connection between early mathematics 

experiences and the current views of the PSTs, it has certain limitations. Self-reported data 

collected through surveys are subject to response and retrospective recall biases, potentially 

impacting data accuracy. In addition, the study results provide a snapshot rather than a 

longitudinal view of beliefs’ evolution over time. The fixed-response survey format may not 

capture the full complexity of the PSTs’ views and experiences, and the study does not explore 

contextual factors or causality. Additionally, the study’s scope focuses primarily on views and 

experiences without a deep investigation of the specific teaching strategy effectiveness or 

interventions. Addressing these limitations in future research would contribute to a more 

comprehensive understanding of this intricate relationship and generalisations. 
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This study examined how opportunities to incorporate numeracy across different 

primary curriculum areas and grade levels are highlighted in the Australian Curriculum 

v.9. A document analysis approach was used to track the numeracy opportunities in the 

document across different curriculum areas and grade levels. The results showed that 

Science has the most identified numeracy opportunities across all grade levels, with 43 

occurrences. Findings also showed Statistics as the most prominent mathematics content 

strand suggested as numeracy opportunities, followed by Space. The study provides 

examples of missed numeracy opportunities in underrepresented curriculum areas. 

The need for numeracy in students as an important skill for effective participation in society 

is widely recognised. As a result, fostering numeracy has become a priority in school systems 

internationally, including Australia (Australian Curriculum and Assessment Reporting 

Authority [ACARA], 2022). The definition of numeracy as the ability to apply mathematics in 

diverse life situations has gained widespread acceptance and influenced research and 

curriculum development (Department of Employment, Education, Training and Youth Affairs 

[DEETYA], 1997). As it is situated within the Australian Curriculum: Mathematics, numeracy 

encompasses the knowledge, skills, behaviours, and dispositions that students need to use 

mathematics in a wide range of situations. It involves students recognising and understanding 

the role of mathematics in the world and having the dispositions and capacities to use 

mathematical knowledge and skills purposefully (Geiger et al., 2015). 

Numeracy develops as students learn to confidently apply mathematics across different 

curriculum areas and in diverse life contexts (ACARA, 2022; Bennison, 2015; Ford, 2018). 

Recognising its cross-curricular importance, countries including the UK, the USA, New 

Zealand, and Australia have integrated numeracy into various curriculum areas. In Australia, it 

is a key component of the general curriculum capabilities, in addition to, for example, literacy 

and social skills. However, integrating numeracy across curriculum areas and various 

mathematical concepts can be challenging for teachers (Geiger et al., 2015; Gough, 2007; 

Getenet, 2023). For example, Geiger et al. (2015) noted limited numeracy integration in 

English, while Gough (2007) highlighted its prevalence in Science. Additionally, Getenet 

(2023) found that pre-service teachers are more interested in incorporating statistical concepts 

than other mathematical concepts into other curriculum areas. To support teachers, the 

Australian Curriculum v9.0 (and previous iterations) includes a numeracy icon that highlights 

numeracy opportunities across the curriculum content (ACARA, 2022). There is, however, a 

lack of comprehensive research on how these opportunities are distributed across different 

curriculum areas, year levels, and the type of mathematical concepts included. 

mailto:Tracey.Muir@acu.edu.au
mailto:tracey.muir@acu.edu.au
mailto:saidat.adeniji@unisq.edu.au
mailto:Tracey.Muir@acu.edu.au
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This study aims to address this gap through a document analysis of v9.0 of the Australian 

Curriculum, addressing the following research questions: 

• How does the representation of numeracy in the Australian Curriculum v9.0 vary across 

different year levels and curriculum areas? 

• Which mathematical concepts or strands are most prominently represented in the 

numeracy aspects of the Australian Curriculum v9.0? 

This research will also identify potential gaps, illustrate examples of missed opportunities 

in numeracy through lack of identification in curriculum documents across key learning areas, 

and provide insights into implications for teachers’ practices. Furthermore, the results will assist 

teachers by highlighting the presence of extra numeracy opportunities throughout all curriculum 

areas, beyond those specified in the curriculum. This will encourage teachers to incorporate 

these missed opportunities into their lesson planning and teaching strategies, thereby addressing 

the issues associated with teachers identifying numeracy opportunities. Missed numeracy 

opportunities in this study refer to those mathematical knowledge, skills and dispositions that 

exist within curriculum areas but are not explicitly denoted with the numeracy icon. 

Background 

Numeracy Across Curriculum Areas 

To develop students’ skills in numeracy, teachers are required to provide opportunities for 

students to use their mathematical knowledge and understanding in multiple contexts. Various 

strategies and approaches to support this development include cross-curriculum area 

approaches and teaching numeracy as a separate discipline. When teachers are encouraged to 

identify and use the numeracy learning opportunities in various curriculum areas, students’ 

numeracy capabilities and learning in each area are likely to be enhanced and help students 

learn to think critically (Bennison, 2015; Brown et al., 2002). This support allows students to 

transfer their mathematical knowledge and skills to contexts outside the mathematics classroom 

and across the curriculum areas (Bennison, 2015; Mathieson & Homer, 2021). In Australia, 

teachers are encouraged to develop students’ numeracy skills by using mathematics confidently 

across all curriculum areas (ACARA, 2022). These curriculum areas are English, Humanities 

and Social Science (HASS), Health and Physical Education (HPE), Languages, Science, 

Technologies (digital and design), and the Arts. By including numeracy as a general capability 

in the Australian Curriculum v9.0, teachers are directed to opportunities to support students in 

developing their numeracy capabilities across curriculum areas (ACARA, 2022; Forgasz et al., 

2017). 

General capabilities, including numeracy and cross-curriculum priorities tagging, have been 

included in the Australian curriculum documents with revisions made in 2011 (ACARA, 2011). 

In 2020, the numeracy icons were linked with the Numeracy Progression version 3.0. The 

numeracy progressions supplement and underpin the Australian Curriculum v9.0 and describe 

the observable indicators of increasing complexity in the understanding of and skills in key 

numeracy concepts (ACARA, 2020). In version 9 of the Australian Curriculum, the numeracy 

icons are again linked with the numeracy progressions as they were previously, in relation to 

the elements of Number and Algebra, Measurement and Geometry, and Statistics and 

probability, rather than the updated six content areas in v. 9 of the national curriculum. While 

the inclusion of the numeracy icons highlights numeracy opportunities across different content 

areas and is designed for teachers to integrate numeracy into various curriculum areas, the links 

are not comprehensive and could inadvertently lead to teachers overlooking valuable numeracy 

opportunities. Studies looking into these opportunities, including those not explicitly indicated 

in the curriculum, could provide teachers with a broader range of options for incorporating 

numeracy, rather than being restricted to the opportunities specifically shown in the national 

curriculum. 
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Method 

This study used a document analysis method to examine the numeracy presentations in the 

Australian Curriculum v9.0 from Foundation to Year 6. The focus was on how numeracy is 

represented across various curriculum areas and year levels and identifying missed 

opportunities. Document analysis, as defined by various researchers such as Bowen (2009) and 

Morgan (2022), involves categorising information from diverse sources like books, national 

guides, articles, and reports to address the research questions. This approach also considers the 

document’s purpose, target audience, authorship, and original sources. 

The Australian Curriculum v9.0: Mathematics is divided into six strands: Number, Algebra, 

Measurement, Space, Statistics, and Probability. Each strand has content descriptors and 

elaborations detailing student learning objectives and teaching examples. In addition, numeracy 

opportunities are made explicit throughout the other curriculum areas through the use of an icon 

linked to numeracy learning progressions. The curriculum incorporates references to Relevant 

Content Descriptors (outlined in Table 2), highlighting areas in mathematics where 

opportunities to develop numeracy skills can be identified. 

Given that our team’s expertise predominantly lies in primary education, our study’s scope 

was strategically limited to Foundation to Year 6 levels. In addition, the Language curriculum, 

was not included in the analysis to further limit the scope of this study. This decision ensured a 

focused and in-depth analysis within our areas of expertise. To conduct the document analysis, 

we followed a structured three-step process as suggested by Bowen (2009). We began by 

skimming the curriculum documents for a preliminary understanding, followed by a thorough 

reading to quantify and characterise the numeracy representations, and concluding with an 

interpretation phase where the data was categorised based on curriculum areas, year levels, and 

mathematical strands. Our analysis was informed by the Numeracy for the 21st Century Model 

(Goos et al., 2012). The model was developed to support teachers in improving their students’ 

numeracy capabilities in the range of curriculum areas, evaluating activities related to 

numeracy, as well as identifying opportunities for numeracy engagement. The model consists 

of four core dimensions: attention to contexts, application of mathematical knowledge, use of 

physical and digital tools, and promotion of positive dispositions. Of particular relevance to our 

analysis was the consideration of context which the curriculum areas logically provided. 

In addition, to enhance the rigour and reliability of our findings, each curriculum area was 

independently analysed by two authors. This dual-analysis approach ensured a comprehensive 

review and fostered consistency across our analysis. Any inconsistencies uncovered during this 

stage were addressed through further collaborative discussions. The specific activities and steps 

involved in our analytical process are shown in Table 1. 

Table 1 

Steps of the Document Analysis in the Study 

Step  Description 

Skimming A preliminary review of the curriculum documents by each author to identify initial 

numeracy opportunities for further analysis 

Reading Detailed examination of the curriculum to quantify how often numeracy 

opportunities occur within each curriculum area 

Interpretations Categorisation of the numeracy opportunities identified, based on the specific 

curriculum areas, year levels, and the mathematical concepts or strands emphasised  

As shown in Table 1, the authors initially reviewed the document, followed by quantifying 

identified numeracy opportunities across curricular areas. Finally, in the interpretations step, 

the findings of the numeracy opportunities were categorised based on curriculum areas, year 

levels, and mathematical concepts or strands. In addition to these steps, the authors also 
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identified and illustrated examples of missed numeracy opportunities in each curriculum area 

through a thorough analysis of the content descriptors of each curriculum area. 

Results 

The results of this study are presented to correspond with the research questions. These 

questions examine how numeracy is represented in the Australian curriculum across various 

year levels and curriculum areas and identify which mathematical concepts or strands are most 

prominently featured in the numeracy opportunities of the Australian curriculum. 

Numeracy Representations in the National Curriculum Across Various Year 

Levels and Curriculum Areas 

We have identified the articulated numeracy opportunities across various curriculum areas 

through document analysis of the Australian curriculum. With the exception of the Foundation 

year level, the numeracy opportunities in the curriculum for HPE, Technologies, and the Arts 

are presented for combined year levels. Specifically, these opportunities are grouped as Years 

1 and 2, Years 3 and 4, and Years 5 and 6, as shown in Table 2 and further in Table 3. 

Table 2 outlines numeracy opportunities across various curriculum areas and year levels. 

As shown in Table 2, in the English curriculum, there is a complete absence of numeracy 

opportunities from Foundation to Year 6, both directly and through related content descriptors. 

On the other hand, Science consistently provides numeracy opportunities across all year levels, 

peaking at 10 in Year 1 and varying between 3 to 9 in subsequent years. The HASS curriculum 

shows an increase in related content descriptors numeracy opportunities, ranging from three in 

Foundation to eight in Years 4 and 5, and finally leading to one direct opportunity in Year 6. In 

Table 2, the first number refers to the frequency of numeracy opportunities denoted with icons 

in the curriculum, whereas the number in brackets refers to the frequency of the related 

mathematics content links in each key learning area. 

Table 2 

Frequencies of Identified Numeracy Opportunities (Related Content Descriptors) in Various 

Curriculum Areas by Year Level 

Curriculum area Year level 

  F 1 2 3 4 5 6 

English   0 (0)  0 (0)  0 (0)  0 (0)  0 (0)  0 (0)  0 (0)  

HASS   0 (3) 0 (6) 0 (6) 0 (8) 0 (8) 0 (7) 1 (7) 

Science  9 (11) 10  (9) 5 (5) 6 (7) 3 (3) 4 (4) 6 (6) 

HPE  1 (3) 1 (3)  0 (5)  0 (2)  

Technologies Digital 1 (1) 2 (5)  3 (9)  3 (6)  

 Design 0 (2) 1 (2)  1 (5)  0 (4)  

The arts Dance 0 (0) 1 (0)  0 (0)  0 (0)  

 Drama 0 (0) 0 (0)  0 (0)  0 (0)  

 Media 0 (0) 0 (0)  0 (0)  0 (0)  

 Music 0 (0) 0 (0)  0 (0)  0 (0)  

 Visual 0 (0) 1 (0)  0 (0)  0 (0)  

The HPE curriculum presents numeracy opportunities in Foundation (n = 1), Year 1 (n = 1), 

Year 2 (n = 1), and in Years 3, 4, Year 5 and Year 6 with none in the related content descriptors 

opportunities. The Technologies curriculum, particularly in Digital Technologies, shows 

limited numeracy opportunities ranging from one in Foundation to three in Years 3 and 4, while 

design technologies present fewer opportunities than digital technologies. However, more 
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numeracy opportunities were found in the related content descriptors in both design and digital 

technology curricula. In the Arts curricula, numeracy opportunities are extremely limited, with 

only a few instances including in related content descriptors, such as one opportunity in Dance 

in Year 1 and one in Visual Arts in Year 1, with no opportunities in Drama, Media, and Music 

across all years. These results illustrate the varying degree of emphasis on numeracy in different 

curriculum areas and year levels, indicating areas where the inclusion of numeracy could be 

enhanced. 

We further aligned the identified numeracy opportunities with the corresponding strands of 

the mathematics curricula. This alignment includes both opportunities directly suggested in the 

general numeracy capability and those related to mathematics content descriptors. This helps 

to determine which specific strands of Mathematics are given emphasis in various curriculum 

areas. These findings are presented in Table 3. In Table 3, the lead number is the number of 

strands linked to the numeracy button in general numeracy capability, and the number in 

brackets is those mathematics content descriptors linked. 

Table 3 

Frequencies of the Focus on Mathematical Concepts/Strands Across the Curriculum Areas 
 

Curriculum area  

Strand English 
 

HASS 
 

Science 
 

HPE Technologies Arts 

 Design Digital Dance Drama Media Music Visual 

Number 0 (0) 1 (1) 6 (3) 0 (2) 0 (1) 1 (5) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Algebra 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 

Space 0 (0) 0 (7) 5 (4) 2 (6) 0 (0) 1 (4) 0 (1) 0 (0) 0 (0) 0 (0) 1 (1) 

Measurement 0 (0) 0 (5) 13 (14) 0 (1) 2 (1) 2 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Probability 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Statistics 0 (0) 0 (32) 17 (23) 0 (4) 0 (0) 5 (7) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Total 0 (0) 1 (51)  43 (45) 2 (13) 2 (2) 12 (18) 1 (1) 0 (0) 0 (0) 1 (0) 2 (1) 

As shown in Table 3, HASS has a strong focus on Statistics, with 32 related opportunities. 

Science predominantly highlights Statistics and Measurement, with 17 and 13 direct suggested 

opportunities, respectively. The HPE curriculum focuses on Space (n = 2 direct suggested 

opportunities) and Statistics (n = 4 in related content descriptor opportunities). In Technologies, 

particularly in Digital technologies, there is a notable emphasis on the Statistics strands (n = 7) 

in the related content descriptor numeracy opportunities. These results showed that Statistics 

and Measurement are the most prominently featured strands in curriculum areas such as HASS, 

Science, and Technologies. 

Numeracy Missed Opportunities Across Various Curriculum Areas and Year 

Levels 

Although there are multiple potentially missed opportunities across all the curriculum areas, 

in this section, we provide examples of missed numeracy opportunities where the opportunities 

were found to be particularly scarce (see Table 2), such as English, Arts, HPE, and HASS. 

Table 4 provides an overview of some examples of missed opportunities, categorised by 

curriculum area and year level. 
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Table 4 

Examples of Missed Opportunities for Numeracy Across Different Curriculum Areas 

Curriculum 

area  

(year level) 

Content Description Description of 

demonstrated example  

Maths content descriptor 

English (1) AC9E1LE0: Discuss how 

language and images are 

used to create characters, 

settings and events in 

literature by First Nations 

Australian, and wide-

ranging Australian and 

world authors and 

illustrators 

Map events in the 

literature on timelines; 

make timelines for 

own/families’ lives 

AC9M1M03: Describe the 

duration and sequence of 

events using years, months, 

weeks, days and hours 

Measuring Time: P1 

Sequencing Time 

P2 Units of Time 

HASS (2) AC9HS3K02: Significant 

events, symbols and 

emblems that are 

important to Australia’s 

identity and diversity 

Discuss the importance of 

symbolism—

religious/cultural/historic

al etc. Discuss the ... 

positioning, dominance, 

colouring etc, in the 

Australian and First 

Nations’ flags. Design a 

new flag of relevance to 

the students with 

reference to unit fractions 

AC9M3N02: Recognise and 

represent unit fractions 

including 1/2, 1/3, 1/4, 1/5, 

and 1/10 and their multiples in 

different ways; combine 

fractions with the same 

denominator to complete the 

whole 

Interpreting Fractions: 

P2: Repeated halving 

P3 Repeating Fractional Parts 

Dance  

(1 & 2) 

 AC9ADA2E01: 

Recognising and 

describing patterns of 

movement in dances, 

using their own words 

and learnt dance 

terminology 

Combine the dance 

concept of recognising 

and describing patterns of 

movement with 

mathematics as a “Dance 

Pattern Sequence Game” 

AC9M1A01: Recognise, 

continue and create pattern 

sequences, with numbers, 

symbols, shapes and objects, 

formed by skip counting, 

initially by twos, fives and 

tens 

Number Patterns and 

Algebraic Thinking 

P2: Identifying and creating 

patterns 

P3: Identifying and 

generalising patterns 

Media  

(1 & 2) 

AC9AMA2E02: 

Exploring when, where, 

how and why First 

Nations Australians use 

media arts works to share 

knowledge about their 

cultures 

Explore the concept of 

symmetry in Indigenous 

art, the use of geometric 

shapes, or the proportions 

in digital layouts 

AC9M1SP01: Make, compare 

and classify familiar shapes; 

recognise familiar shapes and 

objects in the environment, 

identifying the similarities and 

differences between them 

Understanding geometric 

properties 

As shown in Table 2, although some curriculum areas show fewer or no numeracy 

opportunities suggested directly or in the related content descriptors, it is important for teachers 

to recognise the potential and the availability for numeracy opportunities within various content 

descriptors across all curriculum areas (see Table 4). These opportunities are in addition to 

officially indicated opportunities in the curriculum document. For example, while English does 

not have explicit links to numeracy opportunities, we have identified several content descriptors 

within the English curriculum that offer opportunities for numeracy engagement. An example 

https://v9.australiancurriculum.edu.au/f-10-curriculum/learning-areas/english/year-6_year-5_year-4_year-3_year-2_year-1_foundation-year/content-description?subject-identifier=ENGENGY1&content-description-code=AC9E1LE01&detailed-content-descriptions=0&hide-ccp=0&hide-gc=0&side-by-side=1&strands-start-index=0&subjects-start-index=0&view=quick
https://v9.australiancurriculum.edu.au/f-10-curriculum/learning-areas/mathematics/foundation-year_year-1_year-2_year-3_year-4_year-5_year-6/content-description?subject-identifier=MATMATY1&content-description-code=AC9M1M03&detailed-content-descriptions=0&hide-ccp=0&hide-gc=0&side-by-side=1&strands-start-index=0&subjects-start-index=0&view=quick
https://v9.australiancurriculum.edu.au/f-10-curriculum/learning-areas/hass-f-6/foundation-year_year-1_year-2_year-3_year-4_year-5_year-6/content-description?subject-identifier=HASHASY3&content-description-code=AC9HS3K02&detailed-content-descriptions=1&hide-ccp=0&hide-gc=0&side-by-side=0&strands-start-index=0&subjects-start-index=3&view=quick
https://v9.australiancurriculum.edu.au/f-10-curriculum/learning-areas/mathematics/foundation-year_year-1_year-2_year-3_year-4_year-5_year-6/content-description?subject-identifier=MATMATY3&content-description-code=AC9M3N02&detailed-content-descriptions=0&hide-ccp=0&hide-gc=0&side-by-side=1&strands-start-index=0&subjects-start-index=3&view=quick
https://v9.australiancurriculum.edu.au/f-10-curriculum/learning-areas/dance/foundation-year_year-1_year-2_year-3_year-4_year-5_year-6/content-description?subject-identifier=ARTDANY12&content-description-code=AC9ADA2E02&detailed-content-descriptions=0&hide-ccp=0&hide-gc=0&side-by-side=1&strands-start-index=0&subjects-start-index=0&view=quick
https://v9.australiancurriculum.edu.au/f-10-curriculum/learning-areas/mathematics/foundation-year_year-1_year-2_year-3_year-4_year-5_year-6/content-description?subject-identifier=MATMATY1&content-description-code=AC9M1A01&detailed-content-descriptions=0&hide-ccp=0&hide-gc=0&side-by-side=1&strands-start-index=0&subjects-start-index=1&view=quick
https://v9.australiancurriculum.edu.au/f-10-curriculum/learning-areas/mathematics/foundation-year_year-1_year-2_year-3_year-4_year-5_year-6/content-description?subject-identifier=MATMATY1&content-description-code=AC9M1SP01&detailed-content-descriptions=0&hide-ccp=0&hide-gc=0&side-by-side=1&strands-start-index=0&subjects-start-index=1&view=quick
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is the descriptor, “Discuss how language and images are used to create characters, settings, and 

events in literature by First Nations Australians, and wide-ranging Australian and world authors 

and illustrators”. Under this content descriptor, children can engage in activities such as 

mapping events in literature on timelines, recording event durations, creating timelines of their 

own or their families’ lives, and making journals or timetables for the week that involve noting 

times and calculating durations. Such activities draw upon and develop numeracy skills, 

specifically the ability to describe the duration and sequence of events using years, months, 

weeks, days, and hours, as outlined in the mathematics curriculum. 

Discussion and Conclusion 

The Australian Curriculum v9.0 has mandatory general Capabilities that are essential 

components of curriculum delivery. However, this content analysis has identified that there 

remain many numeracy opportunities that have not been identified to support primary teachers 

in developing mathematical concepts and mathematical literacy within the context of all key 

learning areas. Missed numeracy opportunities predominantly exist in key learning areas that 

are often categorised as ‘Arts curriculum’ and those in the domain of health and development. 

These curriculum areas did not capitalise on the relevant contexts highlighting numeracy 

opportunities which is a key dimension of the Numeracy for the 21st Century Model (Goos et 

al., 2012). Further support is required to support teachers in creating and delivering 

contextualised numeracy tasks to support conceptual development during mathematics lessons 

and identifying where mathematical literacy can be enhanced by primary teacher consideration 

and targeting of mathematical demands to enhance conceptual development in a range of key 

learning areas, and to assist growth in numeracy understandings. 

There are too many numeracy opportunities that are possible to articulate in a curriculum 

document of this nature. Our findings highlight that teacher requires the identification of more 

numeracy links to support their planning, particularly in English and Arts, followed by HASS, 

HPE and Technologies that are currently available. Results from studies such as this one could 

assist teachers in identifying additional opportunities for numeracy across different curriculum 

areas beyond those specifically marked with a special symbol in the curriculum. These 

curriculum key learning areas were also highlighted as challenging for teachers to identify 

numeracy opportunities by previous studies (e.g., Geiger et al., 2015). Whilst the curriculum 

design lends itself to highlighting numeracy opportunities, these links have been identified in 

the curriculum at varied levels across the different key learning areas. The results of this study 

showed that the Science key learning area, which is often described as being hand-in-hand with 

Mathematics and an integral component of STEM studies, has the most identified links to the 

numeracy framework and links related to other key learning area content. This further hinders 

the numeracy connections that can be forged between subjects that are not considered in the 

STEM field. Gough’s earlier study (2007) also underscored the prominent role of Science in 

this context. 

Interestingly, whilst links are often made between numeracy and the number strand, the 

most emphasised strands in the Australian curriculum linked to the numeracy framework are 

Statistics, Measurement and Space. This result aligns with the findings of a recent study by 

Getenet (2023), which indicates that teachers tend to favour the integration of statistical 

concepts into various curriculum areas over other mathematical concepts. The potential exists 

to build on the numeracy connections included in the Australian curriculum to Probability, 

Algebra and Number, where there are many examples of numeracy demands that are relevant 

to societal interactions and functioning. The number of suggestions and content links is similar 

across the year levels, with the exception of the Foundation year in Science, which has high 

numeracy indicators for that year level. The numeracy opportunities refer teachers to concepts 

in the numeracy framework. However, examples of suggested numeracy tasks to support 
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primary teachers’ enhancement of numeracy development are not provided. To emphasise 

samples of missed numeracy opportunities in the national curriculum in English, HASS and 

Arts, the affordances of providing sample numeracy task suggestions have been highlighted. 

This study has certain limitations that need to be recognised. First, to reduce bias and 

enhance credibility, documentary evidence can be supplemented with data from interviews and 

observations. However, in this case, the findings are solely derived from document analysis. 

Incorporating insights from school teachers regarding their application of the curriculum’s 

numeracy indicators in designing classroom activities could have provided more robust results. 

Future research that addresses these limitations would offer a more substantial generalisation. 
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Decimals and the related areas of ratio and proportion are recognised as one of the most 

challenging and complex areas of mathematics for young children to learn. In this study, 

four dynamic digital representations were used by Year 4 (9–10 years old) students in a 

set of video-recorded, individual task-based interviews to explore key concepts of 

decimals. Microgenetic analysis methods were used to detect conceptual changes 

through specific shifts in the learner’s attention. The data collected revealed what 

features of each dynamic digital representation prompted attention shifts and how these 

translated to changes in conceptual understanding of decimal fractions. 

Children have difficulty in understanding the abstract nature of decimals, and a plethora of 

misconceptions arise from incomplete understandings (Steinle & Stacey, 2004). Decimal 

fractions present complications as part of the number-relationship needed to make sense of the 

number, the denominator, is not visible. Developing conceptual understandings of decimal 

density, place value and relative magnitude of decimal fractions are considered key for 

consolidating number sense. The properties of density and place value unify all numbers and 

rational number magnitude knowledge is related to future mathematics achievement (Siegler et 

al., 2011). Minimal research has been conducted into what effective representations should be 

employed by mathematics educators to assist students in developing ‘decimal sense’ and 

managing ‘cognitive conflict’ in the context of decimal fractions (Swan, 1983). This study 

investigated a collection of dynamic digital representations that featured the three key concepts 

of decimals. 

Representations are used in the mathematics classroom to assist students in understanding 

abstract concepts that are central to mathematics learning (Pape & Tchoshanov, 2001). An 

important feature of mathematics education is working with appropriate mathematical 

diagrammatic representations, but there is uncertainty around the best representations for 

decimals. Dynamic representations are potentially an effective support for student learning 

within mathematics because of their dynamic affordances. Unlike with static representations, 

students are able to actively interact with the mathematics content by making conjectures and 

testing them immediately to experience the concept from various perspectives and receive 

feedback on their thinking (Orrill & Polly, 2013). In particular, learner-centred computer tools 

that encourage interactive engagement with mathematics, allow students to ‘see’ notions that 

would otherwise be ‘unseeable’ (Orrill & Polly, 2013). Relatively little work has focused on 

the role of dynamic digital representations in teaching and learning decimals, although there is 

an abundance of research into the use of digital learning objects in mathematics education 

(Litster et al., 2018). The intention of this study was to establish a foundation for research in 

this topic by exploring how children’s interactions with dynamic digital representations of 

decimal fractions may develop their conceptual understanding in this numerical area. 

Theoretical Framework 

In mathematics education, conceptual understanding involves being able to represent a 

variety of mathematical ideas in different ways, to see the connections between those 

representations, and to know how to use each representation for different purposes (Caldwell, 

2020). The growth of students’ conceptual understanding is synonymous with mathematics 

learning. Mason’s (2008) theorisation of the notion of attention has been employed to account 
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for students’ learning of mathematics. The theory is underpinned by the idea that students must 

experience shifts of attention for learning to occur. As students interact with mathematical tasks 

and representations there are ongoing shifts in their focus and structure of attention. The 

learning of mathematics occurs through these attention shifts and students’ developing 

awareness of them (Mason, 2008). At present, there is little conclusive research on how students 

are best supported to build a conceptual understanding of decimals. The theory of shifts of 

attention provides a scaffold for educators’ understanding of teaching mathematics as well as 

proposing five observable attending stages that indicate what and how students are learning in 

mathematics lessons. Mason (2008) described the ‘focus of attention’ (what the learner attends 

to) and the form or ‘structure of attention’ (how the learner attends) whereby several shifts of 

attention occur in the process of thinking mathematically related to an object. Structure of 

attention refers to “holding wholes, discerning details, recognising relationships, perceiving 

properties, and reasoning on the basis of agreed properties” (Mason, 2008, p. 35). See Table 1 

for examples. As attention shifts from one concept to another, its structure alters and 

connections are made, relationships are perceived, and new ideas are appreciated. Applying the 

theory of shifts of attention may provide a scaffold to plot a progression of understanding that 

students may take when learning about key concepts related to decimal fractions. 

The focus of this paper is to explore how children in middle-primary grades engaged with 

dynamic digital representations of decimal fractions to develop their conceptual understanding. 

The overarching research question communicates the aim of the study: 

• What features of dynamic digital representation do children attend to that prompt 

conceptual changes related to decimal fractions? 

Method 

The methodology considered most appropriate for the study was structured, task-based 

interview because it complemented the theoretical framework from a constructivist, learner-

centred view. Constructivist learning theory has been linked with structured task-based 

interviews in the work of Goldin (2003) who found the research method to be an effective 

means of understanding conceptual knowledge. In this study, task-based interviews were used 

to prompt students’ interactions with mathematical tasks and representations and record 

ongoing shifts in their focus of attention and the structure of attention. 

Data collection for this study consisted of four task-based interviews each focussing on a 

different dynamic digital representation: Wishball-hundredths, Decimal Strips, Zooming in on 

Decimals, and Zoomable Number Line (Figure 1). Four digital representations were selected 

from resources readily available to teachers on the internet, following an analysis of the 

affordances and constraints of each potential digital tool, and the focus on at least one of the 

three key decimal concepts. The number-line based, place-value symbolic, and area-model 

dynamic digital representations of decimals used were in the form of applets which are 

embedded into a webpage and displayed using a web-browser. 

Four participants were from one Year 4 (9–10 years old) class situated in a school from the 

outer suburbs of Sydney, Australia. Although the students were not intended to be 

representative of the whole class, the researcher selected four that spanned a range of general 

mathematical achievement levels, based on results from a decimal comparison pre-test. This 

was in case there were differences in the ways in which students of varying abilities interacted 

with the dynamic digital representations. This grade level was selected because, according to 

the NSW syllabus (Board of Studies NSW, 2012), students are introduced to decimal notation 

for tenths and hundredths in Year 4. The decimal number concepts and skills were therefore 

still in the early stages of development at the time of the study. 
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Figure 1 

Screenshots and Basic Information About the Digital Tools 

 

The researcher worked individually with each participant in four 30-minute sessions, over 

a period of four weeks. During the interviews, each digital resource (Figure 1) was introduced 

by inviting the student to freely investigate the tool for 5-minutes and them asking any 

clarifying questions. The tasks were then initiated by the researcher and completed by the 

student. In addition, the researcher, who was a qualified teacher, regularly asked probing 

questions to encourage further explanation by the student, for example ‘Can you tell me what 

you are thinking?’ but remained neutral regarding ‘correctness’ of responses. Video-recording 

the interviews was critical to collecting quality data as it was necessary to capture what was 

said and done by the child simultaneously, including gestures, expressions and emotional 

responses. 

The data collected from the task-based interviews were analysed using a microgenetic 

approach that involved closely examining intensive data of what learners do and say over 

several task-based interviews to capture a record of moment-by-moment learning processes. 

This close examination allows researchers to draw conclusions about what prompts knowledge 

change, how learning occurs, and other aspects of the processes of acquiring conceptual 

understanding (Voutsina et al., 2019). Data analysis began with repeated viewings of the video-

audio recordings of each task-based interview to deduce what new understandings the 

participants had gathered during the task-based interview. The initial analysis period occurred 
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over several weeks as the researcher transcribed and documented all observed changes in 

decimal understanding. Four evidence excerpts were selected for this paper from the larger 

data-set. These examples showed key tasks that provoked the most change in conceptual 

thinking as a result of the student’s interaction with a dynamic digital representation of 

decimals. A framework to support analysis was designed by the researcher as a reference tool 

when analysing the verbal reasoning and manipulative actions made by the participants 

(Table 1). The ‘Shifting Attention with Decimal Concepts Framework’ correlated Mason’s five 

components of structures for attending with the developmental progression of decimal fraction 

concepts outlined in the National Numeracy Learning Progression (Australian Curriculum, 

Assessment and Reporting Authority [ACARA], 2020). The framework was developed prior to 

data collection by anticipating the specific decimal concepts students should attend to when 

developing their conceptual understanding of decimal place value, magnitude and density. This 

was then modified after the interviews based on observations of student understandings. The 

value of this extended theory of shifts of attention enabled the researcher to understand what 

each participant experienced in the learning process and identify what elements of the dynamic 

digital representations prompted shifts of attention and changes in understanding. This analysis 

tool was used alongside a microgenetic approach to data analysis when the researcher discerned 

observable shifts in how and what the participants were attending to as they engaged with the 

four dynamic digital representations of decimal fractions. 

Table 1 

Shifting Attention with Decimal Concepts Framework 

Structure and 

microqualities of 

attention (Mason, 2008) 

Connecting Mason’s structures with decimal 

fraction learning progression (ACARA, 2020)  

Key concepts of 

decimal fractions 

Holding wholes Names decimal fractions without an understanding 

of place value 

Place value 

Discerning details Discern mathematical details of decimal fractions 

with an understanding of place value and reforming 

decimal numbers with value 

Place value 

Decimal magnitude 

Recognising relationships Understands the relationship between decimal 

fractions and the division operation, as the decimal 

is parts of a unit resulting from dividing the whole 

into equal parts. Understands the positional value of 

decimals as well as the scaling effect as digits move 

to the right and left in place value 

Place value 

Decimal density 

Perceiving properties Perceives properties of decimal fractions as they 

demonstrate knowledge of the relative size of 

decimals when comparing and applies this 

knowledge to the relationship with measurement and 

position when plotting values on a number line 

Decimal magnitude 

Reasoning on the basis of 

agreed properties 

Relates their understanding of positional value 

number knowledge to perform operations with 

decimals. 

Place value 

Decimal density 

Findings 

Four scenarios were selected to illustrate how each of the students interacted with one of 

the four dynamic representations. The evidence and accompanying interpretation reveal the 

specific dynamic affordances that facilitated shifts in attention which indicated changes in 

conceptual understanding of decimals. Pseudonyms are used in replacement of students’ names 

throughout. 
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Example One: Annelise Wishball-Hundredths 

In the interview examining the affordances of Wishball-hundredths, Annelise experienced 

shifts in attention where she was able to generalise mathematical principles pertinent to adding 

and subtracting decimals, including the concept of place value when reforming decimals. 

During the task-based interview, Annelise needed to reach the target number by adding or 

subtracting in fewer than 20 moves, the current starting number was 29.67 and the spinner 

displayed 9. Annelise attempted to calculate the subtraction 29.67 − 0.09 before the screen 

displayed the answer, to decide whether it was an ideal move within the game. This was a key 

moment of conceptual learning as she exclaimed “which will actually make it closer to the 

target number!” Through her engagement with the dynamic affordances embedded in Wishball-

hundredths, namely the dynamic counting frame, as well as the feedback she received when the 

starting number changed based on her own carefully considered mathematical moves, the 

student’s thinking progressed to reasoning on the basis of agreed properties (Table 1) as she 

related her understanding of positional place value knowledge to perform a subtraction 

operation with decimals. However, her approximated answer suggested that she was 

consolidating her knowledge across multiple structures of attention. Annelise acknowledged 

her change in conceptual understanding was the result of new learnings that occurred during 

Wishball-hundredths when she explained, “I knew that one of the tenths would need to be traded 

to the hundredths to subtract from, because I had seen the counting frame move before.” The 

powerful partnering of observed dynamic affordances and Annelise’s knowledge of theoretical 

concepts related to decimals allowed a transition of attention to generalising principles and 

therefore being able to reason on the basis of agreed properties when calculating a subtraction 

problem with decimal numbers. 

Example Two: Valerie Decimal Strips 

Valerie was asked to compare a series of two decimal numbers to determine the larger 

decimal value whilst completing the Decimal Strips task-based interview. One comparison 

challenge required the student to decide whether 0.2 or 0.25 was a larger decimal. Valerie 

acknowledged her insufficient decimal knowledge to answer the comparison question. Without 

hesitation she stated, “I’m not sure I’ll have to check.” Valerie was aware of the affordances of 

the dynamic digital representation to display the relative size of decimal fractions as was needed 

in this decimal comparison challenge. She dragged the 0.2 and 0.25 coloured tiles onto the blank 

fraction wall. The researcher used a probe question, “why do you think they are so close in 

value?” to elicit further student thinking. Valerie considered the question before responding, 

“maybe the zero-point-two has something else on it you just can’t see it.” A second probe 

question was asked, “what would be on the end?” Valerie replied, “it could be twenty-

something and then this one [pointed to yellow 0.3 strip] could be thirty-something.” 

The experience of Valerie unpacking this particular decimal comparison question is an 

example of how the abstract nature of decimals present significant computation difficulties for 

students. Connecting her pre-existing decimal knowledge with how she manipulated the 

decimal strips to compare relative sizes, Valerie posited that 0.2 and 0.3 were actually “twenty-

something” and “thirty-something”. She independently uncovered the concept of decimal place 

value and accurately described 0.2 and 0.3 as having a ‘hidden’ value of tenths. Valerie’s 

existing misconception thinking “longer-is-larger” (Steinle & Stacey, 2004) was being 

challenged through her engagement with the virtual manipulative as she dynamically compared 

the decimal lengths in this area-model representation. A significant first step to overcoming her 

erroneous thinking. 
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Example Three: Yehali Zooming in on Place Value 

Yehali’s default numerical thinking was focused on whole numbers only. She did not hold 

an understanding of decimal density and therefore initially couldn’t predict decimals located 

between whole numbers in the Zooming in on Place Value interview. The interactive activity 

displayed the decimal 0.9 with the question, “what is the location of the red point? Can you 

make a prediction?” Yehali’s first guess was “one”, so she typed the predicted location in as 

1.0 and watched the ‘zooming in’ animation reveal the location between zero and one with 

tenths integers marked as dashes on the number line. The researcher probed, “what did you see 

happen just then?” Yehali replied, “the numbers stretched out.” The screen displayed a second 

question, “what is the actual location of the red point?” The student answered “nine” and typed 

her second predicted location in as 9.0 and then saw the actual location revealed as 0.9. The 

researcher checked for understanding, “what is the actual location written as?” Yehali read, 

“zero-and-nine.” A follow-up question was posed, “why is that the actual answer for the 

location of the red point on the number line?” Yehali reasoned, “maybe because there is no 

number here it’s just zero [pointed to zero integer marking on number line] and it hasn’t gone 

to one yet [pointed to one integer marking on number line] so it’s in the middle somewhere.” 

Yehali’s current thinking involved holding wholes as her understanding was constrained by 

the whole number details presented in the first-step of the interactive activity. When Yehali 

observed the animated number line dynamically zoom-in to show ten-tenths between zero and 

one, she used her whole-number thinking to change her prediction to “nine” as she was viewing 

the integer markings having ones value rather than tenths. The feedback Yehali received from 

the interactive activity prompted her to reconsider her dominant whole-number thinking. When 

she noticed that her second prediction of “nine” was incorrect she needed to produce a 

mathematical reason why the actual location was zero-point-nine. By closely viewing the 

dynamic number line she grasped a more accurate understanding that included some decimal 

knowledge, “maybe because there is no number here it’s just zero and it hasn’t gone to one yet 

so it’s in the middle somewhere.” Yehali demonstrated a shift in attention to recognising 

relationships when she understood that between two whole numbers, decimal values are 

located, the concept of decimal density. 

Example Four: Aarav Zoomable Number Line 

Aarav displayed significant conceptual confusion around decimal fractions across a number 

of tasks in the Zoomable Number Line interview. He was asked to locate the decimal 0.9 on the 

zoomable number line and describe its location. Aarav immediately, zoomed-in to show 

hundredths on the number line and scrolled left from 0.12, he paused when 0.09 was shown on 

screen display exclaiming, “here is the number.” The researcher questioned, “is that the same 

number as shown on the card?” The student considered and then answered, “no it’s even littler” 

before he continued to scroll left from 0.09 and stopped when 0 was displayed. The researcher 

asked, “what are you thinking?” Aarav replied, “I zoomed in too much because the numbers 

are hundredths but this one [pointed to 0.9 decimal card] is tenths”. He tapped the ‘zoom out’ 

button and adjusted the number line to show tenths only, he then scrolled back to the right along 

the number line and stopped upon 0.9 being shown, “I found it … zero-point-nine is between 

zero-point-eight and one-whole.” Aarav’s actions indicated that his understanding of tenths and 

hundredths place value in decimals was developed through his exploration of the zoomable 

number line. Initially, the student did not understand the concept of place value in decimals as 

suggested by his consideration of 0.9 to be the same value as 0.09. Using the ‘zoom out’ 

function of the zoomable number line helped Aarav correctly locate 0.9. Aarav was originally 

operating with a mathematical mindset of whole-number thinking and thus an incomplete 

ability to discern details related to decimal place value. However, through his interactions with 

the features of the zoomable number line, Aarav’s attention shifted to recognising relationships 
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by stating the place value of digits in the decimal number with an understanding of positional 

value. 

Discussion 

Representations are used in the mathematics classroom to assist students in understanding 

abstract concepts that are central to mathematics learning (Pape & Tchoshanov, 2001). The 

affordances of four dynamic digital representations were employed by the students in this study 

to develop conceptual understanding of decimal place value, magnitude and density. The 

facility of digital tools to adapt, change, and provide various interactive features and capabilities 

that traditional static representations may not offer were pivotal in enabling the students to 

successfully complete decimal fractions tasks such as the decimal location task in the Zoomable 

Number Line interview. By actively “scrolling backwards” Aarav could mathematically reason 

that the decimal 0.09 must be smaller in value than 0.9 as it was located closer to the whole 

number 0 on the number line. In addition, the dynamic digital representation Zooming in on 

Place Value helped Yehali ‘see’ notions that would otherwise be ‘unseeable’ through its unique 

‘zooming in’ animation between two whole numbers to show a magnified view divided into 

tenths (Orrill & Polly, 2013). She initially had difficulty predicting what tenths decimal was 

located on the number line, however by engaging with the dynamic nature of the Zooming in 

on Place Value web-app, she successfully solved later questions. This showed that within the 

timeframe of the 30-minute interview, the student was comfortable and confident enough to use 

the highly effective learning tool to eliminate the abstractness of decimals. 

All students involved in this study experienced moments of cognitive confusion generated 

by the dynamic affordances embedded within the digital tools which interrupted the students’ 

flow of attention, to guide their conceptual learning journey of decimal fractions. Seminal work 

by Swan (1983) found that students who experienced ‘cognitive conflict’ when learning gained 

better outcomes overall than students who learnt through ‘positive only teacher’. Decimal strips 

generated cognitive conflict as it challenged Valerie’s current misconception thinking about 

decimals. It was not until she used the functions of the Decimal Strips web-app and dragged the 

0.2 and 0.25 coloured tiles onto the blank fraction wall that she recognised the value of five-

hundredths. Valerie was able to self-correct her thinking by interacting with this dynamic 

representation as it challenged her prior understanding of decimals and allowed her to examine 

her errors in thinking and misconceptions. 

Dynamic representations of decimal fractions are capable of offering direction to learners’ 

shifts of attention. The dynamic nature of digital manipulatives force shifts in the object of 

children’s attention when they are actively interacting with the mathematics content as well as 

the structure of their attention in how they attend to features of the mathematics representation 

and the embedded mathematics concepts. Conceptual development occurred when the learners 

experienced a shift between attending to relationships within and between elements of current 

experience and perceiving relationships as properties that might be applicable in other situations 

(Mason, 2008). For example, Annelise acknowledged that her thinking had changed from her 

limited prior understanding of performing operations with decimal fractions. The shift from 

discerning details of the place values within a decimal to then being able to recognise 

relationships, perceive properties, and reason on the basis of agreed properties by performing 

operations with decimals with an understanding of positional value number knowledge, was the 

result of new learnings that occurred during the Wishball-hundredths game. These changes in 

decimal understanding were prompted by unique affordances embedded within the web-app 

including the dynamic counting frame. By being aware of shifts occurring, teachers can be more 

alert to the possibility that learners are not making appropriate shifts and therefore implement 

teaching strategies and learning tools such as dynamic digital representations, to prompt these 

conceptual changes. 
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Conclusion 

Teachers need to use various strategies, including visual representations, manipulatives, 

real-world examples, and interactive activities to make decimals more tangible and 

understandable. Examining a group of students completing four task-based interviews revealed 

the full scope of conceptual understanding of decimal fractions inclusive of decimal place value, 

relative magnitude and decimal density, which emerged from the students’ interactions with 

four dynamic digital tools. At times, the students’ experienced productive cognitive conflict, as 

the dynamic representation of decimal fractions challenged their existing understandings and 

misconceptions. Outside of the research-interview situation, these would have been ideal 

‘teaching moments’. While keeping in mind the inferential limitations of a small-scale study, 

the findings clearly indicate the potential of dynamic, digital representations to be used as 

effective learning and teaching tools to develop conceptual understanding of decimal fractions, 

and to address previously established misconceptions. 
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Whilst educational goals in recent years for mathematics education are foregrounded 

the development of mathematical competencies, little is known about mathematics 

teachers’ competencies. In this study, a group of practising teachers were asked to solve 

an algebra problem, and their solutions were analysed to determine the competencies 

apparent (or, equally importantly, absent) in these solutions. The most demonstrated 

competencies were devising strategies and mathematising, whilst communication and 

reasoning were mostly missed. The research provides a detailed methodology on how 

mathematical competencies can be assessed in the context of problem solving. 

In recent decades, efforts in mathematics education reform and development have been 

directed to mathematical competencies. Many countries have introduced new standards 

influenced by mathematical competencies. Denmark, for example, has competency descriptions 

of its mathematics programmes all the way from primary school to tertiary level, and in teacher 

training (Jankvist et al., 2022). In Australia, the notion of mathematical competencies has 

become more explicit and established in the mathematics curriculum, by implementing a 

mathematical proficiencies framework (Australian Curriculum, Assessment and Reporting 

Authority [ACARA], 2022). A shared understanding within the mathematics education 

community is that students’ mathematical competencies are affected by their teachers’ 

competencies (Jankvist et al., 2022). To be able to shed some light on this potential impact, we 

need to know what mathematical competencies teachers have. Extending on our earlier works 

with secondary mathematics teachers, in this paper, we present a study that examines 

mathematical competencies evident (or not) in a sample of secondary mathematics teachers’ 

solutions to an open-ended algebra problem that is based on the idea of consecutive numbers. 

We aim to answer the research questions: (1) What can be said about the teachers’ 

mathematical competence for the given problem in terms of their ability to activate the 

mathematical competencies and arrive at a desirable answer? and (2) How (if at all) is the 

teachers’ performance in the problem impacted by activation of the mathematical 

competencies? 

Mathematical Competencies 

Broadly, mathematical competence is “someone’s insightful readiness to act appropriately 

in response to all kinds of mathematical challenges pertaining to a given situation” (Niss & 

Højgaard, 2019, p. 12). Mathematical competence consists of six distinct but mutually related 

mathematical competencies: Communication; Devising strategies; Representation; 

Mathematising; Symbols and formalism; Reasoning and argument (see Turner et al., 2015). The 

communication competency involves two aspects: receptive and expressive. The receptive 

aspect includes reading, deciphering, and understanding mathematical statements and data. The 

expressive aspect involves explaining, presenting, and debating mathematical concepts. 

Devising strategies is creating and executing a mathematical strategy to solve problems that 

arise from the task or context. Representation is creating or utilising representations of 

mathematical entities or relationships. These representations can be equations, formulas, 

graphs, tables, diagrams, or textual descriptions. Mathematising is converting real-world 
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problems into mathematical ones. It also involves interpreting mathematical entities or data in 

the context of the modelled situation. Symbols and formalism is understanding, manipulating, 

and utilising symbolic expressions. It also involves using constructs based on definitions, rules, 

conventions and formal systems. Finally, reasoning and argument is logical thinking processes 

that explore and connect problem elements to draw conclusions from them. It also involves 

checking a given justification or providing a justification (Niss & Højgaard, 2019). 

Previous Research on Mathematical Competencies 

Most relevant to the current study, Büchele and Feudel (2023) carried out a study on data 

from a non-standardised mathematics entry test taken by 3076 economics students divided into 

different cohorts from 2012 to 2019. The authors used regression analyses to examine the 

changes in students’ mathematical competencies. The students’ ability to carry out symbolic 

calculations decreased over the years. However, their performance increased in some test 

questions focusing on other process competencies like reasoning, mathematising, or using 

different representations. The authors concluded that a curriculum reform emphasising these 

competencies was likely to have had the desired effect of improving students’ abilities in the 

mathematical process. Albano and Pierri (2014) introduced a role-play activity designed to 

foster conceptual understanding of mathematics for first-year engineering students. The 

findings showed that the quality of the questions posed by the students highlighted a shift from 

the instrumental approach they were used to towards a relational one. This suggests that the 

role-play activity was successful in fostering a deeper, more conceptual understanding of 

mathematics among the students. Wess and Greefrath (2019) studied the professionalisation of 

preservice teachers through reflective practice when they were training for the mathematical 

modelling competency. The authors designed and implemented a teaching laboratory, which 

was a learning environment that simulated authentic classroom situations and allowed the 

participants to practice and reflect on their teaching skills. The teaching laboratory had a 

positive impact on the participants’ task competency, as well as their self-efficacy and 

enthusiasm for teaching mathematical modelling. In none of these studies have the 

competencies been investigated in the context of practising schoolteachers, nor has it been 

shown what relationship exists between the various competencies and success in problem 

solving. 

The Study 

The data for this study comes from a workshop delivered by Hatisaru, in 2022, at an annual 

mathematics teacher conference in Western Australia that aimed to support lower secondary 

mathematics teachers’ pedagogical content knowledge for teaching algebra. The teachers were 

teaching mathematics to students in years 7 to 12 (aged 12 to 18), and most were qualified 

mathematics teachers, with 16 out of 22 having at least a mathematics minor, and all others 

having completed some tertiary mathematics units. Each participant was provided with three 

Reflection Forms, each with an algebra word problem presented on it and the prompt: Think of 

and explain as many different possible solutions to the problem as you can. Name the solutions 

as Solution A, Solution B, Solution C and so on. 

The participants completed this task in 20–25 minutes. Out of the 42 teachers, 22 of them 

gave consent for their responses to contribute to this research. They were assigned a code from 

P1 to P22 to protect their anonymity. In this paper, we focus on participants’ solutions to one 

of these problems, referred to as three consecutive numbers: Take three consecutive numbers. 

Now calculate the square of the middle one, subtract from it the product of the other two. Now 

do it with another three consecutive numbers. Can you explain it with numbers? Can you use 

algebra to explain it? (Kieran, 1992). Here, we describe the mathematical content of this 

problem for each competency presented earlier. 
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Communication: The text is fairly straightforward to interpret, involving some reasonably 

low-level technical language (e.g., ‘consecutive’, ‘square’, ‘subtract’, ‘product’). One must 

interpret the text (receptive component) as instructions to do various things—starting with 

deciding what numbers to work with, but also interpreting and dealing with the two somewhat 

ambiguous, or at least tentative ‘can you…?’ questions. The expressive or constructive 

component consists of explaining the process of their investigation, presenting a hypothesis, 

and arguing the validity of their findings. Devising strategies: Several steps are involved, 

starting with negotiating a string of instructions to be applied to three numbers chosen, applying 

the instructions again to another set of three numbers, before hopefully arriving at an 

‘explanation’ of the observed result. The instructions are then to be applied again in a 

generalised setting using algebra, together with a generalised solution, and an explanation 

drawn/devised. One needs to keep the goal in mind, work out what meeting the goal might look 

like, monitor their progress, and move on from stage to stage. Representation: The heart of the 

problem lies in finding a way to express the context and text instructions in a mathematical 

form. The need to represent the task elements with numbers, arithmetic operations, and letters 

(algebraic entities) is fairly obvious, so only a very low-level representation demand is present. 

There is no given mathematical representation to interpret; the ‘devise’ aspect of representation 

fits better under mathematisation. 

Mathematising: When one moves beyond the numeric exploration that falls directly out of 

the interpretation of the problem statement, to an algebraic representation, one needs to 

mathematise the phrase ‘three consecutive numbers’. This can be done in a number of possible 

mathematical formulations, for example a − 1, a, a + 1; or n, n + 1, n + 2; or as n − 2, n − 1, n. 

Each of these leads to slightly different algebraic processing steps once the phrases ‘square the 

middle number’, ‘subtract from it’ and ‘the product of the other two’ have been mathematised. 

We decided to characterise these demands under mathematisation, because one must come up 

with a mathematical formulation of essentially real-world (extra-mathematical) context 

elements. Finally, interpreting the mathematical result (‘Square − Product = 1’) in the real-

world context (i.e., in relation to any three consecutive numbers) is a ‘de-mathematisation’ step 

that is rather important. Symbols and formalism: One needs to apply their formal mathematical 

knowledge to carry out the arithmetic calculations (multiplication and subtraction), and then 

perform algebraic manipulation once that has been arranged (square an expression, multiply 

two expressions, and find the difference, in the specified direction), leading to the mathematical 

result ‘Square − Product = 1’. Reasoning and argument: Reasoning and argumentation are 

needed to reflect on the numerical results found, link these to the generalised algebraic result, 

and to conceptualise an argument that expresses the finding that the difference found at the 

subtract step is always a number 1 less than the square. 

Data Analysis Approach 

Among 22 teachers, one teacher did not respond to the problem; 18 of the remaining 

teachers generated one solution and 3 of them gave two solutions. For teachers with more than 

one solution, we decided to only analyse their best solution. We first analysed these 21 solutions 

according to the marking scheme presented in Table 1. To find out what mathematical 

competencies were manifested in these solutions, next, we analysed the solutions according to 

the scheme presented in Table 2 (for examples, see Figure 1). The codes ‘evident’ and ‘absent’ 

were used where the relevant competency was apparent or not in the respective solution. As 

none of the participants attempted to explain the findings, the constructive aspect of 

communication was not coded. Finally, we compared differences in the observed mathematical 

competencies by teachers showing stronger performance in the problem and those showing 

weaker performance. A strong performance is defined as a solution receiving a score of 4, while 

a weaker performance is defined as a solution receiving a score of 3 or lower. 
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The data were analysed by two of the authors of this paper (Hatisaru and Richardson). To 

establish interrater reliability, they independently coded all the participant solutions. Their 

agreement for the coding of participants’ solutions to the problem was approximately 86% and 

for the coding of competencies evident in these solutions was approximately 81%. Any 

differences or disagreements were resolved through discussion. 

Table 1 

Marking Scheme Used to Assess Participant Solutions to Three Consecutive Numbers 

Score Observed solution 

5 Solution demonstrates correct and complete interpretation; correct mathematical formulation, 

result ‘Square − Product = 1’ is found together with explanation connecting the algebra to the 

original number context 

4 Solution demonstrates correct and complete interpretation; correct mathematical formulation, 

result ‘Square − Product = 1’ is found but without a clear statement linking the result to the 

original number context 

3 Solution demonstrates mostly correct interpretation; formulation correct, but with sense of 

difference reversed (‘Product − Square = −1’); there is not a clear statement linking the result 

to the original number context 

2 Solution demonstrates correct interpretation applied to numeric examples with the result of 

‘Square − Product = 1’ without algebraic formulation being correctly found and/or correctly 

applied 

1 Solution demonstrates mostly correct interpretation applied to numeric examples with the 

result of ‘Product − Square= −1’ without algebraic formulation being correctly found and/or 

correctly applied 

0 Solution demonstrates no progress with mathematical formulation of problem situation 

 

Table 2 

Competencies for Solving Three Consecutive Numbers 

Competency  Observed behaviour 

Communication 

(COM) 

The text is interpreted correctly; the terms ‘consecutive’, ‘square’, ‘subtract’ and 

‘product’ are understood 

Devising 

strategies (STR)  

There is a strategy involving adhering to the steps outlined in the question statement. 

At least two steps are involved: applying the situation to numbers and to a 

generalised setting 

Representation 

(REP)  

The numerical and algebraic expressions are correct representations of the intent 

expressed in the problem statement 

Mathematising 

(MAT) 

The phrases are mathematised and the formulation of the problem situation ‘Square–

Product’ is found 

Symbols and 

formalism (SYF) 

The formal knowledge needed to process both the numerical and the algebraic steps 

is evident. Algebraic manipulations are carried out correctly 

Reasoning and 

argument (RES) 

Numerical results are linked to the generalised algebraic result, a conclusion is 

made, and the mathematical result (i.e., ‘Square − Product = 1’) is connected to the 

‘real-word’ result (i.e., any three consecutive numbers) 
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Figure 1 

Example Solutions for P5 (Left) and P10 (Right) Coded Against the Marking Schema and Competencies 

 

P5’s response was scored as ‘4’ with the codes 

COM, STR, REP, MAT, SYF, and RES. 

 

P10’s response was scored as ‘2’ with the codes 

COM, STR, and REP. 

Findings 

Out of the 21 solutions to three consecutive numbers, none of the solutions were rated at 

score ‘5’ because none of them included an explanation connecting the algebra to the original 

number context that was given. Two solutions were incorrect and were scored as ‘0’ (P11 and 

P15). Two solutions were scored as ‘1’ or ‘2’ because, although these participants were able to 

interpret and correctly explore the problem with specific numerical examples, they did (or 

could) not formulate the problem algebraically (P10 and P16) or represent three consecutive 

numbers algebraically. Four were scored as ‘3’ since they were able to formulate and devise 

the desired result algebraically, other than getting the order of Square − Product the wrong way 

around (P4, P6, P8, and P22). The remaining 14 solutions were scored as ‘4’; these responses 

presented the correct mathematical formulation (i.e., Square − Product = 1), but without an 

explanation. These findings suggest that many of the participants got to the essence of the 

problem, achieving differing levels of performance from scores ‘4’ to ‘0’. Consideration of 

possible alternative approaches to the problem was happened in only three cases. 

Figure 2 captures the frequency of mathematical competencies, apparent or not, in the 

solutions. Although participants varied in their use or activation of these competencies, patterns 

seemed to emerge. The mostly missed competency was reasoning and argument, followed by 

the communication and symbols and formalism competencies. In three solutions, all devising 

strategies, representation, and mathematising were absent. For example, in P4’s solution in 

Figure 3 (left), a lack in the communication and symbols and formalism competencies is evident 

because P4 did not follow the instruction of implementing the procedure on numerical 

examples. Doing this might have given them a hint as to what they were looking to see from 

the algebraic consideration. Also, they did not order the ‘Square–Product’ correctly. Moreover, 

P4 lacked the algebra skills to simplify their final expression to -1. 

The mathematical competencies in the participants’ solutions who showed stronger (n = 13) 

and who showed weaker (n = 8) performance was compared (Figure 4). This comparison has 

revealed that all 13 participants who performed at ‘score 4’ level activated almost all of the first 

five competencies in solving the given problem, with one not activating the symbols and 

formalism competency. Conversely, the 8 weaker participants, i.e., those who performed at 

‘score 3’ or lower, did not activate one (P6, P8, P22), three (P4, P15), five (P10), or all six (P11, 

P16) of the relevant competencies. This finding shows that activation of these competencies 

impacts on one’s performance in solving a mathematics problem. 
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Figure 2 

Distribution of Mathematical Competencies by the two Codes 

 

Figure 3 

Solutions of P4 (Left) and P11 (Right) to Three Consecutive Numbers 

  

Figure 4 

Distribution of Participants with Stronger (n = 13) or Weaker (n = 8) Performance by the two Codes 

 

Although the mathematical competencies are distinct, they are utilised in an interconnected 

way when solving problems. As a result, it is not always possible to accurately assess a specific 

mathematical competency using a presented solution, since a deficiency in one competency 

may eliminate the opportunity for another competency to be demonstrated. For example, P10 

whose solution is presented in Figure 1 (right), only understood the question up to the numeric 

example level. The fact that they could not mathematise the question in algebraic form meant 

that we do not know if they could have simplified the expression (i.e., if they could have 

demonstrated symbols and formalism). In this solution, mathematising and devising strategies 

seem linked, as one cannot devise a strategy without being able to mathematise the problem. 

P11 (Figure 3) knew to square the middle number and multiply the others but was not able to 
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interpret the subtraction part. They were unable to represent three consecutive numbers 

mathematically (i.e., mathematising) which meant that the remaining competencies could not 

really be assessed. That said, they did correctly expand (a–1) × (a+1) which is an element of 

symbols and formalism, although not part of a coherent solution. 

Discussion and Suggestions for Future Research 

In this study, we have provided a perspective for understanding and assessing mathematical 

competencies in the school education context. By using the case of three consecutive numbers, 

we have developed the process of applying the six mathematical competencies to an algebraic 

problem and assessing individual solutions to that problem, deconstructing the skills which 

need to be demonstrated for each competency to be verified. Our associated marking schemes 

(Tables 1 and 2) can be adapted to different problems, providing the basis for initial teacher 

education and professional development initiatives for preservice and practising teachers to 

assess and develop their mathematical competencies. They can also be used for teachers to 

assess the competencies of their students in the classroom, or for individuals to self-reflect on 

their work and consider whether they have demonstrated all six competencies in presenting 

their solutions. The conceptualisation presented here can be used in future investigations to 

understand the extent to which teacher competencies impact on student competencies, and 

thereby to gain a deeper understanding of any skills gaps being shown in national tests. 

We analysed the mathematical competencies apparent and absent in a selection of practising 

teacher responses to an algebra problem. The most conspicuous competency absent in the 

solutions of our participants was that of expressive communication, which none of the solutions 

was deemed to contain. The weaker solutions also almost exclusively lacked receptive 

communication as well—that is, the ability to successfully interpret the instructions in the 

question. We consider teachers to be expert communicators: their main role is to explain 

complex concepts to beginners. The participants’ solutions, however, showed almost no 

explanation, no commentary, conclusions, or interpretations. It is possible that the reason for 

this was contextual; that in the setting of a workshop teachers did not feel it was important to 

communicate their solutions as thoroughly as they would do in a classroom with students. 

Further investigation is required here to determine if mathematical communication skills are 

lacking in practising teachers, or if they are underused except in particular contexts. Connected 

to the competency of expressive communication is reasoning and argument, a skill that was the 

main competency lacking among both strong and weak solutions. This shows an inability to 

reflect on the results that were found, to generalise a result to a broader context, and to justify 

a result that was found. One could argue that the skill of reasoning is the most important 

competency, defining the very essence of mathematics: the ability to notice patterns and to 

question and justify the contexts in which they hold true. However, we see that even some 

successful solutions were missing this skill. As with the lack of communication skills, further 

investigation is required to determine the reasons for this within the context of the workshop. 

Mathematical competencies are not necessarily being learnt implicitly in initial teacher 

education. The research of Albano and Pierri (2014) and Wess and Greefrath (2019) show that 

these mathematical competencies can be developed in professional development sessions, both 

in terms of making the competencies explicit and emphasising their importance, and also in 

terms of improving teachers’ skills and self-efficacy in these areas. We believe teachers of 

mathematics need to be supported to develop, use, and teach these competencies. 

Like Büchele and Feudel’s (2023) German participants, our Australian participants 

struggled more with symbolic manipulation and formalism than they did with strategy and 

mathematising. These latter skills were evident in all but three solutions, while symbolic 

manipulation was problematic in six. Further data on participants’ educational backgrounds and 

current teaching focus would be useful here to determine the reasons for this weakness. For 
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example, a teacher may not have taught algebra for some time or may have done their teacher 

training a long time ago. However, it could also be argued that three consecutive numbers 

required only low-level algebraic skills which we would expect that all secondary school 

mathematics teachers would have, regardless of their teaching level or educational background. 

As Australian students’ algebra abilities are sometimes weaker than in other areas, our study is 

likely to representative of a wider problem. While it is good to see more of the higher-level 

competencies present in our participants (devising strategies, mathematising), we showed that 

it is important to focus teacher training initiatives on accurately applying formal mathematical 

knowledge to close this skills gap. This is likely to aid in the competency of reasoning and 

argument, as arguments cannot progress and conclude unless the intermediate steps are correct. 

We acknowledge that our study had a relatively small sample size, with only 22 teachers 

participating. While all were teaching at the secondary level, we do not know more specifically 

what teaching experience the participants had. For example, someone teaching Specialist 

Mathematics at Year 12 would be expected to have stronger mathematical competencies than 

someone teaching mainly Years 7–9. It would also be interesting to investigate whether the 

degree program studied had an effect on the strength of the participants’ solutions; for example, 

whether having a mathematics major as compared with a minor resulted in stronger 

competencies. Mathematical competencies should be investigated in a wider variety of 

problems and contexts, investigating the extent to which the wording of the problem influences 

the competencies being demonstrated and if factors such as the time given to solve a problem 

also have an impact. Finally, three consecutive numbers explicitly asked participants to first 

investigate with numbers and then to explain with algebra. A future investigation might omit 

these specific instructions to find out if teachers would naturally start from specific cases and 

generalise to all numbers and investigate how best we can cultivate and motivate this skill 

among teachers. 
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This paper investigates the expectations that a group of preservice secondary 

mathematics teachers had for how students would approach four particular algebra 

problems. Their responses to a set of open-ended items were content analysed. Findings 

show that the teachers ranged in the expectations that they held for their students. Some 

teachers expected their students would approach the problems with more sophisticated 

problem-solving strategies, but many of the teachers expected that the students would 

only use less desirable “guess-and-check” strategies. We believe teachers’ expectations 

for student strategies for problem-solving is a topic that warrants further investigation. 

For about a decade, we have worked with teachers (both preservice and practising) to 

understand the knowledge bases that are needed to teach their subject and to support their 

professional knowledge and practices. When analysing data about preservice secondary 

mathematics teachers’ own problem-solving strategies, an investigation captured a thought-

provoking issue. The strategies that teachers most frequently expected students to use were 

“guess-and-check” or “trial and error”, despite these approaches being less desirable than more 

sophisticated problem-solving strategies such as systematic numerical approaches or algebraic 

methods. Possible strategies to the relevant problems were articulated in a manner that 

underestimated the students’ potential success and creativity in mathematical problem-solving. 

This stimulated the following research question: 

• What expectations for student strategies to algebra problems are evident in preservice 

secondary mathematics teacher responses? 

Every student can solve mathematical problems, so mathematics should be taught with high 

teacher expectations (National Council of Teachers of Mathematics [NCTM], 2016). The 

Australian Institute for Teaching and School Leadership (AITSL) standards stipulate that 

teachers know their students, including the suitable expectations for task difficulty (AITSL, 

2017). Knowledge frameworks for mathematical problem-solving provide the foundation for 

developing teacher education programs and guiding teacher learning about how students think 

and approach mathematical problem-solving. Some research has investigated teacher 

expectations for student mathematical capabilities, but little is known about teachers’ 

expectations for student approaches to problem-solving. The following literature shows that 

research about teachers’ expectations of students’ strategies for algebraic problem-solving can 

be important because of the well-established association between teachers’ expectations and 

student academic attainment. 

Teachers’ Expectations of Students 

Broadly, teachers’ expectations of students are the beliefs that teachers hold about if, when, 

and how much students will accomplish academically at school (see Johnston et al., 2024). The 

expectations that teachers hold for their students can be short term, such as how they will 

perform on a given learning task, or long term, such as which post-secondary pathways they 

will take when they graduate (Wang et al., 2019). The association between teachers’ 

expectations and student outcomes is called the ‘teacher expectation effect’ (Szumski & 
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Karwowski, 2019). Research on teachers’ expectations shows that high teacher expectations 

correspond with high student achievement, so students benefit from teachers who expect a lot 

from them academically (Rubie-Davies et al., 2015). Expectations can be accurate, but 

inaccurate low expectations hinder student results, while inaccurate high expectations can 

improve student results (Szumski & Karwowski, 2019) as students’ responses to the teachers’ 

differential treatment shapes their consequential educational attainment (Johnston et al., 2024). 

Teachers’ Expectations of Mathematical Problem-Solving 

There has been very little research about teachers’ expectations for students’ mathematical 

problem-solving. Research in this area has usually been general to mathematics as a learning 

area, showing that teachers’ mathematical expectations can be biased and based on student 

backgrounds, such as their ethnicity (Lorenz et al., 2016) or gender (Copur-Gencturk et al., 

2023). Some teachers have higher expectations for boys’ mathematical achievement than girls, 

but this is not always the case (Soto-Ardila et al., 2022). Classroom and school contextual 

factors, such as ability grouping and community engagement, can also influence teachers’ 

expectations of students’ mathematics abilities (Wang et al., 2019), as can a teacher’s 

perception of their own ability (Copur-Gencturk et al., 2023). 

Very few studies have investigated teachers’ expectations for students’ problem-solving in 

mathematics. Previous studies of teacher expectations of student mathematics achievement 

have asked teachers questions about their beliefs about students’ potential, showing that 

teachers communicate these beliefs in ways that shape student achievement in mathematics 

problem-solving (Fyfe & Brown, 2020; Szumski & Karwowski, 2019). For example, Soto-

Ardila et al. (2022) asked prospective teachers whether their students would be able to solve an 

elementary arithmetic problem while they were practicing in schools. Their findings revealed 

high teacher expectations of students in private schools, which corresponded to students’ 

eventual high performance. This study did not control for prior achievement or consider how 

teachers’ expectations were developed. However, a controlled experimental study from Fyfe 

and Brown (2020) found that teachers’ expectations for mathematical problem-solving shape 

students’ ability to generalise learning from one problem to another after feedback. Negative 

expectations caused students to perform significantly worse on these transfer problems, while 

positive expectations helped students to do better in the face of negative feedback. Copur-

Gencturk et al. (2023) determined that when a teacher views a student as having a low ability 

(as opposed to a low effort) a cause-and-effect feedback loop occurs. For example, the teachers’ 

views of students’ helplessness are communicated to the student as a perception that they have 

a lower ability. Tohir et al. (2020) also investigated beginning teachers’ projected expectations 

for their future students’ mathematical thinking processes. Their findings were that the teachers’ 

own approaches to answering the question were not related to their expectations of students, 

but poor written articulation of the findings made their important work unclear and 

unconvincing. Copur-Gencturk et al. (2023) found links between a teacher’s own mathematical 

disposition and how they perceived student ability. For example, if a teacher viewed their own 

difficulties as a lack of ability, rather than as a problem to be solved, it could have a negative 

effect on what was expected of students. To our knowledge, these are the only studies that have 

investigated teachers’ expectations for students’ mathematical thinking or problem-solving 

specifically. 

Interventions designed to raise teacher expectations can improve mathematical achievement 

of students from migrant and low-SES backgrounds. When teachers with low expectations for 

student mathematical achievement are encouraged to develop higher specific performance 

goals for mathematics, student achievement can improve (Ritzema et al., 2016). Thus, further 

exploration of teachers’ expectations about their students’ approaches to mathematical 

problem-solving could be a useful starting point for addressing any deficit or strength-based 
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views of students’ mathematical abilities. This paper seeks to establish what the participant 

teachers’ expectations of their students are because these views can shape their future students’ 

academic outcomes when they are enacted. 

Methods 

The study used to underpin this paper was conducted by the first author with the voluntary 

participation of Bachelor of Education and Master of Teaching preservice teachers. Both groups 

of participants were specialising in junior secondary mathematics teaching (Years 7 to 10; aged 

12 to 16), and all were enrolled at a Western Australian university. Of the participants, 11 were 

enrolled in the Bachelor of Education program—a four-year degree at the undergraduate level, 

and 12 were enrolled in the Master of Teaching degree—a two-year degree at postgraduate 

level. The participant group was comprised of 9 females and 14 males. 

In the two units where data were generated, preservice teachers were supported to enhance 

their mathematics pedagogy knowledge for Number and Algebra and to develop an 

understanding of the Australian curriculum structure. Across four weeks there was an explicit 

focus on the proficiency strand: problem-solving, as a pedagogical technique that would 

enhance student learning. Each week one of the problems introduced below was explored. 

Participants were asked to solve the relevant problem and then explain the strategies they would 

use to solve it in teaching. They were provided with three prompts: the first prompt was to 

answer the problem in as many ways as possible. In the second prompt, the participants were 

asked to compare their preferred solution strategies, the strategies that they anticipated students 

would use, and the strategies they hoped their students would use. In the final prompt, the 

participants were asked to describe why these problems would be useful to use in teaching and 

which of the problems they would use. In this paper, we focus on participant responses to the 

question about how students might solve these problems. 

At the time of data collection, all participants had completed at least five weeks’ 

professional experience, during which they planned, taught, and assessed student learning in 

mathematics. This is of contextual importance as the participants had some practical experience 

teaching mathematics, using pedagogical approaches to enhance mathematics, and witnessing 

learning within the students. 

Mathematical Problems Used in the Study 

The four problems used in this study—adapted from published literature (see Hatisaru et 

al., 2024)—are referred to in this paper as any to numbers, farmer, dice, and books. These 

problems are typically used (or can be used) in everyday junior secondary mathematics 

classrooms, and the participants had experience with the style of problems: 

• Any two numbers: If you are given the sum and difference of any two numbers, show 

that you can always find out what the numbers are; 

• Farmer: A farmer had 19 animals on his farm—some chickens and some cows. He also 

knew that there was a total of 62 legs on the animals on the farm. How many of each 

kind of animal did he have? 

• Dice: Die A and Die B have twelve sides each. Suppose that you roll die A and die B at 

the same time. When do the dice satisfy the following two conditions? The sum of 2 

times A plus B equals 15. 3 times A minus B equals 5; 

• Books: You have some teen and young adult books. You gave one-half of the books 

plus one to a friend, one-half of the remaining books plus one to another friend, and 

one-half of the remaining books plus one to another friend. If you have one book left 

for you, how many books did you have at the start? 

Each of these problems can be solved in multiple ways, which reveals not only the extent 

to which the participants were able to generate different strategies, but also the strategies they 
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anticipated that students would use. Algebraic approaches are suitable for solving these 

problems, but they can also be solved by using numerical approaches that follow a systematic 

or logical reasoning process. Table 1 presents each of these approaches along with their 

descriptions, and Figures 1 and 2 capture example participant solutions where some of these 

strategies were used. 

The last group of strategies in Table 1 refers to those that are less desirable because they are 

unsystematic or random numerical trials. Whilst systematic numerical approaches can provide 

a sufficient basis for solving these problems, strategies such as random guess-and-check or 

similar concrete methods (e.g., rolling dice and checking combinations) are not as desirable as 

systematic numerical approaches or algebraic strategies because they demonstrate no insight 

into the question. To truly demonstrate understanding of a problem, teachers and students 

should use a range of mathematical thinking processes and choose the most viable strategy, or 

combination of strategies, for the problem to be solved. The more logical and integrated the 

mathematical processes, the more sophisticated the thinking. 

Table 1 

Example Strategies for Solving ‘Any Two Numbers’, ‘Farmer’, ‘Dice’, and ‘Books’ (Reported in 

Hatisaru et al., 2024) 

Strategy Description 

Equations   

Symbolic solving Write algebraic equations and solve using standard algebraic method 

Numerical solving Write algebraic equations and solve numerically 

Graphical solving Write algebraic equations and plot to find the intersection point. 

Using parameters, symbolic 

solving 

Write algebraic equations with two unknowns and with two parameters 

and solve using standard algebraic methods 

Using parameters, numerical 

solving 

Write algebraic equations with two unknowns and with two parameters 

and solve for a specific example 

No parameters, symbolic 

solving 

Write algebraic equations with two unknowns but with two specific 

numbers and solve using standard algebraic methods 

Pattern  Write algebraic equations with two unknowns and with selected specific 

sums and differences, solve using any method and look for a pattern 

linking solutions to sum and difference. 

Numerical  

Systematic Use a numerical path in a systematic way such as guess-check-and-

improve or guess-and-check with tables 

Logical arithmetic reasoning Think about the relations between the numbers/quantities involved and 

work from known numbers towards the solution 

Other less desirable 

strategies 

Guess-and-check; concrete approaches such as rolling dice or counting 

Data Analysis Approach 

There were four problems and 22 participants; a few participants were absent in the class 

when the relevant problem was posed. So, in total, there were 70 responses. Unsurprisingly, 

most participants generated more than one solution to the problems—because they were asked 

to solve the problem in different ways—and that means in total we had 128 solutions for the 

four problems to analyse. Solutions could be ‘complete’, ‘incomplete’, ‘erroneous’, or 

‘suggested’ without implementation. 

The data were analysed by the first author of this paper who has extensive experience in 

content analysis (e.g., Hatisaru et al., 2024). She first determined the success rate; that is, if at 
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least one of the solutions to the problem was complete and a correct answer was given. Next, 

she examined these solutions to find out what strategies the participants used in solving the 

problems. She classified each of the 128 solutions into solution strategies presented in Table 1. 

To illustrate this categorisation, example solutions are presented in Figures 1 and 2; strategy 

types mapped to them are noted. Participants were assigned codes: P1, P2, P3, P4, and so on to 

protect their anonymity. 

To uncover the participants’ expectations for student strategies to these problems, the author 

analysed participant responses to the relevant prompt in the same fashion. She coded the 

strategies addressed by the participants as possible strategies that student may apply to each 

problem. Some participants named more than one strategy, and each was counted. All authors 

reviewed and agreed on the data analysis. 

Results 

Out of 70 solutions, 61 of them included a correct answer by at least one solution strategy 

(see Figures 1 and 2 for examples) and 4 responses were incorrect. Partially correct was only 

relevant for any two numbers when 5 participants solved the problem based on examples 

without generalising the solution to any sum and difference. 

As noted earlier, a total of 128 solutions were identified for the four problems. Out of these, 

13 were suggested solutions without showing any implementation, while 11 were erroneous 

responses where the participant had made incorrect assumptions about either the problem or the 

solution strategy (or both). Of the remaining 104 solutions, 7 were incomplete, while the 

remaining 97 were implemented correctly (76%). This means that most participants were able 

to solve the problems and also identify other possible ways to solve them. 

Figure 1 

Solutions of P16 and P12 to the ‘Any Two Numbers’ and ‘Farmer’ Problems 

       

P16’s solutions to any two numbers, including the 

equations, parameters, symbolic solving strategy. 

P12’s solutions to farmer,  

including the equations, symbolic solving (left) 

and numerical, systematic (right) strategies. 

Focusing on participant responses where at least one of the identified—implemented or 

suggested—strategies to the relevant problem was correct (total of 114), we aimed to uncover 

the expectations of these participants with regard to how students would approach these 

problems. We excluded the other 14 responses as it was unlikely that the participants could 

anticipate sound student strategies where their own solution strategies were incorrect or 

erroneous. Table 2 summarises the number of strategies identified in the participants’ solutions 

across all four problems, and in their responses where they anticipated student solutions. 
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Figure 2 

Solutions of P9 and P3 to the ‘Dice’ and ‘Books’ Problems 

      

P9’s solutions to dice, including the equations, 

symbolic solving strategy. 

P3’s solution to books, including the logical 

arithmetic reasoning strategy. 

 

Table 2 

Distribution of Strategies in Participants’ own and Anticipated Student Solutions 

Strategy In participant own solutions 

(114) 

In anticipated student solutions 

(99) 

Equations   

Symbolic solving Farmer (20); Dice (19); Books 

(10)  

Farmer (9); Dice (6); Books (6) 

Numerical solving Farmer (1); Dice (7) Farmer (1); Dice (2); 

Graphical solving Dice (1) Dice (1) 

Using parameters, symbolic 

solving 

Any two numbers (17) Any two numbers (1) 

Using parameters, numerical 

solving; no parameters, 

symbolic solving; pattern  

Any two numbers (8) - 

Numerical   

Systematic Farmer (9); Dice (4); Books (1) Any two numbers (3); Farmer (7); 

Dice (1) 

Logical arithmetic reasoning Farmer (3); Books (4) Books (3) 

Other less desirable strategies Any two numbers (2); Farmer (1); 

Dice (6); Books (1) 

Any two numbers (18); Farmer 

(18); Dice (12); Books (11) 

Out of 114 identified strategies for solving these four problems, many of them are viable or 

desirable strategies in the sense that they would give the correct answer, and only 10 of them 

(9%) classified as “other less desirable strategies”. As opposed to this, out of 99 participant 

anticipations of student approaches, the majority (59/99 or 60%) are less desirable strategies 

for these problems, while only 26 are viable strategies. 

Our analysis shows that for each of the four problems, and across the distribution of 

strategies, the participants repeatedly anticipated that the students would use less viable 

strategies. This highlights that the participants expected students to use strategies which would 

give less effective, complete, or correct solutions. 
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Discussion and Conclusion 

Our findings from this study demonstrate that many of the participants held low 

expectations for their future students’ mathematical strategies for algebra problem-solving. 

Low expectations of students are problematic, because previous research has shown that 

teachers who have low expectations of students’ mathematical ability manifest low 

achievement through the teacher expectation effect (Szumski & Karwowski, 2019). Educators 

working in initial teacher education might consider strategies to raise teachers’ expectations for 

students’ mathematical problem-solving. 

Previous research has shown that teachers with low expectations for students can treat their 

students in ways that shape the students’ respective achievements in mathematics (Ritzema et 

al., 2016). This literature highlights how teachers frame mathematical problems for students in 

the ways that reflect their expectations, describing some problems as achievable and others as 

less likely to be achieved by students (Fyfe & Brown, 2020). Teachers’ expectations can be 

conceptualised in terms of lower or higher order anticipated strategies that students will use to 

solve prospective mathematical problems (Tohir et al., 2020). Using this conceptualisation of 

students’ problem-solving approaches, we determined that the expectations of the participants 

in this study were low. The strategies that they anticipated the students would use were 

categorised according to their sophistication and suitability. We found that many of the 

participants expected less desirable strategies to be employed by their students. These 

expectations about less desirable approaches to problem-solving need to be addressed so that 

students are set up for success in problem-solving. 

Assessing the expectations that preservice (and practising) mathematics teachers hold for 

their own and their students’ approaches to mathematical problem-solving could be an 

important first step in addressing any deficit views these teachers may hold. Previous literature 

about teachers’ mathematical expectations has suggested that high teacher expectations can 

improve students’ academic outcomes and encourage successful approaches to problem-solving 

(Ritzema et al., 2016). Our findings add to this literature by showing that teachers may bring 

pre-existing ideas about students’ low mathematical problem-solving abilities to initial teacher 

education courses. If academics working in initial teacher education institutions know that their 

preservice teachers do not have high expectations for their future students, intervention 

strategies might be developed and employed to address this problem. Existing literature 

highlights the capacity to raise teacher expectations through interventions that create awareness 

about expectations and the practices of high expectation teachers (de Boer et al., 2018). 

The limitations of this study should be noted, including that exploring the participants’ 

expectations for student mathematical problem-solving in algebra was not the original intent of 

the research that informed data collection. The participants wrote responses on a written test 

and had not been interviewed, so rich data with explanation of their expectations was not 

available for analysis. Thus, questions about how these views were developed and more in-

depth understanding of the expectations is not provided here. Interviews explaining the 

preservice teacher responses could be a potential avenue for further research. Interviews could 

also uncover whether participants’ responses were based on students’ actual performance in 

algebra problems while they were on placements, and if/how this was related to any 

characteristics of the schools and classes they had been based in. 

Teachers’ self-concept about their own mathematical ability and their mindset (either 

growth or fixed) can impact the level of the expectation they hold for their students (Copur-

Gencturk et al., 2023). While the participants in this study had high mathematical knowledge 

themselves, they had limited teaching experience. We would be interested to know more about 

how these preservice teachers have developed varying expectations of their students, and how 

these varying expectations would shape their practice. Future research might also consider 
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further exploration of methods for evaluating preservice teachers’ expectations for their 

students’ mathematical problem-solving in algebra and might consider other expectations that 

they hold of their future students. Such research might explore how these expectations can be 

raised through interventions, when necessary. Interventions that raise preservice teacher 

expectations could lead to students’ benefitting from targeted high teacher expectations in 

mathematics teaching contexts. 
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The current paper overviews a nine-month PhD study that investigated the impact of 

learning mathematics through sequences of challenging tasks on the mathematical 

competence and attitudes of Year 2 students (n = 59). Adopting a Self-Determination 

Theory lens, a pragmatist paradigm and a mixed-method design, the study found that at 

all levels of investigation and analysis, the experience of learning through sequences of 

connected, cumulative, and challenging tasks had positive benefits for Year 2 students. 

Substantial evidence suggests that teaching mathematics through problem-solving 

approaches improves student outcomes (Schoenfeld, 2007; Sinha & Kapur, 2021). However, 

debate exists as to how early in their schooling students should be exposed to and engage in 

problem-solving approaches as part of their learning. In Australia, this issue has received recent 

attention in terms of the overall decline in both academic performance and student engagement 

in mathematics (Thomson et al., 2021). One of the key arguments in delaying exposure to 

problem-solving approaches is based on the premise that students should first develop and be 

able to demonstrate aptitude with basic skills, facts and procedures, taught through traditional 

methods, before being introduced to more complex mathematics problems (Kirschner et al., 

2006). This stance is founded on an assumption that without established foundational 

knowledge, students’ disengagement in mathematics could be exacerbated as a consequence of 

the difficulties encountered through less direct instruction (Westwood, 2011). 

Alternatively, others advocate that it is through problem-solving approaches that students 

not only construct strong foundational mathematics knowledge but also develop greater 

mathematics proficiency (Baroody et al., 2007; Schoenfeld, 2007). This perspective aligns with 

the stance that simply replicating mathematics procedures does not automatically transfer to an 

effective application of knowledge (Schoenfeld, 2007). Posing appropriately challenging tasks, 

orientated through student-centred inquiry pedagogies, has been shown to increase student 

engagement and motivation to learn mathematics with students of secondary school age 

(Boaler, 2016; Gresalfi et al., 2009). The active instructional moves used in structured inquiry 

pedagogies, such as guiding questions and the facilitation of rich classroom discussions, offered 

older students opportunities to develop reasoning skills, strategize beyond traditional methods, 

and collaborate with peers (Chan & Clarke, 2017). Given these benefits, there is a need to 

investigate whether these findings are replicated when younger students are engaged in 

problem-solving approaches implemented through structured inquiry pedagogies. 

The current study was conducted as part of a larger research project led by Emeritus 

Professor Peter Sullivan and colleagues titled Exploring Mathematical Sequences of Connected 

Cumulative and Challenging Tasks (EMC3). This project encouraged the introduction and 

implementation of sequences of challenging tasks to students in Foundation to Year 2 (5 to 8 

years old) by supporting teachers to utilise the EMC3 materials within their mathematics 

programs (Sullivan et al., 2020). The use of challenging tasks (Sullivan et al., 2015), is one 

approach to teaching mathematics that incorporates active engagement in problem-solving, 

explored through a structured inquiry pedagogy. Often posed as non-routine questions within 

authentic contexts, challenging tasks provide opportunities for students to build on their prior 

mailto:jane.hubbard@monash.edu


Hubbard 

280 

knowledge, demonstrate persistence, and develop mathematics connections by thinking flexibly 

about concepts (Sullivan et al., 2020). To date, much of the research on challenging tasks has 

focused on teacher professional development (Ingram et al., 2020; Sullivan et al., 2015) and 

student responses from the middle to high school years (Russo & Minas, 2020; Sullivan & 

Mornane, 2014). Less is known about the ways students in the early years of schooling (aged 5 

to 8 years old) respond to the experiences of learning mathematics through challenging tasks. 

While Russo & Hopkins (2017) found that Year 1 and 2 students respond positively when self-

reflecting on the use of challenging tasks in mathematics, overall research studies reporting on 

challenging tasks with children of this age is limited. 

The aim of the current PhD study was to investigate how ongoing exposure to learning 

through sequences of challenging tasks influenced the mathematical competence and attitudes 

of Year 2 students; whilst the goal of the current paper is to overview the study and share key 

findings with the MERGA community. Readers whose interest is piqued by the contents of this 

necessarily short overview are encouraged to read the full dissertation (see Hubbard, 2024). 

One overarching research question guided the study, focused on the holistic nature of 

student learning: How do sequences of connected, cumulative and challenging tasks shape 

Year 2 students’ experience of learning mathematics? However, recognising the distinctive 

attributes unique to each of mathematical competence and attitudes towards challenge, the 

following two additional subsidiary questions further supported the inquiry: 

• How does learning through the EMC3 project approach support the development of 

Year 2 students’ competence in mathematics? 

• How does learning through the EMC3 project approach influence Year 2 students’ 

attitudes towards challenging tasks? 

Theoretical Framework 

The theoretical framework Self-Determination Theory (SDT) (Ryan & Deci, 2017, 2020) 

underpinned the current study. SDT is grounded in the belief that learning outcomes are likely 

to be positive when the basic psychological needs of autonomy, competence and relatedness 

are satisfied. These needs are dynamically interconnected whereby the satisfaction of one can 

in turn satisfy another. Autonomy is generally interpreted as having a desire to carry out 

particular actions with a sense of ownership. In a learning context, autonomy is satisfied when 

experiences align with interests or values and can be impeded when actions are externally 

controlled. Competence is satisfied through associated feelings of mastery, success, and growth. 

From this perspective, a sense of competence is framed as a process of ongoing development 

and effectiveness, rather than the attainment of a particular static outcome. Finally, the need for 

relatedness is underpinned by the desire to connect with others through feeling valued and 

accepted within social environments (Ryan & Deci, 2017, 2020). 

The extent that these basic psychological needs are considered satisfied is dependent on a 

range of motivational tendencies that derive from positive or negative influences present within 

various learning conditions (Ryan & Deci, 2020). Interpreting student learning through this 

multifaceted lens aligns with key concerns of engagement and proficiency that are deemed 

critical in supporting mathematics development (Watt et al., 2017). The EMC3 approach offered 

many prospective opportunities for students to develop a sense of competence, autonomy, and 

relatedness. In particular, the use of non-routine tasks where a solution is not immediately 

apparent challenged students to transfer prior knowledge to new situations, deepening 

conceptual understanding and supporting mathematical competence. Similarly, a sense of 

autonomy within the project approach manifested through, for example, students being offered 

choices in terms of how they would like to solve tasks and represent their thinking, while many 

of the features that constituted relatedness were addressed through the suggested lesson 

structure and proposed classroom norms. Therefore, aligning SDT and EMC3 served the 
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complementary purpose of developing holistic understandings of mathematics learning in order 

to better inform the implementation of challenging tasks in the early years of schooling. 

Drawing upon the SDT literature, Figure 1 was developed to show how the design features of 

the EMC3 project are closely aligned to classroom conditions that are deemed integral for 

inducing positive motivational tendencies to enable student flourishing. It was proposed that 

using an SDT lens to investigate students’ experiences as participants in the EMC3 project 

creates an opportunity to develop greater insights into the ways learning through sequences of 

challenging tasks supports student flourishing in mathematics. 

Figure 1 

Explicit Theoretical Links Between the EMC3 Project and SDT 

 

Study Design 

This PhD study was based on a pragmatist paradigm and utilised a parallel mixed-methods 

design to investigate the holistic experiences of Year 2 students as they learned mathematics 

through sequences of challenging tasks over a nine-month period. The quantitative component 

focused on the shifts in mathematical competence and attitudes towards challenge of the Year 2 

cohort (n = 59) collected through a written mathematical assessment and attitude questionnaire. 

The process of analysing the written assessment responses resulted in the creation of a unique 

seven-point marking-key that not only identified different levels of content knowledge 

progression, but also showcased the problem-solving skills students utilised as they worked 

through the sequenced non-routine assessment items. The mathematical competence and 

attitude data from Phase 1 was combined to establish learning profile charts, representative of 

the overall influences that learning through sequences of challenging tasks had on the cohort. 

Phase 2 comprised six focus students (n = 6) that were selected from the wider Year 2 

cohort as participants for the qualitative component of this investigation. Monitoring the shifts 

in the focus students’ mathematical competence throughout the study was determined in two 

ways. The first consisted of a one-on-one assessment context where observations about 
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behavioural tendencies were documented noting the ways students worked through non-routine 

assessment items. The second interpretation of mathematical competence derived from 

classroom settings. Here, data collected from lesson observations, work samples, and interview 

responses were triangulated into learning artefacts that provided time bound insights into the 

dispositional behaviours students exhibited at different stages of challenging tasks lessons. 

Together, these insights enabled holistic interpretations of student progress that would not have 

been possible to ascertain from the analysis of single written responses or traditional assessment 

processes. 

Throughout Phase 2, students were given a variety of opportunities to self-report their 

attitudes in relation to their experiences of learning mathematics within the EMC3 context. The 

qualitative data collected included one-on-one response tasks, interviews, and lesson evaluation 

reflections, as well as behavioural observations documented throughout lessons and 

assessments. In adopting an iterative reflexive thematic analysis approach, it was possible to 

deduce clear interpretations about the ways students’ attitudes towards challenging tasks were 

influenced over the nine-month study. 

Further to this, additional in-depth case studies (n = 2) were investigated and reported based 

on the findings from the initial Phase 2 qualitative analysis. These students were selected 

according to their Phase 1 learning trajectory, developed by comparing their learning profiles 

to the Year 2 median. One of the affordances in compiling and reporting on these individual 

case studies in such depth was obtaining insights into the reflexive relationships that emerged 

between mathematical competence and attitudes that had not been possible to conclude through 

the other analysis processes conducted initially. 

Summary of the Findings 

Mathematical Competence 

Overall, the reported findings concluded that at all levels of investigation and analysis, the 

experience of learning through sequences of connected, cumulative, and challenging tasks had 

positive benefits for Year 2 students. In Phase 1, the quantitative findings reported substantial 

evidence that students developed basic mathematical knowledge and facts. Furthermore, the 

majority of students demonstrated improved problem-solving skills, and were able to 

demonstrate flexible thinking and enhanced reasoning skills. The process of creating a written 

assessment instrument that simulated the actual learning experiences of students generated 

insights into broader interpretations of mathematical competence that would not have been 

possible to achieve through the use of traditional style assessments. The quantitative analysis 

that derived from the seven-point marking-key codes not only enabled specific learning 

progressions to be identified, but also offered clear interpretations about student efficacy, 

cumulative progress, as well as future learning needs relating to higher-order thinking skills 

(see Hubbard et al., 2022). 

The Phase 2 qualitative analysis expanded on the Phase 1 findings, by including the 

dispositional behaviours students exhibited throughout the EMC3 learning experiences. This 

provided critical insights into the development of students’ problem-solving proficiency and 

reiterated there is much to interpret in-situ rather than relying on the evaluation of written 

output. Observing these behaviours throughout both individual assessment settings and lesson 

contexts generated holistic interpretations of mathematical competence that better explained 

how students utilised their mathematical knowledge and skills, rather than simply what they 

knew. The most informative of these processes occurred as a result of establishing learning 

artefacts which reflected different elements of mathematical competence that students 

demonstrated at various stages of learning. Such findings showed that when learning through 

structured inquiry approaches, students were cognisant of using particular strategies and skills 
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at different times, demonstrating how their thinking shifted as the lesson progressed. It became 

clear that there were distinct patterns between the dispositional behaviours students 

demonstrated and the comprehensiveness of their written responses when problem-solving. 

Accounting for these behaviours has not traditionally formed part of previous mathematics 

assessment processes (Hubbard, 2023). 

Self-Reported Attitudes Towards Challenging Tasks 

Through both phases of the study, the Year 2 students’ self-reported mostly positive 

attitudes towards challenging mathematics experiences. The quantitative analysis showed there 

was some evidence of improved attitudes towards challenging tasks, with the majority of 

students consistently reporting positive attitudes throughout each data cycle. However, the 

limited nature of the data collection process (student questionnaire) in this phase prohibited 

further conclusions to be drawn. 

The qualitative analysis revealed that while the focus students’ attitudes towards 

challenging tasks remained positive throughout the study, there were distinct shifts in the 

motivational origins that influenced these changes. Students reported satisfaction in learning to 

identify and overcome mistakes and could articulate how such experiences improved their 

mathematical understanding over time. The learning conditions created through ongoing and 

consistent implementation of the EMC3 project approach supported students to broaden their 

parameters as to what worthwhile and positive learning experiences entailed. As such, by the 

end of the study the focus students recognised that positive experiences for learning 

encapsulated more than superficial interpretations of success and fun. 

The Interconnectedness of Learning Pathways When Problem-Solving 

Synthesising the findings through the lens of SDT provided a means to authentically 

combine mathematical competence with student attitudes enabling the learning pathways of 

students to be interpreted holistically. Using this framework, it was possible to identify specific 

turning points in students’ learning experiences that explained the trajectory of their learning 

over the nine-month study. This process reinforced the notion that there were multiple pathways 

for students’ mathematical improvement which were contingent on more than the evaluation of 

mastery of content knowledge. 

The in-depth case studies reported in Phase 2 of the study demonstrated that even when 

students presented as having similar learning needs according to written assessments, the 

conditions that proved influential in their eventual progress varied significantly. Using the SDT 

framework it was possible to track not only the ways students’ basic psychological needs were 

being satisfied through their learning experiences, but also to identify the motivational 

tendencies that influenced students’ initial engagement. Especially noteworthy was that for both 

of the in-depth cases, the catalyst for overall mathematical improvement emphasised the 

enabling conditions that acknowledged and validated their unique preferences as learners. 

These insights are invaluable in better understanding how mathematics instruction can be 

accurately tailored to effectively support all learners to improve their capacity as problem 

solvers in ways that are holistic and student-centred. Collectively the findings summarised from 

this research raise several implications for future research and practice that are presented next. 

Conclusions, Future Research and Implication for Practice 

This current paper has served to overview a nine-month PhD study that investigated the 

experiences of Year 2 students as they learned mathematics through sequences of challenging 

tasks (see Hubbard, 2024). While the conclusions derived from this dissertation contribute to 

an understanding of the ways problem-solving approaches can be effectively implemented 

within the early years of schooling, it is also recognised they are representative of only a single 
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study conducted within a single context. As such, suggestions for further research that expand 

on the findings from this study are offered. 

Aligning the SDT literature (see Ryan & Deci, 2017, 2020) with the EMC3 project (Sullivan 

et al., 2020) to explicitly highlight theoretical links (see Figure 1) offered a unique means of 

tracking student learning pathways that accounted for their internalised motivation, attitudes 

towards challenge, and mathematical competence. There is considerable scope to conduct 

further research using this proposed framework by attending to students that present with 

alternative learning profiles to the ones presented in this study. Such analysis would enable 

greater insights into the learning conditions that support students’ self-determination 

satisfaction and enable teachers to more appropriately meet the diverse needs students present 

when they are learning mathematics through problem-solving approaches. 

Similarly, the proposed framework enabled students’ attitudes towards challenging tasks to 

be interpreted through the theoretical lens of the motivation continuum. Identifying if students’ 

internalised motivation for learning mathematics was positively or negatively orientated 

provided an additional perspective through which their experiences within the EMC3 project 

could be contextualised. Given this was reported in-depth only for the two student case studies, 

further research is recommended to verify: 

• Whether such analysis processes are feasible at a larger scale and applicable in other 

contexts (e.g., upper primary school or secondary school); 

• The extent that this process offers insights into students’ attitudes towards mathematics 

that would otherwise remain undiscernible. 

There were many findings that became apparent in only the latter stages of the study, such 

as the emergence of students’ higher order thinking skills and the noticeable demonstrations of 

their productive behaviours for problem solving. Replicating this study but extending the 

timeframe to include longitudinal data would offer the potential to gain greater insights into 

these two aspects of student learning through problem-solving approaches. Additional 

advantages of designing a longitudinal version of this study would be in the inclusion of system 

wide assessment data for comparative purposes. 

Finally, the assessment processes described in this thesis were constructed and refined as 

part of this particular study design and analysis approach. Therefore, they are considered novel 

and emergent in terms of their overall utility beyond the context of this investigation. Further 

research focusing on the assessment processes and structures generated through this study 

should endeavour to: 

• Determine the suitability of adapting the written assessment instrument and marking-

key codes beyond a Year 2 context; 

• Evaluate the utility of these instruments and processes beyond the EMC3 context; 

• Verify and refine the dispositional competence elements that are derived from the 

classroom context in order to develop practical observation guides with the aim to 

support teachers in developing and using holistic formative assessment practices. 

This research also raises important implications for both policy and practice when 

considering the affordances and constraints in introducing and sustaining effective problem-

solving approaches in the early years of schooling. Although it is beyond the scope of the 

current paper to detail all such recommendations, two key sets of implications relevant for 

education systems, schools, and teachers are outlined below. The first set pertains to the nature 

of student learning experiences in mathematics, while the second set concerns corresponding 

assessment processes. 

First, to establish and maintain supportive environments conducive to meeting students’ 

needs at various points throughout their learning trajectory, it is recommended that an ongoing 

commitment is made to regularly and consistently provide opportunities for students to 
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experience authentic problem-solving tasks as part of a balanced mathematics instruction. It is 

suggested that these problem-solving tasks are implemented through structured inquiry 

pedagogies that enable teachers to scaffold the learning experience in response to students’ 

prior knowledge, responses to feedback, and collaborative class discussions. When interacting 

with students within such structures, teachers should strive to be constructive rather than 

evaluative when responding to students’ thinking. Moreover, given that it was the ongoing and 

consistent exposure to learning through the EMC3 approach that appeared to underpin the 

recalibration of students’ attitudes towards challenging tasks, it is recommended that students 

of all abilities are provided with appropriate levels of mathematical challenge. This should 

include all students being given adequate time and space to adjust to working through a 

challenging task without direct instruction from the teacher. Doing so facilitates authentic 

opportunities to develop persistence and resilience as part of mathematics learning. These first-

hand experiences offer scope for students to develop a better appreciation of what concepts 

such as growth mindset actually entail. 

Second, to move away from outcome focused measures of achievement and towards more 

holistic interpretations of student progress, it is recommended that tiered assessment approaches 

are adopted that better reflect the holistic nature of problem-solving learning processes. In 

particular, when written assessments are used, they should preference the use of open-ended 

and non-routine items inclusive of problem-solving strategies to ascertain an accurate 

interpretation of the broad skills students apply and demonstrate as part of comprehensive 

written responses. When designed in this way, the instruments offer increased longevity and 

relevance to student learning that expands beyond evaluations of content knowledge attainment. 

As an alternative to written assessments, teachers should adopt lesson observation protocols 

that detail the nuanced but important productive behavioural tendencies students are likely to 

exhibit throughout problem-solving experiences. Utilising these observation protocols 

regularly will attune teachers into better recognising the range of behaviours students 

demonstrate at different stages of their learning process. It is important that such observation 

protocols aim to represent the variety of ways students may behave when solving problems to 

include both individual and collaborative experiences that occur frequently throughout 

structured inquiry pedagogies. Having a greater sense of what behaviours are productive and 

when serves to better inform the instructional choices of teachers in-situ, resulting in teaching 

practise that is more responsive to students’ learning needs. 
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In this paper, we present research on New Zealand secondary teachers’ perspectives of 

teaching and learning mathematics during the COVID-19 pandemic of 2020–2023. We 

use narrative analyses of interviews to explore the perspectives of eight participant 

teachers. COVID-19, and its resulting restrictions, were found to impact student-teacher 

relationships, teachers’ ability to provide mathematical explanations and support 

students’ learning, and students’ engagement and participation. 

In this paper, we focus our attention on eight New Zealand secondary mathematics teachers’ 

perspectives of the impact the COVID-19 pandemic, and the resulting restrictions, had on 

teaching and learning mathematics. Learning mathematics is a social practice and is unique in 

terms of its nature and importance, as well as students’ relationships with the subject (Ingram, 

2011). We describe how the unique features of school mathematics led to specific and unique 

challenges for mathematics teaching and learning during that period. Therefore, we shed light 

on why these features of mathematics are essential characteristics, and how teachers can best 

address them in the context of ongoing secondary mathematics teaching and learning. 

With the COVID-19 pandemic raging in other parts of the world, and with the government 

pursuing an elimination strategy, New Zealand closed its borders in March 2020 and, soon after, 

a strict lockdown was announced (Ministry of Health, 2021). This noon announcement closed 

schools immediately and teachers and students were sent home to navigate a long, initial, 8-

week lockdown, as well as subsequent lockdowns. For the next two years, despite the borders 

remaining closed until 2022, schools emerging from lockdown needed to operate through 

restrictions and increasing sickness in their school communities. During that period in New 

Zealand, an infected person had to self-isolate for 14 days with their household contacts. If 

someone else in the household contracted the virus, all had to start on day one again, meaning 

that teachers and students could be absent for weeks or even months (Ministry of Health, 2021). 

Waves of COVID-19, and resulting impacts within schools, continue at the time of writing. 

It was within this COVID-19 pandemic context that our main research project was situated. 

In mid-2023, we constructed a narrative of teaching and learning during the COVID-19 

pandemic from the perspectives of mathematics and drama teachers in New Zealand. We were 

interested in their perspectives on the ongoing educational cost of the pandemic, and the 

differences and similarities between drama and mathematics teaching and learning. All teachers 

described their work, their challenges, and accomplishments. They were flexible and creative 

in their practices and focused on their students’ well-being and learning. All teachers were 

impacted professionally and personally by the pandemic. Here, we focus on the mathematics 

teachers’ perspectives. We first explore the recent educational research related to COVID-19. 

We then outline the unique features of mathematics teaching and learning and what they mean 

for mathematics teaching practice. Then, we explain and justify our narrative inquiry research 

design. Our findings are discussed regarding the relevant literature, and conclusions reached. 

The Impact of COVID-19 on Teaching and Learning 

Despite the COVID-19 pandemic being so recent, there is a body of research that explored 

this period, emerging from around May 2020 (e.g., Capurso, 2020). These accounts offer a 

window into the beliefs, values, and attitudes of researchers and participants while situated 

within the pandemic context and provide insights into how school communities evolved. 

mailto:s.smith@utopia.edu.au
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When countries went into lockdown and schools needed to move to online teaching, a range 

of barriers to teaching and learning emerged. There was the visceral uncertainty and distress 

caused by the pandemic and people’s individual lockdown situations. The uncertainties of the 

pandemic and the fear of contracting the virus took a toll on the well-being of teachers and 

students and added to an already challenging school context (d’Agnese, 2023). During 

lockdown many schools prioritised students’ mental health, and when schools re-opened, this 

emotional support needed to be balanced with students’ academic recovery. This added to 

teachers’ responsibilities and, in turn, further impacted teachers’ own well-being (Capurso et 

al., 2020). Furthermore, the initial lockdowns and the subsequent years of sickness and 

restrictions are considered to have had a profound impact on students’ educational outcomes as 

well as teachers’ professional lives (Chaaban et al., 2021; McCluskey et al., 2021). There has 

been a particularly negative educational impact on those students who were already socially 

isolated, traumatised, or educationally disadvantaged in some way (Mutch, 2021). 

Most schools required their teachers to move online for their teaching. At least initially, 

many teachers did not have the technological knowledge and skills necessary for working 

online, and there was unequal access to digital devices and good quality internet connections. 

Furthermore, there was relatively low student engagement and participation, and a range of 

other issues such as students’ lack of camera use (Joseph & Trinick, 2021). These barriers made 

connections difficult between teachers and students and impacted learning (Akojie et al., 2022). 

For example, Walters et al. (2022), surveying 462 Welsh secondary school students found that 

student engagement, concentration, and ability to learn were significantly lower. 

The range of barriers to teaching and learning related to COVID-19 described in the general 

education literature was also evident in research that specifically explored mathematics. For 

example, Noviani (2021) described internet access, time management and eyestrain as general 

barriers to learning. However, they also noted that students’ reluctance to ask for help was a 

particular barrier to learning in mathematics during the COVID-19 period. Similarly, in the 

research of Mukaka et al., (2023), as well as confirming the pragmatic barriers to teaching 

during COVID-19, they concluded that mathematics is best taught when there is face-to-face 

guidance from the teacher. These factors are both related to students’ need for individual 

interaction and support from the teacher and are particularly relevant to existing research that 

describe mathematics as a social practice with a unique nature, which will be explored now. 

Learning Mathematics 

Learning school mathematics is a social practice that is situated in the mathematics 

classroom (Op ‘t Eynde et al., 2006). Students need opportunities to discuss mathematics, and 

seek help from others (Ingram, 2011). An effective learning environment and positive 

relationships within the classroom community are therefore important as well as the co-

construction of classroom social norms and socio-mathematical norms specific to the 

mathematical activity. Some examples of these norms are what constitutes a mathematical 

explanation, how a problem should be solved, and how students and teachers should interact 

during the classroom activity (Yackel & Cobb, 1996). Given the barriers of the online teaching 

environment necessitated by the COVID-19 pandemic, it would be a difficult context to enable 

discussion of students’ emerging mathematical ideas, and it would be difficult for students to 

seek and get help, as found in Noviani’s (2021) and Mukaka et al.’s (2023) research. 

Furthermore, mathematics is a unique school subject. According to longitudinal research of 

secondary students’ relationships with mathematics (Ingram, 2011), mathematics is more 

‘thinky’, more important, more difficult, and more disliked than other subjects. Furthermore, 

many students described their mathematical knowledge as ‘a tower’. In other words, they saw 

mathematics knowledge as cumulative and their learning of mathematics as a process of 

construction building on their existing knowledge, skills and understandings (Hantano, 2013). 
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Effective mathematics teaching therefore includes the provision of strong explanations and a 

range of strategies to support students’ learning (Anthony & Walshaw, 2009). Furthermore, 

because of the cumulative nature of mathematics, it is particularly difficult to catch up on when 

a student is disengaged or is absent and they have a gap in their knowledge (Ingram, 2011). 

Lastly, students’ engagement in mathematics—their doing of it—is synonymous to learning 

(Op ‘t Eynde, 2006). Given these perceptions and understandings, students learning 

mathematics may not have been resilient to the barriers they faced during the pandemic. 

In this research, we were therefore interested in exploring mathematics teachers’ 

perceptions of teaching and learning during the pandemic. We were attentive to the unique 

nature of teaching mathematics, and the necessity to support students’ learning and engagement 

in the subject through participation and discussion, which were impacted during the COVID-

19 pandemic. Our research questions were: 

• What were the mathematics teachers’ recollections of teaching during the COVID-19 

pandemic? 

• How did mathematics teachers support students’ learning during the COVID-19 

pandemic? 

• How were students’ engagement and participation in mathematics impacted by the 

COVID-19 pandemic, from the mathematics teachers’ perspectives? 

Research Design 

To capture mathematics teachers’ experiences and perspectives of teaching during the 

pandemic, we were informed by a narrative inquiry approach (Clandinin & Caine, 2013). 

Narrative inquiry draws from oral history, drama, psychology, and folklore traditions. 

Individuals construct their reality through the telling of stories (Chaaban et al., 2021). We lived 

alongside our participants as they shared their stories of the COVID-19 period. 

Within the main research project, there were 14 volunteer participants recruited by 

advertising through subject associations. Eight of these were mathematics teachers, who are the 

focus of this paper. The mathematics teachers’ ages ranged between 33 and 58 and they came 

from a range of rural and urban schools throughout New Zealand and had a range of years of 

teaching experience from 8 to 35 years. Pseudonyms have been used to protect their identity. 

The participants shared their stories in interviews using Zoom either as an individual or in 

a pair with a drama teacher. The interviews were conversations with a purpose, semi-structured 

and informed by the research questions. The mathematics teachers were asked about how they 

prepared to teach during the enforced lockdown due to COVID-19, and their perspectives on 

how the pandemic impacted their mathematics teaching, and their students’ learning. 

The analysis occurred in four stages. The interviews were transcribed using a transcription 

tool, Otter, and then listened to as the transcripts were checked for accuracy. These transcripts 

were uploaded into a qualitative software package, NVivo, and the data set was coded into 

categories. Codes were changed, consolidated, and reduced as understanding grew of the data. 

Through constant comparison, the analysis moved to and fro between the general and the 

specific. Once main categories were formed, these categories were developed further and 

gradually ‘teacher-student relationships’, ‘providing explanations’, ‘supporting students’ and 

‘engagement and participation’ emerged. Informed by narrative inquiry methodology 

(Clandinin & Caine, 2013), the data were ordered into a chronological narrative, structured by 

the time periods, and informed by the categories. The findings begin with this narrative. This 

narrative then provides the context for the specific focus on how teachers supported their 

students’ learning and their perspectives on students’ engagement and participation. 
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Findings 

When lockdown was announced and mathematics teachers were sent home from school, 

they needed to scramble to get ready for online learning. Fern “broke the rules, going back into 

a building to pick up a bunch of textbooks that [they] could start scanning”. Alex was allowed 

back into his school and picked up workbooks, textbooks, paper, and a small easel whiteboard. 

Sam also “stole a whiteboard at the last minute”. Frankie had no idea what to take home and 

ended up filling “half her car”. Sam had no power cord so her colleague “bashed in and picked 

it up”. These stories account for the stress the teachers were under as the country went into full 

lockdown. This stress was particularly apparent for teachers who had little or no experience 

with online learning. For example, Reese was “panicking—I didn’t know this stuff”. 

The teachers began to adapt their teaching and programmes for the lockdown. Their students 

did not have equal access to devices or consistent internet connection and, therefore, materials 

were delivered. For the students able to be online, the teachers used a variety of online tools, 

including Zoom, software from the Google suite (e.g., Meet, Classroom) or the Microsoft suite 

(e.g., OneNote, TEAMS). Fern switched her junior mathematics classes to measurement so 

students could do measuring tasks around the home. For her senior programme, Frankie 

removed several assessments, and Riley changed her topic to algebra because she perceived it 

would be easier to teach, although she “watered down what [she] would normally do”. The data 

set suggests, that due to the cumulative nature of mathematics, the students were not receiving 

the same mathematical content that they would normally get during this period, which would 

impact their mathematical knowledge and preparedness for later learning. 

Returning to face-to-face teaching after the lockdown was stressful for students and teachers 

due to a combination of unprecedented complexities, in particular, the COVID-19 restrictions 

such as physical distancing and mask-wearing. Furthermore, as the sickness spread throughout 

New Zealand, and students needed to stay home due to restrictions, absences were prolific. “My 

department got sick, I got sick, the kids were always sick” (Reese). The teachers described 

being overwhelmed by the “messy” situation (Sam). For example, Fern described the teachers 

needing to provide “in-class tuition for everyone who was there ... also the online stuff for all 

the kids who weren’t in the room, and … the staff who weren’t there”. Fern’s stress as she 

described having to cope with multiple elements during this period was still evident three years 

later when interviewed for this project. Like many teachers during the COVID-19 pandemic, 

Fern had a very young child at the time and was herself concerned about bringing the sickness 

home, attested to her professionalism and hard work during this period, especially as it came 

immediately after needing to teach from home during the stressful lockdown period. 

This brief narrative of the teachers’ experience during the pandemic has similarities to the 

literature related to teaching online. The mathematics teachers found creative solutions to keep 

students connected despite the distance. They utilised resources in the students’ homes (Yates 

et al., 2021), they delivered materials directly to students to help ameliorate unequal access to 

online learning (as in Akojie et al.’s research, 2022), and they used digital tools seen in other 

research (e.g., Joseph & Trinick, 2021). The literature is around online teaching during the 

lockdown period—this research further describes the teachers’ preparation for lockdown and 

the sheer chaos of coming back to school as sickness, and absences, grew. 

The teachers’ descriptions of teaching and learning mathematics during the pandemic 

provide context for the findings related to specific aspects of mathematics teaching. These 

include teachers’ relationships with students, providing mathematical explanations, supporting 

students’ learning, and supporting students’ engagement and participation in mathematics. 
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Teachers’ Relationships With Students 

Student-teacher relationships were under pressure during the COVID-19 pandemic. 

Already dealing with the difficult situation of the impending illness, relationships were further 

compromised due to the pressure of online learning during an emergency lockdown, and the 

unequal participation due to devices and internet connection. Furthermore, many schools did 

not require students to have their cameras on because of concerns about student privacy and the 

quality of the internet connection. When the students came back to school, the restrictions 

hindered the ability of teachers and students to rebuild positive face-to-face relationships. It 

was especially “hard to get to know the students” because of the physical distancing and mask-

wearing and because the students had begun the year only a few weeks before lockdown. 

The teachers in the study knew relationships were important for their students’ well-being 

and mathematics learning. Frankie explained, that if a mathematics teacher has a good 

relationship with their students, they are “more open to learning harder concepts” and do not 

have “walls built up as much … and are more willing to be challenged and more willing to try 

new things because they trust that you can get them through it”. They therefore worked hard to 

continue to build their relationships with the students during the pandemic. For example, during 

lockdown, Sam introduced a “weird, funny, Friday”. Frankie put “on a great show for the kids 

… because we have to teach maths to kids who don’t like maths”. Alex used “little things to 

catch their attention such as figurines, stuffed toys—a comic relief sort of thing”. Reese 

encouraged her students to arrive early for their online classes so they could chat socially on 

Zoom. Fern explained one of the most useful adaptions she made was non-content related 

sessions such as “a lot of silly, let’s paint on our selfies kind of stuff that kept them connected”. 

A clear theme was that the participants in the study underlined the need for collaboration 

and interaction among mathematics teachers and students, to foster a more relational and 

engaging online learning environment (d’Agnese, 2023; Joseph & Trinick, 2021). The COVID-

19 pandemic, both during the online period and after schools resumed, made relationship-

building complex and difficult. Consequently, student’s mathematical learning and teacher-

student relationships were compromised. The teachers’ perspectives reinforced that having 

positive student-teacher relationships make a difference to the learning environment, to the 

students’ well-being and to the quality of the students’ mathematical learning (Yackel & Cobb, 

1986). 

Providing Mathematical Explanations 

The mathematics teachers sought ways to provide mathematical explanations for their 

students. All attempted to make short content videos by recording their working in real-time as 

they talked. Fern described the awkward first days of attempting to film herself writing on a 

whiteboard with her phone using two cameras, so her students were “able to see me write and 

talk at the same time” (Fern). Other teachers used a camera attached to a computer, a camera 

focussed on the now precious ‘stolen’ whiteboards or asked their partners to hover their phones 

over a piece of paper as they wrote. Sam found a Screen Casting app on a tablet useful. The 

teachers either shared these videos in real-time and/or uploaded the recordings for the students. 

The whiteboards were essential for these teachers, and they all attested to their creativity in 

trying to capture their explanations. Except for Sam, they did not have access to a screen-casting 

app, or perhaps did not know about these apps, which are useful for recording lessons, students’ 

problem solving and mathematical working (Ingram, et al., 2018). 

Furthermore, the analysis illustrates teachers and students co-constructed new norms for 

working in the online environment. In Alex’s class they developed class norms for working 

together online. “[The students] developed their own, essentially sign language for answering 

questions, because we were doing algebra. They came up with things for factorise, bracket, x, 

and square. It was a bit easier … because … you can’t have everyone talk at the same time on 



Ingram & Wells 

292 

video”. These findings highlight how challenging it was to teach mathematics effective if the 

students’ cameras were turned off, and attest to the importance of co-constructing a learning 

environment and sociomathematical norms in the classroom (Yackel & Cobb, 1986). 

Supporting Students’ Mathematical Learning 

New ways needed to be developed to ensure students could get feedback and support from 

their teachers and peers about their mathematical learning. Frankie’s students were asked to 

submit or share work by taking screenshots and posting photos or engaging in online 

programmes. Fern asked the students to use their cameras to share their working by holding it 

up to the camera to get immediate help. She noted the students who needed the most help often 

were the ones most reluctant to hold their work up and was frustrated by this. “In a normal class 

I’d make sure I was side-by-side with these students to ensure they were getting the support 

they needed”. This is an interesting comment. Often, we talk about face-to-face learning, but in 

Fern’s case she needed more than that—she needed to be side-by-side. 

Not all students were reluctant to ask for support. Jo’s school, which only offered 

asynchronous teaching, encouraged students to be in frequent contact with their teacher. This 

was difficult because the students had an expectation “they could contact [her] any hour of the 

day and night, and [the teacher] should respond immediately” (Jo). Sam described her senior 

students as “needy” because they seemed to have learned helplessness in their constant 

questions and their need for support to work through mathematics. 

Even when school-based mathematics classes resumed after lockdown, the requirement for 

students and teachers to wear masks, and the need to be operating at a distance from each other, 

impacted their face-to-face mathematical learning. Fern could still could not get side-by-side 

students to support their learning. Sam explained that the mask wearing directly affected the 

students’ learning of the mathematical content. She noticed some students: 

Struggled to hear … and understand what’s going on. I use lip reading … when I teach. It is possible 

that the students use lip reading without realising it, so it would be much harder for them to 

comprehend and connect to take in what we are doing while wearing a mask. (Fern) 

Indeed, Sam was surprised at how much she needed to read students’ facial expressions as 

she was teaching to support her formative assessment and decision-making about her teaching. 

“You can’t read their expressions. I didn’t realise I get so much from looking at a student. It’s 

really hard … without seeing them”. Fern commented that “trying to read a confused face on a 

kid wearing a mask” was problematic. Reese agreed. “You realise how much you rely on 

reading the room because they’re all behind a mask, and you can only see their eyes … yeah, 

that was hard”. Much of the literature related to teaching and learning during the COVID-19 

pandemic was related to online learning during lockdown. 

There is little research available about mask-wearing when teaching face-to-face. 

Mathematics teachers, are constantly needing to make decisions as they teach, based on their 

minute-to-minute formative assessment, the feedback they get from students, the questions they 

are asking and the difficulties they are experiencing. It is clear from our data analysis that the 

COVID-19 period made some commonly relied-on teaching techniques difficult. The 

complexities of learning mathematics while wearing masks may also have reinforced some 

students’ perceptions of mathematics as a difficult and disliked subject (Ingram, 2011). The 

need for the mathematics teachers to be physically side-by-side their students was apparent. 

Students’ Engagement and Participation in Mathematical Learning 

According to the participants in our study, students’ engagement in mathematical learning 

and absences from class were a major problem throughout the years of the pandemic. Some 

students were able to get into a routine of online learning during lockdown, making the space 

and time work for them. Also, despite the restrictions, some students were able to connect with 
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the school environment when schools re-opened. All teachers described a large proportion of 

their students, however, who did not engage fully. They did not engage in discussion; they did 

not ask for help, and they did not consistently submit work. Some were not able to participate 

at all due to power or internet connections. Some parents did not want their children to be online 

for extended periods. Sam’s school was in a rural area and many of her students were expected 

to help on the farm. Alex’s school did not expect teachers to hold absent students to account 

due to concerns about their well-being. When schools resumed, absenteeism became even more 

rife as communities got sick and people were expected to stay home by law. 

The teachers believed the students’ well-being contributed to students’ absences and 

engagement, as they “watched students’ mental health decline” (Fern). This had an impact on 

their learning and their ways of working. Jo thought that “kids seem to have lost the importance 

of education”. They were “very slow … it’s a real struggle to get them through what we need 

to cover … and to get them to have a sense of urgency about completing tasks” In Alex’s view, 

his students struggled with self-motivation and retaining mathematical content knowledge. 

Many students were behind in their schoolwork, which further impacted their anxiety levels. 

Missing content in mathematics is a “much bigger deal” (Fern) because of the nature of the 

subject. Alex found that, after lockdown, some students, who “had not engaged at all, … were 

so far behind … [and] they didn’t want to admit they were behind”. Alex explained it was 

additionally hard to maintain relationships with students who were so far behind and feeling 

anxious about it. This was further exacerbated because teachers were asked to be more lenient 

to students about absences and assignment deadlines and therefore the return to any 

expectations that they would complete work by deadline dates would have been difficult. This 

is consistent with literature that describes the issues around leniency for work output 

expectations during the COVID-19 pandemic (e.g., Joseph & Trinick, 2021; Yates et al., 2021). 

Conclusion 

Teachers needed to deliver mathematics as effectively as possible throughout the COVID-

19 pandemic of 2020–2023, throughout the initial lockdown, subsequent lockdowns when 

schools resumed, and throughout the ensuing sickness, restrictions such as enforced absences, 

masks, social distancing, and sanitation requirements. The teachers in our research described 

the ways they were limited in their ability to deliver mathematics effectively during that period 

in terms of their relationships with their students, their ability to provide explanations, and their 

support of the students’ learning. They also described how their students’ engagement and 

participation in mathematics were impacted. 

These are the perspectives of only eight mathematics teachers in New Zealand—a limited 

number necessarily pragmatic because of the pandemic. However, richness is provided through 

descriptions of the barriers to teaching mathematics at the beginning of lockdown, in the 

stressful days before, and coming back to school. The challenges caused by the pandemic serve 

to accent the importance of the essential elements of mathematics teaching—having strong 

student-teacher relationships, co-constructing a learning environment, having strong student 

engagement, and teachers being side-by-side with students to support their learning. 
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Comprehending and Applying the First Isomorphism Theorem 
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Marios Ioannou 

This qualitative study aims to investigate novice undergraduate mathematics students’ 

first encounter with the First Isomorphism Theorem, which is, more often than not, the 

pinnacle of a typical introductory course in Group Theory. Several studies have reported 

on the challenges that this mathematical result poses to inexperienced mathematicians, 

mostly due to the numerous prerequisite abstract concepts. For the analysis of student 

responses, there has been used the Commognitive Theoretical Framework. This study 

suggests that the major challenges are due to the comprehension of the notions of kernel, 

image and isomorphism, and the application of FIT as a routine in the context of proofs. 

First Isomorphism Theorem (FIT) is usually the culminating point of an introductory course 

in Group Theory (Ioannou, 2012). FIT is a particularly important mathematical result in such 

educational context, since it is essential in Group Theory, and it is rather complex in relating 

numerous concepts in Abstract Algebra in general (Melhuish et al., 2023). This complexity is 

due to the difficulty novice undergraduate mathematics students have in comprehending 

concepts such as the quotient group, which is reportedly the most challenging concept to grasp 

in an introductory course in Group Theory (Ioannou, 2016), the cosets, which novice students 

are challenged due to their inability to visualise them (Ioannou & Iannone, 2011), and the group 

isomorphisms, together with the kernel and image (Ioannou, 2019). Therefore, this study aims 

to investigate undergraduate mathematics students’ first encounter with FIT, and report on the 

major pedagogical challenges they face. For this purpose, there will be used the Commognitive 

Theoretical Framework (CTF), proposed by Sfard (2008). Presmeg (2016, p. 423) suggests it 

is a theoretical framework of unrealised potential, designed to consider not only issues of 

teaching and learning of mathematics per se, but to investigate “the entire fabric of human 

development and what it means to be human.” It proves to be an astute tool for the 

comprehension of diverse aspects of mathematical learning, which although grounded on 

discrete foundational assumptions, can be integrated to give a more holistic view of the 

students’ learning experience (Sfard, 2012). 

Literature Review 

Abstract Algebra in general, and Group Theory in particular, is one of the most challenging 

mathematical fields for novice undergraduate mathematics students. Nardi (2000) reports that 

the grasp of the newly introduced notion of group is often an arduous task for novice students 

and causes serious difficulties in the transition from the informal secondary education 

mathematics to the formalism of undergraduate mathematics. Ioannou (2018) reports that the 

notion of subgroup, with the application of the Subgroup Test is considered another laborious 

mission to accomplish for novice students. In fact, novice students face numerous difficulties 

regarding both the comprehension and use of the notion of subgroup in the context of proofs. 

The reported challenges students face in comprehending and applying group theoretic 

concepts are partly grounded on historical and epistemological factors, “The problems from 

which these concepts arose in an essential manner are not accessible to students who are 

beginning to study (expected to understand) the concepts today” (Robert and Schwarzenberger, 

1991). Nowadays, the presentation of the fundamental group theoretic concepts including 

cosets, quotient groups, is “historically decontextualized” (Nardi, 2000, p169), since 

historically the fundamental concepts of Group Theory were permutation and symmetry. 
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Ioannou 

296 

to students who are beginning to study (expected to understand) the concepts today” (Robert 

and Schwarzenberger, 1991). Nowadays, the presentation of the fundamental group theoretic 

concepts including cosets, quotient groups, is “historically decontextualized” (Nardi, 2000, 

p169), since historically the fundamental concepts of Group Theory were permutation and 

symmetry. 

Furthermore, quotient groups and FIT are two of the most challenging topics in an 

introductory course in Group Theory (Melhuish, 2019). Mena-Lorca and Parraguez (2016) 

reported that students who used a more generalised theorem had more sophisticated 

understanding than students who relied exclusively on group theoretic notions. Rupnow (2021) 

suggests that mathematicians who have managed to link the meaning of homomorphism and 

quotient groups are much more effective in the application of FIT and the comprehension of 

proofs. Brenton and Edwards (2003) discovered that understanding quotient groups requires 

novice students to realise that a coset is both an element in a group, as well as a set by itself. In 

addition, Siebert and Williams (2003) further the significance of the notion of coset, by 

suggesting that there are three distinct interpretations, namely coset as a set, coset as element 

set combinations, and cosets as representative elements, that need to be embraced. 

Finally, a significant aspect of mathematical learning and practice at university level is the 

production of rigorous, explicit and elegant proofs, especially in the context of pure 

mathematics. Weber (2001) associates student difficulty with Group Theory with the difficulty 

to construct proofs, “when left to their own devices, students usually fail to acquire optimal 

strategies for completing mathematical tasks and often acquire deficient ones” (p. 116). Alcock 

(2010) similarly points out that learning Group Theory is challenging because of the abstract 

nature of its concepts and because it involves reading and writing proofs involving various 

learning practices and beliefs. 

Theoretical Framework 

CTF is a coherent and rigorous theory for thinking about thinking, grounded in classical 

Discourse Analysis. It involves a number of different notions such as metaphor, thinking, 

communication, and cognition (Sfard, 2008). In mathematical discourse, objects are discursive 

constructs and form part of the discourse. Mathematics is an autopoietic system of discourse, 

namely “a system that contains the objects of talk along with the talk itself and that grows 

incessantly ‘from inside’ when new objects are added one after another” (Sfard, 2008, p. 129). 

Moreover, CTF defines discursive characteristics of mathematics as the word use, visual 

mediators, narratives, and routines. 

Mathematical discourse involves certain objects of different categories and characteristics. 

Primary object (p-object) is defined as “any perceptually accessible entity existing 

independently of human discourses, and this includes the things we can see and touch (material 

objects, pictures) as well as those that can only be heard (sounds)” (Sfard, 2008, p. 169). Simple 

discursive objects (simple d-objects) “arise in the process of proper naming (baptizing): 

assigning a noun or other noun-like symbolic artefact to a specific primary object. In this 

process, a pair <noun or pronoun, specific primary object> is created. The first element of the 

pair, the signifier, can now be used in communication about the other object in the pair, which 

counts as the signifier’s only realization”. Compound discursive objects (d-objects) arise by 

“according a noun or pronoun to extant objects, either discursive or primary” (Sfard, 2008, 

p. 166). In this context, group, coset and quotient group are examples of compound d-objects. 

Other notions within the CTF, important for this study, are the rules of discourse, namely 

the object-level and the metalevel rules. Object-level rules are defined as “narratives about the 

regularities in the behaviour of the objects of the discourse” (Sfard, 2008, p. 201). In other 

words, these are rules that are directly related to the definition of the various objects, e.g., group, 

subgroup, coset, etc. Metalevel rules “define patterns in the activity of the discursants trying to 
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produce and substantiate object-level narratives” (Sfard, 2008, p. 201). In other words, 

metarules govern the process of proof of new (to novice students) mathematical results. 

Sfard (2008) describes two distinct categories of learning, namely the object-level and the 

metalevel learning. “Object-level learning … expresses itself in the expansion of the existing 

discourse attained through extending a vocabulary, constructing new routines, and producing 

new endorsed narratives; this learning, therefore results in endogenous expansion of the 

discourse” (Sfard, 2008, p. 253). In addition, “metalevel learning, which involves changes in 

metarules of the discourse … is usually related to exogenous change in discourse. This change 

means that some familiar tasks, such as, say, defining a word or identifying geometric figures, 

will now be done in a different, unfamiliar way and that certain familiar words will change their 

uses” (Sfard, 2008, p. 254). 

Finally, an important concept for the purposes of this study is the commognitive conflict, 

which is defined as a “situation that arises when communication occurs across 

incommensurable discourses” (Sfard, 2008, p. 296). Commognitive conflict is considered “a 

gate to the new discourse rather than a barrier to communication, both the newcomer and the 

old-timers must be genuinely committed to overcoming the hurdle” (Sfard, 2008, p. 282). 

Methodology 

The present study is a ramification of a larger research project (Ioannou, 2012), which 

conducted a close examination of Year 2 undergraduate mathematics students’ learning 

experience in their first encounter with Abstract Algebra. The course was taught in a research-

intensive mathematics department in the United Kingdom. It was a mandatory course, and a 

total of 78 students attended it. The course was spread over 10 weeks, with 20 one-hour lectures 

and three cycles of seminars in weeks 3, 6 and 10 of the semester. The role of the seminars was 

mainly to support the students with their coursework. There were 4 seminar groups, and the 

sessions were each facilitated by a seminar leader, a full-time faculty member of the school, 

and a seminar assistant, who was a doctorate student in the mathematics department. All 

members of the teaching team were pure mathematicians. The course assessment was 

predominantly exam-based (80%). In addition, the students had to hand in a threefold piece of 

coursework (20%) by the end of the semester. 

The gathered data included the following: Lecture observation field notes, lecture notes 

(notes of the lecturer as given on the blackboard), audio-recordings of the 20 lectures, audio-

recordings of the 21 seminars, 39 student interviews (13 volunteers who gave 3 interviews 

each), 15 members of staff’s interviews (5 members of staff, namely the lecturer, two seminar 

leaders and two seminar assistants, who gave 3 interviews each), student coursework, markers’ 

comments on student coursework, and student examination scripts. For the purposes of this 

study, which uses only the student solution artifacts, there have been analysed the data gathered 

from the thirteen volunteers. The interviews, which covered a wide spectrum of themes, were 

fully transcribed, and analysed with comments regarding the mood, voice tone, emotions and 

attitudes, or incidents of laughter, long pauses etc., following the principles of Grounded 

Theory, and leading to the “Annotated Interview Transcriptions”, where the researcher 

highlighted certain phrases or even parts of the dialogues that were related to a particular theme. 

Furthermore, coursework and examination solutions were analysed in detail, after the data 

collection period, using the CTF, and mostly focusing on issues such as students’ engagement 

with certain mathematical concepts, the use of mathematical vocabulary and symbolization, 

and the application of discursive rules. 

Finally, all emerging ethical issues during the data collection and analysis, namely, issues 

of power, equal opportunities for participation, right to withdraw, procedures of complaint, 

confidentiality, anonymity, participant consent, sensitive issues in interviews, etc., were 

addressed accordingly. 
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Data Analysis 

The First Isomorphism Theorem was introduced by the lecturer as follows: Suppose 𝐺, 𝐻 

are groups, and 𝜑: 𝐺 ⟶ 𝐻 is a homomorphism. Then 𝐺
𝑘𝑒𝑟𝜑⁄ ≅ 𝑖𝑚𝜑. There were two 

mathematical tasks that required the use of the FIT, one in the coursework and one in the final 

examination, as shown below. 

Figure 1 

Coursework Exercise on the FIT 

 

Figure 2 

Examination Exercise on the FIT 

 

Twelve out of thirteen (12/13) students’ solutions indicated problematic engagement with 

FIT. There were strong indications of problematic application of the governing metarules of 

this routine by the majority of students. As mentioned before FIT is the pinnacle of an 

introductory course in Group Theory and students are required to overcome any object-level 

learning issues in order to be able to successfully apply the governing metarules that are 

required in the application of FIT as a routine. In what follows, we analyse a number of 

representative examples of the three types of errors that occurred in the student solutions. 

Complete object-level learning of the involved d-objects, such as kernel, image and 

isomorphism, is of vital importance for successfully applying the FIT. For instance, as Figure 3 

indicates, Student A’s object-level learning of the notion of isomorphism appears to be 

incomplete and therefore he is still unable, to apply FIT successfully. 
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Figure 3 

Student A’s Coursework Solution 

 

Here appears a typical example of a commognitive conflict. The notation 
𝐺

𝑘𝑒𝑟𝜑
≅ 𝐼𝑚𝜑 is 

treated as an algebraic equation in which Student A has applied cross-multiplication, i.e., 𝐺 ≅
𝐼𝑚𝜑𝐾𝑒𝑟𝜑. This is an erroneous metaphor from elementary algebra that indicates an incomplete 

object-level learning of the concepts of isomorphism, kernel and image, and therefore it reveals 

a typical situation which arises when communication occurs across incommensurable 

discourses, in this case elementary to abstract algebra. Student A has not realised that 𝐺/𝑘𝑒𝑟𝜑 

is a mathematical structure and the symbol ≅ does not refer to equality relation but to bijective 

relation. His object-level and metalevel learning of the d-objects of kernel and image is also 

incomplete and consequently he is still not able to use FIT effectively. He has not realised that 

𝑖𝑚𝜑 is a subgroup of 𝐻 and that 𝑘𝑒𝑟𝜑 is a normal subgroup of 𝐺. 

Albeit asked to, Student B failed to properly state FIT in the final examination, since she 

did not provide the definitions for image and kernel. Possibly, failing to define kernel, image 

and stating FIT suggests that her object-level learning of kernel and image of a group is 

incomplete when applied in a more advanced context such as the FIT. The third part of her 

solution, involving the definition of a suitable homomorphism, reinforces the claim that she is 

still not able to effectively use the FIT. Her attempt to solve the last bit is fragmental and lacks 

linear reasoning and structure. 
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Figure 4 

Student B’s Examination Solution 

  

A third type of errors regarding the application of FIT occurred Student C’s coursework 

solution. Her attempt to solve this exercise has several problems, especially in the third part 

regarding the FIT. She correctly states that the image of the homomorphism is the group 

𝐺 itself, and therefore it is an isomorphism, but she does not mention anything about the kernel. 

This possibly suggests an incomplete object-level learning of the d-object of isomorphism, and 

in particular relating to the fact that one has to prove that a homomorphism needs to be both 

injective and surjective in order to be an isomorphism. Moreover, her solution indicates that 

she is not aware of the importance of the fact that the order of 𝑔 is finite. Her narratives are not 

explicit, possibly indicating an incomplete metalevel learning of the involved routine as well as 

problematic application of the governing metarules. She does not seem to realise that the kernel 

in this case is 𝑑𝒁, and the reasoning behind that. 

Figure 5 

Student C’s Coursework Solution 
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In Student C’s examination solution, we can identify several problems. First of all, she has 

not properly stated FIT, but instead she wrote the mathematical expression 
𝐺

𝐾𝑒𝑟𝜑
≅ 𝐼𝑚𝜑 without 

any further explanation. The definition of image is problematic, since instead of writing 𝐼𝑚𝜑 =
{𝜑(𝑔): 𝑔 ∈ 𝐺} she stated 𝐼𝑚𝜑 = {𝑔 ∈ 𝐺: 𝑔 ∈ 𝐻}. This probably indicates that she has an 

incomplete object-level learning of the definition of image and its elements. In addition, her 

narratives suggest that she is not fully aware yet of what she is writing mathematically. In part 

(c), her solution lacks explicitness, reflecting her problematic engagement with FIT, indicating 

incomplete metalevel learning of the particular routine, as well as imprecise application of 

‘norms’ required for proving in this advanced mathematics course. The marker wrote the 

comment “Confused”, which he rarely does in the examination solutions. Student C’s 

performance in the exams indicates a decline regarding the application of FIT. 

Figure 6 

Student C’s Examination Solution 

 

Conclusion 

First Isomorphism Theorem is, more often than not, the pinnacle of an introductory course 

in Group Theory. Its difficulty is due to several reasons. First, it is due to the fact that FIT relates 

numerous abstract theoretical concepts (Melhuish et al., 2023). These concepts include the 

quotient group (Author, 2016), which is the most challenging of all fundamental group theoretic 

concepts in an introductory level, the coset, which is often an obstacle due to students’ difficulty 

to visualise it (Author & Iannone, 2011), and the group isomorphisms, together with the kernel 

and image (Author, 2019). The current study has analysed students’ engagement with FIT. 

The analysis has shown that the great majority of students have faced significant challenges 

with its application, with these challenges being of both object-level and metalevel nature. 

These challenges have been exemplified by using three representative examples which have 

repeatedly occurred in the solutions of many students. The first challenge was associated with 

the incomplete object-level learning of relevant mathematical concepts such as the kernel, 

image and group isomorphism. This challenge is relevant to the second one, which, according 

to the analysis, leads to metadiscursive level issues and the successful application of FIT, 

indicating that without full object-level learning of these notions it is almost impossible to apply 

the governing metarules successfully. Finally, the third challenge indicates a deeper difficulty 

with the notion of isomorphism, which emerges from the incomplete object-level learning of 

the notion of homomorphism, and the special characteristics that make homomorphism to be 
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an isomorphism, namely being injective and surjective. These interesting results require further 

investigation in order to comprehend more deeply these challenges, and hopefully make Group 

Theory, and Abstract Algebra in general, more approachable to our students. 
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Big Ideas can be seen as overarching concepts that occur in various mathematical topics 

and strands within a syllabus. Within our project on Big Ideas in School Mathematics, 

we developed instruments to measure two Big Ideas: Equivalence and Proportionality. 

The instruments we developed seek to assess students’ ability to see these Big Ideas as 

common ideas connecting within and across topics, and their ability to apply these Big 

Ideas in solving problems. In this paper, we discuss the development of items for these 

instruments. 

Big Ideas can be described as “a statement of an idea that is central to the learning of 

mathematics, one that links numerous mathematical understandings into a coherent whole 

(Charles, 2005, p. 10)”. It would be reasonable to describe Big Ideas as overarching ideas that 

cut across topics. This follows from NCTM (2000) which highlighted the importance for 

teachers to “understand the Big Ideas of mathematics and be able to represent topics as a 

coherent and connected enterprise” (p. 17). In the most recent mathematics syllabus in 

Singapore (MOE, 2018a & 2018b), a significant addition is the explicit introduction of the need 

to teach towards Big Ideas. It defines Big Ideas as key ideas that “bring coherence and show 

connections across different topics, strands and levels” (MOE, 2018a). While the concept of 

Big Ideas in Mathematics has received increasing attention over recent years (NCTM, 2000; 

Charles, 2005; MOE, 2018a & 2018b), there is little research so far on the assessment of Big 

Ideas in Mathematics. One possible reason may be the varied definitions of what a Big Idea in 

Mathematics is. For our study, we adopt Charles’ (2005) definition of a Big Idea as stated 

earlier. Knowing whether students can make connections between numerous understandings 

can help teachers improve their pedagogies and teaching approaches. However, there is 

currently little research done in developing instruments that can assess the ability to see 

connections using Big Ideas. Hence, the ability of students in Singapore to see the 

connectedness across and within topics using Big Ideas is a guiding principle in our study. This 

paper presents the development of an instrument to measure the Big Ideas of Equivalence and 

Proportionality. 

While there are studies on the assessment of Big Ideas like Equivalence (Warren & Cooper, 

2009; Fyfe et al., 2018; Niemi et al., 2006), and Proportionality (Carpenter et al., 1999; Izzatin, 

2020), assessing students’ ability to connect across or within topics was not evident. To fill this 

gap, our instrument is developed with the focus on assessing students’ ability to apply 

Equivalence and Proportionality thinking to solve mathematical tasks and to elicit students’ 

ability to ‘see’ connections across these tasks using Big Ideas. 

Principles in Item Design 

Our design of the items for the instruments is guided by two of the three characteristics of 

Big Ideas as detailed by Hsu et al. (2007): (a) connect different parts of the curriculum under 

the umbrella of Big Idea; and (b) be a basis for understanding other topics. To achieve a 

measurement of (a), a multi-part assessment item was developed. This multi-part structure is 

mailto:jahangeer.jahabar@nie.edu.sg
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partly motivated by Niemi’s (2006) PowerSource instrument which assesses students’ ability 

to see Equivalence in algebra. 

In this paper we focus on the assessment items measuring two Big Ideas: Equivalence and 

Proportionality. There are studies that explore and unpack Big Ideas in greater detail. For 

example, Fyfe et al. (2018), focused their study on the symbolic understanding of equivalence, 

i.e., the understanding of the equal sign, while Cook et al. (2022) provided three interpretations 

of equivalence, viz., Common Characteristics, Descriptive and Transformational. For 

Proportionality, Carpenter et al. (1999) identified four levels of proportional reasoning 

development, Özgün-Koca and Altay (2009) identified three types of proportional reasoning 

problems, and Izzatin (2020) identified five levels in the proportional reasoning process. Some 

studies went in depth into fine-grain details of Big Ideas such as proportional reasoning down 

to the detail of cross multiplication (Chin et al., 2022). 

However, in the development of our items, we focus on tasks that require students to apply 

any forms or levels of Equivalence or Proportionality thinking while simultaneously teasing out 

their ability to see connections across tasks (Jahangeer et al., 2023). Thus, we define 

Equivalence as a relationship that expresses the equality of two mathematical entities and 

realises the potential of an easier solution/understanding of one entity by converting it to the 

other entity. We operationalise this definition to our Equivalence items by the statement: In this 

item, Entity 1 is equivalent to Entity 2, the equivalence of which usually enables the problem 

to be solved in an easier manner. (For example, 29 + 13 is equivalent to 30 + 12; the latter is 

easier to solve.) 

We define Proportionality as “a relationship that expresses the direct variation of two 

mathematical entities and realises the potential of an easier calculation of one entity by knowing 

the value of the other entity”. We operationalise this definition to our Proportionality items by 

the statement: In this item, Entity 1 is proportional to Entity 2, the proportionality of which 

usually enables one entity to be calculated from the other by multiplicative reasoning. (for 

example, if 𝑦 = 3𝑥 + 7, then when 𝑥 increases by 7, 𝑦 will increase by 3 × 7 = 21). 

We developed two separate instruments, one for each Big Idea. They are to be administered 

at two different levels: Primary (Grades 5 and 6); and Secondary (Grades 7 and 8). The items 

that we created to assess each Big Idea satisfy the operational definition of the Big Idea. Each 

item serves to assess students’ ability to see the connections across the parts of the item through 

the Big Idea. The tasks of each item cover concepts either within or across topics in the 

Singapore school syllabus. 

Example 1 shows a mathematics task that requires students to use Equivalence to solve: 

Example  1: Ali had $220, and Colin had $310. After each of them bought an identical pair of 

sneakers, Colin had thrice as much money as Ali had left. How much did the pair of sneakers cost? 

Equivalence is established using the operational definition by stating that Entity 1 is “the 

difference in the money Ali and Colin had at the beginning” and Entity 2 is “the difference in 

the money Ali and Colin had at the end”, and that Entity 1 is equivalent to Entity 2: 

Example 2 (Figure 1) is another task which shows how the operational definition ensures that it is 

valid for Equivalence. In this task, the shaded region (Entity 1) is equivalent to the numerical 

expression 1 + 2 + 3 + 4 + 5 + 6 + 7 (Entity 2). The shaded region is half of the rectangle, which can 

be easily calculated to be 7 × 8. Thus, the numerical expression is equivalently (7  8) ÷ 2. 

For Proportionality, we consider Example 3 and Example 4 (Figure 2). In Example 3, the 

line shown is of the form 𝑦 = 𝑚𝑥, in which 𝑦 varies directly with 𝑥, i.e., 𝑦 is proportional to 𝑥. 

In Example 4, the line is of the general form 𝑦 = 𝑚𝑥 + 𝑐. While 𝑦 is not proportional to x, the 

change in 𝒚 is proportional to the change in 𝒙. Hence, Example 4 still satisfies the operational 

definition of Proportionality and is included as one of the mathematical tasks for the instrument 

on Proportionality. 
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Figure 1 

Example 2 

 

Figure 2 

Example 3 and Example 4 

 

Item Design 

A typical item (Figure 3 is one such example measuring the Big Idea of Equivalence) 

consists of four tasks and two sets of reflection questions. The item parts are presented in the 

following order: Task 1, Task 2, Task 3, Reflection A-1, Reflection A-2, Task 4, and Reflection 

B. 

Recall that we define a Big Idea as an idea that is central to the learning of mathematics, 

one that brings both coherence and connections ‘within’ and ‘across’ topics. The task shown in 

Figure 3 is an example which seeks to elicit students’ ability to ‘see’ connections ‘across’ 

topics. The functionality of the task to assess Big Idea thinking across topics is as described in 

the proceeding paragraphs. 

In Task 1 shown in Figure 3, students are supposed to find the shaded area, which is the 

area of the parallelogram. The shaded area can be found by finding the difference between the 
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two unshaded areas and the larger rectangle. Note that the two unshaded areas can be put 

together to form a smaller rectangle. The equivalence here is the area of the two trapeziums 

(Entity 1) and the area of the smaller rectangle formed by joining the two together (Entity 2). 

Students at this stage have not been introduced to finding the area of trapeziums and 

parallelograms as it is not within the syllabus requirements for Grades 5 and 6 in Singapore. 

Figure 3 

A Complete Item for the ‘Big Idea of Equivalence’ 

 

In Task 2, students are asked to find the difference in the number of cards left between the 

two persons. It will be easy if the actual number of cards given away by each person is known. 

Since the amount at the start is known, the quantity at the end can be easily calculated and the 

difference found. However, the actual quantity given away is not mentioned. Since both persons 

give away an equal number of cards, the difference they have in the end (Entity 1) is equivalent 

to the difference they have at the beginning (Entity 2). It is easy to find the difference at the 

start with a known number of cards each person has. 

Similar to Task 2, in Task 3, the difference in money they have in the end (Entity 1) is 

equivalent to the difference they have at the beginning (Entity 2). In this instance, both persons 

are now given the same amount of money. 

Before attempting Task 4, students are asked Reflection A-1 and Reflection A-2. The two 

reflection questions require students to look for the common idea used to solve the first three 

tasks. In the first task, students could realise that it is easier to solve when they can find two 

entities that are equivalent. Thinking along the same idea of equivalence, the student could 

again look to see if the next two tasks can also be solved using equivalence. As Tasks 2 and 3 

are in topics chosen from the syllabus that we know are familiar to students at that level, the 
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students are expected to be able to see that the tasks could also be solved by comparing two 

entities that are equivalent. Once the connection (the common idea used for all three tasks) is 

established, students are then given Task 4 to solve. 

Task 4 is generally unfamiliar to most students. Students who have made the connections 

carry over the same idea to try to find two entities that are equivalent. Here, the Big Idea of 

Equivalence is the bridge that connects the solution process to solve the previous three tasks 

with Task 4, i.e., looking for two entities that are equivalent. The more able (in that Big Idea) 

students will realise that the difference between the lighter and shaded regions (Entity 1) is 

equivalent to the difference between the larger and smaller squares (Entity 2), as the shaded 

regions are obtained by removing the same unshaded regions from both squares. It is easier to 

find the difference between two squares than the difference of two irregular shaded regions. 

In explaining the example above, we make the assumption that students are encountering 

the item, consisting of the tasks and reflection questions, for the first time. When doing a second 

item, students may already start to look for connections of ideas between the first three tasks. 

As a second example, we shall look at an item developed for assessing the Big Idea of 

Proportionality as shown in Figure 4. In Task 1, students are required to find the value of 𝑘 by 

analysing the straight-line graph given. As the line cuts through the origin, students could 

conclude that the equation of the line is of the form 𝑦 = 𝑚𝑥, in which y (Entity 1) is proportional 

to 𝑥 (Entity 2). Analysing the graph, students could notice that an 𝑥 value of 2 results in a value 

of 8 for y, indicating that y is four times the value of 𝑥, i.e., 𝑦 = 4𝑥. With this observation, the 

value of 𝑘 can be easily obtained by multiplying 5 by 4 to obtain the answer 20. 

We shall proceed to elaborate how students are likely to answer Task 2. A secondary school 

student would be familiar with tasks of this nature as the topic of speed is part of the primary 

mathematics syllabus in Singapore. Recalling their prior knowledge, students will focus their 

attention on the speed given and know that the distance covered by Tom from Town C to Town 

B (Entity 1) is directly proportional to the time taken (Entity 2). The student could then obtain 

the distance of 12 km. However, to answer the problem posed, students will need to add the 

distance, 2 km, of Town C from Town A. We postulate that the more able (in the Big Idea of 

Proportionality) students would see the similarity between the two parts, in which the solution 

is based on the equation of a straight line, 𝑦 = 𝑚𝑥 + 𝑐. For Task 1, 𝑐 = 0 and for Task 2, 𝑐 = 2. 

Continuing to Task 3, we postulate that the more able (in the Big Idea of Proportionality) 

students would see that the value of 𝑦 is related to the value of 𝑥 by the equation 𝑦 = 4𝑥 + 2, 

and that Task 3 is similar to both earlier tasks. While 𝑦 is not directly proportional to 𝑥, the 

change in 𝒚 (Entity 1) is directly proportional to the change in 𝒙 (Entity 2). Arriving at 

Reflection A-1 and A-2, where they are prompted to look for the common ideas across all three 

parts, able students would be able to see that connecting across all these parts is the Big Idea of 

Proportionality. We postulate that the ability to see this connection will positively prime them 

with an efficient approach to solve the task in Task 4 later. 
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Figure 4 

An Example of an Item (Without the Reflection Questions) to Assess the ‘Big Idea of Proportionality’ 

That Shows Connections Across Topics 

 

When presented with Task 4, students could try to see if the Big Idea of Proportionality 

would be helpful in their solving process. Upon analysing the information given, a properly 

primed and able student should be able to see that the right-hand-side of equation 3 and the 

right-hand-side of equation 4 are twice those of equations 1 and 2 respectively. Students will 

use Proportionality to deduce that the values of 𝑎 and 𝑏 (Entity 1) will also be twice the 

solutions of equations 1 and 2 (Entity 2), resulting in the value of 48 for 𝑎 and 200 for 𝑏. 

Figure 5 is an example of an item meant for secondary school students under the Big Idea 

of Proportionality which elicits students’ ability to see connections ‘within’ topics, in this 

example, the topic of rate. Tasks 1 and 2 involve direct proportion. Students use simple 

straightforward multiplicative reasoning to solve these tasks. Task  3 seems to require 

knowledge of inverse proportion. At these grade levels, the students are not yet introduced to 

inverse proportion. However, the task can be solved using direct proportion if the students can 

break down the task into parts. If we fix the number of days, then the number of workers 

(Entity 1) is proportional to the number of houses (Entity 2). We can obtain the fact that 36 

workers will build 
36

60
 of a house in 180 days. If we now fix the number of workers, then the 

number of days (Entity 1) is proportional to the number of houses (Entity  2). We can finally 

obtain the fact that 36 workers will build one house in 180 × 
60

36
 days. Task 4 will be 

administered after the students have answered Reflections A-1 and A-2. Able students will see 

the common idea of proportionality and attempt to solve Task 4 by using proportion to find the 

number of chairs the five carpenters can make, and the number of chairs the other two carpenters 

can make separately and then combine them to obtain the answer. 

Discussion 

At this point in the research, we have created four sets of instruments, each containing eight 

items: two instruments for the primary level (Grades 5 and 6) and two instruments for the 

secondary levels (Grades 7 and 8). The two instruments for each level are for the Big Ideas of 

Equivalence and Proportionality separately. All tasks for each item have been carefully 

designed such that one has to typically use either Equivalence or Proportionality to solve them. 

Task 4 requires a higher cognitive demand as the task is typically unfamiliar to the students. 
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Figure 5 

An Item (Without the Reflection Questions) for the ‘Big Idea of Proportionality’ That Shows Connections 

‘Within’ Topics 

 

It may be possible for students to have answered correctly the first three tasks of each item 

based on their strong topical knowledge. However, we believe the first set of reflection 

questions will help students seek out the Big Idea among the first three tasks. We believe that 

the first set of reflection questions, Reflections A-1 and A-2, will trigger the students to ‘see’ 

that Task 4 can be solved using the same Big Idea. However, we acknowledge that (i) students 

may be able to obtain the correct answer by applying the correct Big Idea for the unfamiliar 

Task 4 but not see the connections between tasks (seen from their ‘wrong’ answers in the 

Reflection); and that (ii) students may be able to solve Task 4 using a different approach than 

that which we anticipated. Firstly, the proportion of students who can solve the task correctly 

but are not able to make the connections can give us valuable feedback on the current state of 

mathematics understanding. Such students have a good grasp of mathematical concepts but do 

not see mathematics as a connected whole. The findings can provide valuable feedback to 

teachers on how to modify their pedagogical approaches to help students see the connections. 

For the second case, we believe that such responses will be but a few and more of an exception 

rather than the norm. We shall explain this by referring to a typical mathematics assessment as 

an analogy. An item in a mathematics assessment is included to test a certain mathematics 

concept or process. The marking scheme for the item would be created based on typical 

responses expected. However, there will be responses that are atypical and the student’s 

performance is scored using a different marking scheme without questioning the validity of the 

item. This is acceptable as the number of such atypical solutions are usually very small 

compared to the population. Similarly, while we acknowledge that there will be correct 

responses obtained by applying a different strategy or concept, the low occurrence of such cases 

can allow us to ignore its impact on the overall item analysis. In addition, our Task 4s have 

been designed such that a brute force computational approach would be time-consuming and 

inefficient. 

The instrument, being 8-item long, requires a long duration for the students to complete. 

When we piloted two of the items to about 230 primary and secondary students, the mean time 

taken by the students was about 30 minutes. Thus, an eight-item instrument will require a 

duration of at least 120 mins. The time taken to administer the instruments developed will be a 

challenge as an assessment this long will take away precious curriculum time required for 

teaching and learning. At the same time, we risk reducing the validity of the data collected as 
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students may experience fatigue completing the assessment or may decide not to perform to 

their ability due to the perceived fatigue of completing the lengthy assessment (Ackerman & 

Kanfer, 2009). A proposed solution will be to consider splitting the instrument into testlets and 

adopting a matrix design instead. We will be able to elaborate on this in a longer paper. 
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This study elaborates on the pivotal roles of mathematical and statistical models in data-

driven predictions in an integrated STEM context using the case of Year 4 students: (ⅰ) 

a descriptive means to describe the features of trends and variability of data and (ⅱ) an 

explanatory means to explain causal relationships behind data. These roles are linked to 

models in other STEM subjects (i.e., prototypes and scientific models) and the 

application and development of STEM content knowledge. The results contribute to a 

better understanding of the role of mathematics/statistics in STEM education. 

Predictions are found everywhere in life, society, and science. During the global COVID-

19 pandemic, daily data on the number of positive cases, severe cases, and deaths were 

published in graphs and tables, and it became routine to keep track of the current infection 

situation and predict future waves of infection. Data-driven prediction by using data, 

mathematics, statistics, and interdisciplinary knowledge to predict and validate complex and 

uncertain events is indispensable for today’s citizens and societies (e.g., Geiger et al., 2023). 

To provide a vehicle and platform for such data-driven predictions, modelling processes 

involving the generation, evaluation, and revision of mathematical models (deterministic 

representations) and statistical models (non-deterministic/stochastic representations) in data-

rich interdisciplinary contexts are gaining attention in Science, Technology, Engineering and 

Mathematics (STEM) education from a mathematics education perspective (e.g., English, 

2023). However, the literature does not clearly explain how and to what extent students use 

mathematical and statistical models for data-driven predictions in an integrated STEM context. 

Unravelling the pivotal roles of mathematical and statistical models in STEM education 

offers two advantages for research and practice. First, it could elaborate on and advance the role 

of mathematics/statistics in integrated STEM education (English, 2016) as well as in 

mathematics curricula, such as ACARA (2022) and MEXT (2018), which emphasise 

mathematical modelling, statistical investigation, and STEM education. Second, it has 

implications on developing students’ epistemic knowledge about the nature and role of models 

and representations in STEM disciplines, which are essential for STEM competencies (Tytler, 

2020). Therefore, this study elaborates on the roles of mathematical and statistical models in 

data-driven predictions in an integrated STEM context using the case of Year 4 students. 

Conceptual Framework 

Data-Driven Prediction 

The potential for introducing data-driven prediction from the primary school years has been 

identified by mathematics and statistics education research. Informal statistical inference (ISI), 

in which trends and variations in unknown data are predicted and generalised without adopting 

formal statistical procedures and methods, is actively studied since primary school years (Makar 

& Rubin, 2018). For instance, Oslington et al. (2023) highlighted primary school students’ 

predictive reasoning as part of the ISI with representations of patterns such as seasonal trends 

and variability in data to predict temperature using tables, line graphs, and bar graphs. 

Moreover, data-driven predictions are important in an integrated STEM context. Watson et 

al. (2023) conducted statistical investigations using ISI and technology with primary school 



Kawakami & Saeki 

312 

students in a STEM context, revealing their representations, predictions, and understandings of 

variation. English (2023) implemented modelling involving data-driven predictions with 

mathematics and statistics for primary school students in an integrated STEM context. It 

explored how they applied multidisciplinary knowledge of mathematics, statistics, and science 

through predictions. Aridor et al. (2023) proposed a framework to describe the interactions 

between statistical reasoning, scientific reasoning, and the nature of scientific understanding 

using the case of citizen science. 

Research (Aridor et al., 2023; English, 2023; Oslington et al., 2023) suggests that it is 

essential to use deterministic reasoning flexibly, based on mathematical models and non-

deterministic/stochastic reasoning, through statistical model use, to consider data from multiple 

perspectives and make more reliable predictions for better decision-making. Non-

deterministic/stochastic reasoning raises awareness of the limitations of human decision-

making and provides an opportunity for critical reflection. Conversely, deterministic reasoning 

is required when predicting maximum certainty or controlling for uncertainty by seeking 

conditions that reduce variability. However, few research has demonstrated the roles of 

mathematical and statistical models in data-driven predictions in an integrated STEM context. 

Interdisciplinary Data-Driven Modelling and Functions of Mathematical and 

Statistical Models 

We adopted interdisciplinary data-driven modelling (IDDM) considering mathematical and 

statistical models in data-driven predictions in an integrated STEM context (Kawakami, 2023a, 

2023b; Kawakami & Saeki, in press). The IDDM generates, validates, and revises mathematical 

and statistical models and models in other STEM subjects (science, technology, and 

engineering) based on data/context to make better predictions (Kawakami & Saeki, in press). 

Data have a structure comprising a deterministic aspect (signal) focused on exact numbers and 

causal explanations with certainty and a non-deterministic/stochastic aspect (noise) focused on 

uncertainty and variability (Innabi et al., 2023). A model refers to a representation of the 

structure of a given system and a reflection of the modeller’s series of interpretations of an 

object (Hestenes, 2010). A mathematical model refers to a representation of the signal inherent 

in the data, reflecting the modeller’s deterministic interpretation of the data and context 

(Kawakami, 2023b). A typical example is the linear model y = ax+b (a and b are parameters), 

where the value of the variable y can be determined if the value of the variable x is determined. 

A statistical model refers to a representation of the noise inherent in the data, reflecting the 

modeller’s non-deterministic/stochastic interpretation of the data and context (Kawakami, 

2023b). A typical example is the linear model y = ax+b+ε (a and b are parameters), where the 

value of the variable y cannot be determined even if the value of the variable x is determined 

and distributed by a random error ε. Models in other STEM subjects involve modellers’ 

representations and interpretations of data, which are relevant to big ideas in STEM disciplines 

(Kawakami & Saeki, in press), such as scientific models (e.g., motion models of a falling body 

and structural models of seeds) and engineering models (e.g., scale model/prototypes). 

Mathematical and statistical models describe phenomena and explain their prediction 

mechanisms. Ärlebäck and Doerr (2020) showed that models serve as descriptive means and 

explanatory means. The former is a function of understanding and describing the behaviour of 

events. The latter is a function of explaining the structure of events and the mechanisms of their 

structure in a unified and comprehensive way and elucidating why events behave as they do. 

They pointed out that a unified explanation of several events using the same model leads to the 

idea of generalisation, and it is necessary to combine several models with different perspectives 

to provide a comprehensive explanation of a single event. 

Additionally, the descriptive and explanatory functions of mathematical and statistical 

models are essential in an integrated STEM context. To build a causal narrative about why a 
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phenomenon occurs, Baptista et al. (2023), who identified the core features of a reasonable 

explanation for a STEM problem, required students to describe what was happening in a given 

scenario (by summarising patterns in the data), make connections between observations and 

mathematical or statistical models, and use scientific ideas. Thus, mathematical and statistical 

models are expected to contribute to data-driven predictions in an integrated STEM context 

through IDDM by describing and reading the signal and noise characteristics in the data and 

explaining them in a unified and comprehensive manner (Table 1). 

Table 1 

Functions of Mathematical and Statistical Models that Could Contribute to Data-Driven Prediction 

Functions Descriptions 

Descriptive means Mathematical and statistical models, such as graphs and statistics, provide an 

external representation of the signal and noise characteristics inherent in data, 

providing an understanding of how the data behaves 

Explanatory means Mathematical and statistical models, such as graphs and statistics, provide a 

unified and comprehensive explanation of the signal and noise characteristics 

inherent in data, providing an understanding of the behaviour of data and the 

mechanisms and causal relationship of events behind the data 

Given the theoretical framework of the functions of the mathematical and statistical models 

in Table 1, we formulated and addressed the following research question: 

• Considering the model functions of descriptive and explanatory means, how do students 

use mathematical and statistical models when making predictions through IDDM? 

Research Design 

Setting, Participants, and Context 

To answer the research question, we used data from the IDDM practice implemented in 

Year 4, where students used mathematical and statistical models and models in other STEM 

subjects for data-based predictions. An overview of this practice is given in Kawakami and 

Saeki (in press); however, this study is substantially different from our previous work in that it 

analyses the role of models in data-driven predictions in practice. 

The participants were students (n = 30) from a Year 4 class (aged 9–10 years) in a public 

primary school in Japan. They had learned about bar graphs, line graphs, and two-dimensional 

tables. However, they were unaware of representative values, dot plots, and histograms. The 

practice comprised nine 45-minute lessons in mathematics and cross-curricular enquiry classes 

and addressed the Seed Dispersal Task (Figure 1), incorporating data-driven predictions into 

Fitzallen et al.’s (2019) seed dispersal material for integrated STEM education. 

Figure 1 

Seed Dispersal Task (Partial) 

 

The goal of the task was to redesign the shape of the buckleya lanceolata seed (Figure 2a) 

to maximise flight time. After several experiments that measured the flight times of seed 

prototypes that behaved similarly to the seeds when they fell (Figures 2b and 2c), the sub-task 

involved predicting trends in flight times with the prototype shape as a variable and validating 

the predictions with real data. In the sub-task, the students generated mathematical and 

The buckleya lanceolata seeds (Figure 2a) come in various sizes. The speed at which they fall seems to 

vary depending on the seeds. Therefore, how can the flight time of the seeds be increased? 

Sub-task: After several experiments with the seed prototype (Figure 2b) to measure the flight time, 

predict what will happen to it if the slit length of the prototype is varied, as shown in Figure 2c. After 

making a prediction, validate it through experiments. 
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statistical models (e.g., line graphs) and models in other STEM subjects. For example, the 

students interpreted data trends deterministically and stochastically in relation to seed prototype 

size, weight, and shape as engineering models. Students also generated scientific models of the 

motion of a falling body under air resistance and the structure and function of the seeds. 

Figure 2 

Buckleya Lanceolata Seed and the Seed Prototypes (Photos Taken by Shohei Chiba) 

a)  b)  c)  

To answer the research question, we focused on a sub-task involving prediction. In the 

lessons, before working on the sub-task, the students experienced dropping prototypes with 

vertical lengths of 15 cm and 20 cm and predicted the change in flight time as the vertical length 

increased, by drawing line graphs on the worksheets. After making predictions, they collected 

data on the flight times of the prototype with longer vertical lengths, plotted the datasets on a 

line graph, and compared the predicted graph with the actual data to validate their predictions. 

In the sub-task, the students collected data by experimenting with the flight time of a 

prototype with a fixed vertical length and slit lengths of 3 cm, 6 cm, and 9 cm (Figure 2c). Then, 

they plotted these data online graphs and presented their predictions regarding the change in 

flight time when slit length increased. They drew line graphs on the worksheet and calculated 

the differences in the data (Prediction). Once the predictions were made, they collected data on 

the flight time of the prototype with a further increase in slit length, plotted the data on a line 

graph, and validated their predictions by comparing the predicted graph they made with the one 

containing the actual data (Validation). 

Data Collection and Analysis 

We analysed 30 students’ worksheet excerpts in the Prediction and Validation activities and 

used a post-class interview protocol for complementary analysis. The prediction intention could 

also be written in the validation statement; therefore, it was included in the analysis. These data 

were analysed in three coding phases to answer the research question. The first author 

performed these coding phases, and the second author validated them. The differences in 

interpretation between the two authors were discussed until an agreement was reached. The 

analyses were revised as necessary. 

In Phase 1, we identified and coded the mathematical and statistical models generated in 

the sub-task based on the framework of our study. In this analysis, the exact representation was 

not taken absolutely but relatively as a mathematical or statistical model depending on the 

student’s intention to create and interpret the representation. For example, if a student 

interpreted a line graph deterministically, the model was taken as mathematical; if interpreted 

non-deterministically or stochastically, the model was taken as a statistical one. 

In Phase 2, we examined whether these models’ functions were descriptive or explanatory, 

based on Table 1, and coded them accordingly. In this analysis, the descriptions of the features 

of the trends and variability of the flight time data were judged as the emergence of the 

descriptive function. The use of the models to explain the causal relationship that changes flight 

time and its consistency with the results of previous experiments was judged as the emergence 

of the explanatory function. 

In Phase 3, we disaggregated the interdisciplinary aspects of students’ descriptive or 

explanatory use of mathematical and statistical models, focusing on the inclusion of models in 
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other STEM subjects (i.e., engineering models such as prototypes and scientific models such as 

the air resistance model). 

Results 

To varying degrees, all participating students used a line graph as either a mathematical or 

statistical model to predict the flight times of seed prototypes. Considering the functions of the 

mathematical and statistical models (Table 1), we classified students’ use of mathematical and 

statistical models into three types (Table 2). 

Table 2 

Types of Mathematical and Statistical Model Use (n = 30) 

Types Mathematical model Statistical model # (%) 

1 Descriptive means N/A 5 (17%) 

2 Descriptive and explanatory means N/A 20 (66%) 

3 N/A Descriptive and explanatory means 5 (17%) 

Type 1 comprised students who used a mathematical model as a descriptive method. 

Students belonging to this type used the line graph only as a means of reading trends (signal) 

in the already collected data, but only superficially read the graphs (e.g., “As the flight time 

was rising, I thought it would continue to rise”). 

Type 2 comprised students who used a mathematical model for descriptive and explanatory 

purposes. This was the most common type. Students belonging to this type used line graphs as 

a means of reading trends (signals) in the already collected data and also as a means of asserting 

the reasonableness of predictions. They explained the causal relationship between the changing 

flight time and consistency with experimental results for different horizontal lengths using the 

different slopes of the graphs. Figure 3 shows an example of the Type 2 model use, 

demonstrated in a worksheet by Hata (student pseudonym), where on the left is a line graph of 

the real data and their prediction, and on the right is the reason for the prediction. They described 

the relationship between feather length and flight time from a line graph of the experimental 

results before the vertical length was stretched (“In the previous experiment of stretching the 

vertical length, if the length was stretched too far, the flight time became shorter”). 

Additionally, they explained why the slope of the flight time graph varied based on the 

prototype (e.g., “the weight of the prototype remained the same, so I thought the graph would 

not drop too steeply”). 

Figure 3 

Descriptive and Explanatory Use of a Line Graph as a Mathematical Model From Hata’s Worksheet 

 

Note. Black graph: Predictive data; Red graph: Real data; Horizontal axis: Prototype slit length; Vertical axis: 

Flight time. 

Type 3 comprised students who used a statistical model as a descriptive and explanatory 

means. Students belonging to this type used line graphs as a means of reading variability (noise) 

In the previous experiment of stretching the vertical length, if the 

length was stretched too far, the flight time became shorter, so I 

thought that if the slit was made too long, the flight time would 

become shorter. But the weight of the prototype remained the same, 

so I thought the graph would not drop too steeply. Moreover, I 

thought that the lower part of the prototype would become too short 

and the leaf (wing) part too long, so it wouldn’t fly very well. …I 

thought that the graph would fall gradually, because the part of the 

prototype that is in contact with the wind would become larger. 
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in the data already collected and also as a means of asserting the reasonableness of predictions. 

Figure 4 shows an example of the Type 3 model used, demonstrated in a worksheet by Aki 

(student pseudonym). They described variability in the flight time from a line graph (“the flight 

time increased between 0.20 and 0.39 s”) and utilised it to make predictions with an awareness 

of the range of values (“the flight time would also increase with a further increase in slit length, 

roughly between 0.20 and 0.39 s”). Referring to the geometry of the prototype, they also 

explained in a unified way the results of previous experiments with different vertical lengths 

and the results of the current experiments with different slit lengths (“The reason for lowering 

the graph at the end was the same as in the previous experiment with different vertical lengths: 

I thought that the longer the slit, the faster it would fall”). 

Figure 4 

Descriptive and Explanatory Use of a Line Graph as a Statistical Model From Aki’s Worksheet 

  

Note. Black graph: Predictive data; Red graph: Real data; Horizontal axis: Prototype slit length; Vertical axis: 

Flight time. 

The interdisciplinary aspects (i.e., engineering and science relevance) in students’ 

descriptive and explanatory use of mathematical and statistical models are shown in Table 3. 

Table 3 

Interdisciplinary Aspects in Students’ Use of Mathematical and Statistical Models 

Roles Mathematical model # Statistical model # 

Descriptive 

means  

Engineering relevance  N/A  

Understanding trends (signal) in the 

data in relation to the prototypes  

2   

Exploratory 

means 

Engineering relevance  Engineering relevance  

Explaining the data trends (signal) 

using information from the 

prototypes  

20 Explaining reasons for varying flight 

times (noise) using information from 

the prototypes  

5 

Science relevance  Science relevance  

Explaining the data trends (signal) 

using informal scientific knowledge 

of air resistance 

4 Explaining reasons for varying flight 

times (noise) using informal 

scientific knowledge of air resistance 

1 

Explaining the data trends (signal) 

based on observations from the 

experiment 

1   

Note. Statements that applied to more than one category were counted. 

Twenty-five students used mathematical and/or statistical models to make engineering 

and/or science-related predictions. Regarding descriptive means, the students used the 

Since the flight time increased between 

0.20 and 0.39 s, I predicted that the flight 

time would also increase with a further 

increase in slit length, roughly between 

0.20 and 0.39 s. The reason for lowering 

the graph at the end was the same as in the 

previous experiment with different vertical 

lengths: I thought that the longer the slit, 

the faster it would fall. 
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prototypical context to read trends (signals) in the graphs. They described the length of the 

wings and the weight of the prototype by replacing the line graph variable from the flight time 

with the weight of the prototype. As for the explanatory means, the students used information 

from prototypes (i.e., volume and weight remained the same, balance of form, and centre of 

gravity), informal scientific knowledge of air resistance, and observations from the experiment 

with prototypes to explain the data trends (signals) and reasons for varying flight times (noise). 

For instance, Hata explained data trends by relating a prototype’s weight, shape, and informal 

scientific knowledge of air resistance to the slope of a graph (Figure 3). In both mathematical 

and statistical models, the explanatory means were more explicitly related to engineering 

(particularly prototypes) and science than the descriptive means. 

Discussion and Concluding Remarks 

This study addressed some aspects of Year 4 students’ data-driven predictions in an 

integrated STEM context, taking the descriptive and explanatory functions of models as 

perspectives. We discuss two findings regarding this research question. 

First, all the participating students consciously or unconsciously used mathematical or 

statistical models for descriptive and explanatory purposes (Table 2). In line with Oslington et 

al. (2023), mathematical and statistical models helped students recognise the patterns and 

structural features of data to support their predictive reasoning. However, more than half of the 

students tended to use mathematical models only for descriptive and explanatory purposes. This 

may be because the primary school students involved in this study were mainly exposed to 

mathematical models rather than statistical models in their everyday mathematics lessons 

(MEXT, 2018), and they have difficulty understanding complex variations (e.g., Watson et al., 

2023). The fixed form of the line graph representation used for predictions might have further 

triggered the generation of a mathematical model (cf. Oslington et al., 2023; Watson et al., 

2023), thereby indicating that more research is necessary to examine students’ use of the 

statistical model in data-driven predictions. 

Second, 80% of students connected mathematical or statistical models to other STEM 

subjects (Table 3). As seen in the case of Hata (Figure 3), mathematical or statistical models, 

when connected with models in other STEM subjects (i.e., prototypes and scientific models), 

describe the characteristics of the data and also provide explanatory power for the causal 

relationships behind the characteristics of the data (i.e., the reasons why flight time varied). 

Through these explanations with models, students’ own scientific hypotheses and 

interdisciplinary knowledge—linking mathematics and engineering or science—are 

constructed (Figures 3 and 4), leading to the development of epistemic knowledge (Tytler, 

2020). This finding provides evidence of the need for multiple models in demonstrating 

explanatory power (Ärlebäck & Doerr, 2020) and an example of a reasonable explanation in an 

integrated STEM context (Baptista et al., 2023). 

The findings of this study that data-driven predictions in an integrated STEM context, 

including IDDM (Kawakami & Saeki, in press), could contribute to the development of STEM 

content knowledge in justifying predictions as well as their application. On the one hand, data-

driven predictions contributed to other STEM subjects by encouraging the generation of 

students’ scientific hypotheses and interdisciplinary knowledge through the process of using 

models as explanatory tools in prediction. On the other hand, other STEM subjects contributed 

to data-driven predictions by making sense of the data and models and strengthening the validity 

of predictions. These findings extend English’s (2023) results, which revealed students’ 

application of multidisciplinary knowledge, and advance the role of mathematics/statistics in 

STEM education as well as in the mathematics curriculum as more than just a service subject 

(e.g., ACARA, 2022; English, 2016; MEXT, 2018). These findings are based on a case study 

of the activity of a single prediction in the Seed Dispersal Task. A future step is to analyse in 
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detail the teacher’s role in promoting student predictions as well as the relationship between the 

development of students’ predictions through the task and how they use mathematical and 

statistical models. 
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Mathematics anxiety and examination anxiety affect student well-being, engagement, 

and performance in the mathematics classroom. An increase in confidence in the 

mathematics classroom leads to a decrease in anxiety. This paper reports on the Five 

Question Approach (FQA) to teaching mathematics which provides teachers with a 

method of reducing these anxieties. This case study draws on data collected in three 

Australian secondary classrooms using the FQA as an intervention. Findings indicate 

that when added to normal classroom practice, the Five Question Approach alleviated 

these anxieties to some extent and increased engagement and academic performance. 

Mathematics anxiety is a significant issue for many students and varies from other anxieties 

as it is specific to mathematics (Li et al., 2021). Much research has been conducted on 

mathematics anxiety in both teachers and students, with some research providing suggestions 

to assist in the alleviation of mathematics anxiety, including reinforcement activities, time for 

students to develop understanding, class discussions, formative assessment, timely feedback, 

and linking the level of difficulty of the questions to the students’ level of understanding 

(Passolunghi et al., 2016; Pizzie et al., 2020; Russo et al., 2020). This paper proposes that the 

Five Question Approach (FQA) may be a pedagogical strategy that could not only reduce 

mathematics anxiety and examination anxiety but also increase engagement and academic 

performance in the mathematics classroom. 

Literature Review 

Mathematics Anxiety 

Mathematics anxiety is a feeling or an emotional response to the challenge of completing a 

mathematical task, and it often takes the form of irregular breathing (Allen & Stambaugh, 

2023). There are many definitions of mathematics anxiety, but it is accepted to be a feeling of 

fear, apprehension, and tension that negatively influences a student’s ability to solve 

mathematical problems (Justicia-Galiano et al., 2016; Li et al., 2021). Mathematics Anxiety is 

specific to mathematics content, is separate from other anxieties, and can occur before the 

student commences the mathematical task (Moustafa et al., 2021). Students suffering from 

mathematics anxiety may not attend mathematics classes or avoid selecting classes that involve 

mathematics (Justicia-Galiano et al., 2016) 

There is a discussion on which comes first, the mathematics anxiety or the poor 

performance; whatever the direction, an increase in performance through greater confidence 

could result in a reduction in mathematics anxiety (Fernandez-Blanco et al., 2023; Rossi et al., 

2022). Mathematics anxiety reduces working memory by diverting cognitive resources away 

from procedural execution thus reducing the students’ ability to solve mathematical problems 

(Girelli et al., 2000). Interventions like deep breathing exercises and positive affirmation can 

reduce mathematics anxiety and a change to teaching that allows students to correct conceptual 

misunderstandings, practice procedural skills with a view to automatisation, and solve problems 

in groups could also reduce mathematics anxiety (Allen & Stambaugh, 2023). Achievement, 

engagement, and enjoyment of mathematics are all impacted by mathematics anxiety, and 

improving students’ mathematical skills is essential for a reduction in mathematics anxiety (Li 

et al., 2021). As the FQA is designed to improve achievement, engagement and the enjoyment 
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of mathematics then this paper suggests that the FQA may then potentially reduce mathematics 

anxiety. 

Five Question Approach (FQA) 

Mathematics anxiety is heightened by many factors but crowded curriculum and restrictive 

time to develop understanding without personalised assistance are major issues (Ma & Xu, 

2004; Mann & Walshaw, 2019; Putwain & Wood, 2023; Wang, 2024). Many current NSW 

mathematics classes use a traditional teaching approach with a prevalence of teaching 

mathematics with procedural questions, little opportunity for problem solving, a restrictive 

linear delivery of curriculum and not revisiting any student problem areas (Sullivan, 2011). The 

FQA was designed by the author to allow teachers to take small steps towards a change in 

practice without completely changing their entire approach to teaching. The FQA evolved as a 

means of not just consolidating procedural knowledge but also developing conceptual 

knowledge and increasing student confidence and engagement. The FQA does not replace the 

teacher’s normal lesson but is meant to be one of the tools at the teacher’s disposal to potentially 

increase positive learning outcomes and student confidence, thus potentially reducing 

mathematics anxiety. The FQA varies from the traditional teaching approach as multiple 

opportunities are provided over a period of time for students to consolidate their mathematical 

understanding of previously taught content areas and procedures, with a focus on building 

confidence, problem solving and conceptual understanding. 

The FQA consists of four procedural questions and one conceptual question. The questions 

are presented at the commencement of the lesson and a new set of five questions are provided 

every lesson. The basis for the first four questions being of a procedural nature is threefold. 

Firstly, they are designed to develop procedural fluency, to decrease the load on working 

memory when problem solving potentially reducing mathematics anxiety (Mann & Walshaw, 

2019). Secondly, they are developed from previously encountered material as direct revision 

and consolidation, aligning with the view that reinforcement activities reduce mathematics 

anxiety (Mehmet & Hulya, 2021). Thirdly, they are used to prepare students for future content 

areas by providing the procedural basis for future topics. The first four questions are usually 

based on one question from the previous lesson, two questions from previous content areas, and 

one question preparing for upcoming topics. The purpose is to provide time for the students to 

revise and develop understanding and confidence in all content areas. The procedural questions 

are not decontextualised right/wrong questions but the questions are carefully chosen based on 

student areas of difficulty as perceived by the teacher. Often, they are chosen from material that 

the students should have understood from previous classes or that they have not had time to 

fully understand. This aligns with the research by Mehmet & Hulya (2021) where a lack of 

understanding from a previous class was a significant factor in mathematics anxiety along with 

teachers not completing reinforcement activities. Putwain and Wood (2023) state that 

individualised learning matched to the student, while possibly difficult in the classroom can 

result in a decrease in mathematics anxiety. The first four questions are designed to address 

these issues through careful selection based on student needs. The complexity and degree of 

difficulty of the first four questions are progressively increased as student understanding 

increases using repetition with variation (Rohrer et al.,2020), thus providing reinforcement of 

the areas of student difficulty. 

The fifth question is an open-ended conceptual problem-solving question on any topic that 

provides the opportunity for a deeper understanding of that concept which could result in a 

decrease in mathematics anxiety (Ma & Xu, 2004). By providing opportunities for students to 

discuss their solutions to question five with multiple strategies for solution may reduce 

mathematics anxiety (Mann & Walshaw, 2019). Students are required to complete the questions 

in order, from one to five, to ensure that they do not omit the questions that they were less 
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confident in or, did not want to do. While the students are attempting the questions, the teacher 

moves about the room, providing assistance, if required, and giving positive diagnostic 

feedback. The one-on-one interaction between the teacher and the student is a factor that may 

reduce mathematics anxiety (Mehmet & Hulya, 2021). As the questions are based on student 

need every application of the FQA is a formative assessment opportunity with immediate 

diagnostic feedback, which may reduce mathematics anxiety (Wang, 2024). 

The table shows an example of the FQA for the Year 8 class and includes the purpose of 

the question relating to the FQA description. The students only receive the question. 

Table 1 

Sample Five Questions 

1 Write 35 : 20 as a ratio in simplest form: A revision question 

2 Find 17 ½ % of $540: Preparation for the next topic 

3 Solve 5 − 3x = 2x − 10: A revision question 

4 Find the length of the hypotenuse in a right-angled triangle with sides of 8 cm and 11 cm: Current 

topic 

5 Write 5 scores that have a mean of 4, a median of 3, and the mode is not 3. How many solutions are 

possible? Add another aspect that will reduce the number of solutions: Revision and consolidation 

Given that students work and learn at different speeds, the first four questions are selected 

so that the majority of students can complete them successfully within the time allocated by the 

teacher. The purpose is to develop procedural fluency, assist in developing understanding, and 

increase student’s level of confidence, thereby potentially reducing their mathematical anxiety 

(Mehmet & Hulya, 2021). Question five may be superficially answered by some students and 

deeply investigated by those completing questions one to four more quickly, allowing for 

differentiation in the classroom. While the teacher usually gives the answers to the first four 

questions, students are selected to present their solutions to question five to the class, providing 

the opportunity for students to learn from each other (Mann & Walshaw, 2019). Students with 

a superficial answer would be selected first and then students with a more extensive answer, 

allowing all students the option of presenting solutions over time. 

The first four questions in the FQA have the questions increase in difficulty and complexity 

as students show that they understand the method of solution or solutions. The questions are 

not chosen to foster rote learning but to provide an opportunity to use memorisation, repetition 

with variation, and spacing to consolidate required mathematical skills, and to connect with 

other areas of knowledge (Rohrer et al., 2020). The teacher must make decisions about how 

often a question is repeated from lesson to lesson before the level of difficulty is increased. It 

is the level of knowledge of the individual student and the class group that must be considered 

by the teacher in the progress of question development (Pawley et al., 2005). By using this 

approach, there is an attempt to make the learning personalised within the classroom 

environment, which may assist in reducing mathematics anxiety (Putwain & Wood, 2023). For 

example, the equation questions in the FQA example would have begun as one-step equations, 

moved to two-step, and then continued as the student’s competence increased to the equation 

given in question three. 

While moving about the room the teacher will support any students that may still require 

assistance as the questions are being attempted so that all students are successful. Student 

success then builds confidence, and as a result, may increase student engagement and 

potentially reduce mathematical anxiety (Carey et al., 2016; Putwain & Wood, 2023; Skemp, 

1989). The repetition of questions and the development of greater complexity at a rate tailored 

to student needs, through the FQA, provides students with success and positive feedback every 

lesson and as such provides an opportunity for both confidence and competence to grow. 

According to Skemp (1989), when students are working within their region of competence 
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(domain), they feel confident and secure. When working outside of this region they may feel 

frustration and anxiety. The FQA allows students to gradually move to the limits of their region 

of competence and beyond by using a careful selection of questions to gradually extend 

students’ mathematical knowledge and competence beyond their Zone of Proximal 

Development (ZPD) (Vygotsky, 1978). 

Methodology 

The FQA was introduced to the participating classes as an intervention designed to improve 

engagement, academic performance, enjoyment of mathematics and reduce mathematics 

anxiety. As the FQA requires time to be effective, data was collected from two schools over a 

school year. Focus group discussions with students, teacher interviews, and classroom 

observations were used to collect qualitative data on perceived academic performance, 

enjoyment of mathematics and levels of mathematics anxiety, at the end of terms 1, 2, 3, and 4. 

The examination performance of each student was analysed using data from the end of year 

examination in the previous academic year, compared with the half yearly and yearly 

examinations in the current academic year. 

Contexts 

Two Catholic Systemic schools both with seven graded mathematics classes in each year 

level 7 to 10 were chosen for data collection. Both schools graded their mathematics classes 

based on the students’ results in the yearly examination of the previous academic year, with 

potential student movement based on half yearly examination performance. 

School 1 allocated the second-highest graded Year 8 class, taught by two teachers who 

shared the class: one working three days and the other two days per week. While both teachers 

were mathematics trained, they both had less than five years of teaching experience. School 2 

provided a Year 9 and a Year 10 class, which was the fifth-ranked graded class. Both teachers 

were mathematics trained with more than ten years of experience. 

Data 

All teachers received two days of training in the FQA at the beginning of the year. There 

were four follow-up half days during the year where fine-tuning of the writing of the questions 

and the application of the approach took place along with the teacher interviews. During the 

first three weeks, the teachers emailed the five questions daily for feedback. Quantitative and 

qualitative data on academic performance, engagement, anxiety level, and attitude to 

mathematics were collected. The quantitative data was collected by comparing the rankings of 

each student in comparison with all of the students writing the examination at that year's level 

compared with each student’s ranking in the year level in the previous year’s final examination. 

A student with a higher ranking would indicate academic improvement. 

The qualitative data was collected through classroom observations, teacher interviews, and 

student focus group interviews which took place four times during the year. For each 

participating class the teacher selected a sample of six students from the class and they 

participated in the focus group discussions. The sample was stratified by selecting female and 

male students across a broad range of academic performance, engagement, and mathematics 

anxiety levels based on the teacher’s knowledge of the students. All teachers had been at their 

current school for at least two years and had general knowledge of most students. The level of 

engagement and mathematics anxiety, at the commencement, was based on the classroom 

teachers’ perception of the students. The Year 8 class engagement ranged from disengaged to 

highly engaged while the Year 9 and 10 classes ranged from highly disengaged to moderately 

engaged. The student focus group sample for each class along with their rankings in the final 

examination of the previous year is shown in Table 2. 
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Table 2 

Focus Group Student Name and Rank Details 

Year 8 Year 7 rank 

(out of 177) 

 Year 9 Year 8 rank 

(out of 180) 

 Year 10 Year 9 rank 

(out of 180) 

Brenda 53  Jim 121  Allan 107 

Sue 39  Allie 137  Joe 92 

Corey 46  Shane 148  Sonia 136 

Ella 37  Gina 102  Alison 115 

Gemma 73  David 164  Sara 106 

Lewis 25  Steven 133  Evan 139 

There were four focus group meetings of one hour duration and the focus group questions 

were written beforehand. The questions centred around the students’ perceptions of their 

mathematical ability, how the teaching and learning in their class was different from the 

previous year, how they felt about the five questions, any change in their level of engagement 

or enjoyment of mathematics, the level of stress or anxiety they felt about mathematics and the 

examinations and their perceived academic performance. The questions were used as a stimulus 

for discussion. The questions in the teacher interviews were similar and the discussion was 

extensive usually taking one hour for each teacher. 

Findings and Discussion 

The FQA allowed teachers that have not used problem solving strategies to slowly introduce 

these into their day-to-day teaching. The discussion around the fifth question was found to be 

the beginning of using student voice in the classroom. All teachers described how allowing 

students to explain their solution strategies for question five resulted in an improvement in 

understanding for some students and could reduce mathematics anxiety (Wang 2024). 

As students are continually revising materials, through repetition with variation, providing 

reinforcement to reduce anxiety (Mehmet & Hulya, 2021), their level of confidence increases 

along with their success in class, and this has the effect of reducing their mathematical anxiety 

and particularly their examination anxiety (Mann & Walshaw, 2019). Most of the students in 

the focus groups for Year 9 and Year 10 classes initially stated that they had little confidence 

in mathematics, were not good at it, and found the classes stressful, but these aspects made a 

positive change over time. The students in the Year 8 focus group mostly felt confident about 

their mathematical abilities and related that to the fact they were in the second highest class in 

the year level. 

Teacher Perceptions 

All three teachers made comments about the increase in confidence and the reduction in 

stress and anxiety of the students as the school year progressed. The classroom observations, 

taken four times during the year confirmed the teachers’ comments as the students were 

observed to be more interested and engaged in their learning and there was a significant positive 

change in the engagement of students overall. Many behavioural issues such as disruptive 

behaviour, students making negative comments about the material in class, and refusal to 

attempt questions decreased in the Year 9 and 10 classes. While the Year 8 class was always 

very compliant, there was a noticeable increase in engagement, which was evidenced by more 

students offering to provide answers and an increase in the number of students willing to present 

their solutions to the class. The opportunity for the teachers to spend additional time focussing 

on the problem areas as identified in class or at the end of a topic allowed additional time for 

the students to develop understanding, possibly reducing anxiety (Mehmet & Hulya, 2021). The 

level of engagement was directly observed to have increased through the classroom 
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observations, and the student and teacher interviews provided additional confirmation. 

According to the Year 10 teacher, when discussing the yearly examination, “They built their 

confidence, and they were more prepared for the examination as they now had more confidence 

in mathematics.” The teacher meant, when stating they were more prepared, that the students 

were both academically and emotionally ready, and she felt, from the student feedback from 

the examination, that they were also less anxious. 

Student Perceptions 

The focus group students commented that the additional time spent on questions after the 

topic had officially been completed enabled them to have sufficient time to develop their 

understanding thereby increasing their confidence and reducing anxiety. The focus group 

students stated that the opportunity to continually revisit problem areas until they understood 

made them less anxious about mathematics and the examination (Mann & Walshaw, 2019; 

Mehmet & Hulya, 2021). The Year 8 focus group students felt that the FQA was significant in 

their improved results. Gemma said, “The five questions helped me get through the exams and 

achieve a higher mark.” Ella, “I answered all the questions and when unsure, thought back to a 

similar question in the five questions” 

In the first Year 9 focus group interview, David expressed that he was not good at 

mathematics; it made him stressed, and he wasn’t interested. In the final focus group, he said, 

“It’s making [me] a lot more confident and more—what’s the word—engaged in it now. I can 

study easier, and with the five questions, it makes it a lot easier for me to be ready for the exam” 

By stating he was less stressed, David is indicating a decrease in anxiety. 

The Year 10 final focus group had many comments about the examination as they had 

received their results and were quite pleased. Allen said, “The five questions helped me be less 

stressed about the exam because I knew I had a revision in the five questions.” Evan said, “It 

feels like an exam when you are doing them (FQA) so you’re not stressed when you are going 

into the exam.” The comments from both students indicated a reduction in mathematics and 

examination anxiety as a result of the FQA. 

Academic Improvements 

Many of the Year 9 and 10 focus group students indicated that they did not like mathematics 

and found the classes stressful, indicating a high level of anxiety. All of the classes in the study 

made significant academic improvements for many of the students, along with an increase in 

engagement and enjoyment, possibly indicating a reduction in any anxiety. The Year 9 class 

comprised the same students from the Year 8 class in the previous year and was taught by the 

same teacher. While there are many factors affecting student performance, the biggest change 

for this class and this teacher was the introduction of the FQA. When comparing the rankings 

from the Year 8 yearly with the Year 9 yearly examination thirteen students showed significant 

improvement, three of whom were ranked three classes higher. Three students improved 

slightly, with two staying the same and three performing below expectation. Considering that 

as a student moves up, then a student performing the same but previously ranked higher will 

move down one place, it is possible that all students except one showed improvement. The 

Year 10 class had a similar level of academic improvement. 

The Year 8 class had nine students ranked in the top 20 in the yearly examination, indicating 

significant academic improvement. Twenty students performed above expectations, and eight 

performed below expectations. 

Following the Year 8 half yearly examination two students, Gemma and Sue were moved 

up into a class taught traditionally, and one student, Zelda moved down into the class using the 

FQA. Zelda was added to the final focus group interview to provide the view of someone 

moving into the class using the FQA. Zelda made this statement about the FQA, “it (FQA) gives 
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you confidence in the fact that you have already learnt it” and made this comment about the 

yearly examination, “I think it (FQA) made a huge difference … quality not quantity was 

important … I think it is very helpful.” Both Sue and Gemma felt that the lack of FQA in their 

new class was a significant factor in their poorer performance in the yearly examination. Their 

rankings in the half-yearly and yearly examinations are displayed in Table 3 

Table 3 

Half-Yearly and Yearly Year 8 Rankings 

Student Year 7 yearly ranking Year 8 half yearly 

ranking 

Year 8 yearly ranking 

Gemma 73 7 67 

Sue 39 7 52 

Zelda 29 63 5 

Sue, who moved from the class using the FQA to one that didn’t, made this comment that 

indicates a significant increase in anxiety when not in the class utilising the FQA: 

While I was in the exam, I skipped so many questions and ended up coming back to them, and I was 

freaking out because I thought I knew what I was doing. I just didn’t have any of the confidence I 

had doing the last exam, it was just a lot of stress; but I never had any of that in the FQA class. 

Conclusion 

The FQA made a difference in the anxiety levels, academic performance, and engagement 

of many students. It is well documented that the traditional teaching approach as discussed 

earlier has some challenges with student engagement and enjoyment. Traditional teachers 

follow a linear scope and sequence that sets the order of topics and the time allowed to complete 

each topic usually with concentrated revision before examinations. The restricted time frame 

of the linear scope and sequence restricts the time students have to develop an understanding 

of each topic. This may exasperate the anxiety level of many students. The FQA could change 

how traditional teachers teach by revising topic areas after they have been completed in the 

linear scope and sequence allowing additional time for students to develop their understanding 

and introducing problem solving style questions into the classroom. This change in teaching 

approach may then result in a decrease in mathematics and examination anxiety for some 

students. Students in a classroom using the FQA have shown improvement in perceived 

academic performance, engagement, and enjoyment and the quantitative analysis shows an 

increase in academic performance. 

Given the factors mentioned earlier concerning achievement, engagement, and enjoyment 

it has been shown that the FQA can enhance all three factors so it could be that the FQA may 

contribute to a reduction in mathematics and examination anxiety. Further research specifically 

targeting mathematics anxiety and the FQA may be beneficial. 
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The profound advancements in technology have rendered novel forms of data and data 

visualisation increasingly accessible to individuals within society, thereby influencing 

daily decision-making processes. To address this change, this study sets out to review 

recent research on data-driven inquiries at the K–12 level from two perspectives: 

innovative data visualisation and non-traditional data sources. Our findings indicate that 

transnumeration of multiple data representations, along with data moves throughout the 

process of data visualisation, can potentially enhance the development of visual 

reasoning and data modelling skills. 

Over the last two decades, there has been an increasing and ongoing demand for data-

literate citizens who are capable of using data as sound evidence to make decisions on a wide 

range of topics (Engel, 2017). Data literacy, which can be broadly described as “learning to 

read and write the world with data” (National Academies of Sciences, Engineering and 

Medicine, 2023, p. 5), is not only a requirement for entering into the workforce but also a 

requisite skill for navigating everyday life. One approach to foster students’ data literacy could 

be implementing a data science course that is designed for students to learn about the world 

through data (Gould, 2021). Defined as “the science of learning from data”, data science is an 

interdisciplinary subject which focuses on using evidence-based approaches as well as 

technology to make sense of data (Donoho, 2017, p. 763). From this perspective, Donoho 

(2017) classified all the activities associated with data science into six divisions with data 

visualisation included in half of these divisions. In broad terms, data visualisation is both a 

process and a product that are embedded in data-based inquires rather than the equivalence of 

graphics (Arcavi, 2003). Moreover, the rapid development of technology has expanded the data 

that are available for classroom instructions (Gould & Çetinkaya-Rundel, 2013), and this 

change has fundamentally shaped data visualisations. This inclusion of visualisations (not just 

graphs) has started to appear in curricula. For example, in the latest Australian Curriculum 

Mathematics (AC:M), data visualisation is first introduced in Year 4 statistics as follows, 

“represent data using many-to-one pictographs, column graphs and other displays or 

visualisations” (AC9M4ST01). 

As can be interpreted from this content descriptor, data visualisation is considered as 

supplementary graphical representations for numerical information in addition to conventional 

graphs such as pictographs and column graphs. Although the new version of the Australian 

curriculum vaguely mentions the use of “other display or visualisations”, it fails to address data 

with “non-standard sources such as those with multiple characteristics or ambiguity (e.g., 

photographs, text, mobile apps)” (Makar et al., 2023, p. 976). The term data visualisation 

included in Grade 4 statistics and data display is used across Year 7 to Year 10 curriculum. This 

example indicates that more explicit guidelines for data visualisation need to be provided to 

classroom teachers and so they can incorporate this concept into everyday teaching practice. 

Therefore, the aim of this paper is to discuss opportunities for embedding data visualisation in 

the mathematics curriculum within the context of K–12 data science education. The research 

question guiding this literature review is: 

• How can data visualisations be incorporated into classroom teaching and learning? 

mailto:m.li9@uqconnect.edu.au
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What Constitutes Data 

Back to the 17th century, data were exclusively produced, managed, and owned by scientists 

(Leonelli, 2019). During the last few decades, the development of technology has made large 

data sets accessible to the public. Consequently, people are immersed in statistical data within 

their daily experiences and are thus compelled to cultivate a discerning aptitude for data 

consumption (Watson, 2002). Moreover, these radical transformations have also shaped the 

conceptualisation of data. In other words, the categories of data considered by non-statisticians 

have been expanded from only numerical or categorical to a broader group which includes non-

traditional data such as images, sounds videos, texts, and geospatial data. As such, data can be 

defined as any “information collected or generated from the world from which inferences about 

various phenomena can be made” (Wise, 2020, p. 165). This definition exhibits a breadth that 

encompasses not only the diverse forms of data but also the purpose for its manipulation and 

analysis. Stated differently, data serve as entities utilised by individuals to comprehend, explain, 

communicate, and even predict diverse phenomena within the physical world as well as our 

society. This calls for the need to incorporate modern data visualisations which focus on large, 

complex, and newer forms of data into teaching and learning practice (Nolan & Perrett, 2016). 

Data Visualisation and Its Characteristics 

In the realm of mathematical visualisation, data visualisation emerges as a distinct subset, 

characterised by its capacity to serve as both a procedural methodology (process) and an 

outcome (product). Prior to the work of Tukey (1977), who promoted the use of data 

visualisation for exploratory data analysis (EDA), the role of data visualisation was largely 

unknown. According to Tukey (1990), the use of data visualisation throughout EDA allows us 

to search, interpret, and analyse the data to explore phenomena that have occurred or that may 

occur. Likewise, Unwin (2020) pointed out that data visualisations for EDA were created to 

reveal new information. termed as “seeing the unseen” by Arcavi, (2003, p. 216). In light of 

this assertion, it is imperative to regard data visualisation as a facilitative instrument possessing 

inherent qualities conducive to discovery, rather than merely functioning as a graphical 

representation. The evolution of technology has substantially augmented the scale, 

accessibility, and modalities of data. This significant development has shifted data visualisation 

from conventional graphs for analysing quantitative information to instruments for reasoning 

about both traditional and non-traditional data. 

Figure 1 

The Gaze Plot (Left) and Heat Map (Right) (Boels, 2023) 

 

Although newer forms of data often contain valuable insights that might not be seen in 

traditional data, unstructured forms also make non-traditional data more challenging to 

visualise. That is, relying solely on conventional graphs may prove inadequate for 
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comprehensively making sense of data, necessitating the utilization of innovative data 

visualisation techniques. This is evident in the study undertaken by Boels (2023), in which 

innovative data visualisations such as gaze plots and heat maps were used to investigate gaze 

data (eye-tracking data). The employment of these data visualisations facilitated researchers in 

understanding the methodologies that students applied into the interpretation of graphs, 

revealing strategies previously unnoticed by both educators and students. Additionally, novel 

data visualisations can be utilised to depict traditional data. A recent commentary by Lim et al. 

(2023) discussed the possibility of extending conventional graphs to innovative data 

visualisation. For example, adding a sensory dimension by attaching an audio clip to a time-

series graph which depicted the sound level of New York City (numerical data) before and after 

the COVID lockdown. It is believed that the integration of different elements such as audio, 

video, interactive features as well as art is an efficient way of enhancing data storytelling. As 

posted by Clark and Paivio (1991), directing students to integrate events or objects into 

narratives will foster the establishment of mental imageries, thereby augmenting 

comprehension in learning. 

Within the context of education, incorporating innovative forms of data and novel data 

visualisations may broaden the opportunities for teaching and learning of data science. The 

Cartesian plane shown below (see Figure 2) categorises different types of data and data 

visualisation into four quadrants. Too many classroom instructions and textbooks still focus on 

the combination of conventional graphs and traditional data (see Quadrant Three in Figure 2). 

As a result, further research is needed to investigate the remaining three quadrants, which 

encompass either innovative data, novel data visualizations, or both. 

Figure 2 

The Different Relationships Between Data and Data Visualisation 

 

Review of the Literature on Innovative Data Visualisation and/or Data 

The section below reviews the literature related to innovative data visualisation and/or 

newer forms of data. It commences with an exploration of studies involving innovative data 

visualisations (see Quadrant One and Two in Figure 2), subsequently progressing to an analysis 

of studies centred on non-traditional data (Quadrant Four). 

Innovative Data Visualisations (Quadrant One and Two) 

Within the context of K–12 education, there is a prevalent consensus that data visualisation 

ideally belongs within the discipline of probability and statistics. However, what data scientists 
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actually do in the real world differs from what is taught in schools. That is, data visualisation is 

used as a tool to explore, analyse, and communicate data collected from different aspects of our 

life. This calls the need to design school-based learning experiences that resemble how data 

visualisation is used in practice. Some researchers have advocated for the integration of data 

science across different subjects (Jiang et al., 2022). In recent years, there has been an 

increasing interest in how to incorporate innovative forms of data visualisation into classroom 

teaching and learning across different disciplines. An example of this is the study conducted by 

Matuk et al. (2024) in which 15 to 30 middle-school students reasoned about both qualitative 

and quantitative data via data-art inquiries. In the Photoessay unit, students collected air quality 

data from a public map-based database, after making a scatterplot to investigate the association 

between air quality and life expectancy. Finally, students transcended traditional data by 

employing photography as a means to explain the diminished air quality within their 

neighbourhood area (see Figure 3). The use of photo-essay promoted “learners’ existing 

relationship with data” and this facilitated students in gaining insights into the data (Wilkerson 

& Polman, 2020, p. 5). 

Figure 3 

A Student’s Photoessay (Matuk et al., 2024) 

 

Students in the preceding study utilised diverse forms of data representations, such as scatter 

plots and photoessays, across the duration of the instructional module. The process of “forming 

and changing data representations” is described as transnumeration by Wild and Pfannkuch 

(1999, p. 227). To be more specific, transnumeration is a data-visualisation process through 

which data are re-expressed and re-classified for the purpose of seeking new insights. In other 

words, it is a process as well as a technique that allows us to investigate the same data set via 

different perspectives so new meanings may be revealed. The shift from scatterplot to 

photoessay allowed students to visualise the potential impact of construction on environment 

in their local area (Matuk et al., 2024). This discovery aligns with the research by Roth and 

MacGinn (1997), who posited that the transition from experience-distant visual representations 

(e.g., scatterplot) to experience-near visual representations (e.g., photoessays) may enhance 

students’ contextualization of data. 

Another example of transnumeration in the process of data visualisation is the study 

undertaken by Makar (2016) who investigated the emergence of children’s informal statistical 

inference. In this study, students used experience-near data visualisations (e.g., pictures) to 

record data about their classmates’ shoe sizes (see Figure 4). Then, they constructed experience-

distant visual representations with stacked and ordered white cards to model the shoe 

distribution of the class. The use of multiple types of data visualisations created opportunities 

for younger students to visualise the variability as well as the distribution associated with a data 

set. The change from experience-near to experience-distant data representation allowed young 

children to visualise abstract statistical concepts such as variability and distribution of data sets 

via the process of data visualisation. 
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Figure 4 

Transnumeration Between Different Types of Data Representations (Makar, 2016) 

 

In addition to changing between different types of data representations, transnumeration can 

also occur within the same type of data visualisation via data move. For Erickson et al. (2019), 

a data move is “an action that alters a dataset’s contents, structures, or values” (p. 5). The study 

by Erickson and Chen (2021) offers a comprehensive description of how data moves (e.g., 

filtering, grouping, and summarizing) can be used to investigate large and unruly data via 

technology-driven data visualisation tool (e.g., CODAP). As shown in Figure 5, students 

filtered each age group and then plotted mean height against all ages. The transformation of the 

scatterplot unveils the association between age and height, a relationship previously obscured 

within the original data representation. It should be emphasised that the adaptation of innovative 

data visualisation, exemplified by the dynamic visual display on CODAP, enhances the efficacy 

of the data visualisation process. Moreover, transnumeration does not happen spontaneously 

which means the pivotal role of guided discovery by educators during the process of data 

visualisation should not be underscored. 

Figure 5 

(1) The Data Representation Before Filtering; (2) The Data Representation After Filtering (Erickson & 

Chen, 2021) 

 

The aforementioned study provides an illustrative instance of leveraging an innovative data 

visualisation tool such as CODAP to elucidate large and unstructured traditional data sets. Also, 

the integration of CODAP with additional online visualisation tools has the potential to 

streamline the decision-making process relating to machine learning. An example is the study 

undertaken by Erickson and Engel (2023) who proposed a data science project for high school 

students to construct and apply classification trees. In the outlined project, students explored 

how the tree worked in a real-life context of breast cancer diagnoses. Concurrently, 

supplementary data representations, including dot plots and scatterplots, are employed to aid 

students in identifying the threshold distinguishing positive from negative diagnoses. This 

procedure further supports the idea of using transnumeration as a way throughout the 
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exploration and analysis of data. Although using trees as a mean to visualise data is new to most 

students, it is believed that such experience will provide students with a solid and profound 

understanding of how advanced statistics work in data science and machine learning (Erickson 

& Engel, 2023). Further, educators play a critical role in this data-based inquiry since guidance 

is needed for students to construct, understand, and apply trees. 

Conventional Graphs and Non-traditional Data (Quarant Four) 

Recently, a number of studies have begun to explore how to use driven visualisation to 

investigate non-traditional data. These studies may be broadly categorised into two groups: 

those employing primary data as data sources (Fergusson & Pfannkuch, 2022; Podworny et al., 

2022) and those utilising secondary data from data sources that are open to the public (Jiang et 

al., 2022; 2023; Rao et al., 2023). 

The acquisition and processing of primary innovative data frequently requires technology-

driven methodologies and instruments. For example, the study by Podworny et al. (2022) offers 

the possibility of using sensors to collect real-time and authentic data from the local community 

to investigate environmental factors. In another example, the researchers designed a a step-by-

step protocol to teach the participants how to use R code to collect and analyse data from a 

movie-rating website (Fergusson & Pfannkuch, 2022). In both investigations, code-driven tools 

(e.g., R code and Python) played essential roles in the transformation of raw data into 

conventional graphs such as linear regression graphs or line graphs. Put differently, students 

would not be able to visualise the data undergoing collection without the integration of coding. 

On one hand, these studies provided insights on how to “merge computational and statistical 

thinking” via coding in data science education (Gould, 2021, s17). Alternatively, it is uncertain 

whether computer programming imposes an excessive cognitive burden on learners as well as 

classroom teachers. Namely, students might allocate a significant portion of their time to 

acquiring coding skills rather than engaging in exploration and analysis throughout a data-

centric inquiry. Additionally, classroom teachers may encounter challenges due to potential 

inexperience designing and implementing data science projects reliant on code-driven tools. 

Figure 6 

Using Multiple Data Representations to Evaluate Machine Learning Model (Jiang Et Al., 2022) 

 

In contrast to data-based inquiries employing primary innovative data, the necessity of 

coding as a tool is less pronounced in investigations utilizing secondary innovative data. 

Instead, the focus of these data science projects is often on wrangling, analysis and evaluation 
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of unstructured data. A recent study by Jiang et al., (2022) examined how high school students 

built machine learning models for classification of text data (e.g., positive and negative reviews 

of restaurants). In this study, multiple data visualisations such as dot plots and bar graphs were 

used for the evaluation of predictive features (e.g., keywords from the reviews) associated with 

the models (see Figure 6). Another example of this is a recent study undertaken by Rao et al. 

(2023) who designed a sequence of activities to guide learners how to use multiple data 

representations to make sense of real-world data. In the first activity, participants constructed 

network graphs to visualise the interactions between different characters in a movie. As can be 

seen in both studies, students constructed experience-distant representations (e.g., dot plots and 

network graphs) based on experience-near data (e.g., restaurant reviews and narratives of a 

movie). The transition from experience-distant to experience-near allowed learners to visually 

process innovative data and so built models to represent the data-driven phenomena. 

Conclusion and Implications 

The aim of this literature review was to explore how to incorporate data visualisations both 

as a process and a product into classroom teaching and learning. From the perspective of the 

four-quadrant relationship between data and data visualisation (see Figure 2), we examined 

recent studies focusing on data-driven inquiries. The literature view has identified that 

transnumeration of multiple data representations as well as data moves during the process of 

data visualisation is a way that may foster contextualisation, reasoning, and modelling with 

data. Moreover, the transition between experience-near and experience-distant, namely the data 

visualisation continuum could be used as a tool enhance students’ visual reasoning in everyday 

teaching practice. However, most recent studies in this area are descriptive in nature and so 

more empirical studies are needed. Another uncertainty identified by this literature review is 

whether coding should be incorporated into data-based inquires involving innovative data. At 

last, there have been few attempts to investigate non-traditional data and innovative data 

visualisations (Quadrant One, Figure 2). Taken together, these results suggest that there is a 

need for researchers and educators to design and implement data-based inquiries which focus 

on using multiple data representations and data moves to investigate newer forms of data via 

the process of data visualisation. 
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In this study, the evaluation of mathematical proficiency (MP) in one NSW Year 12 

standardised exam paper was investigated. By considering the multi-strand model of 

MP, a literature-based criteria for scoring the assessment of MP in individual exam 

questions was first developed. The criteria were then applied to quantitatively evaluate 

the 2023 HSC Advanced Mathematics exam paper. The findings revealed a generally 

balanced assessment of all MP strands in the short-response exam questions. This study 

has methodological implications for evaluating the assessment of MP in external 

mathematics assessments, and the designing mathematics exams. 

In the current education landscape, there exists continuing debates around the suitability 

and benefits of adopting ‘teach to test’ pedagogies. Critiques of such pedagogies suggest that 

they do not enhance student’s skill domains holistically in mathematics (Robinson & Dervin, 

2019), and result in students to neglect enhancing their MP skills while overly focusing on 

obtaining strong exam marks (Sullivan, 2011). However, Seeley (2006) pointed out that if the 

exams in mathematics were set in a way that assesses student’s MP holistically, a ‘teach to test’ 

approach should be widely adopted and accepted. Drawing from Seely (2006), educators should 

re-evaluate how MP is assessed in exams to better understand why certain pedagogies are 

preferred and respond accordingly. The tension between the desire for comprehensive MP 

development and ‘teach to test’ approaches underscores the importance of evaluating how 

standardised exams, such as NAPLAN and HSC exams, assess student’s MP. This evaluation 

can shed light on the alignment between current standardised mathematics exams and 

contemporary pedagogical approaches, enabling educators to refine their teaching methods, 

assessment strategies, and potentially adjust the curriculum to satisfy more stakeholders. This 

study will answer the research question of whether the 2023 NSW HSC Advanced Mathematics 

exam paper (NESA, 2023) assesses student’s MP equally. Such analysis will allow this study 

to illuminate the current landscape of MP assessment in exams and elucidate potential 

implications for future research and educational practice. 

Literature Review 

Mathematical Proficiency 

The MP model by Kilpatrick et al. (2001) serves as a comprehensive framework capturing 

the fundamental attributes conducive to successful mathematics learning. This model delineates 

five interdependent strands: conceptual understanding, procedural fluency, adaptive reasoning, 

strategic competence, and productive dispositions. Enhancement of overall MP hinges upon the 

concurrent development of all five strands, and each strand’s enhancement is contingent on the 

advancement of others (Schoenfeld, 2007). Since its inception, the MP model has garnered 

widespread acceptance and recognition as a well-established framework, as evidenced by its 

widespread adoption and adaption in international mathematics curricula (e.g., DOE, 2014). 

In recent research the MP model has evolved into an ultimate framework that educators are 

expected to comprehend and integrate into their teaching practices (Cavanagh, 2021; Sullivan, 

2011). Despite its widespread acceptance among teachers, researchers, and curriculum 

developers, ongoing debates persist regarding the efficacy of translating the model into 

everyday interactions within mathematics classrooms. Questions linger about the extent to 
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which educators successfully implement the model in their instructional approaches and 

whether it enhances student’s MP in practical learning environments (Sullivan, 2011). 

Mathematical Proficiency in the Australian and NSW Curriculum 

In the Australian curriculum, MP is described as four strands (fluency, understanding, 

problem-solving, and reasoning), omitting the critical productive disposition strand described 

by Kilpatrick et al. (2001). The descriptions of the problem-solving and reasoning proficiencies 

in ACARA (2022) align with Kilpatrick’s definitions of strategic competence and adaptive 

reasoning (Kilpatrick et al., 2001). 

The NSW mathematics curriculum incorporates the content of the Australian curriculum 

into its own syllabuses, and its overarching key ideas align with the MP model. Departing from 

the terminology of MP, the NSW syllabus uses the term ‘working mathematically’ (NESA, 

n.d.). In the NSW senior mathematics syllabi, working mathematically encompasses fluency, 

understanding, justification, problem-solving, reasoning, and communication. The emphasis on 

fluency, understanding, and reasoning in both the NSW and Australian mathematics curriculum 

underscores their shared commitment to foundational aspects of MP (Cavanagh, 2021; NESA, 

n.d.). The three other working mathematically domains—justification, problem-solving, and 

communication—align with analogous strands in the MP model. Specifically, justification and 

problem-solving align with the strategic competence strand, emphasising the strategic 

application of existing knowledge to select appropriate and efficient methods for problem 

resolution (Schoenfeld, 2007). The communication skill domain is positioned as a prerequisite 

for every other domain, and involves using mathematical language effectively to articulate 

thoughts and solutions (Cavanagh, 2021). The various ways of conceptualising MP are 

consistent in demonstrating a movement away from pedagogy focused on rote memorisation 

and procedural mastery, to embracing cognitive processes such as critical thinking, reasoning, 

analysis, and problem-solving (Schoenfeld, 2007). 

Tension Between Assessing Mathematical Proficiency and ‘Teach to Test’ 

Pedagogy 

The shift in focus from rote learning to critical thinking and problem-solving in mathematics 

education has prompted a corresponding evolution in educators’ perspectives on how and what 

to assess regarding student’s MP (Corrêa & Haslam, 2021). Although the ideal scenario would 

involve the development of a mechanism capable of effectively and efficiently assessing all 

five strands of proficiency simultaneously, educators have encountered challenges in realising 

this goal. The primary challenge identified by educators is the realisation that not all MP strands 

lend themselves to assessment through traditional exams. Notably, the productive disposition 

strand, reflecting an individual’s perception of mathematics as a meaningful pursuit in daily 

life, proves challenging to accurately assess within the confines of an exam (Corrêa & Haslam, 

2021). Exams, often perceived as graduation prerequisites or progression milestones, may 

compel students to view mathematics as a compulsory rather than a personally rewarding 

activity. Consequently, assessing the productive disposition strand within exam settings 

becomes inherently problematic, as students may prioritise meeting societal expectations over 

cultivating an authentic appreciation for the subject (Sullivan, 2011). 

In addition to the issue of assessing certain strands, Corrêa and Haslam (2021) highlighted 

the diversity of exams and their distinct purposes—ranging from diagnostic to formative, 

performance, and summative assessments—each serving specific roles in evaluating student 

learning. Different from ‘well-balanced’ mathematics programs, which can holistically enhance 

student’s proficiency, mathematical thinking, and problem solving (Seeley, 2006), assessments 

can only assess a range of mathematical knowledge and skills (Schoenfeld, 2007). Due to 

stakeholders’ attention on an incomplete image of student’s mathematics learning revealed by 
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formal assessments, teachers feel pressure to help students obtain satisfy results in assessments. 

This pressure transfers into ‘teach to test’ pedagogies, which focus solely on exam performance 

(Robinson & Dervin, 2019). While ‘teach to test’ pedagogies have received criticism from 

mathematics educators in both Australia and around the world (Sullivan, 2011; Robinson & 

Dervin, 2019; Seeley, 2006), this study posits that the issues created by ‘teach to test’ 

pedagogies are exacerbated by an unequal emphasis of MP strands in assessments. Therefore, 

it is necessary to evaluate how mathematics exams evaluates MP strands, and whether if there 

is an equal emphasis on each strand. 

Methodology 

The aim of this study was to determine whether exams assess all strands of MP, and measure 

the extent to which each strand is assessed. By doing this, this study aims to reveal whether MP 

strands are equally emphasised in the chosen exam paper. The 2023 NSW Advanced 

Mathematics exam paper is chosen for a document analysis as this subject is a prerequisite of a 

number of university degrees. Given that previous research had not established a reliable 

method to evaluate the assessment of MP in exams (Corrêa & Haslam, 2021), the first stage of 

this study involved the formulation of a set of criteria for determining which MP strands (and 

their sub-components) are assessed in an exam question. Establishing these criteria also 

supports reliability by providing transparency for subsequent analysis. The criteria were derived 

from a review of literature to establish a standardised foundation for the evaluation process 

(UoN, 2021; Schoenfeld, 2007). Following the development of criteria, the short response 

questions from the NSW Mathematics Advanced 2023 exam paper were analysed. The 

multiple-choice exam questions were omitted from the analysis due to the recognised 

limitations in assessing MP within such questions (Corrêa & Haslam, 2021). Each of the exam 

questions was individually analysed to determine which MP strands and their sub-components 

were assessed using the criteria established in the first stage of the study. Subsequently, each 

question was then provided with a score based on the scoring criteria, to reflect the extent to 

which the question assessed particular MP strand(s). Conducting this analysis will reveal 

whether the selected exam paper exhibits an equal emphasis on each of the MP strands in the 

exam. However, it is acknowledged that the evaluation of the questions is subjective in nature 

and open to interpretation. This subjective nature was unavoidable as there is little evidence of 

previous research establishing any accepted method to perform such analysis. To minimise the 

subjectivity when performing this evaluation in this novel situation, three trials were done to 

ensure the data obtained were consistent and valid. 

Criteria for Evaluating the Assessment of Mathematical Proficiency in Exams 

Given the limited research on the assessment of individual MP strands in standardised 

exams, there currently exists no rigorous framework to evaluate the assessment of mathematical 

proficiencies in exam questions. Therefore, establishing consistent criteria for each MP strand 

and assigning each question a score to reflect how they assess MP strands are necessary for this 

study. Thus, each exam question was analysed to determine (1) if they assess each individual 

proficiency strand, and (2) the depth to which the proficiency strand is assessed. To address the 

latter point, when scoring the depth to which each exam question assesses a particular MP 

strand, it will be scored at either a 1 (low level assessment of the strand), 2 (moderate assessment 

of the strand), or 3 (in-depth assessment of the strand). What is meant by 1, 2, and 3 specifically 

for each strand will be elaborated in the following subsections. 

Conceptual Understanding (CU) 

CU involves students developing both a robust and comprehensive knowledge of 

mathematics, and connections between different topics (Cavanagh, 2021). The Mathematics 

Assessment Resource Service (2017) illustrated that CU consists of six subcomponents: factual 
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knowledge, comprehension, application, analysis, synthesis, and evaluation. The 

subcomponents have a hierarchical relationship, where factual knowledge was considered as 

the foundation and evaluation was considered to be the ultimate subcomponent within CU. 

Therefore, CU will receive a score of 1 if the question involves the application of basic factual 

knowledge and comprehension, a score of 2 if the question involves the application of learned 

knowledge in novel situations, a score of 3 if the question involves the evaluation of 

understanding through connecting multiple topics and synthesising new representations. 

Procedural Fluency (PF) 

PF captures student’s ability to choose appropriate methods and carry them out efficiently, 

flexibly, and accurately (Schoenfeld, 2007). The three subcomponents of PF (efficiency, 

flexibility, and accuracy) all contribute to the overall enhancement of PF (UoN, 2021). 

Efficiency refers to the student’s ability to select and execute a range of procedures, flexibility 

refers to the student’s ability to select and use appropriate method(s) for solving the question, 

and accuracy refers to the student’s ability to produce the correct answer (Schoenfeld, 2007). 

Therefore, PF will receive a score of 1 if the question involves the assessment of 1 identified 

subcomponent of PF, a score of 2 if the question involves the assessment of 2 identified 

subcomponents of PF, a score of 3 if the question involves the assessment of 3 identified 

subcomponents of PF. 

Strategic Competence (SC) 

SC emphasises the ability to apply knowledge in a range of situations and solve the problem 

accordingly (Cavanagh, 2021). SC also has three subcomponents (formulate, represent, and 

solve) which all contribute to the overall enhancement of SC (Schoenfeld, 2007). Formulate 

refers to the generation of relationships to solve the problem, represent refers to using 

mathematics to represent the given situation, and solve refers to evaluating results and 

calculating final results using appropriate methods in complex situations (Schoenfeld, 2007). 

Therefore, SC will receive a score of 1 if the question involves the assessment of 1 identified 

subcomponent of SC, a score of 2 if the question involves the assessment of 2 identified 

subcomponents of SC, a score of 3 if the question involves the assessment of 3 identified 

subcomponents of SC. 

Adaptive Reasoning (AR) 

AR refers to the ability to use mathematical language to communicate mathematical 

understanding (Cavanagh, 2021). In UoN’s work (2017), AR involves three subcomponents: 

analysing, generalising, and justifying. Analysing refers to students exploring, comparing, and 

contrasting the problem and their knowledge. Generalising refers to students forming 

conjectures and identifying common patterns or properties. Justifying refers to students 

assessing the truth and making logical arguments. Therefore, AR will receive a score of 1 if the 

question involves assessment of 0 or 1 identified subcomponents of AR; a score of 2 if the 

question involves assessment of 2 identified subcomponents of AR; a score of 3 if the question 

involves assessment of 3 identified subcomponents of AR. 

Productive Disposition (PD) 

PD describes a student’s ability to see mathematics as a worthwhile subject, and position 

themselves as capable mathematics learners (Cavanagh, 2021). However, there has been a 

strong emphasis on the connection between learning mathematics and daily life when 

discussing PD (Schoenfeld, 2007). Currently, research on how PD can be measured in school-

based assessment is lacking. The development of criteria to assess PD is largely inferential and 

based on existing literature (Schoenfeld, 2007; Cavanagh, 2021). Therefore, the levels to which 

PD will be assessed in an exam question have been considered as follows: A score of 1 is given 
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to questions that require students to solve a problem that is not related to daily life; a score of 2 

is given to questions that require students to solve a problem that models a situation related to 

daily life; a score of 3 is given to questions that require students to solve a problem in a situation 

that is closely related to daily life. 

Applying the Evaluative Criteria: Examples of Data Analysis Process 

To provide transparency in how individual exam questions were analysed and the criteria 

outlined above applied, two detailed examples from 2023 NSW HSC Advanced Mathematics 

exam paper are discussed. It should be noted that the exam questions cannot be reproduced due 

to copyright restrictions, which means only descriptions of the questions can be provided. 

However, full questions can be accessed online (NESA, 2023). 

For the first example, the question analysed is Question 15. This question assessed 

modelling financial mathematics concepts and involved two parts. Question 15 primarily 

assesses student’s ability to accurately and efficiently calculate the principal and future values 

using the formula 𝐴 = 𝑃(1 + 𝑟)𝑛. Part (a) of the question asked students to calculate the 

principal using the formula. Therefore, part (a) required students to apply a basic understanding 

of the formula, and thus scored 1 for CU. Part (a) required only a simple substitution followed 

by solving an equation, thus it only assessed student’s accuracy in using the formula to answer 

the question, therefore scored 1 for PF. Part (b) of the question asked students to calculate the 

future value under the given condition. Therefore, part (b) required students to analyse the 

situation and apply their knowledge in a novel situation, thus it scored 2 for CU. Part (b) also 

required students to employ extra steps before substitution, thus it assessed student’s efficiency 

and accuracy. Therefore, it was coded Level 2 for PF. Both part (a) and (b) scored for SC, as 

both parts assessed the ability of formulating and representing, that both items required students 

to generate a relationship using the formula and given information and represent such 

relationship using mathematical language and equations. For AR, both parts (a) and (b) scored 

2 since both questions required students to analyse a given situation and generalise the situation 

using the formula. Despite its focus on financial mathematical concepts, this question includes 

some connection with student’s everyday lives through the use of a problem context, thus both 

parts scored 3 for PD. 

For the second example, the question analysed is Question 22. This question assessed 3D 

trigonometry. This item required students to utilise their knowledge of (3D) trigonometry 

within a complex, unfamiliar situation. Thus, it scored three for CU. This question was an 

excellent example of a question that assessed all three subcomponents of PF. Students were 

required to use different methods to perform a range of calculations accurately to get the final 

answer. Thus, this item scored three for PF. For SC, this question scored three. This question 

also tested student’s ability to formulate relationships based on the given information, represent 

the given information in an appropriate way to obtain further information about given situation, 

and calculate the final answer. For AR, this item scored two since it required students to analyse 

given situation and generalise the situation with the use of formulas. While this question 

excelled in assessing various MP strands, it is noteworthy that its inherent complexity and 

abstract nature may limit its direct connection to real-world contexts. Thus, this item scored one 

for PD. 

Results 

The 2023 HSC Mathematics Advanced exam paper contained 39 short-response questions 

(including each sub-question). The analysis and final score for each question is detailed in 

Figure 1. Observing the overall trends in average scores, the analysis reveals the extent to which 

MP strands are assessed in the 2023 HSC Mathematics Advanced exam paper. 
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Figure 1 

Coding for Each Short Response Question in the 2023 Mathematics Advanced HSC 

 

CU obtained an average score of 1.74 across the entire exam (SD = 0.7), signifying that 

questions predominantly evaluated students’ capacity to apply fundamental factual knowledge 

and comprehension to novel situations. PF obtained an average score of 1.79 (SD = 0.7), with 

its subcomponents—accuracy, efficiency, and flexibility—scoring 0.9, 0.5, and 0.4, 

respectively. This suggests a focus on accurately solving questions, while relatively fewer 

questions necessitate efficient and flexible problem-solving approaches. For SC, the average 

score was 1.66 (SD = 0.7). The subcomponents—formulate, represent, and solve—achieved 

indices of 0.5, 0.5, and 0.6, respectively, indicating a similar emphasis on assessing student’s 

ability to formulate equations or relationships, represent situations, and solve problems within 

the questions. AR obtained an average score of 1.66 (SD = 0.6). The subcomponents—

analysing, generalising, and justifying—scoring 0.6, 0.6, and 0.4, respectively, indicating a 

higher emphasis on assessing the ability of analysing and generalising. PD obtained an average 

score of 1.58 (SD = 0.8), denoting a relatively lower prevalence of questions testing student’s 

application of mathematics to everyday situations. This observation highlights a potential area 

for consideration and further exploration in terms of incorporating real-world contexts into 

mathematical assessments. 

Overall, the findings illustrate a similar emphasis across the five examined strands, 

showcasing consistent averages without significant disparities, which further reveal an equal 

emphasis on MP strands within the 2023 HSC Mathematics Advanced exam paper. However, 

as elucidated through the analysis of specific examples, such as Questions 15 and 22, and 

observation of the standard deviations, it becomes apparent that the exam paper incorporates a 

range of questions which vary in the extent to which they assess the MP strands in a balanced 

way. This highlights the variability in the nature of questions, ranging from those emphasising 

daily life connections to those with a more abstract and disciplinary focus. 

Discussion 

The findings from this study provide a nuanced understanding of the distribution of how 

MP was examined in one exam paper, shedding light on the specific areas of MP that were 
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emphasised. Overall, the 2023 HSC Mathematics Advanced exam paper assessed MP strands 

in a reasonably balanced manner. However, there were several exam questions where there was 

a stronger emphasis on one or two strands instead of all strands. 

Despite the results demonstrating a relatively balanced relationship between the five 

strands, PF still scored highest among all strands, particularly on its accuracy subcomponent. 

This finding prompts a crucial question: is this emphasis expected and/or desirable? Examining 

the purpose of the HSC as a means of ranking students for graduation and university entrance, 

the relatively higher focus on PF, especially accuracy, is an interesting and noteworthy finding. 

Whether this emphasis is deemed appropriate is a subject of debate. That is, this study has found 

that obtaining a high score in the HSC for mathematics (Advanced) and increasing one's 

university entrance score is largely based on the ability to accurately replicate mathematical 

procedures. This is potentially an oversight in the type of students that are desirable in STEM 

degrees, given the importance of other skills like critical thinking and problem-solving. On the 

other hand, an emphasis on accuracy is not entirely unexpected in a mathematics exam. What 

is likely desirable, however, is emphasis on accuracy (PF) as well as other strands of MP. The 

need for comprehensive development of MP has been argued by academics, even in the context 

of selective exams like the HSC (Schoenfeld, 2007). Others contend that the selective nature of 

the standardised exams, for instance HSC, necessitates an objective measure of student’s ability 

to perform tasks both accurately and effectively in the subject (Corrêa & Haslam, 2021). The 

purpose and focus of these HSC mathematics exams are important to consider given it 

influences university options in Australia. 

Additionally, the findings of this study raise concerns about having an emphasis on CU or 

PF. While theoretically interconnected (Schoenfeld, 2007), the rise of teaching and learning 

practices focused on exam preparation prompts questions about whether students can enhance 

PF through rote learning without advancing in CU (Robinson & Dervin, 2019; Sullivan, 2011). 

The observed balance in the overall assessment of MP strands in this study contrasts with 

instances where questions assess lower CU and/or SC but higher PF. As mentioned earlier, this 

raises pivotal questions about the potential imbalance in the focus on proficiency strands 

particularly in senior years, and whether an emphasis on PF is desirable. Whether it is possible 

for a written format exam to more holistically assess MP is also debatable. 

The study’s data prompts reflection on whether the current emphasis in exams reflects an 

equal attention to proficiency strands and, if not, whether adjustments are needed. Furthermore, 

it prompts a broader exploration of assessment mechanisms to ensure students develop critical 

problem-solving skills and autonomy in various situations. These questions warrant further 

consideration and research to inform educational practices and policies. 

Conclusion 

This study commenced by acknowledging the recognition among mathematics educators 

regarding the importance of fostering comprehensive development of student’s MP. However, 

as this study explored how the 2023 HSC Mathematics Advanced exam paper assesses MP 

strands, several noteworthy issues emerged. Despite the overall findings that there was a similar 

emphasis of each of the MP strands in the exam, it is noteworthy that there exists considerable 

difference between how different questions assess 5 MP strands. This observation prompts a 

critical inquiry into the suitability of questions in various types of assessment for effectively 

assessing MP. Ensuring that assessments align with the curriculum and pedagogical emphases 

advocated by policymakers, educators, and researchers is an important endeavour. By 

addressing these issues through rigorous research, the overarching goal of cultivating all MP 

strands can be more effectively realised in educational settings. The initial evaluation of one 

senior mathematics exam in this study highlight potential avenues for future research. It is 

potentially worthwhile to further explore how MP is assessed in exams at other stages of 
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students’ education. Also, it is worthwhile considering whether there are differences in how 

MP is assessed in school-based examinations compared to externally set exams such as the 

HSC. Such research could provide insights into whether the current emphasis on enhancing MP 

is identical across various educational levels and assessment types. 

The assertion made by Schoenfeld (2007) regarding the varied interpretations of the MP 

model among educators holds significant relevance for this study. This contention becomes 

particularly pertinent in the context of this study, where the evaluation of questions to assess 

MP strands is a central focus. While there is widespread consensus on the importance of 

enhancing MP and its integration into teaching practices (Corrêa & Haslam, 2021; Sullivan, 

2011), the absence of a universally accepted method for evaluating how MP strands are assessed 

in exam papers is a notable gap in the existing literature. In response to this gap, the current 

study has contributed to methodologies in this area by developing a set of criteria for analysis 

that is grounded in the existing understanding of MP strands. However, the acknowledgment 

that other researchers may hold different opinions regarding the details of the evaluation 

mechanism may influence the validity and reliability of this study. This acknowledgment 

underscores the need for continued dialogue and refinement in methodologies for evaluating 

MP in exam papers, with the aim of establishing more standardised and widely accepted 

assessment frameworks in the future. 
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Technology can play a pivotal role in mathematics education. Qualitative methods were 

used to report on how a Year 1–2 teacher incorporated Conveyance technology (iPads), 

to support the teaching and learning of mathematics through student reasoning and 

problem-solving. The study was conducted in Australia. A single case was chosen, 

reporting a lesson where students engaged with a 12-cube task. The findings contribute 

to the broader discourse on the role of technology in early mathematics education, 

suggesting that conveyance technology supported by effective teaching practices and 

open-ended problems, fosters students’ reasoning and problem-solving skills. 

Technology is a powerful tool that can be incorporated into mathematics lessons. For 

meaningful learning, technologies can be used to advance students’ mathematical thinking, 

reasoning, and problem-solving skills (Calder & Murphy, 2018; NCTM, 2014). Other benefits 

include supporting conceptual understanding, collaborative learning, exploration, assessment, 

and communication (Cullen & Hertel, 2023). However, some teachers are not convinced of the 

benefits of using technology as a teaching tool in mathematics classrooms, and others have been 

slow to adopt its use (Dick & Hollebrands, 2011). This is of concern because not allowing 

students to use technology could impede their mathematical learning experiences. 

In addition to using technology, teachers are encouraged to foster students’ mathematical 

understanding through problem-solving and reasoning as emphasised in the Australian 

Mathematics Curriculum (ACARA, 2022). When guiding problem-solving strategies, the 

teacher encourages students to model the problem, check for reasonableness, look for patterns 

or make conjectures (Van de Walle et al., 2024). Likewise, when supporting students in 

developing mathematical reasoning, teachers focus on guiding the processes of comparing, 

contrasting, conjecturing, generalising, explaining, and justifying (Herbert & Williams, 2021; 

Vale et al., 2017). If teaching with technology is difficult for some teachers, integrating 

problem-solving and reasoning most likely presents a further challenge. 

Few studies have investigated ways technology might support the teaching and learning of 

mathematics, particularly through student reasoning and problem-solving in the early years. 

Further research is needed to identify how technology can be used productively, including in 

primary mathematics classrooms (Boon et al., 2021; Calder & Murphy, 2018; McCulloch et al., 

2018). The purpose of this study was to gain a better understanding of the role of technology in 

supporting Years 1 and 2 students’ reasoning and problem-solving skills. 

Literature Review 

Technology can offer teachers new ways for students to learn mathematics (Calder & 

Murphy, 2018). Examples of technologies that support teaching and student learning include 

computers, calculators, tablets, computer algebra systems, dynamic geometry software, online 

games, recording devices, spreadsheets, and a variety of online tools (NCTM, 2014; Van de 

Walle et al., 2024). Teachers might choose to use technology with their students in different 

ways, for instance, calculators when exploring larger numbers, online games to practice fluency 

of multiplication facts or a smart board to project a mathematics problem. 

mailto:sharyn.livy@monash.edu
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Theoretical Framework 

A Framework for the Roles of Technology in Mathematics Education (Cullen & Hertel, 

2023) draws on previous research and is used to present two uses of technology as a tool in 

mathematics classrooms (Table 1). Teachers and researchers can use this framework when 

considering how the role of technology as a tool supports mathematical teaching. 

Table 1 

Framework for the Roles of Technology in Mathematics Education (Cullen & Hertel, 2023, p. 317) 

Roles of 

technology 

Conveyance 

technology 

uses 

Encouraging collaboration Encouraging collaboration around 

mathematical problems 

Sequencing and sharing  Sequencing and sharing work on 

mathematical tasks 

Orchestrating discourse Orchestrating mathematical discourse 

Monitoring and assessing Monitoring and assessing mathematical 

learning 

Mathematica

l action 

technology 

uses 

Serving as a tutee Decomposing, abstracting, and encoding 

mathematical procedures and processes 

Promoting cycles of proof Creating testing, revising and proving 

mathematical conjectures 

Supporting case-based 

reasoning 

Generating, organising, and analysing data 

Presenting multiple 

representations 

Presenting and connecting representations 

of the same mathematical object 

As shown in Table 1 there are two roles or functions of technology (Cullen & Hertel, 2023). 

Conveyancing technology refers to the use of technology for conveying and transmitting 

information, such as a PowerPoint presentation. The four categories of Conveyance technology 

include Encouraging collaboration; Sequencing and sharing; Orchestrating discourse; and 

Monitoring and assessing, all of which can help to support effective teaching practices (Dick & 

Hollebrands, 2011). Mathematical action technology involves using technology to respond to 

students’ actions, as in the case of GeoGebra and Desmos. For example, action technology, 

may assist students in generating, organising, and analysing data (Cullen & Hertel, 2023). 

The Use of Tablets (iPads) 

An affordable and common technology tool used for educational purposes in Australian 

schools is (iPads), equipped with applications (apps) software programs. Mathematical apps 

have been classified as those that develop a particular type of knowledge (conceptual or 

procedural) and mathematical content area (e.g., measurement and number skills) (Larkin & 

Milford, 2018). Similarly, depending on how students use iPad apps, they could be considered 

Conveyance technology or Mathematical action technology. 

To assess the impact of iPads on student learning in middle-year classrooms, Boon et al. 

(2020) conducted a systematic review of the literature. The findings of the research studies were 

mixed. While iPads and mobile technology could motivate students’ learning and dispositions, 

not all studies showed significant differences in student learning when comparing the use of 

iPads (or not) in mathematics lessons. 

The purpose of the study reported in this paper is to extend what is already known by 

focusing on conveyance technology as a tool in a Year 1–2 classroom when considering how 
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iPads might support students’ reasoning and problem-solving. The study sought to answer the 

following research question: 

• In what ways did a Year 1–2 teacher incorporate conveyance technology and support 

students’ mathematical reasoning and problem-solving? 

Method 

Qualitative methods were used in this single-case study, involving a lesson observation of 

a Year 1–2 teacher. A single-case design was deemed appropriate for reporting cases that 

convey stories with messages, aiming to assist others by describing the observed activities 

within the case (Dumez, 2015). The single-case participant was selected because he had been 

teaching open-ended problems for several years. Open-ended tasks are characterised by having 

multiple solutions and/or different possible strategies (Sullivan et al., 2016), which were 

embedded into his teaching approach. As part of a larger project, (part research and part 

professional development) the author conducted school visits, each term for one year. These 

visits involved lesson observations and collaborating with Foundation to Year 2 (students 5 to 

8 years old) teachers during the implementation and trialling of sequences of problem-solving 

lessons. The lesson reported here was the final lesson observation and was conducted in 

December 2018. 

At the time of data collection, Jim (pseudonyms used throughout) was teaching the second 

lesson from a measurement and geometry sequence (Sullivan et al., 2023). The big idea of the 

lesson was that the same volume can be used to construct different prisms. The students were 

asked to solve the following problem: 

A rectangular prism is made from 12 cubes. What might the prism look like? 

Data Collection and Data Analysis 

Data collection included video recordings, field notes, and students’ work samples. Audio 

recordings were transcribed for subsequent coding and analysis. Lesson transcripts were 

thoroughly read and subjected to thematic analysis, utilising the Framework for the Roles of 

Technology in Mathematics Education (Cullen & Hertel, 2023). The results section includes 

vignettes from the lesson, including coding and evidence of Encouraging collaboration, 

Sequencing and sharing, Orchestrating discourse, and Monitoring and assessing (see Table 1). 

Additional coding showed evidence of the teacher supporting students’ reasoning and problem-

solving. 

Results 

During the lesson, students used the camera app on iPads to capture photographs of their 

responses to the 12-cube task. The primary purpose of the technology tool was to collect 

photographs of their constructions [coded: conveyance technology use]. The following 

vignettes report on the role of conveyance technology as a tool for supporting students’ 

reasoning and problem-solving. 

Vignettes of the Lesson 

Lesson Launch and Using Technology 

The lesson was launched to the class when sitting together on the floor. After reading the 

problem together, students moved to their tables to solve the 12-cube task (Figure 1). 
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Figure 1 

Students Solving the 12-Cube Task 

 

Each student had a set of 12 wooden cubes, the same colour, an iPad, a pencil, and a sheet 

of paper for recording their solutions (Figure 1). After the students used the 12 cubes to 

construct different prism, they took photographs, using their iPads. The iPad was useful as a 

tool for documenting the range of student responses to the task. The photographs were also used 

by the students to share their responses during the lesson with each other or their teacher [coded: 

encouraging collaboration; sequencing and sharing]. 

Teacher Observations 

Students were also asked to draw their constructions. Many students had difficulties 

drawing three-dimensional prisms and instead drew two-dimensional diagrams (e.g., Figure 2). 

Figure 2 

Student Photograph of Their Cube Construction and Written Working Solution 

 

As shown in Figure 2, a photograph and student’s work sample offered insights for the 

teacher when monitoring and assessing mathematical learning [coded: monitoring and 

assessing]. Seeing the students’ constructions provided immediate visual feedback for the 

teacher when considering how to respond to student learning. Interpreting only written solutions 

may have taken longer without the technology to support monitoring and assessing. 

There were four solutions to the problem and a rotated prism was not an additional solution. 

When assessing student responses these were two key ideas that became the focus of the teacher 

and student one-on-one interactions [coded: orchestrating discourse] (Figure 3). 

Figure 3 

The Same Rectangular Prism Rotated 
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As shown in Figure 3, Jim used both the images and the blocks when modelling and 

exploring the problem with the students. Jim, “Now I am just going to go like this and tip over 

the rectangular prism.” Jim, “What can you tell me?” Jenny replied, “It is still the same, but it 

is tipped over.” 

Jim’s questioning supported problem-solving by asking questions that helped Jenny to 

apply her knowledge and other questions focused on reasoning by encouraging Jenny to explain 

her thinking [coded: problem-solving and reasoning]. 

Lesson Conclusion 

Near the end of the lesson, the teacher asked the students to come together on the floor and 

sit in a circle bringing their iPads and written solutions. Jim asked the students about the number 

of different solutions (n = 4). First, he chose to focus on students’ understanding and whether 

a prism rotated was a different or repeated solution [coded: assessing reasoning]. In the ensuing 

discussion, Peter, explaining his answer, talked about having to “turn it around” as he referred 

to the rectangular prism. 

Jim: Put your hand up if you turned yours around or did what Peter did and popped it down? 

Jim: Can I ask you if you were creating one that was the same or one that was different? 

Girl: The same (stating the correct response). 

To help students to visualise this concept Jim asked Peter to come and show the class his 

photographs on the iPad [coded: encouraging collaboration; sequencing and sharing; 

orchestrating discourse; monitoring and assessing; problem-solving and reasoning]. 

Jim: Peter, can you bring your iPad here and explain what you were telling me before? There was one 

you were looking at and I would like you to explain this … It was the one at the start … wasn’t it? 

It was that one …  

After flicking through the photographs Jim then held up one solution (Figure 4: Image 1) to the students 

Jim: Let’s start with this one … Put your hand up if you had this solution? 

Figure 4 

Peter’s Photographs of the Same Solution Rotated 

  

After sharing the first image (Figure 5: Image 1) Jim flicked to another photograph 

(Figure 4: Image 2) and asked everyone: 

Jim: Is this solution the same or a different solution? Now some people think it is a different solution, 

but Peter, can you explain why you think it is a different solution? (Jim had spent time with Peter 
during the lesson to confirm his new learning before being selected during the whole class 

discussion to share his correct thinking). 

Peter: (grinned and said) It is the same because all you are doing is pushing it up. 

Jim: (repeats what Peter said and then confirms with the whole class) Did the rectangular prism change? 

Maddy: No, it just turned up. 

Jim: Did any of the faces change? 

Class: No (all the children responded together). 
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Jim: No, the faces all just stayed the same. Put up your hand if you thought it was a different solution 

and then you went back like Peter and said hang on it was just a different orientation? 

By asking this question, Jim was highlighting to the students that they needed to check 

which ones were the same or different [coded: problem-solving and reasoning]. 

At the end of the lesson, Jim asked, “Who can convince me how many possible solutions 

there are?” [coded: reasoning]. Next, students constructed and shared the four possible solutions 

in the circle (Figure 5). 

Figure 5 

Constructing, Sharing, and Discussing all Possible Four Solutions 

  

As shown in Figure 5, students used the data on their iPads to check if any other possible 

solutions were missing [coded: encouraging collaboration; problem-solving and reasoning]. 

Finally, students agreed that there were four possible solutions. 

Discussion 

During the lesson, the iPad served as an invaluable tool for enhancing both teaching and 

students’ learning experiences. As reported in the results all codes of conveyance technology 

were demonstrated and the integration of technology was used effortlessly by students and the 

teacher. The teacher also used the conveyance technology to support students’ mathematical 

reasoning and problem-solving skills. Next, these findings will be discussed. 

The technology proved beneficial for documenting and sharing early years students’ 

responses. Without this technology tool, some students might have encountered challenges 

when sharing answers with peers and the teacher, especially those facing difficulties when 

drawing three-dimensional prisms. In other words, the technology was an efficient tool for 

younger students to use when recording their solutions. The tool allowed students to capture 

solutions after constructing each prism, extending their mathematical understanding of the 

problem, and avoiding prolonged periods spent attempting to draw their answers. This finding 

suggests that using an iPad to capture images of their constructions was beneficial for Years 1 

and 2 students when responding to the 12-cube task. 

As reported in the results, the use of technology in Jim’s lesson supported monitoring and 

assessment. The technology provided visual feedback for the teacher, assisting him when 

offering feedback to students in the movement of teaching. As Jim has a large cohort of students 

in his class, developing efficient strategies for supporting all students’ learning is important. 

Similarly, the images of the students’ constructions most likely provided feedback to students 

as they compared and analysed their solutions by flicking between responses. Creating 

opportunities for students to reflect on their learning aims to enrich their mathematical 

experiences. 

Using iPads in the classroom offers the advantage of creating a visual record of students’ 

achievements and learning. Images of students’ mathematical responses could be added to a 

portfolio showcasing their progress across the year. In addition, at the end of the 12-cube lesson, 

Jim could have asked students to take a photograph of their written responses as a digital record 
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of how they drew their prisms. Additionally, students could be asked to use the video app to 

record a reflection of their learning experiences, providing further evidence of student learning 

and the benefits of conveyance technology. 

The use of conveyance technology played a crucial role in facilitating collaborations, 

enabling the sharing of student solutions, and fostering discussions related to the 12-cube task. 

Furthermore, the teacher’s discussion and questioning approaches when using the images on 

the iPad during the lesson supported student reasoning and problem-solving. In particular, the 

students were encouraged to justify and explain their solutions and thinking and make a 

conjecture by explaining all four possible solutions when responding to the problem. The open-

ended nature of the problem provided opportunities for students to record and discuss all 

possible solutions including developing mathematical vocabulary related to the properties of 

prisms such as faces and orientation. The images assisted students when pointing and justifying 

their thinking, especially during whole-class discussions at the end of the lesson. 

Without technology, the teacher may have primarily relied on student work samples and the 

physical construction of three-dimensional prisms (12 cubes) to support students’ mathematical 

reasoning and problem-solving skills. However, the combination of the technology tool and the 

quality of the teacher’s pedagogical approaches in this study supported students’ learning. The 

technology served as a tool for fostering collaboration, sharing solutions, promoting discourse, 

monitoring, and assessing. The technology was also useful in supporting the teacher when 

posing questions to extend students’ reasoning and problem-solving skills. Although not 

explicitly addressed in this study, it is also plausible that incorporating technology could have 

further engaged students and fostered positive learning dispositions. 

The findings of this study highlight one approach for using conveyance technology with 

early years students to support their reasoning and problem-solving skills. Most likely the 

learning in this lesson was attributed to the teachers’ pedagogical actions, the task and 

technology. Calder and Murphy (2018) would agree that when teaching with iPads the quality 

of the teacher’s pedagogy is influential in supporting student learning. In other words, a good 

teacher is needed to support learning with technology. In addition, Cullen and Hertel (2023) 

cautioned that when assessing technology as a tool we need to consider if student learning is 

attributed to the teacher or the technology. Further studies could explore this idea by 

interviewing teachers and students after using technology as well as teaching the same lesson 

with and without technology to compare how students learn. 

Conclusion, Implications and Recommendations 

This study investigated the use of conveyance technology, specifically iPads, to support 

mathematical reasoning and problem-solving through a single case study. The Year 1–2 lesson, 

centred around a 12-cube task, providing a platform for students to engage with technology. 

The incorporation of iPads was beneficial for sharing and recording student responses, 

supporting the teacher when monitoring and assessing, and providing opportunities to support 

students’ reasoning and problem-solving. A short video capturing this lesson is available on the 

Monash University TeachSpace website (Livy, 2019). 

Implications of this study suggest that integrating conveyance technology in early years’ 

mathematics lessons when teaching with open-ended problems can support teaching practices 

for problem-solving and reasoning. Additionally, the study highlights the importance of 

teachers’ pedagogical approaches when using technology to support student learning. Teachers, 

like Jim in this case, played a pivotal role in guiding students’ mathematical reasoning, 

addressing misconceptions, and fostering mathematical discourse. Likewise, the use of iPads to 

document and share solutions supported peer learning and collaboration. Students benefited 

from seeing and discussing each other’s approaches, leading to a deeper understanding and the 

development of conjectures and strategies. Overall, these findings contribute to the broader 
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discourse on technology’s role in the early years of mathematics education suggesting that the 

integration of conveyance technology when supported by effective teaching practices, and 

open-ended problems can foster students’ reasoning and problem-solving skills. 

This study was conducted before the onset of COVID-19. Conducting a follow-up study 

with the teacher could offer valuable insights into the evolution of the use of conveyance 

technology. Given the widespread shift to online teaching during the pandemic, exploring how 

teachers, including the one in this study, have adapted and grown in their use of technology 

would provide a timely and relevant perspective, contributing to further understanding of 

productive and unproductive uses of technology tools in the early years. 

Acknowledgements 

Ethics approval [10791] was granted by Monash University, and teacher participants and 

parents/caregivers of the students provided informed consent and permissions for photographs. 

References 

Australian Curriculum Assessment and Reporting Authority (ACARA). (2022). Australian Curriculum: 
Mathematics (v9.0). ACARA. http://www.australiancurriculum.edu.au/Mathematics/Curriculum/F-10 

Boon, H. J., Boon, L., & Bartle, T. (2021). Does iPad use support learning in students aged 9–14 years? A 

systematic review. The Australian Educational Researcher, 48(3), 525–541. 

https://doi.org/10.1007/s13384-020-00400-0 

Calder, N., & Murphy, C. (2018). How might apps reshape the mathematical learning experience? 

In N. Calder, K. Larkin, & N. Sinclair (Eds.), Using mobile technologies in the teaching and learning of 

mathematics (pp. 31–50). Springer. https://doi.org/10.1007/978-3-319-90179-4_3 

Cullen, C. J., & Hertel, J. T. (2023). Improving our criticism of technology in mathematics education. 

Mathematics Teacher Learning and Teaching, 116(5), 314–321. 

Dick, T. P., & Hollebrands, K. F. (2011). Focus in high school mathematics: Technology to support 

reasoning and sense making. National Council of Teachers of Mathematics. 

Dumez, H. (2015). What is a case, and what is a case study? BMS: Bulletin of Sociological Methodology/ 

Bulletin de Méthodologie Sociologique, 127, 43–57. http://www.jstor.org/stable/43761847 

Herbert, S., & Williams, G. (2023). Eliciting mathematical reasoning during early primary problem solving. 

Mathematics Education Research Journal, 35(1), 77–103. https://doi.org/10.1007/s13394-021-00376-9 

Livy, S. (2019). How to get your Grade 1 and 2 students to think like mathematicians. Monash University. 

https://www.monash.edu/education/teachspace/articles/how-to-get-your-grade-1-and-2-students-to-

think-like-mathematicians 

Larkin, K., & Milford, T. (2018). Mathematics apps-stormy with the weather clearing: Using cluster analysis 

to enhance app use in mathematics classrooms. In N. Calder, K. Larkin, & N. Sinclair (Eds.), Using 

mobile technologies in the teaching and learning of mathematics (pp. 11–30). Springer International 

Publishing. https://doi.org/10.1007/978-3-319-90179-4_2 
McCulloch, A. W., Hollebrands, K., Lee, H., Harrison, T., & Mutlu, A. (2018). Factors that influence 

secondary mathematics teachers’ integration of technology in mathematics lessons. Computers & 

Education, 123, 26–40. https://doi.org/https://doi.org/10.1016/j.compedu.2018.04.008 

National Council of Teachers of Mathematics [NCTM]. (2014). Principles to actions: Ensuring 
mathematical success for all. NCTM. 

Sullivan, P., Bobis, J., Downton, A., Livy, S., McCormick, M., & Russo, J. (2023). Maths sequences for the 

early years F–2: Challenging children to reason mathematically. Oxford University Press. 

Sullivan, P., Borcek, C., Walker, N., & Rennie, M. (2016). Exploring a structure for mathematics lessons 

that initiate learning by activating cognition on challenging tasks. The Journal of Mathematical Behavior, 

41, 159–170. https://doi.org/https://doi.org/10.1016/j.jmathb.2015.12.002 

Vale, C., Widjaja, W., Herbert, S., Bragg, L. A., & Loong, E. Y.-K. (2017). Mapping variation in children’s 

mathematical reasoning: The case of ‘what else belongs?’. International Journal of Science and 
Mathematics Education, 15(5), 873–894. https://doi.org/10.1007/s10763-016-9725-y 

Van de Walle, J. A., Karp, K. S., Bay-Williams, J. M., Brass, A., & Livy, S. (2024). Primary and middle 

years mathematics teaching developmentally (2nd Australian ed.). Pearson. 

http://www.australiancurriculum.edu.au/Mathematics/Curriculum/F-10
https://doi.org/10.1007/s13384-020-00400-0
https://doi.org/10.1007/978-3-319-90179-4_3
https://doi.org/10.1007/s13394-021-00376-9
https://www.monash.edu/education/teachspace/articles/how-to-get-your-grade-1-and-2-students-to-think-like-mathematicians
https://www.monash.edu/education/teachspace/articles/how-to-get-your-grade-1-and-2-students-to-think-like-mathematicians
https://doi.org/10.1007/978-3-319-90179-4_2
https://doi.org/https:/doi.org/10.1016/j.compedu.2018.04.008
https://doi.org/https:/doi.org/10.1016/j.jmathb.2015.12.002


RESEARCH PAPERS 

(2024). In J. Višňovská, E. Ross, & S. Getenet (Eds.), Surfing the waves of mathematics education. 

Proceedings of the 46th annual conference of the Mathematics Education Research Group of Australasia 

(pp. 351–358). Gold Coast: MERGA. 

Primary Students’ Responses to a Cognitive Activation Lesson 

Ciara Loughland 

University of Sydney 
char6275@uni.sydney.edu.au 

Janette Bobis 

University of Sydney 
janette.bobis@sydney.edu.au 

Jennifer Way 

University of Sydney 
jennifer.way@sydney.edu.au 

Ciara Loughland, Janette Bobis, & Jennifer Way 

Cognitive activation is an approach to instruction associated with increased 

mathematical achievement and engagement. However, researchers have questioned its 

effectiveness for students with different learner characteristics. A Year 6 class 

participated in a lesson designed using cognitive activation practices. Interviews with 

ten case study participants, comprising varying achievement and engagement levels, 

revealed that practices such as collaborative learning and the use of cognitively 

demanding tasks evoked positive student responses. The findings highlight the 

instructional potential of cognitive activation across heterogeneous learner profiles. 

Cognitive activation, an element of the Three Basic Dimensions framework posited by 

Klieme et al. (2009), has garnered attention for its relationship with improved mathematical 

performance (Le Donné et al., 2016; Lipowsky et al., 2009). Defined by Klieme et al. (2009) 

as “any observable pedagogical practice and pattern … of instruction that encourages students 

to engage in (co-)constructive and reflective high-level thinking and thus develop an elaborated, 

content-related knowledge base” (p. 140–141), cognitive activation is recognised by the 

Programme for International Student Assessment (PISA) as an instructional practice for 

enhancing mathematical literacy (OECD, 2013). In the context of primary mathematics 

education, there exists a broad consensus that sole reliance on a singular pedagogical approach 

is insufficient for a deep, holistic understanding of mathematical concepts. Instead, it is 

recommended that educators draw upon a diverse range of instructional practices to enrich their 

repertoire. As cognitive activation continues to be explored as one of the many instructional 

practices that teachers can employ, there is a growing need to enhance our understanding of 

how different students respond to its implementation. 

Literature Review 

Cognitive Activation 

Although cognitive activation was conceptualised by Klieme et al. (2009), the construct was 

unpacked in greater detail by Lipowsky et al. (2009). Lipowsky and colleagues conceptualised 

cognitive activation as a multi-dimensional construct comprising three sub-elements: 

instruction for conceptual understanding, the cognitive level of students’ activities, and the 

quality of interaction and participation in the classroom. 

Instruction for conceptual understanding centres on the development of conceptual 

knowledge. Conceptual knowledge is defined as knowledge rich in relationships where teachers 

encourage students to develop meaningful connections between procedures and apply this 

understanding to novel situations (Brophy, 2000). Key features of conceptual understanding 

include explicit attention to concepts, the activation of prior knowledge and productive struggle 

(Hiebert & Grouws, 2007). The cognitive level of students’ activities, the second sub-

component, is closely linked to the first as facilitating productive struggle requires tasks 

demanding complex thinking. Lipowsky et al. (2009) found that cognitive activation is less 

likely when students solve mathematical problems in a standard manner. Therefore, tasks 

necessitating intricate, non-algorithm cognitive processing and decision-making are critical to 
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this type of instruction. Such tasks require deep, sustained mathematical thinking and should 

be suitably challenging, falling within the learner’s zone of proximal development (Vygotsky, 

1931/1978). Vygotsky’s research identified a zone just beyond what an individual can do 

independently where students can perform with the guidance and support of a more 

knowledgeable person, such as a teacher or peer. It includes scaffolding, challenge level, social 

interaction and cognitive development to support students to optimise their learning through 

challenge while providing the necessary support for growth. Finally, Lipowsky et al. (2009) 

also found the quality of interaction and student participation as an important factor of cognitive 

activation. They outlined practices such as questioning and student related discourse as 

facilitators for the construction of deeper meaning. Other research into student participation 

favours practices that encourage students to articulate ideas and engage in constructive 

dialogue, such as collaborative learning. 

Table 1 provides a synthesis of the key practices/strategies outlined in Lipowsky et al.’s 

(2009) conceptualisation as well as integrating relevant theories. 

Table 1 

List of Cognitive Activation Pedagogical Strategies and Contributing Theories 

Cognitive activation pedagogical strategies Contributing theories 

Activation of prior knowledge Zone of proximal development 

Explicit attention to mathematical concepts Theories of student engagement 

Productive struggle  

Cognitively demanding tasks  

Classroom discourse  

Collaborative learning  

Importantly, Lipowsky et al. (2009) acknowledged that “instructional features do not impact 

students’ achievement in a direct manner; rather, the uptake of learning opportunities is thought 

to depend on various learner prerequisites” (p. 529). In their discussion, they argued the need 

for further examination of the interaction between cognitive activation strategies and learners’ 

characteristics. This is of particular importance as “the classroom learning community is neither 

static nor linear” (Anthony & Walshaw, 2009, p. 149) and students arrive at any learning 

situation with a range of different learning characteristics. The focus characteristics selected for 

this paper include student achievement and engagement. 

Achievement and Engagement Learner Characteristics 

Student achievement is defined by Hattie (2013) to encompass their accomplishments. In 

this study, achievement refers to students’ performance within the context of mathematics 

learning goals. Achievement has been an ongoing area of interest for mathematics educators. 

However, within student-centred and problem solving-based pedagogies, educators have 

expressed reservations about incorporating demanding or challenging tasks for students of low 

achievement backgrounds. A study by the National Foundation for Educational Research 

(NFER) in the UK (Burge et al., 2015) revealed that cognitive activation practices were less 

frequently observed among low-achieving students compared to their high-achieving 

counterparts. Notably, high-achieving students reported a 23% increase in situations where 

teachers presented problems where the solution was not immediately apparent. Although a 

nascent link exists between cognitive activation strategies and academic achievement, 

uncertainty persists regarding whether this discrepancy stems from high-achieving students 

witnessing more of these practices from their teachers than their lower-achieving peers. 

Furthermore, as evident from the updated New South Wales K–10 mathematics syllabus (New 

South Wales Education Standards Authority (NESA), 2020), students across all achievement 

https://merga.net.au/Public/Events/conference_submission_information/Early_Bird_Submissions.aspx
https://merga.net.au/Public/Awards/Early_Career_Research_Award.aspx


Primary students’ responses to a cognitive activation lesson 

353 

levels should have opportunities to be creative and critical when solving complex tasks. There 

is a need to understand more deeply how students respond to moments of instruction that centre 

on students making connections, discussing key mathematical concepts and attempting 

cognitively demanding tasks; all key elements within a cognitive activation approach. 

Student engagement has garnered significant attention due to its potential impact on positive 

educational outcomes (Fredericks et al., 2004). Engagement is well established as a multi-

dimensional construct, encompassing behavioural, emotional and cognitive sub-constructs, all 

which play pivotal roles in fostering student involvement in their learning (Fredericks et al., 

2004). Within their multidimensional framework, Fredericks et al., (2004) suggest authentic 

and challenging tasks can be associated with heightened behavioural, emotional and cognitive 

engagement. However, the authors acknowledge a gap in literature concerning how individual 

differences such as achievement levels, moderate the relationship between challenging tasks 

and engagement. Over the past two decades, researchers have continued to explore this gap. 

For instance, Bobis et al. (2021) explored instructional strategies to facilitate increased 

engagement in mathematics learning when challenging tasks were involved. Insights gleaned 

from teacher interviews highlighted the efficacy of using open-ended tasks as catalysts for 

enhancing student engagement. The present study aimed to capture student perspectives on 

teaching practices aligned with a cognitive activation approach that sustains or promotes 

engagement in their learning. Given the association between student engagement and 

achievement, understanding student responses to cognitive activation practices may be useful. 

Insights from this study can inform classroom practices and guide further investigations into 

the use of these teaching strategies across diverse student populations. 

The present study aimed to address the following research question: How do Year 6 students 

with different engagement and achievement learner characteristics respond to components of a 

lesson designed using cognitive activation practices? For the context of this paper, ‘respond’ 

refers to students’ reactions including their enjoyment and engagement. 

Methodology 

An exploratory case study methodology was used to investigate student responses to a 

lesson designed using cognitive activation strategies and contributing theories, hereafter 

referred to as a cognitive activation lesson. This paper is affiliated with a larger study 

comprising a series of six intervention lessons, all constructed around cognitive activation 

teaching strategies. The findings in this paper report on student responses of 10 subset case 

study participants gathered during the semi-structured interviews following the first cognitive 

activation lesson. Previous mathematics lessons were teacher-directed and students had 

minimal experience with cognitive activation practices prior to the intervention. 

Intervention 

A 60-minute lesson was led by the researcher, who was not the regular class teacher. The 

content focus of the lesson was on addition. A warmup activity was designed to activate prior 

knowledge where students were tasked to find multiple strategies to solve a three-digit additive 

number sentence. Students worked collaboratively with a peer using a mini-whiteboard to 

record their working. Solution strategies were shared and evaluated in a whole class discussion. 

The body of the lesson centred around a cognitively demanding ‘Charity’ task that posed the 

following question: Three schools raised $125,750 for charity. Each school raised a different 

amount. What amount might each school have raised? The open-ended nature of the task 

offered the possibility of stimulating higher-level thinking. It allowed students to generate their 

own strategies and apply their understanding of addition in a novel context. These key elements 

align with existing literature, which suggests that such tasks can enhance cognitive demands 

and challenge students intellectually (Dyer & Moyinhan, 2000; Sullivan, 2018). Support and 
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extension prompts were pre-devised, adopting an approach recommended by Sullivan (2018) 

when providing students with challenging tasks. A support scaffold reduced the total to $25,750 

while an extension scaffold challenged students to find multiple solutions where the total for 

each school was within $3,000 of each other. Students had a choice in the last few minutes of 

the task to use a calculator to help find more solutions. After completing the task, some student 

solutions were discussed. Students also had an opportunity to reflect on the strategies they used 

during the problem-solving process. 

Participants and Data Collection 

A heterogenous Year 6 class participated in the study. The school was an independent, co-

educational school located in metropolitan Sydney. Students came from mid- to high-

socioeconomic backgrounds. This age range was selected as it is a stage often linked with 

declining mathematical engagement (Skilling et al., 2020). Prior to the intervention, baseline 

data were collected to help select the subset of case study participants. Students’ achievement 

and engagement characteristics were evaluated using Martin’s (2007) Motivation and 

Engagement Scale (MES), Progressive Achievement Testing (PAT) and a researcher-made 

assessment on addition and subtraction. Results were ranked using a tripartite approach to 

determine low, moderate and high achievement and engagement. A subset of ten case 

participants, comprising five males and five females, represented a broad spectrum of 

achievement and engagement levels. 

Each lesson was video recorded and researcher/teacher field notes were logged. Student 

artefacts including work samples and photographs of whiteboard work were collected. 

Individual student semi-structured interviews were conducted immediately following the first 

lesson. Interviews were video recorded and transcribed. 

Data Analysis 

A hybrid thematic approach was employed to discern patterns of significance within the 

semi-structured interview transcripts (Braun & Clarke, 2006). The initial phase of analysis 

involved a comprehensive review of the transcripts to obtain a holistic understanding of the 

students’ reactions to the lesson. Deductive coding was primarily used to tag quotations when 

students alluded to a particular cognitive activation practice (refer to Table 1 for an overview 

of the cognitive activation practices). Inductive codes were also annotated when students 

mentioned other instructional components of significance. Following this, an inductive strategy 

was employed to detect patterns pertinent to the research question. These findings were further 

scrutinised, and categorised into sub-themes and major themes for this paper. 

Results 

Due to space constraints, a comprehensive coverage of all cognitive activation practices is 

unfeasible. Instead, the results in this paper hone in on four principles frequently underscoring 

students’ responses: cognitively demanding tasks, zone of proximal development, productive 

struggle and collaborative learning. The findings are organised into two primary themes 

extracted from data analysis. Students’ names are pseudonyms for confidentiality in the study. 

Student Responses to Challenge 

During the semi-structured interviews, students frequently discussed the cognitively 

demanding task or the associated challenge level. More than half of the students referenced the 

level of challenge, the majority in relation to the cognitively demanding ‘Charity’ task. Most 

students spoke negatively about the level of challenge because the cognitive demands of the 

task were excessively high. Oscar, a low achievement and engagement student, accounted for 

almost half of the negative responses, “I just don’t know how to work out the question … I 
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didn’t get how to find the amount that each school raised. And I didn’t get just what the question 

meant.” 

Similarly, Leah, a moderate achievement and engagement student, also found the main task 

too challenging, “I got confused on this task and I got quite stuck … I just didn’t understand … 

With the other ones, I know how to do the strategies and I knew what to do.” 

Victor, a high achievement low engagement student, also found the challenge level for the 

‘Charity’ task not suitable. He perceived part of the task too easy because the openness of the 

task meant answers could be derived by “coming up with random numbers”. Victor did, 

however, show an increase in his cognitive engagement when afforded the opportunity to solve 

the extension prompt, “I think it was better when there was a bit less freedom … when it had 

to be a little closer together because you can’t just do anything.” 

A similar sentiment was observed from Edward, a low achievement high engagement 

student, when referring to the opportunity to use the calculator towards the end of solving the 

main task, “well, when we started using the calculators, that wasn’t as fun because it was giving 

us the answers. I like to work it out.” 

Both Edward and Victor reported diminished enjoyment when they perceived the task as 

straightforward, with answers readily available. Victor expressed greater enjoyment upon 

successfully completing the extended prompt, while Edward experienced a similar effect when 

he avoided using a calculator, as both instances required more effort in solving the cognitively 

demanding task. 

Among the students who provided positive feedback regarding the cognitively demanding 

task, Maddie, a student with moderate achievement and low engagement, explicitly 

acknowledged the suitability of the challenge level, “it was pretty fun because the questions 

weren’t too hard or too easy.” 

Almost all the students recognised the beneficial role of challenge for their learning. Sally, 

a low achievement and engagement student spoke positively about the role of productive 

struggle in the lesson, also noting the importance of scaffolding in responding to challenges: 

I think it can be sort of helpful because you get to challenge yourself and try. If it is something easy 

a lot of the time, I think you don’t actually learn anything … I do like having that challenge but I 

also think it would be helpful … getting more help with challenging ones if it gets too challenging. 

She also found interest in attempting struggle within the lesson and challenging herself not 

to only find easy solutions: 

It was fun to do different things and correct myself because I know I got a few wrong. I checked 

them and it was fun to redo it and do different examples instead of just having really easy ones the 

whole time. 

Many high-achieving students exhibited favourable responses when confronted with 

challenges during the lesson. For example, George, a high achievement and engagement 

student, and Victor, both expressed enjoyment and a feeling of victory upon successfully 

solving complex problems: 

When I complete something hard, it just brings me joy. (George) 

When you’re trying to figure out something and then at the very end or at the start of the next lesson, 

you finally figure it out, it gives you a sense of accomplishment and it feels good. (Victor) 

Classroom Participation During the Lesson 

Collaborative learning emerged as the predominant cognitive activation practise discussed 

in the student interviews. The majority of students spoke about their enjoyment engaging with 

a peer to solve the warmup task. For example: 

I really enjoyed it because we could work with new people and share our ideas and listen to each 

other. (Leah) 



Loughland, Bobis, & Way 

356 

I think my favourite part was when we were all sitting down on the carpet and we were working 

together with a partner because we could figure out who was going to do what and we could work 

more efficiently and we could understand what each other were doing. And we could also learn more 

ways to figure things out or be remembered. (Laura) 

Sally, a low achievement and engagement student, expressed unfavourable sentiments 

regarding the collaborative learning activity. She highlighted a lack of collaboration with her 

partner and conveyed low enjoyment because she was not able to actively contribute to the 

shared learning experience, “I was with someone who understood math a lot better than I did 

and who knew lots of different strategies so it ended up being she did most of the work.” 

Similarly, when queried about her lowest engagement moments during the lesson, Sally 

attributed it to the collaborative activity, asserting “because my partner did most of the work.” 

When prompted to identify a part of the lesson she would like to do again, she responded, “I’d 

probably do the warmup again and try and challenge myself to do some other things … instead 

of just letting my partner do it.” 

During the analysis of student responses, it became evident that collaborative learning was 

not the sole factor contributing to heightened classroom participation. Many students attributed 

their increased behavioural and cognitive engagement to the cognitively demanding task. 

Specifically, Laura, Edward and Connor reported that the open-ended task extended their 

involvement in the lesson, as they found the exploration of multiple solutions intellectually 

stimulating and intriguing: 

I enjoyed it because there were multiple answers … it was interesting to see how many answers you 

could come up with. (Laura) 

I enjoyed it because there wasn’t one answer, because if there was one answer, it would just be like 

a boring lesson. We would figure out one and it would be over, but this there’s multiple answers and 

multiple ways to figure out your answer. (Edward) 

I enjoyed it because it was a problem where you didn’t just work it out and then you were done. You 

could have multiple answers, like lots of them, so you could sit there for a long time working out 

new answers. (Connor) 

Discussion 

The prominence of responses relating to the challenge level underscores the significance of 

Vygotsky’s Zone of Proximal Development theory (1931/1978) in the context of cognitive 

activation instruction. Positive reactions, particularly in terms of engagement and enjoyment, 

were consistently observed when challenge levels aligned with students’ academic capabilities. 

Conversely, excessively demanding challenges led to decreased engagement and enjoyment. 

When the challenge level was perceived as ‘optimal’ from the student’s perspective, cognitive 

engagement appeared to increase. Although this study drew insights from a limited sample size 

of student voices, an interesting observation emerged: challenge level played a critical role in 

utilising Lipowsky et al.’s (2009) second sub-component of cognitive activation. The potential 

implications of this finding are promising, yet further investigation is warranted. 

Furthermore, the observation of heightened negative reactions to challenging tasks among 

low-achieving students reinforced the importance of scaffolding. This finding aligns with Bobis 

et al.’s (2021) research, where teachers emphasised the effectiveness of a differentiated 

approach, including extending and enabling prompts, to engage a diverse student population. 

Student perspectives indicated that suboptimal challenge levels led to reduced engagement and 

enjoyment. It is acknowledged that this is one of many factors which may have influenced the 

way students engaged with the task, and further exploration of these factors is needed in larger-

scale studies. Cognitive activation, which centres on the utilisation of cognitively demanding 

tasks, reveals the need for teachers to possess a deep understanding of their students. Student 

responses in this context highlight the role of teacher-student familiarity in optimising 

cognitively demanding activities. Specifically, awareness of students’ achievement 
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characteristics during the design and creation of cognitively demanding tasks could assist 

teachers to tailor differentiation effectively. By doing so, educators can aim to engage a wider 

student population. Further research should continue to explore this relationship and refine 

instructional strategies within cognitive activation teaching. 

In the analysis, classroom participation emerged as a salient theme, with numerous students 

attributing heightened engagement to collaborative learning experiences and the solving of an 

open-ended cognitively demanding task. Sally’s perspective illuminated the detrimental impact 

of ineffective collaboration on her learning. Her negative reactions stemmed from her lack of 

active contribution to the collaborative process, resulting in decreased task engagement and 

enjoyment. The large number of positive reactions, coupled with Sally’s negative response, 

showed there may be a possible association between increased engagement and enjoyment with 

opportunities for collaborative learning, so long as the collaboration is shared equally and is 

productive. Finally, a potential link between cognitively demanding tasks and classroom 

participation was revealed. Notably, student perspectives demonstrated alignment with 

Frederick et al.’s (2004) findings, which associate challenging tasks with increased behavioural, 

emotional and cognitive engagement. Student responses to this lesson highlighted increased 

participation and heightened cognitive stimulation from both collaborative practices and open-

ended, cognitively demanding activities as reasons for enhanced engagement and enjoyment in 

the lesson. 

Conclusion 

The objective of this study was to investigate how students with varying achievement and 

engagement profiles respond to different practices and aspects of a cognitive activation lesson. 

By analysing student feedback, we explored the potential of cognitive activation instruction. 

Notably, students reported heightened engagement and enjoyment when the challenge level 

aligned with their individual achievement characteristics. While these preliminary findings 

warrant further scrutiny, they hold implications for instructional practice. Student voices serve 

as a call for educators to incorporate opportunities for struggle and cognitively demanding tasks 

into teachers’ teaching repertoires. A possible link between cognitively demanding tasks and 

increased cognitive engagement and participation emerged. Additionally, responses related to 

collaborative learning underscore heightened student participation, transcending engagement 

and achievement levels. In this lesson, successful collaboration not only facilitated peer learning 

but enhanced overall participation, with students appreciating the social dynamics inherent in 

this learning approach. This study sheds light on how learners with different characteristics 

engage within a cognitive activation framework. The hope is that these findings will encourage 

teachers to embrace this instructional practice, with the intent of elevating student engagement 

and the potential to foster a deeper enjoyment of mathematics learning. 
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This paper is part of a broader study which explores South African pre-service teachers’ 

use of the jump strategy on the empty number line for enhancing their confidence to do 

and teach mental mathematics computation strategies. The focus of this paper is the use 

of micro-teaching in the form of video recordings by pre-service teachers. Forty videos 

were analysed thematically indicating that most pre-service teachers could implement 

the strategy with some level of fidelity. Three micro-teaching videos are shared in this 

paper to exemplify the range of strong, medium, and poor implementation fidelity. 

The South African Department of Basic Education (South Africa. DBE, 2020) rolled out 

resources developed from the national Mental Starters Assessment Project (MSAP), intended 

for improving learners’ mental mathematics and number sense skills (Graven et al., 2020). An 

offshoot of this project is the Mental Mathematics Work-Integrated Learning (MM-WiL) 

project, directed at preparing pre-service teachers (PSTs) for using the MSAP materials to 

effectively teach mental mathematics, with the additional benefit of improving their own 

confidence and competence in performing mental mathematics calculations. The broader study 

explores how South African PSTs use the jump strategy on the empty number line. This paper 

specifically aims to answer the research question, ‘How do PSTs use the jump strategy on the 

empty number line when recording micro-teaching videos?’ As mental calculations and number 

sense are vital for understanding mathematics (Bobis, 2007), I posit that supporting PSTs in 

learning how to teach strategies such as the jump strategy on the empty number line through 

the supportive and engaging context of micro-teaching videos is of interest to mathematics 

teacher educators internationally. 

Background and Rationale 

Literature indicates that South African teachers lack the necessary mathematical and 

pedagogical knowledge, support, and confidence, and are subsequently hindered by poor 

morale (for example, Graven & Heyd-Metzuyanim, 2014; Hoadley, 2012; Jojo, 2019; Spaull, 

2019; Venkat & Graven, 2017). Studies on South African PSTs further show that their 

mathematical knowledge is lacking, and that there is little improvement during the four years 

of completing their BEd degree (Bowie et al., 2019; Fonesca, 2018). Fourth year PSTs in 

Bowie’s study were unable to achieve a mean score over 50% for higher cognitive demand 

items across all mathematics topic areas, and she claims these results mirror the knowledge and 

proficiency of in-service teachers. Bowie (2019) therefore argues that mathematics teacher 

educators “cannot take it for granted that student teachers will arrive with a command of the 

mathematics they will be expected to teach” (p. 295). In the Australian context, Beswick and 

Goos (2012) similarly found that it could not be taken for granted that students entering as PSTs 

have fundamental mathematics knowledge and skills. PSTs are shown, across international 

studies, to have low number sense (e.g., Aktaş & Özdemir, 2017; Bowie et al., 2019; Courtney-

Clarke & Wessels, 2014; Şengül, 2013). According to Bobis (2007), well-developed number 

sense is vital to efficient computation and understanding of mathematics. These factors indicate 

the rationale for projects such as MSAP and MM-WiL to support PSTs developing number 

sense and mental mathematics knowledge and skills. In this paper, I explore the opportunities 

for micro-teaching videos to support PSTs in learning how to implement mental calculation 

strategies, specifically the jump strategy on the ENL. 

mailto:tarryn.lovemore@mandela.ac.za
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Literature Review 

The MSAP and MM-WIL Resources 

The MM-WiL project uses the MSAP material (Graven et al., 2020) consisting of resources 

in a teacher guide such as scripted lessons, diagrams, video-recorded demonstrations (see for 

example, https://youtu.be/6RkP5bSpINQ), notes, pre- and post-tests and learner worksheets 

(available from https://www.education.gov.za/MSAP2022.aspx). Six mental mathematics 

calculation strategies are taught in MSAP: bridging through ten, jump strategy, doubling and 

halving, rounding and adjusting, re-ordering, and linking addition and subtraction. These 

strategies were carefully designed into tasks to prepare learners for fluent and flexible mental 

computation to move them away from over-reliance on unit counting (Graven et al., 2013; 

Graven & Venkat, 2021; Schollar, 2008). The current paper focuses on the jump strategy, which 

uses an empty number line (and eventually a mental image thereof) to gesture and visually 

represent addition or subtraction of a number. Mathematics teacher educators (MTEs) at eight 

South African universities are actively using the MSAP resources with their PSTs, followed by 

opportunities for them to implement teaching them during their practical teaching experience. 

This paper, however, reports on the use of micro-teaching as a way for PSTs to explore using 

and teaching the jump strategy for addition and subtraction. Rather than expecting these first-

year PSTs to teach to a class of children, they are first given the opportunity to micro-teach to 

their peers in small groups of two to three members. PSTs worked together to record their 

micro-teaching similar to the demonstration videos provided in the teacher resources. 

The Jump Strategy on the Empty Number Line 

Şahin and Danaci (2020) suggest that one of the challenges learners face with mental 

computation is not visually showing their thinking. There is, however, a relationship between 

mental computation and number line representations, according to Ruiz and Balbi (2019). 

Vermeulen et al. (2020) further posit that the empty number line (ENL) has a “temporary value” 

(p. 233) in supporting learners with calculations by reducing their cognitive load in the process 

through visually showing what is happening mentally. The ENL is a number line with no 

predetermined numbers or unit markers, making it a useful tool to support addition and 

subtraction in any number range, and it can stimulate learners in explaining their thinking 

around calculation strategies (Bobis, 2007; Klein et al., 1998; van den Heuvel-Panhuizen, 

2008). As learners develop understanding and fluency, they no longer need the visual 

representation, as it becomes a mental image supporting mental computation. The jump strategy 

on the ENL can assist learners in visually representing addition and subtraction on a linear 

representation, where one number is kept as a whole and the addend (or subtrahend) is jumped 

forwards or backwards in manageable parts, such as in tens (Blöte et al., 2000; Bobis & Bobis, 

2005). The jump strategy should not be taught as a mandatory procedure, but rather as a 

meaningful, flexible strategy enabling learners to visualise and work with number relations 

(Bobis, 2007; van den Heuvel-Panhuizen, 2008; Vermeulen et al., 2020). Therefore, learning 

and practising how to use and teach the jump strategy on the ENL to support learners’ mental 

computation can be a valuable strategy for PSTs, as encouraged in the MSAP and MM-WiL 

teacher resources. 

Micro-Teaching for Enhancing Pre-Service Teachers’ Skills 

Micro-teaching is a widely used practice to prepare PSTs for professional classroom 

teaching and for education research (Cheng, 2017; O’Keeffe & White, 2022; Ünlü, 2018). 

O’Keeffe and White (2022) suggest that micro-teaching is an opportunity to move PSTs away 

from teaching the traditional way they were taught, which could result in negative views 

towards mathematics, to a more reflective and engaging way of teaching. Micro-teaching 

involves creating a controlled, supportive environment made up of smaller class sizes, normally 

https://youtu.be/6RkP5bSpINQ
https://www.education.gov.za/MSAP2022.aspx
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of peers, and for a shorter duration of a standard lesson (Ünlü, 2018), allowing PSTs the 

opportunity to practise a specific teaching skill without the complexity of a typical classroom 

(Basturk & Tastepe, 2015). MTEs can use this opportunity to connect theory with practice, 

before sending PSTs out into schools for practicum. Literature reports benefits of micro-

teaching for mathematics PSTs, including developing confidence with time and classroom 

management, planning, task design, use of questioning, self-efficacy, and precision (Cheng, 

2017; Ünlü, 2018). Cheng (2017) highlights a “special kind of micro-teaching” (p. 281) where 

the university micro-teaching experience is linked to the mentor teacher experience at schools, 

which helped PSTs improve their precision in verbal (language use, reasoning) and non-verbal 

(accurate calculations, exact formulas) skills. Cheng (2017) however noted in their study that 

while the combined micro-teaching experience had value, some lack of precision was still 

observed in PSTs’ lessons. Basturk and Tastepe (2015) caution against the “artificial nature” 

(p. 1) of the micro-teaching setting during a university course lecture. Nevertheless, probably 

the most beneficial of the micro-teaching experience is the opportunity for PSTs to be guided 

in reflecting on and self-evaluating their recorded lessons with peers and MTEs, stimulating 

collaborative discussion and development, thus improving their content and pedagogical 

knowledge (O’Keeffe & White, 2022). While an explicit focus on reflection was not guided by 

the MTE in the study reported on in this paper, it was clear that working in pairs, the PSTs used 

the opportunity to self- and peer-evaluate their micro-teaching of the jump strategy on the ENL. 

The next section describes the methodological process of the study. 

Methodology 

The MSAP resources and training were delivered by the author, also the MTE, to 190 first-

year PSTs during their mathematics didactics course. One hundred and two PSTs agreed to 

participate in the broader study, including pre- and post-tests, questionnaires, and interviews. 

After completing the pre-test, the MTE shared the hardcopy and electronic MSAP resources 

with the PSTs. She also demonstrated the designed lesson starters and jump strategy on the 

ENL to the PSTs during the first 20 minutes of six lecture sessions spread across three weeks 

(with the intention of modelling how the PSTs would use the resources in their own 

classrooms). This was followed by the post-test. For the purpose of this paper, I focus on 40 

PSTs’ submitted micro-teaching videos for which consent to enter them into the data set was 

given. PSTs had the right to withdraw from the study at any stage; only their hands are shown 

in the videos, and pseudonyms were used to uphold their anonymity. 

Powell et al.’s (2003) analytical model was used to guide the thematic analysis of the videos: 

the author (1) watched and re-watched the videos; (2) made detailed notes describing the data; 

(3) identified critical moments in each of the 40 videos; (4) transcribed them indicating both 

PSTs’ actions/gestures and dialogue; (5) coded the data according to identified patterns; (6) 

constructed a storyline and (7) wrote a narrative description referring to screenshots of the 

critical moments’ dialogue and gestures. This was a cyclical and iterative process. The author 

noticed four common key elements that contributed to the implementation fidelity of the MSAP 

resources in the PSTs’ micro-teaching videos, i.e., use of (i) the ENL, (ii) jump strategy, (iii) 

gestures and (iv) key phrases. These four key elements were further used to analyse the 40 

micro-teaching videos. It was noticed that for each of the four key elements the PSTs’ videos 

either faithfully followed the scripted MSAP resources with strong implementation fidelity or 

they departed from the resources. 

Findings 

In Lovemore and Graven (in press) it was found that most PSTs followed the MSAP 

resources with some level of implementation fidelity in their micro-teaching videos. Over 70% 

of the PSTs used the ENL to teach the jump strategy in a highly similar way to the scripted 

resources in at least three of the four key elements (i)–(iv) listed above. Micro-teaching videos 
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that had all four of the key elements present were categorised as having strong implementation 

fidelity. Videos with two or three key elements were categorised as medium implementation 

fidelity, and those with one or no key elements as poor implementation fidelity. In this paper, I 

move on from this global perspective of the broad data and focus on three examples of micro-

teaching videos across the spectrum of implementation fidelity. This allows me to demonstrate 

specific examples of the PSTs’ use of the jump strategy on the ENL when recording micro-

teaching videos and to consider its implications for MTEs. 

PSTs could select various calculations, taken from the MSAP resources, to demonstrate the 

use of the jump strategy on the ENL to create their micro-teaching video. For this paper, I 

selected the calculation 62 − 30 = __. This subtraction problem involves a known minuend and 

subtrahend, and the missing difference. It could be solved by placing the minuend (62) towards 

the end of the ENL and jumping backwards either by breaking the subtrahend (30) into three 

jumps of ten or by a whole jump of 30. Eight of the 40 PSTs selected this calculation, seemingly 

because it appears relatively straight-forward. Our analysis, however, shows that for this 

calculation two PSTs implemented the resources faithfully (all four key elements present); five 

PSTs implemented the strategy with medium implementation fidelity (three PSTs met three key 

elements, and two PSTs met two key elements); and one PST met only one key element. I 

selected this calculation to demonstrate the varying extent to which three PSTs faithfully 

implemented the key elements in their micro-teaching videos. 

Strong Implementation Fidelity 

Somila demonstrated an example of implementing the use of the jump strategy on the ENL 

in a way that is highly similar to the scripted MSAP lessons. An example from the MSAP 

scripted lesson for a subtraction calculation encourages the teacher to make the steps explicit to 

the learners, i.e., “Remind learners of the steps they learnt previously: plot [on the ENL], break 

down [into tens and ones], jump backwards, and answer” (Graven et al., 2020, p. 41). A 

demonstration video was also part of the teacher resource (see for example, 

https://youtu.be/JQq2zL6pwCM). Figure 1 below shows screenshots from key moments in her 

micro-teaching video, illustrate a transcript of her micro-lesson: 

You’ve got a sum of minusing 30 from 62, and we’re going to be using the number strategy. The 

first step is to firstly draw your number line and place 62 on the end of your number line (points to 

end of ENL–Frame 1) since you’re going backwards (gestures backwards on the ENL). So you need 

to take away three tens (points to 30) from 62 (points to 62). So you place your 62 at the end of the 

number line and you move backwards (emphasises drawing jump arc – Frame 2) by minusing 10. 

Then 62 minus 10 will give you 52 (Frame 3 – points to 62 on ENL and then -10 jump). Since you’re 

not yet by 30 (points – Frame 3), you move back another 10 (draws jump of 10), and you minus 10 

once again and you’ve got 42 (keeps her righthand finger on the first ten jump while gesturing and 

drawing the next jump to 42). So since we see that it’s already two tens make up twenty (points to 

jumps of ten – Frame 5), that’s why it takes one more ten to make 30, therefore we move back for 

the last time (points with righthand finger on 30 in the calculation while drawing jumping the final 

10 – Frame 6), and you’ve got 32. These tens (points to tens jumps) make up 30, therefore you know 

you’ve moved back enough times. 

https://youtu.be/JQq2zL6pwCM
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Figure 1 

Screenshots From Somila’s Micro-Teaching Video 

 

Somila first drew a straight line and then included markers for the first (minuend) and last 

(difference) numbers. The ENL is a straight continuous line with no unit markers other than the 

markers learners need and chooses to use to visually demonstrate their thinking (Bobis, 2007; 

van den Heuvel-Panhuizen, 2008; Vermeulen et al., 2020). She breaks 30 down into three 

groups of 10, which she uses for the jumps. As shown in Figure 1, her jumps are visually 

proportionate in size. While Bobis (2007) explained that learners are not expected to draw their 

jumps on the ENL proportionately, we suggest that the teacher should draw the jumps in a way 

that is visually proportionate, to indicate that groups of 10 are the same. Following the key 

phrases of the teacher resources, Somila indicates that 62 should be placed at the end of the line 

and gestures to demonstrate that ‘minus’ means we need to jump backwards. Her pointing 

shows the process linking the written calculation (specifically the subtrahend) to the jumps on 

the ENL, thus showing the fictitious learners exactly what is happening in each step. Other 

useful phrases include referring to “tens” and a strategy for learners to check if they are correct, 

“These tens make up 30, therefore you know you’ve moved back enough times”. In this 

example, Somila effectively used the jump strategy on the ENL to solve the subtraction 

calculation, including key phrases from the teacher resources and gesturing to demonstrate the 

process. While Somila’s micro-teaching video had all four key elements present, there are still 

areas where the MTE can guide her towards greater accuracy. This resonates with Cheng’s 

(2017) study where micro-teaching was used to improve PSTs’ precision in verbal and non-

verbal skills. Somila, for example, referred to “a sum of minusing” and the “number strategy”. 

On reflection of her micro-teaching video, her MTE could point out that ‘sum’ refers to 

addition, whereas ‘difference’ refers to a subtraction calculation. Similarly, the name of the 

strategy being taught is the jump strategy on the ENL. Somila also plotted her endpoint on the 

ENL, making it a line segment rather than a true empty number line. By practising teaching 

these strategies in a safe, conducive micro-teaching context, Somila has the opportunity to gain 

pedagogical and content knowledge as well as confidence before going to teach in a real school 

classroom. 

Medium Implementation Fidelity 

Johannes demonstrated a medium similarity to the MSAP scripted teacher resources, by 

making use of the ENL, somewhat proportionate jumps and some of the key phrases. His micro-

Frame 1 Frame 2 Frame 3 

   

Frame 4 Frame 5 Frame 6 
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teaching video did not, however, include the gesturing encouraged in the teacher resources. His 

video transcript is below, followed by screenshots in Figure 2: 

62 minus 30 is equal to (62 plotted on ENL before starting – Frame 1). To make it easier we are 

going to minus 10. 62 minus 10 is equal to 52 (draws jump arc – Frame 2). Minus 10 (labels jump). 

Minus another 10 gives 42 (draws jump arc). Minus another ten (draws jump arc – Frame 3) is your 

final answer, 32. 

Figure 2 

Screenshots from Johannes’ Micro-Teaching Video 

 

While Johannes made use of an ENL without unit markers, he had placed the minuend (62) 

at the end of the line without showing or explaining why the subtraction calculation would 

‘start’ at the end of the line (see Frame 1). This omits an important pedagogical moment 

highlighted in the MSAP teacher resources, to give learners the opportunity to strategically 

represent and visualise the type of calculation (addition or subtraction). He proceeded to draw 

jumps, which are somewhat visually proportionate, but because he had placed the endpoints on 

the line, he had to ensure that his jumps landed on the market, thus resulting in his last jump 

being slightly longer than his first two. In this micro-teaching video, one key phrase from the 

MSAP resources is present, i.e., ‘to make it easier’, when indicating the breaking of 30 up into 

tens. He however does not refer to phrases such as ‘at the end of the line’ or ‘jump backwards’. 

Instead, Johannes only uses the word ‘minus’ to indicate the subtraction of tens. Furthermore, 

his gestures are limited to the drawing of the jump arc. For the purpose of this study, I recognise 

the drawing of the jumps as a form of gesture, but also the emphasis of the jump through non-

drawing hand movements, including pointing to the original calculation (such as in Somila’s 

example), and indicating the jump direction (forwards or backwards) based on the calculation. 

While Johannes’ micro-teaching video demonstrated the use of the jump strategy on the ENL 

to solve the calculation, there were some key elements missing that would enhance the 

pedagogical value of his demonstration. Using reflection on the micro-teaching video, the MTE 

could indicate the pedagogical value of using key phrases from the scripted lessons, and to 

scaffold learners with each step of the process. 

Poor Implementation Fidelity 

Wonga’s micro-teaching video is an example of poorly implementing the MSAP teacher 

resources. In this video demonstration, he departed from the scripted teacher resources by 

breaking the subtrahend 30 into two groups of 15, rather than the suggested tens. The micro-

teaching video is filmed at an angle which is difficult to clearly see, and as such, no screenshots 

are included. However, a transcript of his short video is below: 

(Draws ENL and plots 62). We have 62 minus (draws jump arc backwards) … 62 minus … 15 … 

this gives us … (is unsure and puts pencil down). 

Wonga’s 22-second micro-teaching video indicates that he is not yet confident with using 

the jump strategy on the ENL. He was able to draw the ENL, plot 62 and draw a jump arc 

backwards. However, he opted to break 30 up into two groups of 15, rather than using the 

suggested and scripted ‘friendly numbers’ such as groups of ten, in the MSAP resources. He 

Frame 1 Frame 2 Frame 3 
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only drew one jump arc and did not label it as ‘–15’. The delay indicated by the ellipsis in the 

transcript further indicates his uncertainty. When reaching the point of having to subtract 15 

from 62 he stops the attempt. This suggests that he has not gained confidence in using the 

strategy for flexible and mental calculations. Wonga’s micro-teaching video suggests that he 

needs further support in how to use the jump strategy on the ENL as well as explicit instruction 

on how to teach it. 

Discussion and Conclusion 

This paper sought to answer the research question, ‘How do PSTs use the jump strategy on 

the empty number line when recording micro-teaching videos?’. From exploring the three 

examples of Somila, Johannes and Wonga, it is evident that PSTs are able to implement the 

jump strategy on the ENL with some (varying) level of fidelity. The micro-teaching videos 

were an opportunity for PSTs to work in pairs, to engage with the MSAP resources and find 

ways to enact them. The micro-teaching allowed opportunities for reflection (although not the 

focus of this paper) for PSTs, and their MTE, to establish where they are confident and 

competent, and which key elements needed further attention. 

The three micro-teaching videos showed examples of how PSTs implemented the teacher 

resources with strong, medium, and poor implementation fidelity. This can be useful to 

researchers and MTEs to take note of the importance of explicit instruction and guidance for 

PSTs when learning how to teach the jump strategy on the ENL, and other mental calculation 

strategies. Just as Beswick and Goos (2012) and Bowie (2019) state that it cannot be taken for 

granted that PSTs arrive at the didactic courses with content knowledge, so too we cannot take 

it for granted that by sharing teacher resources and demonstrations on calculation strategies, 

PSTs have the knowledge, skills, and confidence to teach them. In this study, the MTE shared 

hardcopy and electronic scripted teacher guides, video-recorded examples, and demonstrated 

the jump strategy over a three-week period in six lectures. PSTs still did not have full 

implementation fidelity in their micro-teaching videos. It is promising though to note that PSTs 

were able to implement most of the key elements of appropriate jumps on the ENL, using some 

gestures and some key phrases. Creating micro-teaching videos in a safe space, and reflecting 

with peers, is a useful opportunity for PSTs to practise their teaching before going to teach in 

schools. 

Acknowledgements 

Ethics approval H23-EDU-PGE-020 was granted by Nelson Mandela University, and pre-

service teachers gave informed consent. 

References 

Aktaş, M.C., & Özdemir, T.E. (2017). An examination of the number sense performances of preservice 

elementary school mathematics teachers. European Journal of Education Studies, 3(12). 

https://doi.org/10.5281/zenodo.1117088 

Basturk, S. & Tastepe, M. (2015). Examining primary pre-service researchers’ difficulties of mathematics 

teaching with the micro-teaching method. Acta Didactica Napocensia, 8(3), 1–10. 

Blöte, A. W., Klein, A. S., & Beishuizen, M. (2000). Mental computation and conceptual understanding. 

Learning and Instruction 10(3), 221–247. https://doi.org/10.1016/S0959-4752(99)00028-6 

Bobis, J. (2007). The empty number line: A useful tool or just another procedure? Teaching Children 

Mathematics, 13(8), 410–413. http://www.jstor.org/stable/41198983 

Bobis, J., & Bobis, E. (2005). The empty number line: Making children’s thinking visible. In M. Coupland, 

J. Anderson, & T. Spencer (Eds.), Making mathematics vital (pp. 66–72), AAMT. 

Bowie, L., Venkat, H., & Askew, M. (2019). Pre-service primary teachers’ mathematical content knowledge: 

An exploratory study. African Journal of Research in Mathematics, Science and Technology Education, 

23(3), 286–297. https://doi.org/10.1080/18117295.2019.1682777 

https://doi.org/10.5281/zenodo.1117088
http://www.jstor.org/stable/41198983
https://doi.org/10.1080/18117295.2019.1682777


Lovemore 

366 

Cheng, J. (2017). Learning to attend to precision: The impact of micro-teaching guided by expert secondary 

mathematics teachers on pre-service teachers’ teaching practice. ZDM Mathematics Education, 49(2), 

279–289. https://doi.org/10.1007/s11858-017-0839-7 

Courtney-Clarke, M., & Wessels, H. (2014). Number sense of final year preservice primary school teachers. 

Pythagoras, 35(1), a244. http://dx.doi.org/10.4102/pythagoras.v35i1.244 

Fonseca, K., Maseko, J., & Roberts, N. (2018). Students’ mathematical knowledge in a Bachelor of Education 

(foundation or intermediate phase) programme. In R. Govender, & K. Jonquière (Eds.), Proceedings of 

the 24th annual national congress of the Association for Mathematics Education of South Africa 

(pp. 124–139). AMESA. 

Graven, M. & Heyd-Metzuyanim, E. (2014). Exploring the limitations and possibilities of researching 

mathematical dispositions of learners with low literacy levels. Journal of Sciencia Educacione, 5, 20–

35. 

Graven, M., & Venkat, H. (2021). Piloting national diagnostic assessment for strategic calculation. 

Mathematics Education Research Journal, 33(1), 23–42. https://doi.org/10.1007/s13394-019-00291-0 

Graven, M., Venkat, H., Askew, M., Bowie, L., Morrison, S., & Vale, P. (2020). Grade 3 mathematics mental 

starters assessment project (MSAP). Basic Education, Republic of South Africa. 

https://www.education.gov.za/MSAP2022.aspx 

Graven, M., Venkat, H., Westaway, L., & Tshesane, H. (2013). Place value without number sense: Exploring 

the need for mental mathematical skills assessment within the Annual National Assessments. South 
African Journal of Childhood Education, 3(2), 131–143. 

Hoadley, U. (2012). What do we know about teaching and learning in South African Primary schools?. 

Education as Change, 16(2), 187–202. https://doi.org/10.1080/ 16823206.2012.745725 

Jojo, Z. (2019). Mathematics education systems in South Africa. In G. Porto (Ed.), Education systems around 

the world. IntechOpen. https://doi.org/10.5772/intechopen.85325 

Klein, S., Beishuizen, M. & Treffers, A. (1998). The empty number line in Dutch second grades: Realistic 

versus gradual program design. Journal for Research in Mathematics Education, 29(4), 443–464. 

Lovemore, T.S., & Graven, M. (in press). Pre-service teachers’ use of the jump strategy on the empty number 

line for efficient mental computation. South African Journal of Childhood Education. 

O’Keeffe, L., & White, B. (2022). Supporting mathematics pre-service teachers reflection with 360 degree 

video and the knowledge quartet. Australian Journal of Teacher Education, 47(3), 57–71. 

http://dx.doi.org/10.14221/ajte.2022v47n3.4 

Ruiz, C., & Balbi, A., (2019). The effects of teaching mental calculation in the development of mathematical 

abilities. Journal of Educational Research, 112(3), 315–326. 

https://doi.org/10.1080/00220671.2018.1519689 

Şahin, O., & Danaci, D. (2022). Investigating the effect of history-of mathematics activities on middle-grade 

students’ mental computation and opinions: an action research. International Journal of Mathematical 

Education in Science and Technology, 53(9), 2281–2318. 

https://doi.org/10.1080/0020739X.2020.1857859 

Schollar, E. (2008). Final report: The primary mathematics research project 2004–2007. Towards evidence 
based educational development in South Africa. Johannesburg: Eric Schollar and Associates. 

Şengül, S. (2013). Identification of number sense strategies used by pre-service elementary teachers. 

Educational Sciences: Theory & Practice, 13(3), 1965–1974. 

Spaull, N. (2019). The education problem as it stands in January 2019 [Online]. 

https://nicspaull.com/2019/01/?blogsub=confirming#blog_subscription-3 

Ünlü, M. (2018). Effect of micro-teaching practices with concrete models on pre-service mathematics 

teachers’ self-efficacy beliefs about using concrete models. Universal Journal of Educational Research, 

6(1), 68–82. https://doi.org/10.13189/ujer.2018.060106 

Van den Heuvel-Panhuizen, M. (2008). Learning from “Didactikids”: An impetus for revisiting the empty 

number line. Mathematics Education Research Journal, 20(3), 6–31. 

http://www.merga.net.au/node/41?volume=20&number=3 

Venkat, H. & Graven, M. (2017). Changing teaching through a resources approach. In M. Graven & 

H. Venkat (Eds.), Improving primary mathematics education, teaching and learning research for 

development in resource-constrained contexts (pp. 163–178). Macmillan. 

Vermeulen, J.A., Béguin, A., & Eggen, T.J.H.M. (2021). Task beliefs and the voluntary use of the empty 

number line in third-grade subtraction and addition. Educational Studies in Mathematics, 106, 231–249, 

https://doi.org/10.1007/s10649-020-10016-x 

https://doi.org/10.1007/s11858-017-0839-7
http://dx.doi.org/10.4102/pythagoras.v35i1.244
https://doi.org/10.1007/s13394-019-00291-0
https://www.education.gov.za/MSAP2022.aspx
https://doi.org/10.5772/intechopen.85325
http://dx.doi.org/10.14221/ajte.2022v47n3.4
https://doi.org/10.1080/0020739X.2020.1857859
https://nicspaull.com/2019/01/?blogsub=confirming#blog_subscription-3
https://doi.org/10.13189/ujer.2018.060106
http://www.merga.net.au/node/41?volume=20&number=3
https://doi.org/10.1007/s10649-020-10016-x


RESEARCH PAPERS 

(2024). In J. Višňovská, E. Ross, & S. Getenet (Eds.), Surfing the waves of mathematics education. 

Proceedings of the 46th annual conference of the Mathematics Education Research Group of Australasia 

(pp. 367–374). Gold Coast: MERGA. 

Defining the Problem in a Changing Landscape: How Leaders 

Plan for and Address Mathematics Curriculum Change 

Margaret Marshman 

University of the Sunshine Coast 
mmarshma@usc.edu.au 

Emily Ross 

The University of Queensland 
emily.ross@uq.edu.au 

Anne Bennison 

University of the Sunshine Coast 
abenniso@usc.edu.au 

Merrilyn Goos 

University of the Sunshine Coast 
mgoos@usc.edu.au 

Margaret Marshman, Emily Ross, Anne Bennison, & Merrilyn Goos 

Curriculum change affords middle leaders opportunities for pedagogical and planning 

renewal. This paper reports case studies of two schools engaged in preparing for 

implementation of Version 9 of the Australian Curriculum: Mathematics. Drawing on 

interview data from a middle leader from each school, Bacchi’s question, What’s the 

problem represented to be? was used to explore factors underpinning how these leaders 

identified a problem to be addressed. Findings revealed that even when shown 

alternative interpretations of their perceived problem, these middle leaders were still 

driven by their own interpretation of the problem. 

The Australian education landscape is marked by continual curriculum change, presenting 

both challenges and opportunities for educators. Remillard and Heck (2014) defined curriculum 

as “a plan for the experiences that learners will encounter, as well as the actual experiences they 

do encounter, that are designed to help them reach specified mathematics objectives” (p. 707, 

original emphasis). They presented a visual model of the curriculum policy, design, and 

enactment system that distinguished between the official curriculum, as specified by governing 

authorities, and the operational curriculum enacted in classrooms. How factors in the official 

and operational curriculum interact to exercise influence within a system is not well understood 

and need further exploration. Addressing this gap was one of the original aims of this research 

project, with a particular focus on how teachers could be supported to interpret and transform 

the revised official mathematics curriculum and bring it to life in the classroom. 

Middle leaders (MLs) are focused on developing teaching and learning in classrooms 

(Grootenboer et al., 2023) and tend to lead collaboratively alongside their colleagues. MLs build 

teachers’ capacity by organising how curriculum change will be implemented, providing 

opportunities for professional discussions, and negotiating instructional initiatives (Bryant et 

al., 2020). Recent changes to the F–10 Australian Curriculum (AC): Mathematics (Australian 

Curriculum, Assessment and Reporting Authority [ACARA], n.d.), therefore, provide an 

avenue for MLs to embark on local curriculum change and reflect on pedagogical practices 

within their schools. The revised AC: Mathematics is due to be fully implemented in 

Queensland primary and secondary schools by the end of 2024 (Queensland Curriculum and 

Assessment Authority [QCAA], 2023). AC implementation follows curriculum change in the 

senior secondary curriculum to include external examinations, which represented the most 

significant reform to senior secondary schooling in Queensland for many years. Schools’ 

processes to enact curriculum reform, in this case implementation of Version 9 of the AC: 

Mathematics, provide the context for the research reported in this paper. 

The original aim of the project was to explore the ways in which MLs addressed a problem 

they identified in relation to implementation of Version 9 of the AC: Mathematics. However, 

initial findings revealed that, in some cases, assumptions about their own school context 

underpinning their perceived problem were not always a true reflection of the situation. Thus, 

there was a need to explore how MLs identified and addressed a problem within their own 

school context. Bacchi’s (2009) approach to problem representation was used to explore factors 
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underpinning how two MLs identified a problem within their own school context. Specifically, 

the following research question is addressed: 

• How do MLs represent and address problems driven-by curriculum and pedagogy 

change? 

Theoretical Framework 

Investigating teacher professional learning in the context of curriculum reform provided the 

impetus for the project and led to the need to explore how MLs identify and represent problems 

within their own school context. The official curriculum sets out expectations for students’ 

learning and has three components: curricular aims and objectives, the content of consequential 

assessments, and the designated curriculum (endorsed resources providing guidance to 

teachers) (Remillard & Heck, 2014). The operational curriculum includes the teacher-intended 

curriculum, the enacted curriculum, and student outcomes. Thus, the operational curriculum 

represents the transformation of the official curriculum into teachers’ personal plans and how 

this plays out in the classroom. 

Research has demonstrated that professional learning is enhanced when it occurs in school-

based contexts so that teachers can try out and validate ideas in their own classrooms, and 

collectively discuss issues and problems with supportive colleagues (e.g., Loucks-Horsley et 

al., 2003; Mewborn, 2023). Garet et al. (2001) conducted a large-scale survey of more than 

1000 mathematics and science teachers in the US to investigate characteristics of professional 

development that teachers found effective. Their analysis revealed that teacher knowledge, 

skills and classroom practice were positively influenced by three core features of professional 

development activity: a focus on content knowledge and how students learn this content; 

opportunities to engage in active learning, such as planning classroom implementation and 

sharing outcomes with colleagues; and coherent connections with local curriculum frameworks. 

Results also indicated that the structure of effective professional development was significant, 

with sustained and intensive learning being more effective than shorter duration activities such 

as one-off workshops. Each of these core and structural features of effective professional 

development was incorporated into the design of our project along with support for action 

research to implement aspects of the professional learning. 

Identifying Problems 

MLs and teachers usually rely on their own experiences and strategies to identify problems 

with curriculum implementation and pedagogical practices. Bacchi (2009) introduced a What 

is the problem represented to be? approach to policy analysis. Policy is the action plan designed 

to fix a specific issue (Parliamentary Education Office, 2023) and assumes that something needs 

fixing. Bacci’s approach involves interrogating the problem from different perspectives and 

results in a problem-questioning paradigm rather than a problem-solving paradigm (Tawell & 

McCluskey, 2022). How problems are represented conveys different implications for how the 

issue is considered and, therefore, influences the solution methods trialled. Bacchi (2009) 

proposed using the following six interrelated questions to analyse problem representations: 

• What’s the “problem” represented to be? 

• What presuppositions or assumptions underlie this representation of the “problem”? 

• How has this representation of the “problem” come about? 

• What is left unproblematic in this problem representation? 

• What effects are produced by this representation of the “problem”? 

• How/where has this representation of the “problem” been produced, disseminated and 

defended? How could it be questioned, disrupted and replaced? (p. 2) 

The first question of problem representation is designed to clarify what the problem is and 

whether it is also connected to other problems. The second question considers presuppositions 
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or assumptions, challenging policy makers to consider what knowledges are taken-for-granted 

and what meanings are drawn from different representations. Cultural premises and values 

should be considered. The third question is concerned with considering the history of the current 

representation and the conditions that facilitated this problem representation becoming the 

dominant one. With the fourth question it is necessary to consider the perspectives that have 

been silenced. The fifth question provides an opportunity to identify and assess critically the 

consequences of the problem representation using questions such as: what is likely to 

change/stay the same? who is likely to benefit/be harmed? The final question challenges policy 

makers to consider how representations become dominant and consider the production, 

dissemination, and defence of the problem (Bacchi, 2009). Although Bacchi’s methodological 

approach is designed for analysing policy (including educational policy) rather than school-

level or classroom-level contexts as in this project, her overarching question provides a means 

of capturing participants’ own interpretation of the curriculum implementation problem they 

wish to solve; in other words, what they thought the “problem” was. 

Research Design 

This project was conducted over 2 years (2022–2023). The project supported 17 MLs, 

working in school-based teams in seven Queensland independent schools to develop small 

action research projects in which they identified a curriculum implementation problem, 

formulated their own questions to address the problem, and collected data to answer these 

questions (Loucks-Horsley et al., 2003). In this paper, we draw on data collected from 

participants in two schools, chosen because of the insights gained about how these MLs 

represented and enacted a curriculum implementation “problem” they identified. 

Participants 

The experiences of Sage and Tom, MLs from two independent schools in Brisbane, are 

reported in this paper. Sage was the Assistant Head of Primary at Coromandel College, a P-12 

urban independent, faith-based school. She was a mid-career educator who was tasked with 

leading the curriculum implementation of mathematics, even though mathematics was not an 

area in which she felt confident. Tom was a very experienced educator and well-established as 

Head of Mathematics at Shaftston Hall, a P-12 independent girls’ school with high academic 

expectations. He was seeking to develop students’ problem solving and reasoning capabilities. 

Data Collection and Analysis 

The project team (the four authors of this paper) supported school teams through three face-

to face professional learning workshops involving all participants and four Zoom mentoring 

sessions with individual school teams. The workshops were conducted at the beginning, middle, 

and end of the project and included opportunities for participants to share progress and receive 

feedback. Mentoring sessions were conducted between professional learning workshops and 

involved more individualised support for school teams from a member of the project team. Data 

sources included each school team’s initial project plans and transcripts of the mentoring 

sessions and workshop sharing sessions. Additionally, two semi-structured interviews were 

conducted via Zoom with the leader of each school team which were recorded and transcribed. 

Data analysis was conducted by considering the full data set for each case. Bacchi’s (2009) 

questions were used to identify themes from the data (Tawell & McCluskey, 2022). Transcripts 

from workshop sharing sessions, mentoring sessions, and interviews were read by members of 

the project team. Comments made in relation to each of Bacchi’s (2009) questions were 

identified. The project team met to discuss the analysis and resolved any differences in 

interpretation. The answers to Bacchi’s questions for each case provide insights into how the 

MLs represented a problem in their school context. Two case studies follow. 
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Findings 

Case Study 1 

Coromandel College is relatively young school which has grown quickly in size in the last 

ten years. It is now a mid-sized, co-educational school with above average socio-educational 

advantage. Sage and four members of the teaching team participated in the project. 

What’s the “problem” represented to be? Initially Sage represented the problem as the 

implementation of a school mathematics program based on a textbook rather than the 

curriculum, “We need[ed] some programmes … because we didn’t really have anything” (Sage, 

1st mentoring). Now though, she thought the implementation of the pedagogical elements of 

the textbook program were patchy: 

Even within this team, you know, [there is] a variety of uptake of Stepping Stones [A commercial 

whole primary school mathematics program] as well. So, we’ve got some teachers who have 

implemented that as is and then others who haven’t, for various reasons. (Sage, 1st mentoring) 

What presuppostions or assumptions underlie this representation of the “problem”? Sage’s 

representation of the problem developed from the presuppositions that fast growth of the school 

population had led to variable implementation of the Stepping Stones program 

(https://www.origoeducation.com.au/). Her aim was to build teacher capacity and confidence 

to teach mathematics and she saw the curriculum reform as an opportunity to build a more 

consistent whole school pedagogical approach and move away from the textbook: 

So, it was good timing to review what our program was, and to look forward to what’s happening 

with the changes to the new curriculum … So, what we’re trying to do is get that consistent approach 

and make sure that we’ve got everybody on the same page. (Sage, 1st mentoring) 

How has this representation of the “problem” come about? The broader school team (four 

primary teachers from different year levels) agreed with Sage that decisions of pedagogy and 

resource selection were driven by lack of confidence among staff to teach mathematics. The 

school team expected that professional learning would result in increased confidence, “As we 

become more versed in the pedagogy, whatever it might be, and we get more trained and skilled 

in it, then without a doubt, our confidence will go up” (Lyn, 1st mentoring). Hence, project 

development at Coromandel College centred on boosting staff confidence to teach mathematics. 

The school team trialled pedagogical techniques for broader representations and modelling and 

shared their work in staff meetings routinely by unpacking the techniques, outcomes for student 

learning, and implementation. Teacher confidence data were collected pre- and post-

intervention through online surveys. 

What is left unproblematic in this problem representation? Sage acknowledged that she 

herself lacks confidence in her knowledge of mathematics and mathematics teaching practices: 

Maths is not my natural … Yeah, I have to work hard at maths. And what I’ve found, for my own 

schooling versus what I’ve done as a teacher, I’ve had to kind of reteach myself in order to teach 

students. (Sage, Interview 2) 

She claimed that most of the school team, except for one teacher, would feel similarly about 

teaching mathematics. Consequently, it was assumed that teacher confidence was the issue. 

Professional learning in mathematics was no longer a focus for Sage. Her recent 

professional learning has directly supported her leadership roles. She described a culture of 

support in providing professional learning opportunities for staff: 

We have we never really been denied access to professional development. You know, if people want 

to apply for something, nine times out of ten, they can go to it. But what’s happened is it’s been very 

ad hoc … it never really comes back to then bring everybody together or how that might align to 

that pedagogical framework of what we want. (Sage, Interview 1) 

Thus, Sage assumed there had been opportunities for teachers at Coromandel College to 

undertake professional learning in mathematics. Although Sage acknowledged that the school 

https://www.origoeducation.com.au/
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is very well-resourced, she reflected that equitable resourcing is logistically challenging, 

particularly given the primary school size. 

What effects are produced by this representation of the “problem”? This representation of 

the problem suggests that building teacher confidence in teaching mathematics will fix the 

problem. However, the representation of the problem was challenged by the findings from the 

pre-intervention survey. The findings showed that teachers overwhelmingly felt confident in 

teaching mathematics and creating tasks and rubrics to support the collection of student 

evidence of learning in mathematics. However, the teachers unanimously asked for more 

professional development to support teaching mathematics. Many commented that they could 

not remember the last professional development they attended with a focus on mathematics: 

That was good to see that people are feeling pretty confident with that [teaching mathematics]. But 

the area where they just jumped out at us is that people want more PD. That was the thing that they 

just, they couldn’t remember when they’d last done any numeracy or maths PD in or … what they 

had done was pretty light on or they couldn’t really remember what it was that they even did. (Sage, 

2nd mentoring) 

How/where has this representation of the “problem” been produced, disseminated and 

defended? How could it be questioned, disrupted and replaced? After considering the issue to 

be one of PD, Sage sought PD targeting mathematics pedagogical content knowledge. Finding 

PD addressing mathematics lesson planning and lesson structure, Sage, with one other member 

of the project team, attended the PD over several sessions. She then used this knowledge to 

develop a pedagogical framework for the teaching of mathematics in the primary school. In 

isolation of her team, Sage developed a framework that provided teachers with essential 

elements for lesson plans, unit overviews and mathematics resources kits. These became part 

of the “non-negotiables” of teaching mathematics. After developing the pedagogical framework 

and presenting this to staff, Sage still did not feel confident that this was the right direction. 

“I’ve made it up. I still don’t know whether it’s going to work, but we have to kind of test it out 

and see” (Sage, Interview 2). 

Case Study 2 

Shafston Hall is a well-resourced school with a long history of success in academic, 

sporting, and creative arts spheres. The school has a stable teaching staff who are attuned to the 

school’s high academic expectations. Tom, the secondary school Head of Mathematics, has 

taught mathematics for 40 years, including nine years at this school. Over the last 20 years, he 

developed a reputation for innovative teaching of mathematical modelling using inquiry. 

What’s the “problem” represented to be? Tom came with a plan that aimed to develop 

problem-solving and modelling skills in Years 7–9 students. A further aim was to help students 

understand how they will be assessed in the senior secondary years when Problem Solving and 

Modelling Tasks (PSMTs) contribute 20% to the mandatory part of the high-stakes internal 

assessment of student’s final grades. With the recent re-introduction of external examinations 

at the end of secondary school, Tom is also aware of time constraints for developing their 

mathematical understanding compared to the previous school-based assessment: 

We tend to focus a lot more on just the knowledge and procedures and just getting through 

the course … And trying to develop some sort of understanding so that they can solve the 

complex problems. Now with the external exam, we have to cover everything, and we cover 

everything very superficially, really, each lesson is a new topic, and we don’t have a lot of time 

to consolidate anything. (Tom, Interview 1) 

Tom’s action research project represented the problem in terms of lack of time and student 

characteristics (prior knowledge and attitudes to mathematical modelling) without appearing to 

consider the school culture that seems to be influencing student outcomes. 
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What presuppositions or assumptions underlie this representation of the “problem”? Tom 

wanted Years 7–9 students to learn to think mathematically so used the various aspects of the 

Instrument Specific Marking Guides to draw students’ attention to the elements of the 

modelling processes: formulate a model, with appropriate assumptions and variables; solve the 

mathematical problem; evaluate and verify the results as well as the strengths and limitations 

of the model; and communicate the findings (QCAA, 2019). He thought this would allow these 

younger students an opportunity to learn the process, away from the pressures of the senior 

secondary assessment: 

And I guess some of the stuff that we’re doing with the year 7s, 8s and 9s, we put it under the guise 

of preparing the kids for problem solving and modelling tasks at year 10, 11, and 12. But realistically, 

what I wanted to do is to get a foot in the door in terms of just giving the kids some time to be able 

to just work on problems. (Tom, Interview 1) 

For several years at Shafston Hall, PSMTs had been assessed and were scheduled in Years 

7–9 lessons for either two weeks of full-time work or four weeks part-time, with students 

spending lessons working on the problem and teachers helping them. However, there has been 

no noticeable improvement in PSMT performance in either the junior or senior secondary years. 

Some teachers were resistant to this approach: Tom explained that “I’ve got teachers who don’t 

want to do it at all” and “it’s a fight all the way”. Other teachers feel obliged to “help” students 

because students are not accustomed to working on such tasks. Tom knows that this well-

meaning approach only perpetuates a cycle of learned helplessness such that students expect to 

be told what to do when they get stuck (or even before they start). The Years 7–9 students also 

treat these tasks as high stakes assessment and are consumed with performance anxiety that 

reduced their willingness to take intellectual risks. Students focused only on the assessment 

grade rather than the knowledge and understanding associated with the task. 

How has this representation of the “problem” come about? Exacerbating this problem is 

the school’s cultural context, an elite institution steeped in conservative traditions that are 

difficult to change. Students have succeeded in mathematics without demonstrating advanced 

problem solving and modelling capabilities now demanded by the new senior secondary 

mathematics subjects. Teachers, likewise, have developed pedagogical repertoires that “work”, 

but do not necessarily develop the skills and dispositions that students need to succeed in the 

new curriculum and assessment regime. Parents are also a part of this context. Tom reported 

that he often receives phone calls or emails from upset parents who want to know why he has 

changed the way mathematics is taught—that might potentially disadvantage their daughters: 

So, the parents have high expectations of their daughters doing well. And the kids have high 

expectations, and they equate the fact that just because they do lots of work, that they should get 

good results. And when they don’t do that, then it becomes a bit of a bit of a problem. (Tom, 

Interview 1) 

Tom explained that all his past efforts to begin developing PSMT-capacities in this school’s 

junior secondary students have failed. 

What is left unproblematic in this problem representation? The influences on the 

operational curriculum, including teachers’ conservative beliefs and pedagogical practices, the 

high academic expectations of the school, and parental beliefs and expectations of what 

mathematics teaching should look like mean that instigating a cultural change will be 

challenging. The silences are that teachers and parents have a strong belief in how success in 

mathematics was achieved, albeit the previous school-based assessment system. 

What effects are produced by this representation of the “problem”? Tom’s representation 

of the problem came about because he understood the difficulty in bringing about cultural 

change and designed a project to work within these contextual constraints. To do this, he aimed 

to promote incremental change in teaching practices by raising teachers’ awareness of students’ 

unproductive attitudes and beliefs about mathematics. In this action research project, he wanted 
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to try a slower and longer-term approach, introducing the separate parts of the modelling cycle 

over time in a developmental progression. He also planned to survey student attitudes at the 

beginning and end of the project, which will provide valuable data on one of the key influences 

on student outcomes. 

How/where has this representation of the “problem” been produced, disseminated and 

defended? How could it be questioned, disrupted and replaced? Tom tried a slower and longer-

term approach. He introduced the separate parts of the modelling cycle over time in a 

developmental progression and developed a teacher guide to support the implementation of the 

PSMT. He surveyed student attitudes at the beginning and end of the project to provide data on 

one of the key influences on student outcomes. The students worked collaboratively on 

problem-solving tasks with teacher input only as necessary: 

A think, pair share situation. So, we’d have a problem. ... We don’t have any input to start with, we 

have the students sit in in groups of three, ... they had some time to think about the problem, what 

things they need to look up ... think about certain strategies that they might have themselves to 

approach it, then of course, they would have time together as a group to come up with these 

questions. ... we really wanted the teacher to step back and have more of a student-centred learning 

situation. ... the teacher would then be walking around looking at their groups, maybe having some 

input that would maybe steer them in the right direction. (Teacher at final PD Day) 

Discussion and Conclusion 

Sage wanted a pedagogical framework for teaching mathematics, believing it would build 

her teachers’ confidence to teach mathematics and produce consistency across the school. 

However, the initial teacher survey showed most teachers were confident teaching mathematics 

and wanted mathematics-focussed professional development. Despite these survey results, Sage 

followed her initial assumption that all teachers lacked confidence in mathematics and chose 

for only herself and one other teacher to attend the professional development requested. Sage 

then developed a lesson structure to ensure a whole school approach to teaching mathematics. 

Tom wanted to deepen students’ understanding of problem solving and mathematical 

modelling to address student achievement concerns by developing an approach to teaching the 

elements of the PSMT task. Tom acknowledged the school’s cultural pressures including 

teachers’ conservative beliefs and pedagogical practices, the high academic expectations of the 

school, and parental beliefs and expectations of what mathematics teaching should look like. 

The high expectations of the school community drove him to remove the task from the 

assessment program while students developed their capacity to complete the PSMTs, rather 

than address the focus on assessment results and the strong belief in how success in mathematics 

was achieved, albeit the previous school-based assessment system. 

This paper has focused on two schools with different contextual features and different 

approaches to identifying problems of curriculum implementation in mathematics at the 

primary and secondary levels. In both Coromandel College and Shafston Hall, the MLs were 

focused on developing teaching and learning in classrooms (Grootenboer et al., 2023) and the 

problems these MLs identified were based on assumptions and presuppositions that could be 

made visible and either challenged or affirmed through their participation in the project. Our 

interviews provided opportunities for these MLs to explain how they represented the curriculum 

implementation problem and reconsider or elaborate on their underlying assumptions about the 

problem and how it came about. We led them through a process to consider additional data 

which made them question the problem, but (after dabbling in the issue) they continued with 

their original issue/problem regardless. As a ML, Sage chose to organise how the curriculum 

change would be implemented in agreement with Bryant et al. (2020) through the lesson 

structure she developed but chose not to build teachers’ capacity by providing opportunities for 

professional discussions and negotiating instructional initiatives. Tom too organised how the 

curriculum change would be implemented. 



Marshman, Ross, Bennison, & Goos 

374 

The MLs chose the problem to address with their action research project. Like Bacchi 

(2009), we suggest that what a school curriculum leader proposes to do or to change in response 

to curriculum reform reflects how they understand the “problem” within their context that needs 

to be solved. We argue it is important for researchers to understand and interrogate these 

problem representations to gain insights into their rationales and implications. This kind of 

analysis shifts our thinking from problem-solving towards exploring the dimensions of 

problems and how they are shaped, as well as assumptions that underlie problem representations 

and their possible effects. 
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This paper explores factors that contribute to increased self-efficacy in preservice 

teachers as they practise teaching mathematics in a primary classroom. Thirteen 

preservice teachers completing a Master of Primary Teaching contributed to the 

research, four of whom became the focus of intense examination during two 

professional practices conducted over a 12-month period. Findings revealed six factors. 

When conceptualised into a framework the factors contributed to a better understanding 

of ways to support preservice teachers’ self-efficacy for teaching mathematics. 

Learning to teach mathematics is challenging. Some preservice teachers (PSTs) struggle to 

connect education(al) theory and practice teaching in initial teacher education (ITE) programs, 

despite excellent support conferred by qualified supervising teachers (STs) during professional 

practice. Self-efficacy is essential for teaching mathematics, where teachers must teach 

competently and confidently. This paper examined changes to primary PSTs’ self-efficacy 

during two professional practice placements. This study investigated the research question 

What factors influence primary preservice teachers’ self-efficacy for teaching mathematics? 

Literature Review 

Self-efficacy has been studied extensively in educational contexts since the mid-1970s. 

While many researchers have contributed to the current understanding self-efficacy (for 

example, Arslan 2019; Segarra et al., 2021), Albert Bandura is widely recognised as the 

foremost author and the first to coin the term in his paper Self-efficacy: Towards a unifying 

theory of behavioral change (Bandura, 1977). Bandura defined self-efficacy as one’s personal 

judgement about one’s capability to complete a task to achieve a desired or required objective 

(Bandura, 1994). To comprehend self-efficacy more fully, one must first understand how self-

efficacy beliefs are formed. 

Sources of Self-Efficacy 

Bandura (1994) posited that there were four main sources of self-efficacy beliefs. These are 

mastery experiences, vicarious experiences, verbal and social persuasion, and emotional and 

physiological states. This research also examined a fifth source which Bandura (1997) named 

cognitive enactment. 

According to Bandura (1994), the most effective contributor to strong self-efficacy is 

mastery experiences. As PSTs experience successful mathematics lessons, there is a greater 

likelihood of developing a robust self-efficacy for teaching mathematics. Vicarious experiences 

are the second source of self-efficacy whereby learners observe successful social models with 

whom they identify, resulting in the belief that they too have the capabilities to succeed 

(Bandura, 1994). When a poor performance is observed, the learner’s self-efficacy beliefs are 

less influenced (Bandura, 1994; Schunk & DiBenedetto, 2020). 

Encouragement from others, known as verbal and social persuasion, can influence the 

learner’s effort and motivation. This third source of self-efficacy is seen when people, such as 

teachers, parents, or peers, influence a learner’s belief that they have the capabilities to master 

a challenging task. For verbal and social persuasion to succeed, there must exist a level of trust 

between the learner and the persuader (Bandura, 1994). 
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Bandura (1994) argued that negative emotions and increased stress could impact negatively 

on self-efficacy, whereas positive emotions had the opposite effect. These emotional and 

physiological states is the fourth source of self-efficacy and occurs when an individual judges 

their capabilities in relation to how they feel (Bandura, 1994). Negative emotional and 

physiological states are less likely than other sources to impact self-efficacy (Bandura, 1994). 

A fifth source of self-efficacy uses imagination to visually rehearse successful outcomes. 

Bandura (1997) called this cognitive self-modelling or cognitive enactment. For PSTs, 

imagining how their lesson could be structured when planning can be viewed as an attempt to 

pre-empt potential organisational, pedagogical, and behavioural problems. 

Bandura and others maintain that increased self-efficacy is a higher predictor of 

performance, and is indicative of effort, actions, and motivation to persist with a task, whereas 

lower self-efficacy can negatively affect motivation and achievement (Bandura, 1994; Liljedahl 

& Oesterle, 2014). What is known is that self-efficacy beliefs for learning mathematics 

influence self-efficacy beliefs in teaching mathematics and the practices that teachers employ 

in the classroom (Hessen Bjerke & Solomon, 2020; Küçükalioğlu & Tuluk, 2021; Lo, 2021). 

Self-Efficacy Beliefs for Learning Mathematics 

Throughout many years of schooling, PSTs form a set of beliefs about teaching and learning 

in mathematics (Brady, 2012; Liljedahl et al., 2012). Prior learning experiences have been 

found to influence creativity and innovation for teaching mathematics, including the way PSTs 

plan their lessons and the instructional choices they make in the classroom (Chalkiadaki, 2018). 

Other studies revealed that primary PSTs typically lack confidence and have poor attitudes 

towards mathematics, before they come to ITE programs (Brady, 2012; Mapolelo & Akinsola, 

2015). Hessen Bjerke and Solomon (2020) add that beliefs held about one’s mathematics 

knowledge can influence PSTs’ perceived self-efficacy for teaching mathematics. 

Self-Efficacy Beliefs for Teaching Mathematics 

Factors leading to improved self-efficacy for teaching mathematics continue to be debated. 

A growing body of evidence suggests that ITE programs positively influence PSTs’ self-

efficacy in mathematics. Some researchers found that positive and enthusiastic tertiary teachers 

played an important role in influencing PSTs’ self-efficacy for teaching mathematics (Beswick 

& Goos, 2018; Küçükalioğlu & Tuluk, 2021). Others suggest that having opportunities to 

explore mathematical content in a supportive environment at university has a strong influence 

on PSTs’ self-efficacy as learners and as prospective teachers of mathematics (Henderson & 

Rodrigues, 2008). Conversely, Brady (2012) claimed that when PSTs encounter the realities of 

teaching in the classroom and working with other teachers, it is then that they are more likely 

to adjust their beliefs about teaching mathematics and adopt practices that they observe. This is 

a similar view also held by Liljedahl et al. (2012) who state that experiences in the early years 

of teaching can positively influence primary PSTs’ practice and beliefs for teaching 

mathematics. 

Collectively, these studies provide important insights into some of the factors that influence 

self-efficacy beliefs held by PSTs for teaching mathematics. Overall, they highlight the need 

for further research into primary PSTs for self-efficacy for teaching mathematics. By examining 

changes to self-efficacy while PSTs are practicing their mathematics teaching during 

professional practice, additional features that contribute to positive self-efficacy for teaching 

mathematics can be examined. 

Methodology 

This study is situated in a qualitative epistemology that employed case study and narrative 

inquiry as merged methodologies. By choosing case study, the intention was to explore the real-
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life context (Stake, 2000) of the PSTs while they taught mathematics. The key features of the 

second methodology, narrative inquiry, are time and temporality (Clandinin & Connelly, 2000). 

Given that this research spanned 12 months, narrative inquiry allowed for observations of PSTs 

as they progressed along a continuum of learning. Their stories told in their own words revealed 

changes to self-efficacy over time and revealed the factors that contributed to those changes. 

Data Collection and Analysis 

Thirteen PSTs participated in this research, nine of whom had completed their first 

professional practice and four were yet to commence their first professional practice. Data was 

gathered from a range of sources consisting of two data collection phases spanning one year. 

Phase one commenced with participant identification surveys, a semi-structured interview 

before attending the school and another during the four-week professional practice. Phase two 

also held a semi-structured interview before attending the school and another during 

professional practice with a focus group interview at the end. Other data sources included at 

least four reflections, lesson plans and lesson reflections from each participant which were 

submitted at various points throughout both phases. 

This research adopted a thematic analysis approach to analyse data across multiple case 

studies (Stake, 2000). The temporal nature of this yearlong study allowed for data collection 

and analysis to be conducted simultaneously. Interview transcripts, reflections, and lesson plans 

were maintained in digital form, and initial thoughts written in track changes in the margins. 

Preliminary themes were also colour coded which allowed for greater control when 

triangulating data across multiple data sources. 

Chunks of data were transferred to large Post-it notes and arranged into rudimentary 

categories. The Post-it notes created a dynamic matrix where data could be classified into 

categories, descriptors, and themes. This iterative process revealed five descriptors, history, 

motivation, self-efficacy and personal agency, and transformation. Table 1 shows the process 

for the descriptor history. 

Table 1 

Codes, Categories, Descriptors, and Emerging Themes 

Codes Category Descriptor Themes Theory 

Lots of textbooks Mathematics lessons History Historical 

experiences of 

mathematics 

Influence of 

prior learning 

on goals for 

self-mastery  

Rote learning  

Singing times 

tables 

 

Photo-copied pages 

of maths 

 

Hated maths Feelings about 

mathematics at 

school 

 Personal / 

historical 

evaluation of self 

Self-efficacy 

belief about 

one’s 

capabilities 

Boring  

Bad teachers  

Never any good at 

mathematics 

Self-efficacy  

Key Findings 

Analysis of the data revealed six factors that contributed to self-efficacy changes for 

teaching mathematics. These are collaborative relationships, teacher feedback, resources, 

teaching practice, motivation and self-regulation and reflection. These six factors operate in 

association with one another and if all six factors were apparent the PSTs were more likely to 

develop stronger self-efficacy for teaching mathematics. However, if any of the factors were 
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absent, then the PSTs experienced an emotional reaction, and they felt their progress was 

constrained. While some of the factors influenced self-efficacy more strongly for certain 

individuals, there was no hierarchy considered when presenting them in this paper. 

Collaborative Relationships 

Relationships between the STs and PSTs are built on trust and rely on collaboration and 

reciprocal interactions. A recent study found that PSTs’ greatest challenge during professional 

practice is to build relationships with their supervisors (Johnston & Dewhurst, 2021). Some 

relationships are more challenging than others where power and ill-chosen words can influence 

self-efficacy negatively. 

John experienced a difficult relationship in his first professional practice. He said, “I became 

deflated when my supervising teacher said, how can we possibly get you to do 20 lessons given 

how hopeless you are?” and that “everything I was doing was wrong.” It is important to 

remember that there is an inherent power differential in these relationships, which can make 

PSTs feel vulnerable and doubt their abilities (Waber et al., 2020). 

Strongly linked with social persuasion, this type of interaction also connects with Bandura’s 

social and emotional experiences. John’s self-efficacy for teaching was profoundly impacted 

and he withdrew from professional practice. Contrastingly, John’s second attempt at 

professional practice had a more positive impact on him. He said he had “developed a very 

strong rapport” and “feeling like I belong in the teaching team, has boosted my confidence.” 

Even though John was already highly motivated, Land (2018) maintains that one’s sense of 

belonging is important to self-efficacy beliefs. 

Collaboration and planning as a team also had positive influences on Amy’s self-efficacy 

and sense of belonging. She said, “The first day with Josh, I just observed, but later we planned 

a lesson for the next Friday, and then taught it together.” Amy described this lesson as a 

“brilliant.” She felt that she was “learning so many new things just because we are working 

together has given me so much confidence.” The collaborative relationship between her and 

Josh had a strong influence on Amy’s skill building and improved self-efficacy for teaching. 

In contrast, Maria said she found it “difficult to engage with Peter” and “I’m not sure I trust 

him,” and “he is still going to have to mark my report and I just don’t want to rock the boat.” 

Trust has been found to play a significant role in the supervisor, preservice teacher relationship 

(Tschannen-Moran, 2014). When collaborative relationships were weak or challenging, the 

emotion were worry and self-doubt. 

Resources 

Resources are associated with both the physical and non-physical resources required for 

teaching. For example, physical resources included lists of lessons the PSTs would be teaching, 

daily timetables and scope and sequences. Non-physical resources included information about 

students, such as student grouping, behaviour management or special needs, as well as 

opportunities to observe modelled teaching or seek advice from STs. 

When non-physical resources such as guidance and support are provided, anxiety is 

reduced. For example, one of Emily’s mathematics lessons did not go to plan. This greatly 

affected her emotional state and at that point her self-efficacy was significantly impacted. She 

said, “I burst into tears at lunch time … it brought back a flood of bad feelings because if I 

wasn’t capable of teaching Kindy maths how on earth can I teach Year 6.” After reflecting at 

length with her ST who modelled the lesson again, Emily retaught it. “I followed her 

instructions and remembered how she taught the kids so as soon as the next lesson was over the 

anxiety was gone again which was nice.” Emily acquired the appropriate non-physical 

resources from her ST that assisted her to succeed. 
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It was apparent in this research that at the very least, PSTs needed the physical resources, 

such as lesson content and scope and sequences. However, it was not enough to provide these 

without clearly communicating their application in the context of the students, the school and 

the STs expectations. Ciara felt anxious because, “Neither of us knew what we had to do … I 

never got to see the scope and sequence for any subject never mind maths.” Likewise, Yaz said, 

“When they sat down to do the actual Maths at their tables they couldn’t trade. I didn’t find out 

until after the lesson that the children hadn’t been taught how to trade.” Not having access to 

this non-physical resource left her feeling unsure and anxious and impacted her self-efficacy. 

She said, “I actually felt incompetent.” When physical or non-physical resources are lacking, 

PSTs struggle to know what to do, and the emotional reaction is anxiety. 

Feedback 

The amount of and the perceived quality of lesson feedback was found to be a significant 

contributor to PSTs’ self-efficacy for teaching mathematics. PSTs whose STs provided pre 

lesson and post lesson feedback developed good teaching strategies, were more confident, set 

goals and were better able to deal with challenges as they arose. However, when the PSTs felt 

that the feedback was lacking or that they needed more clarity, they felt uncertain about how 

they could improve their teaching. Amy said, “I need more information about how to improve.” 

Maria maintained that, “He is more kind of focusing on my classroom management skills and 

it’s really hard to know if I am improving or even where I can improve,” and Cath alleged, “the 

feedback I received was fairly critical, and not really helpful … no feedback was ever provided 

prior to delivery of lessons, so I didn’t know what to avoid or what to put in to improve.” 

The most effective feedback used a collaborative and reflective approach that included 

cognitive modelling and targeted goals. Emily’s ST prompted her to “cognitively rehearse” 

(Bandura, 1989, p. 730) her lessons before teaching : 

She would ask me what are your goals? What if this doesn’t happen, what will you do? If some of 

this blows up in your face, what are you going to do, if it goes smoothly and you have finished all 

the activities … what are you going to do? … She was good at making me think. (Emily) 

Through this rehearsal process, Emily was able to anticipate possible scenarios and her ST 

could offer additional advice prior to teaching. However, when PSTs perceived the feedback to 

be ambiguous or limited, the resultant emotional reaction was one of uncertainty as they did 

not know what they needed to do, or how to improve their practice. 

Teaching Practice 

Practising teaching is fundamental to learning how to teach. In this study, opportunities to 

prepare mathematics lessons, practice teaching, and reflect on areas for improvement offered 

PSTs multiple ways to develop their skills. With practise, PSTs experienced mastery, resulting 

in increased self-efficacy for teaching mathematics. 

Most of the PSTs had ample opportunities to teach mathematics during their professional 

practices. However, having only taught two mathematics lessons during the three-weeks of the 

first professional practice Amy expressed her frustration stating, “I’ve taught lots of [other] 

lessons, but I don’t feel like I’ve done enough [mathematics lessons] to say I can teach maths 

well.” While Amy’s self-efficacy for teaching mathematics seemed unchanged to that point, 

her self-efficacy for teaching more broadly had improved. This appeared to be positively 

influencing her self-efficacy beliefs for mathematics. In a reflection, she said, “even though I 

didn’t teach many [mathematics lessons] I felt really confident.” If opportunities to teach 

mathematics were limited, the resulting emotional response was frustration. This was because 

PSTs were unable to determine areas of deficit, or to verify areas of growth that might contribute 

to improved self-efficacy for teaching mathematics. 
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Motivation and Self-Regulation 

All PSTs participating in this study were highly motivated to improve their mathematics 

lessons. This research examined three motivational sources. These were extrinsic, intrinsic 

(Ryan & Deci, 2000) and a source I termed influential motivation. This construct contains many 

of the attributes of intrinsic motivation, that is, it is an internal source motivated by personal 

satisfaction. However, there is an additional element found in influential motivation which is 

related to the sense of responsibility that the PSTs felt towards their students. For example, 

Amy was motivated to ensure that she was “enthusiastic so the kids pick up on that. You don’t 

want to go in there going, oh maths is horrible.” Jen’s responsibility was directly related to her 

fear of mathematics “it’s quite scary thinking I am going to go into a classroom with my fear 

and trying to actually teach kids with confidence … it’s a huge responsibility.” 

Influential motivation was a strong indicator of the behaviours and self-regulation choices 

PSTs made for teaching mathematics. Of note was the goals they set when preparing to teach 

mathematics. Maria stated that she struggled to connect the learning theories to her practice in 

the classroom. However, this did not dissuade her from setting specific pedagogical goals for 

her lessons such as cooperative learning “and not just doing mindless activities.” She believed 

that “maths is really important to get it right, to teach it correctly”. While it is true that all PSTs 

in this study were motivated at various levels, without motivation, it is anticipated that the 

emotional reaction may be indifference. 

Reflection 

In this study, reflecting-in practice, reflecting-on practice (Schön, 1991) and reflecting-for 

practice (Olteanu, 2017) were important to strengthening self-efficacy. For example, John 

reflected-for practice after he “ … talked to Marcel [student] today and he said it [lesson on 

division] was much too easy, so now it’s crucial to follow up with extension work at each skill 

level.” He also reflected-in practice, when observing the whole class and offered to reteach the 

content in small groups to students who “were really struggling” with a concept. 

While John’s personal reflection contributed to improving his practice, joint reflection was 

found to strengthen self-efficacy for teaching mathematics more effectively. After bursting into 

tears following what she perceived to be a failed lesson, Emily reflected-on her practice with 

her ST. She said, “[Paula] was really good at going through the reflection with me [which] gave 

me an opportunity … to really brainstorm for myself what went wrong.” In this study, lesson 

feedback from the ST acted as the conduit to reflection and when PSTs and their ST reflected 

jointly, self-efficacy for teaching was strengthened. However, when feedback lacked substance, 

the result was a shallow reflection and PSTs felt that their progress was limited. 

Implications for Practice 

With any learning comes change and because there were observable self-efficacy changes 

over the two professional practices, the six factors collaborative relationships, resources, 

teacher feedback, teaching practices, motivation and self-regulation, and reflection contributed 

to this transformation. Drawing from Knoster’s et al.’s (2000) Model for Leading and Managing 

Complex Change, I conceptualised the Building Teacher Self-Efficacy Framework (BTSE 

Framework, Figure 1). Although the BTSE Framework provides a graphical representation that 

appears organised, there is the human element that should be considered. It is true that neither 

PSTs nor their STs fit into neat rows or columns and learning to teach does not follow a linear 

progression (Khoshnevisan & Rashtchi, 2021). In fact, PSTs in this study repeatedly vacillated 

between high self-efficacy and self-doubt when teaching mathematics. Therefore, one should 

employ the framework knowing that some factors are dependent on the relationship that exists 

between PSTs and STs as well as the context in which they are working. 
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The six factors are divided into external and internal factors. Collaboration, resources and 

teacher feedback were factors that PSTs have limited control over and are therefore considered 

external to the PSTs. External factors were observed in three sources of self-efficacy. These 

were social persuasion, vicarious experiences, and emotional and physiological states. Factors 

that PSTs had greater personal control over included their teaching practice, motivation self-

regulation and reflection. These are classified as internal factors and were analysed in relation 

to Bandura’s mastery experiences and cognitive enactment. 

Figure 1 

Building Teacher Self-Efficacy Framework (BTSE Framework) 

 

Limitations 

While focusing on a small sample of participants (13) allowed for a deep analysis into 

factors that contributed to self-efficacy for teaching mathematics, including the ST’s 

perspectives in future research may reveal additional insights. Furthermore, this study analysed 

qualitative data from a variety of sources. While these data revealed the narratives of the PSTs 

as they progressed through professional practices, by employing self-efficacy scales to evaluate 

their self-efficacy may have offered another dimension to the research. 

Conclusion 

This research has highlighted the complexities surrounding PSTs’ self-efficacy for teaching 

primary mathematics. The findings of this study identified six factors that influence positive 

self-efficacy. Conceptualising these factors into the BTSE Framework, PSTs’ specific learning 

needs can be identified to support self-efficacy for teaching mathematics during professional 

practice. It is clear that these factors are interconnected. I am not suggesting that PSTs’ self-

efficacy and professional development will only occur if all the factors in the BTSE Framework 

exist. However, this study has revealed that where weakness exists within one factor, it may 

add to deficits in other factors and therefore reduce positive influences on self-efficacy. 
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In this study, the authors investigate the written feedback provided to primary and 

secondary pre-service teachers studying a specialisation in mathematics. The analysis 

focuses on 16 written reports completed by mentor teachers during the penultimate year 

placement of pre-service teachers. The evaluation employs a framework informed by 

the literature. Results indicate a scarcity of subject-specific written feedback concerning 

mathematics teaching and learning during pre-service teacher placements. 

Feedback plays a pivotal role in the development of pre-service teachers (PST) during their 

professional experience placements, guiding them in shaping their future goals as they progress 

toward the completion of their courses (Grossman & McDonald, 2018). Constructive feedback 

not only provides valuable insights into strengths and areas for development but also guides 

PSTs in refining their teaching practices, building confidence, and fostering continuous 

professional development (Asregid et al., 2023). It creates a supportive learning environment, 

enhancing the overall effectiveness of their training and better preparing them for the challenges 

of the profession (Asregid et al., 2023). Feedback is an integral component of the broader 

practice of mentoring (Mullen et al., 2021), where effective embedded mentoring practice 

includes elements of feedback. Feedback can be in written or verbal forms, typically occurring 

within mentoring conversations or post lesson delivery between the mentor and mentee (Ellis 

& Loughland, 2017). 

Mentors, also known as supervising teachers, both locally and internationally, are expected 

to provide crucial feedback to PSTs during their school based professional experience 

placements, fostering the professional development of PST growth. In the most recent 

Australian review, Strong Beginnings: Report of the Teacher Education Expert Panel 2023, 

there is mention of the need for PSTs to “receive regular observations, assessment and feedback 

to support their development” (Teacher Education Expert Panel, 2023, p. 62) during their 

professional experience placement. 

Subject specific feedback is required for PSTs that are undertaking a course that requires 

explicit content and pedagogical knowledge. In Singapore, as part of professional development 

for experienced teachers, it is expected that all staff are involved in mentoring. The introduction 

of The Master Teacher program identifies experienced Singaporean teachers where mentoring 

is subject-specific, with a focus on content and pedagogical knowledge (Jensen et al., 2016). 

Internationally, it is common that feedback is provided post lesson observation to support 

ongoing improvement (e.g., in England, Shanghai, Finland, Jensen et al., 2016). For many 

Initial Teacher Education (ITE) programs, summative written feedback reports serve as a dual-

purpose tool, fulfilling program accreditation requirements while also providing the platform 

for mentors to offer comprehensive written feedback to PSTs (White, 2007). 

Presently in Australia, the workforce shortage has extended to impact the selection of 

mentors for PSTs during their professional experience placements. In Australia, teachers 

progress through four career stages: graduate, proficient, highly accomplished and lead. The 

current teacher demographic includes individuals in the early stages, often proficient, of their 

teaching career (up to 5 years), and occasionally, those teaching outside their subject area 

specialisation. Ideally, highly accomplished experienced teachers would be the optimal mentors 

for PSTs during their placements. However, among the 307,000 full-time equivalent teachers 
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in the country, only 1211 hold certification at the highest accreditation levels, that is, Highly 

Accomplished or Lead (National Teacher Workforce Action Plan, 2022). Consequently, there 

is a need to consider how feedback can be effectively provided by mentors who are still 

developing professionally and may also be teaching outside their subject area. 

This paper centres on examining a specific feedback approach, written feedback, for ITE 

primary PSTs specialising in mathematics and secondary mathematics PSTs. The focus extends 

to exploring subject-specific feedback. To streamline the information presented in this paper, 

only documents from the penultimate year PST reports will be included. 

The Literature Informed Framework 

Features of the theoretical framework can be categorised under five themes. They include: 

Australian Institute for Teaching and School Leadership (AITSL) governing standards; learner 

needs, feedback design, structure based on the written form/report and mentor provisions. For 

this paper, only five sub-themes are considered and further explained. 

Sub-Theme 1: Use of AITSL Language in Written Feedback 

In the Australian context, written feedback provided by mentors overseeing professional 

experience serves a dual purpose. It functions as a formative assessment, with a focus on 

continuous improvement, and as a summative assessment, serving accreditation objectives by 

determining if a PST meets the requirements for teacher accreditation (AITSL, 2019). The 

standards are structured into three domains of teaching: Professional Knowledge, Professional 

Practice, and Professional Engagement. 

In the first domain, Professional Knowledge, teachers tailor instruction for diverse student 

needs, considering linguistic, cultural, and religious backgrounds. They adeptly integrate 

literacy, numeracy, and technology for enhanced learning (AITSL, 2019). In the second 

domain, Professional Practice, teachers create engaging and safe learning environments, using 

effective teaching strategies. They regularly evaluate their practice, interpret assessment data, 

and proficiently operate across all stages of the teaching and learning cycle (AITSL, 2019). In 

the final domain, Professional Engagement, teachers model effective learning and engage in 

ongoing professional development, demonstrating respect and professionalism in interactions 

with students, colleagues, and parents/carers, valuing connections between school, home, and 

community for students’ development (AITSL, 2019). 

The three domains comprise seven teaching standards which encompass 38 focus areas 

offering additional descriptors into each teaching standard and domain. These focus areas 

exhibit a progression aligned with the four career stages (graduate, proficient, highly 

accomplished and lead). The Australian Professional Standards for Teachers provide a 

foundational theoretical framework guiding teacher development. 

Sub-Theme 2: Subject Specificity 

Several studies highlight a notable omission in the feedback and evaluation forms provided 

to PSTs, specifically the neglect of subject or discipline-specific aspects of teaching. Schwartz 

et al., (2018) and Brett and Parks (2022) have drawn attention to this oversight. Despite the 

crucial role that subject or discipline-specific elements play in shaping teacher identity and 

defining the parameters of teaching practice, these dimensions are frequently disregarded in the 

feedback and evaluation processes directed towards PSTs. An Australian study that surveyed 

147 primary PSTs during their mathematics subject specialisation placement found that 

mathematics specific feedback was provided through verbal feedback, teaching feedback, 

written feedback and reviews of lessons (Hudson, 2009). 

From a mentor’s perspective, factors which contribute to supporting PST subject-

specialisation growth include: sufficient content knowledge; knowledge of the syllabus; 
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implementing feedback in subsequent lessons; positive outlook and attitude (Hudson, 2009). 

Msimango et al., (2020) extend this notion to include reciprocity in the mentoring process, 

where mentors and PSTs develop a shared understanding of mathematics-specific mentoring to 

enhance pedagogical and content knowledge. Therefore, mentors must offer subject-specific 

feedback to aid PSTs’ development in their discipline and meet specialisation requirements. 

Sub-Theme 3: Feedback is Actionable 

The benefits of effective feedback in education have been well established in the research 

literature (Martínez, 2016; Moussaid & Zerhouni, 2017). For example, in a study of PST’s 

responses to feedback from mentor teachers, Moussaid and Zerhouni (2017) found that 

“trainees preferred to receive plenty of feedback that is both written and oral, more 

performance-based than content-based, specific and helpful, honest and constructive, and 

encouraging and motivating” (p. 146). Similarly, in a study about Spanish student teachers, 

Martínez (2016) found that the student teachers expected detailed and constructive feedback 

focused on identifying areas of improvement. 

Therefore, as PSTs seek feedback that aids their areas of improvement, this aspect will be 

included in the sub-theme focusing on actionable feedback. 

Sub-Theme 4: Feedback Enhanced Knowledge and Sub-Theme 5: Feedback 

Improved Skills 

Crucial to PSTs development are feedback mechanisms that enhance proficiencies in 

curriculum, teaching practices, and student management. Studies by Spear et al. (1997) and 

Akcan and Tatar (2010) revealed varying focuses on mentor feedback, with the former 

emphasising student engagement and behaviour and the latter concentrating on classroom 

activities and subject knowledge. These differences reflect diverse teaching identities and 

values across cultures (Kastberg et al., 2020). Despite these contrasts, mentors universally 

address practical concerns such as classroom strategies. Thus, feedback aimed at enriching 

PSTs’ knowledge and skills in the teaching profession is integral to their development. 

In order to ascertain the type of written feedback mentors are currently providing to PSTs, 

the study was underpinned by the following research question: What type of mathematics 

specific written feedback is found in written reports to PSTs? 

Research Design 

The data presented in this paper originates from a broader cross-university Australian study 

that primarily centred on non-subject-specific written feedback. Specifically, this paper delves 

into data obtained to gain a deeper understanding of the written feedback in mathematics 

education extended to both primary and secondary PSTs. 

Participants 

The study encompassed documentation from 13 primary and three secondary undergraduate 

PSTs in their third year from an Australian university. These PSTs completed their penultimate 

professional experience placements in schools spanning various systems and sectors (Catholic, 

Department, and Independent) in New South Wales. This placement was 15 days duration, with 

PSTs having already completed two, 15-day placements previously. A final 35-day placement 

followed in their final year. Professional Experience C (PEXC) Reports for each PST were 

checked to ensure mathematics was nominated as their primary subject specialisation or 

secondary teaching area. PEXC reports are used as a formative and summative assessment of a 

PST’s achievement during placement. 
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Data Collection Methods 

To investigate the type of subject-specific feedback found in PEXC Reports, document 

analysis was undertaken which involved examining and interpreting data in documents to 

extract meaning, achieve understanding, and generate empirical knowledge (Corbin & Strauss, 

2008; Rapley & Rees, 2018). To make sense of the data, the analysis will be presented 

quantitively (Morgan, 2022). Qualitative data extracts or summaries from the researchers will 

be used to display illustrative examples to support the statistical data (Braun & Clarke, 2013). 

Within the PEXC Reports, there are three main ways in which a supervising teacher/mentor 

can provide written feedback. The first is the identification of the grading the PST is working 

at against selected AITSL standards at the mid-point (formative) and end-point (summative) of 

the placement. The second are the written comments by the mentor at mid-point and end-point 

of the placement (Table 1). The Focus for Further Development provides mentors with an 

opportunity to provide specific guidance for the PST to improve practice during the placement 

and in the future. Additionally, both the mentors and PSTs are expected to add an overall 

reflective comment at the end of the report (Table 2). A review of the PEXC Report template 

was also conducted to identify how often and when prompts were provided to respond with 

subject specialisation feedback. 

Table 1 

Extract From the Professional Experience Report Written Feedback 

Supervising teacher’s comments re assessment of DOMAIN 1: Professional knowledge 

Mid-Point End-Point 

Evidence of development and achievement: Evidence of development and achievement: 

Focus for further development:  Focus for further development:  

 

Table 2 

Extract From the Professional Experience Report—Overall Comments From Supervising Teacher and 

PST 

School supervising teacher’s overall comments Pre-service teacher’s reflective comments 

 

 

 

School supervising teacher signature: 

Date: 

Pre-service teacher signature: 

Date: 

The theoretical framework described earlier in the paper was used to guide data collection. 

Two coders reviewed mentor written feedback (Tables 1 and 2) independently. Using an excel 

worksheet, extracts or summaries from the report were aligned against the framework. Table 3 

provides an example of the way in which the data was collected. 

Table 3 

Example of Data Analysis and Coding for PST 1 

PST 1—

Primary 

Coder A (Coder B completes a similar form for each placement report) 

Use of AITSL 

language in 

written feedback 

 Mathematics Specific Comments    General Comments 

Example: “[PST] will be delivering a mathematics learning sequence on 
multiplicative relations in her final week.” Mentor states that assessment and 

content knowledge will be enhanced. “This will provide her with an opportunity to 

demonstrate standard 2.3” 
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PST 1—

Primary 

Coder A (Coder B completes a similar form for each placement report) 

Subject 

specificity 
 Mathematics Specific Comments    General Comments 

Example: Mentor has provided growth feedback from mid to end point for maths. 

Feedback focuses on the maths content, resources developed and assessment 

implemented. The mentor writes that student results indicate success in the PSTs 

teaching. No future goals set 

Feedback is 

actionable 
 Mathematics Specific Comments    General Comments 

Example: Feedback can be actioned within the given time of the placement 

Feedback 

enhanced 

knowledge 

 Mathematics Specific Comments    General Comments 

Example: Specific components of the primary maths syllabus are mentioned i.e. 

fractions, chance and multiplicative relations 

Feedback 

improved skills 
 Mathematics Specific Comments    General Comments 

Example: Increase in selecting appropriate maths strategies and providing feedback 

Table 3 displays Coder A’s collection of data from the PEXC Report for PST 1. PST 1 is a 

primary PST with a specialisation in mathematics. 

Results 

The analysis of the PEXC Report identified only one instance of the term “specialisation”. 

PSTs were required to state their primary specialisation on the cover page. The PEXC Report 

includes a comment about the PST meeting a minimum requirement of 6 hours to observe, 

assist, teach in their named specialisation across the 15 days. The analysis of the PEXC Report 

completion rate revealed insights into the specific areas where mentors offered feedback. 

Table 4 provides an overview of what was evidenced in each report. It is noted that report 

completions varied across the components of the written report. The end-point focus for further 

development section (see Table 1) was not always completed. Further, within this section, 63% 

of reports had a comment that provided feedback on the professional engagement domain. The 

overall comment section (see Table 1) was completed by all mentor teachers and PSTs. 

Table 4 

Completed Components Within the Reports Analysed (n = 16) 

 Evidence of development and 

achievement  

Focus for further development  

Mid-point End-point  Mid-point End-point  

Professional knowledge  100% 100% 100% 88% 

Professional practice  94% 100% 100% 81% 

Professional engagement  100% 100% 88% 63% 

Results were further categorised into the three AITSL teaching domains: (1) Professional 

Knowledge (PK); (2) Professional Practice (PP); and (3) Professional Engagement (PE).  

This aligns with the university’s structured feedback template, organised by these domains. 

The analysis of each professional experience report was then conducted against each sub-theme 

(use of AITSL language in written feedback; subject specificity; feedback is actionable; 

feedback enhanced knowledge; feedback improved skills). The findings are presented in 

Table 5. 
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Table 5 

Analysis of the Reports by AITSL Teaching Domains and Sub-Themes 

Sub-theme  Primary 

(n=13) 

Secondary 

(n=3) 

P

K 

P

P 

P

E 

P

K 

P

P 

P

E 

Sub-theme 1: 

use of AITSL 

language in 

written 

feedback 

Mathematics Specific Feedback  1 1     

Mathematics Specific and General Feedback  2   1   

General Feedback 10 11 12 2 3 3 

No Response or Feedback Aligned with Sub-theme  1 1    

Sub-theme 2: 

subject 

specificity 

Mathematics Specific Feedback        

Mathematics Specific and General Feedback  6 3  1   

General Feedback 7 7 4 2 3  

No Response or Feedback Aligned with Sub-theme  3 9   3 

Sub-theme 3: 

feedback is 

actionable 

Mathematics Specific Feedback  1      

Mathematics Specific and General Feedback  1   1   

General Feedback 11 13 9 2 3  

No Response or Feedback Aligned with Sub-theme   4   3 

Sub-theme 4: 

feedback 

enhanced 

knowledge 

Mathematics Specific Feedback  1 1     

Mathematics Specific and General Feedback  1      

General Feedback 3 1  1   

No Response or Feedback Aligned with Sub-theme 8 11 13 2 3 3 

Sub-theme 5: 

feedback 

improved skills 

Mathematics Specific Feedback  1 1     

Mathematics Specific and General Feedback        

General Feedback 11 11 8 3 3 3 

No Response or Feedback Aligned with Sub-theme 1 1 5    

Professional Knowledge 

In this domain, only a single written report contained specific feedback related to 

mathematics. Feedback within this report addressed sub-themes 1, 3, 4 and 5. In the mid-point 

report, sub-theme 2, focusing on subject specificity, was discussed generally. However, in the 

end-point report, the discussion was specifically on mathematics, “designed and implemented 

learning sequences for Stage 3 ... implemented open-ended, low-floor, high-ceiling tasks to 

allow for quality differentiation” [PST Primary Report 1]. The mentor also noted the PST’s 

growth from mid to end point in mathematics. The feedback specifically addressed mathematics 

content, resource development, and assessment implementation. The mentor acknowledged the 

success in the PST’s teaching based on student results. 

Most feedback was of a general nature, with some instances where the mentor did not 

provide a response to that particular sub-theme. To illustrate, one report captured feedback that 

appears to be across multiple subjects, urging the PST to “continue to develop rich extension 

opportunities” and to “continue to consider assessment opportunities” [PST Primary Report 6]. 

Similarly, the feedback provided in another report was broad, suggesting that the PST “should 

explore and implement teaching strategies, e.g., pair/share” [PST Secondary Report 14]. These 

examples highlight a tendency for general feedback and instances where mentors did not 

provide subject specific comments. 
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Professional Practice 

Examination revealed only one primary PST received specific feedback related to 

mathematics. No written reports from the secondary PSTs made reference to mathematics. This 

explicit reference to mathematics is likely to have been omitted as a subject area of the 

placement is identified as mathematics on the coversheet of the report. A comment by a 

secondary mentor “demonstrated a strong understanding of the content and effectively 

conveyed this knowledge to the students. … Lesson plans were well structured using a variety 

of techniques” [Report Secondary 16] has the reader assume the context is mathematics and 

was categorised as General Feedback. One primary PST received mathematics specific 

feedback within this domain. The mentor highlighted the PST’s creation of a mathematics 

assessment task. In the same report, the mentor mentions the content area of patterns and 

algebra in connection to the PST’s professional practice [PST Primary Report 1]. 

Professional Engagement 

This domain had no instances of mathematics (or a subject area) specific feedback. The 

comments were either general in nature or focussed on school based professional learning 

opportunities. For example, “[PST] is encouraged to engage in professional learning and use 

this time as an opportunity to learn from his colleagues” [PST Primary Report 2]. 

Discussion 

Addressing the research question, “What type of mathematics-specific written feedback is 

found in reports to PSTs?” reveals a scarcity of such feedback, raising concerns about potential 

oversights in addressing specific needs. The researchers agree that this study has limitations, 

for example, that it relies solely on written reports, potentially overlooking nuanced interactions 

or feedback that may occur during verbal communication between mentors and PSTs and that 

the study is restricted to a specific university, which may limit the generalisability of the 

findings to broader ITE programs. 

The results prompt crucial discussions on the effectiveness of general feedback in fostering 

PST growth in mathematics, underscoring the need for clarity in the PEXC Report and 

specificity in mentoring practices. The finding that there is only one instance of a prompt to 

write feedback related to subject specificity suggests that the mentor may not have thought to 

include such feedback and greater signposting of the requirement is needed in the 

documentation. Instances of alignment with AITSL standards suggest the potential influence of 

professional standards in guiding mentor feedback, akin to findings by Schwartz et al. (2018) 

and Brett and Parks (2022). These emphasise the importance of examining PST preparation 

programs for subject-specific feedback and raising questions about mentors’ qualifications and 

experience, particularly when mentoring outside their subject specialisation. The results 

obtained in this study will contribute to the broader research project, specifically addressing 

templates for written feedback, mentor professional learning, and subject-specific feedback 

strategies to enhance PST growth. 

Acknowledgments 

Ethics approval 2023-3014W was granted by the Australian Catholic University. No 

consent was required as the research used previously collected, non-identifiable data about 

human beings and was categorised as an exemption by the university. 

The authors would like to acknowledge researchers from the larger research project: 

Matthew Winslade, Michelle Gorzanelli, Anne McLeod, Cathy Lembke and Amanda Isaac. 



Monteleone & Wong 

390 

References 

Akcan, S., & Tatar, S. (2010). An investigation of the nature of feedback given to pre‐service English teachers 

during their practice teaching experience. Teacher Development, 14(2), 153–172. 

Asregid, D., Mihiretie, D. M., & Kassa, S. A. (2023). Teacher educators use of feedback to facilitate reflective 

practice among pre-service teachers during microteaching. Cogent Education, 10(2), 2257121. 

https://doi.org/10.1080/2331186X.2023.2257121 

Australia. Department of Education. (2022). The national teacher workforce action plan [Online]. 

https://www.education.gov.au/teaching-and-school-leadership/consultations/national-teacher-

workforce-action-plan 

Australian Institute for Teaching and School Leadership (AITSL). (2019). Accreditation standards and 
procedures. AITSL. https://www.aitsl.edu.au/deliver-ite-programs/standards-and-procedures 

Braun, V., & Clarke, V. (2013). Successful qualitative research: A practice guide for beginners. Sage 

Publications. 

Brett, P. D., & Parks, M. (2022). Demonstrating ‘impact’: Insights from the work of preservice teachers 

completing a graduate teacher performance assessment. Australian Journal of Teacher Education, 47(1). 

https://doi.org/10.14221/ajte.2022v47n1.4  

Corbin, J., & Strauss, A. (2008). Qualitative research. Techniques and procedures for developing grounded 
theory (3rd ed.). Sage Publications. 

Ellis, N. J., & Loughland, T. (2017). ‘Where to next?’ Examining feedback received by teacher education 

students. Issues in Educational Research, 27(1), 51–63. 

Grossman, P., & McDonald, M. (2008). Back to the future: Directions for research in teaching and teacher 

education. American Educational Research Journal, 45(1), 184–205. 

https://doi.org/10.3102/0002831207312906 

Hudson, P. (2009). Mentoring preservice teachers in primary mathematics. International Journal of 

Learning, 16(4), 119–132. 

Jensen, B., Sonnemann, J., & Roberts-Hull, K. A. (2016). Beyond PD: Teacher professional learning in high 

performing systems—appendices. National Center on Education and the Economy (NCEE) Books and 

Reports. 

Kastberg, S. E., Lischka, A. E., & Hillman, S. L. (2020). Characterizing mathematics teacher educators’ 

written feedback to prospective teachers. Journal of Mathematics Teacher Education, 23(2), 131–152. 

Martínez Agudo, J. D. D. (2016). What type of feedback do student teachers expect from their school mentors 

during practicum experience? The case of Spanish EFL student teachers. Australian Journal of Teacher 

Education, 41(5), 36–51. 

Morgan, H. (2022). Conducting a qualitative document analysis. The Qualitative Report, 27(1), 64–77. 

https://doi.org/10.46743/2160-3715/2022.5044 

Moussaid, R., & Zerhouni, B. (2017). Problems of pre-service teachers during the practicum: An analysis of 

written reflections and mentor feedback. Arab World English Journal, 8(3), 135–153. 

Msimango, M. N., Fonseca, K., & Petersen, N. F. (2020). Mentoring and preparing primary school 

mathematics teachers. Perspectives in Education, 38(2), 272–284. 

https://doi.org/10.18820/2519593X/pie.v38.i2.18 

Mullen, C. A., & Klimaitis, C. C. (2021). Defining mentoring: A literature review of issues, types, and 

applications. Annals of the New York Academy of Sciences, 1483(1), 19–35. 

Rapley, T., & Rees, G. (2018). Collecting documents as data. FLICK, Uwe. The Sage Handbook of 

Qualitative Collection. Sage Publication. 

Schwartz, C., Walkowiak, T. A., Poling, L., Richardson, K., & Polly, D. (2018). The nature of feedback 

given to elementary student teachers from university supervisors after observations of mathematics 

lessons. Mathematics Teacher Education and Development, 20(1), 62–85. 

Spear, M., Lock, N. D., & McCulloch, M. (1997). The written feedback mentors give to student teachers. 

Teacher Development, 1(2), 269–280. 

Teacher Education Expert Panel. (2023). Strong beginnings: Report of the Teacher Education Expert Panel 

2023. Australian Government. https://www.education.gov.au/quality-initial-teacher-education-

review/resources/strong-beginnings-report-teacher-education-expert-panel 

White, S. (2007). Investigating effective feedback practices for pre‐service teacher education students on 

practicum. Teaching Education, 18(4), 299–311. 

https://www.education.gov.au/teaching-and-school-leadership/consultations/national-teacher-workforce-action-plan
https://www.education.gov.au/teaching-and-school-leadership/consultations/national-teacher-workforce-action-plan
https://www.aitsl.edu.au/deliver-ite-programs/standards-and-procedures
https://doi.org/10.14221/ajte.2022v47n1.4
https://doi.org/10.46743/2160-3715/2022.5044
https://doi.org/10.18820/2519593X/pie.v38.i2.18
https://www.education.gov.au/quality-initial-teacher-education-review/resources/strong-beginnings-report-teacher-education-expert-panel
https://www.education.gov.au/quality-initial-teacher-education-review/resources/strong-beginnings-report-teacher-education-expert-panel


RESEARCH PAPERS 

(2024). In J. Višňovská, E. Ross, & S. Getenet (Eds.), Surfing the waves of mathematics education. 

Proceedings of the 46th annual conference of the Mathematics Education Research Group of Australasia 

(pp. 391–398). Gold Coast: MERGA. 

Implementing Dialogic Pedagogies in Early Years Mathematics 

Teaching 

Tracey Muir 

Australian Catholic University 
tracey.muir@acu.edu.au  

Damon Thomas 

University of Queensland 
damon.thomas@uq.edu.au  

Carol Murphy 

University of Tasmania 
carol.murphy@utas.edu.au 

Tracey Muir, Damon Thomas, & Carol Murphy 

In this paper, we present the findings from the first year of our study into the use of talk 

with young children (ages 6 and 7) in their mathematics lessons following four teachers’ 

implementation of dialogic strategies. Based on Alexander’s (2017) dialogic principles 

and notions of productive talk, we delivered a professional implementation through a 

series of four spaced workshops. Teachers were interviewed to reflect on their 

implementation at the end of the year. These interviews are analysed according to 

Lefstein’s (2010) theoretical model of dialogic pedagogies to identify the factors that 

enabled and constrained the teachers in shifting their pedagogies. 

Dialogic pedagogies have the potential to enhance learning in educational contexts 

(Alexander, 2017) through a focus on the value of talk and sharing of learner ideas and opinions 

(Lefstein & Snell, 2014). As teachers and students engage in dialogue, content and new 

understandings build cumulatively and purposefully (Harper et al., 2018). In terms of teaching 

approaches, traditional classroom roles are revised to place less emphasis on teacher-directed 

instruction, with the provision of open-ended tasks (i.e., those with more than one correct 

answer or method of determining an answer), and a commitment to the co-construction of 

knowledge between students and teacher (Alexander, 2017). Alexander’s (2003) indicators of 

dialogic teaching include the structuring of questions that are likely to provoke thoughtful 

answers that then provoke further questions. Questions and answers build blocks of dialogue, 

rather than reaching a ‘terminal point’ (p. 37) and teacher-student and student-student 

exchanges are channelled into coherent lines of enquiry, rather than left ‘stranded and 

disconnected’ (p. 37). This is not to say that dialogic pedagogies that have no place for teacher-

directed instruction, or that tasks are always entirely open, just that there is a greater emphasis 

on opening up opportunities for purposeful dialogue. 

This paper reports on a project which aimed to develop a dialogic approach that enhances 

mathematical talk by young students, ages 6 to 7. Through engaging in school-based 

participatory research (Hennessy, 2014), we worked with four early years primary teachers to 

design, trial, and reflect upon the implementation of dialogical pedagogies and the development 

of appropriate, engaging tasks for student learning in groups. The aim was to develop teacher 

practice with a focus on the use of language (both teacher and student) and reflection on their 

professional development. Specifically, our research question for this paper was: 

• What factors enabled and constrained early years’ teachers’ uptake of dialogic 

pedagogies in mathematics teaching? 

Literature Review 

Research into dialogic pedagogy has focused on the value of talk between students in early 

learning (e.g., Feez, 2023), primary (Edwards-Groves & Davidson, 2023), secondary (Myhill 

& Newman, 2023), and tertiary contexts (Simpson & Wang, 2023). Several researchers have 

sought to understand the value of dialogic pedagogies. A study by Howe et al. (2019), for 

example, which focused on teaching and learning in mathematics, literacy, and science, found 
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that “classroom dialogue matters as regards student outcomes” (p. 462). More specifically in 

mathematics, Murphy (2013) explained how talk was crucial for speakers and listeners to orient 

each other and share their intentions in mathematics contexts. Despite its importance, a recent 

study by Moser et al. (2022) found that there is often a scarcity of dialogic classroom 

discussions in mathematics. Compounding the problem, Mercer and Sams (2006) found that 

the lack of language and reasoning skills is a major cause of underperformance in school 

education and also of behavioural problems. Clearly, it is important to gain a stronger 

understanding of the kinds and features of talk that are conducive to learning in mathematics. 

While the research literature provides examples of teachers successfully implementing 

dialogic approaches in educational contexts (e.g., Clarke et al., 2016; Jay et al., 2017), and the 

use of prompts in supporting exploratory talk in collaborative group work in mathematics 

(Mercer & Sams, 2006), virtually no research has focused on the initial uptake of dialogic 

approaches by teachers who are used to traditional pedagogies. This paper addresses this gap 

and reports on the findings of teacher reflective conversations and interviews analysed through 

the lens of Lefstein’s (2010) model of dialogic teaching. The findings are used to identify the 

factors that enable or constrain student learning through dialogue. 

Conceptual Framework 

Dialogic pedagogies move beyond monologic and teacher-centred dominance of Initial-

Response-Evaluation (IRE) to the development of patterns of classroom interaction that open 

up the talk and, subsequently, the thinking of the learners (Alexander, 2003). Lefstein (2010) 

expanded Alexander’s characterisation of dialogic content as purposeful and cumulative to 

include the criteria of critical and meaningful and so developed a model that “pedagogised” 

(p. 11) dialogue appropriate to contemporary school contexts. The model outlines four 

dimensions that can be considered when negotiating the various role demands of teaching 

through dialogue. 

The first dimension is the meta-communicative, which involves teachers and learners giving 

attention to the role and features of the dialogue itself. Teachers can foster the meta-

communicative dimension by establishing and maintaining communicative norms and 

encouraging and facilitating reflexivity (Lefstein, 2010). Second is the ideational dimension, 

which is concerned with the exchange of ideas, the building of knowledge and the pursuit of 

truth. Teachers foster the ideational when they open up the curriculum, relate students’ 

contributions to each other, and probe and challenge students’ ideas. The third is the 

interpersonal dimension, which focuses on the relationships between those engaging in 

dialogue. Teachers foster the interpersonal through building a classroom community and 

encouraging broad participation. The fourth is the aesthetic dimension, taken here to mean the 

enjoyment in and reasons for dialogue. While it can be related to all four dimensions, we see 

the design of mathematics tasks to be largely about the aesthetic, ensuring that tasks are 

appropriately challenging and engaging. For Lefstein, teachers promote the aesthetic when they 

“set the stage for engaging discussion” and “orchestrate pupil participation” (p. 16). Together, 

the four dimensions provide researchers with a useful tool for unpacking the complexities of 

dialogic teaching in educational contexts. We used this model to show what enabled and 

constrained learning for our focus teachers as they implemented dialogic pedagogies into their 

mathematics lessons. 

Our project design was also informed by Clarke and Hollingsworth’s Model of Professional 

Growth (2002). Through the workshops we were able to serve as an “external source of 

information or stimulus” and spaced workshops provided for teacher engagement in 

“professional experimentation” (Clarke & Hollingsworth, 2002, p. 951). We were seeking 

“salient outcomes” through uptake of dialogic teaching pedagogies and increased student 
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participation in mathematical exploratory talk, and evidence of shifts in teachers’ knowledge, 

beliefs and attitudes. 

Methodology 

The wider project involved a school-based participatory design (Hennessy, 2014), which 

began with the collection of baseline data through three lesson observations in each of the four 

classrooms, interviews with teachers about their approaches to teaching mathematics, and focus 

group and individual interviews with children about their mathematics learning and 

understandings. The first year of the project, which is the focus of this paper, involved four 

teacher researcher workshops, four lesson and small group task observations, and a reflective 

interview with each of the teachers about the implementation and evolution of the design. 

Interview questions focused on teachers’ facilitation of mathematical talk, such as ‘How are 

you facilitating student talk in your maths lessons?’ and ‘Can you describe instances where you 

have observed students engaging in productive mathematical talk?’ The data collected from 

workshop reflections and teacher interviews are reported on in this paper. The participants were 

one Grade 1 and three Grade 1/2 teachers and their students. 

In the first workshop, teachers were introduced to principles underpinning dialogic 

pedagogy that covered the four Lefstein dimensions. A key strategy based on the use of ground 

rules for productive talk (Mercer & Sams, 2006) was introduced, including prompts such as ‘I 

agree/disagree because…’ These rules were intended to promote metacommunicative and 

ideational dimensions. Subsequent workshops explored different ways of arranging students in 

small groups; how to promote safe, respectful learning environments (interpersonal dimension); 

and how to design small group tasks with appropriate timing, explicitness, and challenge 

(aesthetic dimension, Murphy, 2011). 

Following a design cycle in line with the participatory nature of the project, the format of 

each workshop allowed for teachers to interpret and trial strategies that they could take into 

their classrooms ready for the video lesson observation visit. Each workshop started with an 

evaluation of the implementation of their strategies based on the video recording, followed by 

a discussion of strategies to further promote productive talk to take into their class for the next 

video lesson observation. Teachers were supported in resourcing and trialling challenging tasks 

that matched their planned teaching content. In this way, the workshops afforded the teachers 

opportunities to reflect on experiences in their classrooms and for the research team to listen, 

respond, and suggest ways forward based on previous research into dialogic practices. A key 

aspect of this approach was that different practices emerged for each teacher based on the four 

dimensions. 

Results and Discussion 

Following a summary of teachers’ illustrative mathematics lesson structure and task 

examples, this section reports the findings of teacher reflections collected during the teacher 

workshops and reflective interviews. The findings are referenced to Lefstein’s (2010) four 

dimensions of dialogic teaching. 

The four teacher participants engaged in the first year generally followed the gradual release 

of responsibility (GRR) model (Pearson & Gallagher, 1983) for their mathematics instruction. 

Henceforth, the GRR model seemed to leave a residue across much of the dialogue between 

teachers and researchers and in the teachers’ decision making while implementing the design. 

This lesson structure involved three main stages: first, a setting up stage, in which the teacher 

would introduce the mathematics focus, introduce and talk children through a task or problem, 

and remind the children about the ground rules for productive talk about mathematics; second, 

an exploration stage, in which the students would split into small groups and talk through a 

mathematics task/problem, and the teacher would cycle around the groups offering assistance 
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as required and keeping children on task; and third, a conclusion stage, in which the whole class 

would be brought back together to report their findings and for the teacher to facilitate a final 

discussion about the main learning outcomes for the experience. Importantly, this dialogic 

approach was not the only way students were taught mathematics; they still engaged in their 

usual GRR-based mathematics lessons, but the teachers committed to including at least one 

dialogic lesson per week and to increase the opportunities for students to talk and share ideas 

and opinions about mathematics in all lessons. 

Based on Murphy’s (2011) review of mathematical tasks, the research team supported the 

teachers to develop and implement small group tasks that were relatively short and with an 

explicit outcome that also included some ambiguity. The teachers avoided tasks where the 

students needed to take a long time discussing how to complete the task (e.g., what to cut out, 

where to stick it, etc.), as well as tasks that involved writing. The teachers were encouraged to 

use images (e.g., odd one out; sorting/pairing; true or false), and to create tasks where students 

would direct each other to the mathematics focus. Finally, teachers were encouraged to repeat 

given tasks several times, but with variations each time, such as using different numbers, 

shapes, and so on. Figure 1 provides an example of a task that was used. 

Figure 1 

Cubby House Task (Sullivan et al., 2023, p. 15) 

 

Metacommunicative Dimension 

All four teachers talked about establishing and maintaining communicative norms and 

explicitly talked about rules for talking and listening. For example, James explained: 

I started to introduce some of the talking rules and some of the things like that. So then, when we 

were doing more stuff, where they’re challenging and disagreeing with each other, they already had 

the kind of rules of communication in place. And I think that worked relatively well. I think it worked 

well. 

In addition, James explained that his rules were loosely based off “established listening 

rules like the five L’s anyway, which I assume are pretty universal. So that’s eyes looking, ears 

listening, legs crossed, lips closed, hands on lap.” 

Similarly, Jill noted: 

I do feel like a lot of the work we’ve done has helped them to do that … and to cement their more 

foundational level of skills. It’s given them more confidence to talk about the things that they’ve got 

going on. 

The ‘work’ referred to by Jill includes the establishing and maintaining of communicative 

norms throughout the year’s mathematics lessons, such as practicing established listening rules. 

In the reflective workshop sessions, we talked about moving beyond generic rules for listening 

and talking, and for looking for evidence that constructive listening was occurring. The teachers 

were reminded of the aim to engage students in productive talk, which required inviting 

criticism of participation in the direction of dialogue (Lefstein, 2010). This emphasis on the 

metacommunicative dimension was key to developing student confidence to share 

mathematics-related ideas and opinions during group and whole class learning, since the 

students had a shared understanding of what productive talk in mathematics lessons involved. 
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Ideational Dimension 

A feature of the workshops was the opportunity for teachers to collaboratively view 

classroom footage of student talk collected throughout the project. These opportunities 

highlighted the importance of the teacher’s role in maintaining conversational cohesion, which 

Lefstein (2010) described as an aspect of the ideational dimension. When teachers connect the 

contributions made by different students, this helps to draw together and summarise 

conversational threads, helping them see a developing logic in the talk. This appears to be 

particularly important when engaging in dialogic pedagogy with younger learners, since they 

often require more support in this area. In early primary contexts, dialogic pedagogy cannot be 

‘set and forget’; the teacher needs to scaffold conversations for students, threading their 

comments together when they do not have the language or thinking skills to do so themselves. 

If students are not drawn into a task quite quickly, they can lose interest and miss the learning 

experience. It appears that this dimension may have been the most challenging for teachers, and 

hence required more support to implement as the following quote illustrates: 

I think even just to debrief with you guys straight after and go, so this happened and this happened 

… . Is that normal? Like this is how the activity went. Should I try it again, with different numbers? 

Or should I just try and move on to something else? Yes, I think that’s partially because I’m not as 

experienced as a teacher, but I think also just because what we’re doing is a little bit different to 

what we’ve been trained to do and what I’ve done in the past. (James) 

All four teachers actively encouraged students to use the terms ‘I agree because’ and 

‘I disagree because’ as a means to foster respectful challenging of ideas. This strategy required 

explicit modelling and perseverance on behalf of the teachers before it became part of the talk 

routine. Anne said, “[We’ve been using] ‘I agree’, and ‘I disagree, because’ we need to use 

those, but they, you know, took a while to get to that language, [but now] they’re actually using 

that language.” 

This way of teaching was new for these teachers and it was understandable that teachers 

lacked confidence with the implementation of dialogic pedagogies and the need for additional 

support will be noted in future iterations of the project. 

The ideational dimension can also refer to opening the curriculum, which the teachers 

enacted through the provision of open-ended tasks and problems, such as the cubby house 

problem depicted in Figure 1: 

I introduced a few of those. And I think they changed some of the questions that I was asking, to 

more open-ended questions. And introducing some of those problems. As I said, with the cubby 

house problem, for example, having things like that a much more regular occurrence in my teaching 

planning. And yeah, the best listener was something I implemented a lot. (James) 

Interpersonal Dimension 

This dimension appeared to be particularly relevant, with all four teachers highlighting the 

importance of building a classroom environment which provided a safe space for talk, with one 

teacher, Jill, being particularly cognizant of modelling caring behaviours. She played lots of 

circle games with her students and used a puppet to model respectful listening: 

I definitely think those games were good for tuning everyone’s thoughts around to you know, what, 

what you need to be when you’re listening. And even just your volume when you’re talking and 

taking turns to talk. I also introduced my little puppet, Bun-bun, and we had to teach Bun-bun how 

to listen. So it was looking at the person who was speaking, not interrupting and hands up and with 

Bun-bun, it was more about where his eyes were, where his body was; if he was paying attention, 

we could tell because he was looking at the person. So that was actually fun. They really loved that, 

and it was also us teaching him how to talk, which was good. 

Teacher interview feedback received after the final workshop, indicated that the 

introduction of dialogic pedagogies had a positive impact on students’ ability and willingness 

to talk: 
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[The students] definitely did show a better ability to talk to everyone and to convey their own 

opinions. (Anne) 

It does feel like they have a better understanding of how to explain their thoughts … that could be 

because I now know them better, and it could be because, you know, I’ve seen them in different 

areas. (Sharon) 

This feedback is related to the interpersonal dimension of dialogic pedagogy in that the 

teacher’s efforts to build a classroom community and encourage student participation in many 

mathematical discussions with their peers developed their confidence to share their thinking 

about mathematics when working through problems. 

Teachers also encouraged broad participation and structured discussions that maximised the 

chances that students would have something significant to say. The following quote 

demonstrates how the teacher orchestrated opportunities for all students to actively participate: 

I explicitly came back to how they needed to work together. There tended to be that dominant person 

still just doing the job and the others sort of waiting around, especially on the first attempt with 

things. So maybe on that first attempt, those people who weren’t so sure, were watching and 

observing how to do it. And then when they had a second chance, and maybe a different group, it’s 

like a fresh start, but they came with some knowledge, and they would then participate. I did find it 

wasn’t always collaborative, especially as it was new learning. (Jill) 

James was also aware of broadening participation and ensuring fairness, particularly in 

terms of roles: 

And then I’ll have a listener for that. And then the listener will report back to the class on how they 

think their group was listening. And then I’ll take their notes, and then I pick a different listener. 

And I did that so that everyone gets a chance to be a listener. But like, if I have one person to listen 

to for too long, other kids get a bit upset, because they wanted a turn to be the listener. That worked 

really well because there are times when I’ve been able to compare the listeners with each other like, 

when this student was a listener, he was doing this, so maybe think about how you can see what he 

did and copy that. 

Aesthetic 

As Lefstein (2010) described, teachers can attend to the aesthetic dimension through setting 

the stage for engaging discussions and orchestrating student participation by injecting good 

humour or a sense of drama into task design. The teachers recognised early on that they needed 

to model and facilitate respectful listening and talking generally in whole class and small group 

situations before they could focus on mathematical talk and ultimately exploratory talk, “I guess 

we spent two or three weeks just doing talking and listening sort of games and activities. So it 

wasn’t really in maths it was just talking about, [just] in general yes.” 

Jill’s use of a puppet as mentioned earlier in relation to the interpersonal dimension also 

provides an example of attending to aesthetic considerations. Lefstein (2010) acknowledges 

that the dimensions can overlap and that there can be tensions between them. For example, 

protecting students’ social needs may mean not probing their thinking in public. There is also 

arguably a hierarchy of priorities as different dimensions may take priorities over others. 

Setting up ground rules for talk and encouraging small group participation was not always 

enough to enable effective learning of mathematical concepts for these young students. Another 

teacher commented: 

I guess [it is a challenge] when you were applying it to maths and when the lesson’s going on for a 

little while, especially if they’re not engaged, say it’s a little bit dry, or the content is hard. So if 

you’re covering a new maths focus or something like that, I find that they’re not as engaged as once 

they have some knowledge around it, and then they’re happy to participate and talk and, you know, 

do that talking and listening stuff. Whereas otherwise, they seem to just tune out, which, you know, 

so they’re not listening at all or talking. So, yes, I found there were just some difficult times with 

that. So, I often found the first time we did the activity, this is groups, there wasn’t much really 
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going on, especially when it was a bit challenging. But then if we repeated the activity, they were 

really good. (James) 

Here, the teacher is aware of what can go wrong with dialogic pedagogy when the aesthetic 

dimension is not given enough attention. The young learners in these classrooms did not seem 

to cope well when the tasks were too open or too long, and care needed to be taken in scaffolding 

new mathematical concepts in a way that students could engage. 

Conclusions 

The research findings so far highlight that the teachers reported taking a dialogic approach 

to teaching mathematics had a positive impact on their students’ ability to listen and participate 

in talk in mathematics lessons. In particular, teachers noted improvements in students’ 

confidence to share their thinking during small group work, which other research has pointed 

to as a key enabling factor in older students’ mathematical and science learning (e.g., Mercer 

et al., 2004). Giving attention to the metacommunicative and interpersonal dimensions was 

crucial here, as the teachers took time to establish and maintain ground rules for productive talk 

and to build positive classroom communities that valued the sharing of student ideas when 

solving mathematical problems. 

At the same time, challenges were also apparent, especially in maintaining students’ 

engagement in learning during difficult or unfamiliar mathematics tasks. Paying more attention 

to the aesthetic dimension was identified as a key factor in addressing this challenge, through 

meaningful task design personalised for the children in terms of the level of challenge. 

Additionally, aspects of the ideational dimension such as maintaining conversational cohesion 

would support the learners to grasp the developing logic in group discussions. Looking forward, 

Lefstein’s (2010) framework has proven helpful in suggesting key areas that require further 

designing, trialling, and reflecting, as the teachers grapple with key questions such as how to 

shift from, what is essentially, co-operative listening and talking in completing a task together, 

to productive talk where the dialogue opens up and orients thinking. 

Clarke and Hollingsworth’s (2002) model proved useful in understanding how teachers’ 

professional growth could be facilitated especially through attending to the first two elements 

of provision of an external stimulus and professional experimentation. Workshop design 

ensured that the teachers were provided with research-informed practices and resources to assist 

with the implementation of dialogic pedagogies. Spaced workshops and classroom visits 

allowed for trialling, professional experimentation, and reflection. Future directions for this 

project will include broadening participation, use of control groups to evaluate impact on 

students’ learning and refinement of the project design to better support teachers with 

implementation. 
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Creativity is a task-specific construct that exhibits diverse characteristics depending on 

the context it operates in. Currently, there is little consensus on how creativity can be 

defined and taught within STEM education. In this study, mathematics teachers’ beliefs 

about STEM creativity and their pedagogical approaches to teaching creativity within a 

novel STEM creativity framework have been explored. Results show that mathematics 

teachers have a variety of beliefs and practices about creativity that can be grouped into 

four pedagogical themes: exposure, exploration, experimentation, and execution. 

Science, Technology, Engineering, and Mathematics (STEM) education has become 

widespread since the beginning of the 21st century. In STEM, creativity is identified as a key 

skill by various educational bodies including the Organisation for Economic Co-operation and 

Development (OECD), and the Australian Curriculum: Mathematics (v9.0) (Australian 

Curriculum Assessment and Reporting Authority [ACARA], 2022). 

http://www.australiancurriculum.edu.au/Mathematics/Curriculum/F-102022) addresses critical 

and creative thinking as a ‘general capability’ that should be developed across all learning areas. 

Despite the popularity of STEM programs, there is a scarcity of studies that examine the 

teaching of creativity in STEM learning. Additionally, the lack of consensus on what STEM 

education is and teachers’ understandings of STEM and creativity within their teaching areas 

present further possibilities, creating the necessity of examining the characteristics of creativity 

in STEM. The aim of the study reported here was to explore mathematics teachers’ beliefs and 

pedagogical approaches regarding creativity within the parameters of a novel STEM creativity 

framework developed specifically to improve creativity skills in STEM education. 

Literature Review 

STEM education is the integrated education of science, technology, engineering, and 

mathematics, in order to create a multidisciplinary curriculum with various objectives. There 

are multiple ways to define STEM education, and little consensus exists on what STEM 

education is and how it should be implemented (Falloon et al., 2020). STEM education can be 

considered as a loosely defined domain that can include studies of individual areas, a clearly 

defined domain that only includes cross-disciplinary study, or even only educational projects 

that include all four areas that make up STEM. Similar to STEM education, creativity is also a 

phenomenon that has several definitions with emphasis on its various aspects. Zabelina (2018) 

defined creativity as an ability of “producing work that is both novel and meaningful or useful” 

without specifying an end product. Smith and Henriksen (2016) see creativity as “developing 

ideas and/or objects that are novel (original) or interesting, effective (or useful), and have a 

certain aesthetic sensibility as a whole”. A common theme among the various definitions is that 

creativity is regarded as a set of skills and processes, which may include developing ideas and 

systems that possess certain qualities that do not necessarily translate into a tangible product. 

In the Australian Curriculum (ACARA, 2022), creativity is linked with critical thinking and 

seen as part of the seven ‘General Capabilities’ needed across all learning areas. It positions 

creativity in a matrix that contains individual learning areas and cross-curriculum priorities that 

are meant to be integrated in each learning area, which includes STEM learning areas. A 
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learning continuum for critical and creative thinking is in place, indicating what critical and 

creative thinking may look like on different levels of development from Learning Continuum 

Level 1 (foundation) to Level 6 (grade 10). Critical and Creative Thinking is organised into 

four elements; inquiring, generating, analysing, and reflecting, each of which is further divided 

into sub-elements that specify the skills students develop within the individual elements. The 

implementation of the Critical and Creative Thinking general capability in the classroom is not 

consistent (Skourdoumbis, 2016). 

In school classrooms, opportunities for creative expression are always present, which allows 

for the possibility of multiple definitions of creativity existing side by side. However, it is also 

necessary for creativity to have domain-specific definitions. Creativity in an artistic domain is 

different from creativity in a scientific domain, as well as the exact creative skills that constitute 

what makes a musician or scientist (Sternberg, 2020), a phenomenon that is also observed in 

STEM. Creativity is crucial for innovation in STEM; however, despite its significance, there is 

no definition of creativity specific to STEM education (Stretch & Roehrig, 2021), and education 

policies in several countries do not feature aspects of creativity in STEM learning (Stylianidou 

et al., 2018). Stretch & Roehrig (2021) argued that even though young people possess 

mathematics and science skills, their creativity skills remain lacking. This presents a need to 

define what creativity looks like in STEM education and how it can be taught. 

This paper reports part of a doctorate study on teachers’ beliefs and pedagogical approaches 

regarding creativity in STEM education. The researcher draws on the literature to draft a STEM 

creativity framework. Acknowledging that some definitions of creativity may look different 

within the parameters of STEM education, this paper reports preliminary findings on the 

framework in understanding mathematics teachers’ beliefs and pedagogical approaches 

regarding creativity. 

A Novel Framework for STEM Creativity 

In this study, a STEM creativity framework containing four specific elements is proposed, 

which, as a cluster, provides a working definition of STEM creativity: problem solving, critical 

thinking, innovative ideation, and cognitive flexibility (Figure 1); each element is drawn from 

aspects of creativity identified in the literature. The four elements are designed to be in 

interaction with each other in a STEM learning program and not to be implemented individually 

in a siloed style; all elements need to be present in a program in order for the framework to be 

implemented effectively. The framework was designed in light of existing creativity 

frameworks, current literature, the critical and creative general capability of the Australian 

curriculum, and the experiential learning theory. 

Figure 1 

STEM Creativity Framework 
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Problem solving is considered an essential element of STEM creativity; the positive impact 

of problem solving in STEM disciplines on student creativity and development of enquiry skills 

is acknowledged on policies and a survey of STEM instructors’ perspectives across numerous 

European nations (Stylianidou et al., 2018. The contribution of problem solving to creativity in 

STEM education can also be linked to the requirement of integrating information from multiple 

sources during the problem-solving process (Wu & Koutstaal, 2020). 

Various definitions have been proposed for critical thinking. Scriven and Paul (1987) 

defined critical thinking as a process of conceptualisation, application, analysis, synthesis, and 

evaluation of information. Critical thinking is a core educational goal whose importance has 

been widely acknowledged, specifically in STEM learning environments. The importance of 

critical thinking in creativity, have been examined by several scholars to date; some researchers 

recommended the integration of critical thinking and creativity, while others considered them 

as distinct processes (Wechsler et al., 2018). 

Ideation is a key component of creativity and generating ideas is an indispensable process 

in STEM contexts (Hite et al., 2016) and hence, a significant aspect of STEM education is 

equipping students to be able to respond to problems. Ideation processes entail various aspects 

including the number of ideas that are generated, their variety and level of detail, and the 

originality of the ideas, that is, the level of innovation (Nijstad et al., 2010), all of which could 

have implications in the development of learning materials that target ideation skills. In this 

draft framework ideation is required to be innovative; in the process of ideation, many people 

refer to existing knowledge and concepts, and tend to favour generating accessible ideas; hence, 

it is important to distinguish between innovative and easily accessible ideation. 

Cognitive flexibility is defined by Spiro (1988) as the ability of a person to restructure and 

adapt their knowledge in various ways in response to changing requirements or situations, 

which is a crucial ability specifically in STEM learning environments. Similarly, according to 

Nijstad et al. (2010), cognitive flexibility is “the ease with which people can switch to a different 

approach or consider a different perspective” (p. 42). Multiple studies found a positive 

relationship between creativity and cognitive flexibility. Therefore, it can be suggested that 

cognitive flexibility is a fundamental aspect of creativity and that it is present in the process of 

generating creative alternatives to problems. 

Method 

Potential participants who had experience teaching mathematics and at least one additional 

STEM discipline were invited to participate in a semi-structured interview. Participants, 

selected via snowball sampling, consisted of ten teachers; the majority of whom completed a 

qualification beyond initial teacher training. The ages of the participants ranged from 31 to 71. 

The participants’ teaching experience ranged from 4 to 30+ years; the majority were 

experienced educators with over 20 years of teaching practice, and all participants taught 

student cohorts of every secondary grade. In line with the recruitment criterion, all participants 

had experience teaching one or more STEM disciplines in addition to mathematics: four 

participants taught mathematics and science, two mathematics, technology, and engineering, 

and a further two taught mathematics, science, and technology. Two participants taught all 

STEM disciplines. 

Interviews lasted approximately 30–45 minutes; the interview questions ranged from 

introductory questions that seek to elicit information regarding teachers’ attitudes and 

pedagogical approaches to creativity in STEM education to questions that aim to understand 

teachers’ opinions on how to deliver the four STEM creativity skills. Interviews were 

transcribed using an online transcription tool and the transcripts were available to participants 

to review or edit their responses until the time interview data analysis commences. NVivo 

version 10 was used to code the qualitative interview data thematically. Data was coded 
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according to categories. When data was recorded into NVivo, all interview participants were 

assigned a generic identifier and number. 

Results 

An evident difference between the participants’ understanding of creativity is the distinction 

between participants with technology and/or engineering teaching experience (coded TE) and 

participants with science teaching experience (coded SI). Teachers with engineering and 

technology teaching experience had a more concrete and results-based approach to teaching 

creativity, whereas teachers with science experience did not consider a tangible end result or 

product as a requirement of creativity. This approach could be linked to the nature of the 

individual disciplines as well as the educational backgrounds of the respondents. The views of 

the two participants who had experience teaching all four STEM learning areas also aligned 

primarily with the participants with technology and/or engineering teaching experience. This 

distinction was evident in all responses to all questions. 

For all TE respondents, a practical aspect is an essential element of what creativity is, and 

the creative process is meant to culminate in an end result in the form of a physical object or 

another product. This suggests that creativity on a purely theoretical level is not of the same 

level of sophistication, and a creative act can only be considered creative if it serves a purpose. 

Furthermore, according to TE teachers, creativity appears to be a tool to arrive at a better 

solution or response. Overall, TE teachers attributed many factors to what constitutes creativity 

that largely aligned with each other, and all of them stated specific criteria that required for a 

task or tasks to be considered creative. This contrasts with the views of SI teachers, who had a 

more open and fluid understanding of what creativity means and did not necessarily link it to 

the production of a visible product or end result. All SI respondents viewed the simple act of 

thinking in a different way or adapting a different approach when looking at things as creative 

acts. SI teachers viewed creativity as a general skill beneficial for the holistic development of 

a student, or a certain approach to academic and non-academic aspects of life, and indicated 

that creativity is personal; even if a creative act is insignificant in comparison to many other 

creative acts, it is still creativity for the specific student who undertook the creative act. 

Nevertheless, all SI teachers stated that while creativity in the mathematics and science domains 

do not require a product, there should still be a benefit for a student to undertake an act of 

creativity. 

All respondents mentioned the importance of possessing base knowledge to practise 

creativity, and specified that in order to practise creativity, students need to acquire a knowledge 

and skill base, highlighting the task-specific nature of creativity. The process of teaching 

creativity commences with the introduction of new knowledge, skills, and perspectives to 

students. Base knowledge can be acquired through various methods such as direct teacher 

instruction and exposing students to examples of relevant projects. Respondents also identified 

potential barriers to students acquiring base knowledge and skills, including lack of teacher 

knowledge and technological literacy, availability of equipment in schools, and curricular 

limitations. Another significant factor that was identified in the interviewees’ responses was 

creating an environment for creativity to be enabled and supported. This factor was elaborated 

by every respondent in largely aligning but individual ways. Pedagogical methods to achieve 

the right environment for creativity practice included collaborative work, peer feedback, and 

discussions in whole-class and small group settings, as well as developing open-ended learning 

experiences and assessment items that would allow learners to express and develop their 

creativity. Additionally, all respondents stated that creating a ‘safe space’ is essential via 

encouraging students to share their thoughts and perspectives, and ensuring every learner’s 

voice is heard. 
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Pedagogical practices on how to teach creativity did not differ significantly across the two 

groups. All respondents stated that creativity can be taught, even though the techniques they 

used to teach creativity differed according to their teaching areas. One of the practices 

mentioned by all respondents was an experimental approach to learning, and the importance of 

students coming up with multiple options, approaches, looking from different perspectives, and 

trying out new things as factors in expressing and developing creativity. Approaches of trial 

and error, learning through making mistakes to develop new possibilities and ideas, and 

intellectual risk-taking are some of the factors in developing creativity in students. 

Experimental learning should also be supported through open-ended tasks and assessment items 

that give learners enough scope to try different possibilities, as mentioned by several 

respondents in both teaching domains. However, respondents also noted that scaffolding in both 

learning and assessment is also necessary to maintain the exploration in the right direction and 

ensure learning goals are met. 

Respondents from both the TE and SI groups stated that contextualisation and application 

of learning is an essential pedagogical approach to teach creativity in STEM learning areas. 

This took multiple forms; however, in all cases, entailed some manner of connection between 

the newly acquired knowledge and skills and an aim that is to be responded to; an application 

area for the contextualisation of the new knowledge and skills. The implementation of this 

approach depended on individual learning areas, ranging from practical, hands-on tasks and 

assessment items in technology and engineering, student-created and guided experiments in 

science, and solving hypothetical problems in mathematics. All SI respondents also stated that 

creating scope for students to express themselves is important in the application of learning. 

Each participant had unique responses regarding the four elements of STEM creativity, 

which suggests that despite their experiences throughout STEM learning areas, the exact 

definition of the elements and how they can be taught effectively may look different in each 

discipline. It was also noted that all participants referred, directly and indirectly, to all elements 

of the STEM creativity framework when they spoke about creativity even at the earlier stages 

of the interviews, before targeted questions about the elements of STEM creativity were 

directed to them. Furthermore, the respondents made individual connections between the four 

elements in many cases. These observations may signify that the participants teach the four 

elements, separately and concurrently, even when they do not do it consciously. A summary of 

the participants’ beliefs and pedagogical approaches regarding each element is presented below. 

Problem solving: All TE teachers had a clear outlook on what problem solving is and stated 

that problem solving is responding to a need or a situation. Conversely, SI respondents had a 

broader perspective on what problem solving can mean in mathematics and science. One 

respondent made a direct link to creativity and stated that problem solving occurs when there 

is a question that requires creativity, and another respondent noted that “pure creativity” comes 

into play when there is no precedent of a solution that would respond to a problem. In terms of 

pedagogical approaches, two TE and two SI respondents identified brainstorming and ideation 

tasks as precursors of problem-solving tasks, indicating a process of skill-building, and argued 

that problem solving as a creative practice is a skill that is learned and developed over time with 

practice, which allows learners to refer to prior learning as they build a skillset. Three TE 

respondents noted that teaching problem solving effectively entails giving students unguided, 

or minimally guided, challenges. Additionally, two SI respondents noted that teaching problem 

solving also requires the teacher to formulate the ‘right’ kind of problems. 

Critical thinking: As opposed to problem solving, SI teachers elaborated on critical thinking 

more than TE teachers, and all participants offered distinct responses. One SI respondent stated 

that critical thinking is “a deeper level of problem solving” and added that it involves looking 

further into the question and using different approaches. Another stated that critical thinking 

means not taking anything at face value, and added that when learners receive new information, 
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they should scrutinise its meanings beyond the surface. TE respondents’ definitions of critical 

thinking entailed the analysis of the feasibility and producibility of an idea or product. In terms 

of pedagogical approaches, the respondents aligned critical thinking most closely with tasks 

that require students to explore new knowledge and skills. Two TE teachers stated that in 

technology education, critical thinking can be taught through evaluation and testing tasks, 

where learners examine their own designs according to set criteria. all SI respondents stated 

that discussions are essential to initiating and improving critical thinking. 

Innovative ideation: Most TE participants defined ideation as developing multiple possible 

solutions to a problem or situation. As opposed to TE domain teachers, SI teachers approached 

ideation on a more abstract level and not necessarily as a process undertaken to directly respond 

to a problem or need. One respondent with experience every STEM learning area stated that 

ideation does not only involve generating options, but also comparing them to each other in 

order to produce the most optimum final option. Respondents identified brainstorming activities 

as effective idea generation processes, and recommended brainstorming to take place in groups 

to enable students to be inspired by each other. The majority of respondents across the two 

groups specified the need for a safe space for ideation to be practised in a group setting. 

However, each respondent had a different insight into how it can be taught best. Three TE 

respondents stated that learners should be offered a scaffold to engage with ideation, and two 

SI respondents highlighted the benefit for students considering other students’ perspectives as 

an effective learning technique. 

Cognitive flexibility: Most respondents were unaware of the term cognitive flexibility; 

however, they all referred to the individual elements of what constitutes it when asked about 

their understanding of and pedagogical approaches to creativity in previous questions. Out of 

all respondents, only one (TE) identified an explicit teaching of cognitive flexibility in the 

curriculum in the form of students developing ‘contingency plans’ for their projects, which 

indicated an underrepresentation of cognitive flexibility in the curriculum. TE respondents 

approached the teaching of cognitive flexibility in everyday life or hypothetical scenarios, and 

a further TE respondent argued that cognitive flexibility can only be acquired through practice. 

Three SI respondents interpreted the practice of scientific cognitive flexibility as learners using 

knowledge to make changes to their understanding of a theory or apply knowledge in a different 

way. A further SI respondent stated that this practice extends beyond science, and knowledge 

acquired in different subjects can also be used. 

All participants interpreted the interactions between the elements of the STEM creativity 

framework in different ways. Half of the participants indicated a certain structure, linear or 

cyclical, to how the elements of STEM creativity would be implemented in a unit of study, 

which can involve one or two elements at a time. Four participants stated that the elements can 

occur simultaneously and without a particular linear or cyclical order throughout the 

implementation of a unit of study. Out of the four elements, problem-solving emerged as the 

element that was the most prioritised; half of the respondents indicated that they would initiate 

the implementation of the elements of STEM creativity with problem solving, which could be 

a consideration in their pedagogical approaches. 

Discussion 

The pedagogical approaches and practices stated by the respondents are categorised into 

four themes based on interview results: exposure, exploration, experimentation, and execution. 

These themes represent the overall categories of pedagogical beliefs and practices teachers 

expressed, with various methods and techniques to implement them. They were identified and 

defined through participants’ responses to the interview questions. The names of all themes 

except for ‘execution’ have been used multiple times by all participants. The execution theme 
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was named based on the participants’ use of words such as ‘application’ and ‘putting into 

practice’ of the newly acquired skills and knowledge within a STEM learning program. 

Exposure: This initial phase entails direct instruction from the teacher in various forms and 

is the base knowledge phase that the respondents referred to. According to the respondents’ 

opinions, this phase is mostly teacher guided. However, in some cases, it can be scaffolded by 

a teacher, but the knowledge-finding and sharing can be undertaken by the learners. 

Exploration: This phase is when learners begin to internalise newly acquired knowledge 

and skills, make connections with prior learning, and apply critical thinking and elaborate on 

the new knowledge and skills. It entails student-centred knowledge finding, exchange of 

knowledge, discussions, and other collaborative tasks that allow the learners to digest the 

knowledge and skills but not ‘make’ anything or produce new knowledge. 

Experimentation: This phase is the precursor of execution and is inspired by the exposure 

and exploration phases. It involves brainstorming and ideation tasks, and often takes the form 

of learners coming up with their own problem-solving methods or experiments. In this phase, 

learners begin to use the newly acquired knowledge, skills, perspectives in some shape or form 

that may be the same or different from what they received in the exposure and exploration 

stages. 

Execution: This phase takes the forms of contextualisation, connecting the newly acquired 

knowledge and skills to real life or a hypothetical scenario, and/or producing a tangible or 

intangible application of creativity, creating an end result, a final product, or solving a problem. 

While it was observed that half of the participants in the TE group preferred to implement 

these themes in a rather rigid order of exposure, exploration, experimentation, and execution, 

they are nevertheless movable pedagogical themes that can be applied without a certain 

iterative, linear, or cyclical order. Most teachers identified that even when a certain structure is 

present in a project, students very often go back to a previous phase to fill gaps in knowledge, 

skills, or complete additional tasks. Furthermore, when a theme was identified in a response, 

another theme was often also mentioned, or one theme was implemented with the support of 

one or more other themes, which suggests that the four pedagogical themes are commonly 

applied in conjunction with each other, and in some cases, cannot be applied without the 

concurrent implementation of another theme. The validation of the framework was determined 

via the observation that all participants mentioned every element of the framework organically 

without being prompted and before the questions that identify and target the individual elements 

of the framework. However, since the participants’ classroom practices were not observed, it 

was not possible to ascertain how they implemented the elements of the framework. 

Concluding Remarks 

In this study, a novel framework for STEM creativity has been designed and discussed. The 

researcher’s primary objective was to explore mathematics teachers’ beliefs and pedagogical 

approaches regarding creativity within the parameters of the framework. The findings indicate 

that mathematics teachers believe creativity is a learned skill and interpret creativity and the 

elements of the STEM Creativity Framework through a range of perspectives and four 

pedagogical themes: exposure, exploration, experimentation, and execution. Further research 

on the topic is needed to observe the teachers in their classroom practice in order to identify 

and examine consistencies and discrepancies between interview and observation data. 

Additionally, classroom observations could potentially lead to further amendments to the 

STEM Creativity Framework. The results of this study may inform future research regarding 

the instruction of creativity skills in STEM education and the design and development of future 

STEM creativity programs. The delivery of creativity skills within a framework designed 

specifically for STEM education that can operate within curricular boundaries can also lead to 

improvements in student outcomes and future STEM careers. 
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Ambiguity of language can form a barrier to understanding mathematical concepts. The 

word ‘capacity’ is problematic as it holds a variety of meanings and might not be 

understood in school mathematics, to be an aspect of volume. We investigated pre-

service primary school teachers’ interpretations of ‘capacity’ when given the definitions 

of ‘volume’ and ‘capacity’ provided in the Australian Curriculum: Mathematics. Of the 

72 participants, 20 appeared to hold the conception that the volume of a liquid is its 

capacity. We suggest reducing ambiguity by defining ‘capacity’ more clearly or by 

excluding this word from formal mathematics terminology. 

In mathematics education, a distinction is commonly made between ‘mathematical 

language’ which is precise, explicit and averse to ambiguity, and ‘everyday language’ which is 

informal and has a largely implicit meaning based on the context in which it is used (Barwell, 

2005). Alternative conceptions can arise when a term that students already understand 

informally, differs from the formal mathematical term defined in a mathematics curriculum 

(Avgerinos & Remoundou, 2021). The term ‘capacity’ is one such term. 

Capacity has multiple meanings. It comes from an old French word, capacité, which means 

‘ability’ in a legal, moral, or intellectual sense. In a physical context it means “ability to contain; 

size, extent” (Harper, 2024). Capacity can be understood as an ability to store electricity or an 

ability to hold either a volume, or a weight, or a number of people or items, depending on the 

context (Ho & McMaster, 2019). In the Australian Curriculum: Mathematics (AC:M), capacity 

is defined as “the amount a container will hold. It is often in relation to the volume of fluids. 

Units of capacity (volume of fluids or gases) include litres (L) and millilitres (mL)” (Australian 

Curriculum Assessment and Reporting Authority [ACARA], 2022). In this definition, the word 

‘amount’ could mean a volume or a weight and the word ‘often’ could imply that capacity is 

not always a volume. However, the units of litres (L) and millilitres (mL) mentioned in the 

definition imply that capacity is an attribute of fluids. This alternative conception has significant 

implications for understandings in science where students learn about states of matter 

(McMaster et al., 2021). Most Australian primary school teachers teach both mathematics and 

science. If pre-service teachers (PSTs) are confused by the meaning of capacity, it follows that 

their students will be confused. 

The exploratory research documented in this paper focuses on the question: What do pre-

service primary school teachers understand to be the meaning of capacity, when given the 

definitions provided in the Australian Curriculum: Mathematics? 

Literature Review 

There is lack of prior research concerning teachers’ understanding of the term capacity 

when it is formalised in a mathematics curriculum. There is however, a large body of research 

on alternative conceptions and how such conceptions develop (e.g., Vosniadou, 2013). 

Resnick (1991) argues that all knowledge is situated, meaning that it reflects the particular 

conditions in which it was produced. Hence, to understand an alternative conception, the 

context in which that conception developed needs to be recognised. Hallden et al. (2013) present 

a theory of conceptual change which accounts for context. They propose a ‘compounded model’ 
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to describe the way in which individuals create a coherence of meaning from a collection of 

two different sources of information. Their model illustrates the piecing together of contrasting 

information to create a coherent whole that makes sense to the individual. Based on the theory 

of Hallden et al. (2013), we hypothesise a synthesis of the three sources of information and 

experiences that could account for the conception that capacity is an attribute of liquids while 

volume is an attribute of solids. These sources are: the definition of the attribute, the experience 

of measuring the attribute, and the base unit of the attribute. They are illustrated in Figure 1 and 

detailed in this literature review. 

Figure 1 

Information and Experiences Compounding to Form the Conception that Capacity is an Attribute of 

Liquids and Volume is an Attribute of Solids 

 

When Harrison (1987) questioned young children (four to seven-year-olds) about the 

capacity of containers, they thought about how much a container was holding rather than what 

it will hold or could hold. Irrespective of the size of the container, children thought its capacity 

was how full it was. On reflection, Harrison (1987) thought their concentration on the liquid 

(the filled space) rather than the space inside the container, was logical. People naturally tend 

to notice first, the fullness of a container: how close it is to reaching its capacity. 

The Measurement Process 

In the AC:M, the process specified for measuring capacity is to fill containers with pourable 

materials such as water. In Year 1 it is suggested that they “pour sand/rice/water from one 

container to another to compare and order the capacity of 3 or more containers” (ACARA, 

2022). This process is different from the process suggested in Year 7 for measuring the volume 

of a rectangular prism, namely stacking unit cubes in rows, columns and layers. 

In Ho and McMaster’s (2019) study, six 11- and 12-year-old students were asked during a 

task-based interview, how they would find the volume of a plastic box and then how they would 

find its capacity. Five of these students, having initially been confused about the difference 

between volume and capacity, became open to believing that the capacity of the container meant 

its volume in this context. However, the remaining student held firmly to the conception that if 

the volume inside the box was measured with unit cubes, this was the volume of the box and if 

the same space was measured with water, this was the capacity of the water. The conception 
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that capacity is the volume of a liquid can be seen in a teacher’s annotations of student work 

samples for Year 3 on the website housing the AC:M (ACARA, 2022). 

The Base Unit 

Another contributing factor could be the belief that in our metric system, each measurement 

attribute has only one base unit. In the International System of Units (known as the SI system), 

the metre is the only base unit for length, and the cubic metre is derived from this base unit. 

However, there are two official units that can be used to quantify a volume in Australia’s metric 

system—the cubic metre and the litre (Australian Government, 2024). People who believe the 

cubic metre is the only metric unit for the volume of a solid, could believe that the litre is the 

only metric unit for the volume of a liquid. There are mathematics education textbooks for pre-

service teachers that reinforce this conception, possibly due to the writers’ interpretation of the 

AC:M. Tables in Cotton et al., (2023, p. 229) and Reys et al. (2023, p. 611) for example, do not 

list the litre as a metric unit of volume, but as a metric unit of capacity. 

Method 

The method was based on the premise of Hallden et al. (2013) that learners’ conceptions 

can be understood by examining their responses to constructed contexts. The ‘learners’ in this 

study were primary school pre-service teachers (PSTs). For them, the context of responding to 

a student’s statement and marking a question is particularly relevant to their future career. An 

online questionnaire was used because it enabled anonymity and a larger sample size than 

would be possible by interviewing participants. The research was conducted early in 2020. 

The Participants 

The study involved 72 PSTs at a metropolitan university which has a relatively high entry 

requirement into their initial teacher education programs for teaching in primary schools: a four-

year Bachelor of Education (Primary) program (BEd) and a two-year post-graduate Master of 

Teaching (Primary) program (MTeach). The program and year level of the 72 participants is 

shown in Table 1. The BEd Year 4 cohort had attended a lecture and a tutorial class the previous 

semester, in which they were explicitly taught the meanings of volume and capacity in the 

mathematics curriculum. As part of the unit of study, they also experienced teaching the topic 

‘Volume and Capacity’ to a small group of students at a local primary school. The other PSTs 

had not yet encountered this topic in their program, however four PSTs in BEd Year 3 (PSTs 

47, 48, 49, 50) and four in MTeach Year 2 (PSTs 30, 31, 32, 33) had either taught the topic or 

seen it being taught, most likely during their profession experience placement. 

Table 1 

Participants in Each Cohort with Teaching Experience on the Topic of ‘Volume and Capacity’ 

Program and 

year level 

Number of 

participants 

Number with 

teaching experience 

Individual 

labels 

MTeach (Primary) Year 1 25 0 PST1 to PST25 

MTeach (Primary) Year 2 7  4 PST26 to PST32 

BEd (Primary) Year 1 4 0 PST33 to PST36 

BEd (Primary) Year 2 3 0 PST37 to PST39 

BEd (Primary) Year 3 10 4 PST40 to PST49 

BEd (Primary) Year 4 23 23 PST50 to PST72 

Total 72 31  
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The Questionnaire 

The online questionnaire began by providing participants with the definitions of volume and 

capacity stated in the AC:M (version 8.4) and inviting them to read then state these definitions 

in their own words (Item 1). These definitions were the same as those in the current AC:M 

(version 9). Volume was defined as “a measure of the space enclosed by the solid” and capacity 

was defined as “a term that describes how much a container will hold. It is used in reference to 

the volume of fluids or gases and is measured in units such as litres or millilitres.” 

Item 2 was designed to obtain quantitative data concerning the number of PSTs’ holding 

the conception that the volume of a liquid is its capacity, and qualitative data from those PSTs 

who gave an extended response. The PSTs were asked to state whether they would agree with 

a student who says, “Objects have volume and liquids have capacity” (Item 2a). It was expected 

that PSTs holding the alternative conception would agree with the student. To confirm whether 

they held this conception, they were given Item 2b about which capacity of a jug (Figure 2) 

they would accept as being correct. This question was sourced from a commercial test for 

Year 5 students and made a multiple-choice question. If a PST held the alternative conception, 

they were expected to select 1800 mL as the correct answer. 

Figure 2 

Item 2b) From the Questionnaire 

 

A final item (Item 3) asked PSTs if they had any concerns about the wording of the 

curriculum definitions. This item was to yield additional qualitative data and possibly clarify 

earlier responses. 

Analysis of the Data 

The data were analysed to determine the extent to which the PSTs held the conception that 

the volume of a liquid is its capacity. Data obtained from those students who gave extended 

responses to Item 2 and those who responded to the Items 1 and 3, were further analysed to 

determine possible reasons for their conception and the nature of their concerns about the 

curriculum definitions of volume and capacity in the AC:M. 

Responses to the statement “Objects have volume and liquids have capacity” were sorted 

into three categories: agree (a response of ‘yes’, ‘correct’, or ‘agree’), disagree (a response of 

‘no’, ‘incorrect’ or ‘disagree’) and unsure (a response of ‘I don’t know’ or something similar). 

Some responses raised ambiguities that were not envisaged. These were discussed by the two 
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researchers until a common understanding was reached. For example, one PST responded by 

saying “Objects have volume, and they can hold a given capacity of liquid”. It was decided that 

because they referred to ‘capacity of liquid’, they agree with the conception that liquids ‘have 

capacity’. Responses were also coded as ‘agree’ if they said objects also ‘have capacity’ 

because this implies that they think liquids ‘have capacity’ e.g., “Objects can have capacity too” 

(PST39). 

Responses in which PSTs said they ‘partially agree’ with the statement were coded as 

‘disagree’, because it was assumed that by ‘partially agree’ they meant that the first half of the 

statement (“objects have volume”) is correct and the second half (“liquids have capacity”) is 

incorrect. 

Regarding the capacity of the jug (Figure 2), if a PST judged 1800 mL to be correct, they 

were deemed to hold the conception that capacity means the volume of a liquid. Using the 

syllabus definition of capacity, every multiple-choice answer could be considered to be correct 

except an answer of 1800 mL. If the capacity of the jug means the volume to the top of the scale 

(its nominal capacity) the answer is 2000 mL. If what the jug ‘will hold’ is interpreted to mean 

the available space, 200 mL (2000 mL − 1800 mL) is another correct answer. If the capacity of 

the jug means its brimful capacity, the answers of 2200 mL and 400 mL (2200 mL − 1800 mL) 

are correct. Students choosing ‘other’ and stating an answer were classified as correct if they 

explained that the brimful capacity may not be exactly 2200 mL. 

Results 

Restating the Definitions 

Of the 72 participants, 41 stated the definitions in their own words. Most explained how 

volume and capacity were different. A typical response was, “The volume of an object or 

substance is the amount of space it takes up, whereas capacity is the amount a container can 

hold”. No-one referred to capacity as a volume, however one participant said “Volume and 

capacity are basically the same thing” (PST9) and another referred to both volume and capacity 

as space, “Volume is the space that something takes up, and capacity is the amount of space 

that is within a container” (PST71). 

Three people defined volume to be an attribute of solids and capacity to be an attribute of 

liquids (PSTs 20, 21, 25), and three others thought capacity was how much a container “has in 

it” or “is holding” rather than how much it “will hold” (PSTs 5, 30, 48). These people also 

thought 1800 mL was the correct answer for the capacity of the jug in Figure 2, indicating that 

they held the conception that the volume of a liquid is its capacity. 

Agreeing or Disagreeing with a Student Statement 

Table 2 shows that a total of 30 participants (42%) agreed to the statement, “Objects have 

volume and liquids have capacity”. Of the 72 participants, 17 gave an extended response, 

thereby providing insight as to why they and possibly other participants, chose to agree or 

disagree with the statement. 

An extended response by a participant who agreed with the statement was “Objects have 

volume, and they can hold a given capacity of liquid” (PST23). One participant said they only 

agreed because they had just read the curriculum definitions, “I would have said the opposite 

until I read the description above” (PST20). 

The six people who, in an earlier response had defined capacity as the volume of a liquid 

or as how much a container ‘is holding’, all agreed with the statement. 

Three responses were classified as ‘unsure’. One person wrote that they “would ask the 

student to elaborate about what they mean by each thing ‘having’ something” (PST64). Another 

wrote that “Objects measure volume and liquids measure capacity” (PST70) presumably 
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confusing ‘having’ an attribute with measuring an attribute. The remaining 39 people disagreed 

with the statement. Some of their extended responses were: 

• Objects can have a capacity. Liquids can be used to measure this capacity (PST43); 

• Liquid is a means of finding the capacity (PST68); 

• Liquids do not have capacity. It is the container that holds them that has capacity 

(PST71). 

Marking Answers to a Question about the Capacity of a Jug 

There are several correct answers to the question about the capacity of the jug (Item 2b). 

Fifteen people mentioned more than one answer. Almost half of all participants (35 people) 

said they would mark 1800 mL (the volume of the liquid) as correct, 25 would mark 2000 mL 

(the nominal capacity) as correct and 21 people would mark 2200 mL (the brimful capacity) as 

correct. Only one person included 200 mL or 400 mL as answers they thought were correct. 

This person also included 1800 mL as a correct answer. Altogether, three people included both 

1800 mL and 2000 mL as correct answers, presumably thinking that both a container and a 

liquid can ‘have capacity’. 

Relationships Between Pre-Service Teacher Responses 

The researchers envisaged that people who would mark 1800 mL as correct, held the 

alternative conception that capacity is the volume of a liquid, and would therefore agree with 

the statement that liquids ‘have capacity’. The data in Table 2 shows that although they were 

twice as likely to agree that liquids have capacity compared to those who did not accept 1800 

mL as correct (28% compared to 14%), they were still almost as likely to disagree or be unsure 

(23%) as to agree (28%) with the statement about liquids ‘having capacity’ (see Table 2). 

Table 2 

Responses to Item 2a) From the Questionnaire 

 Agree 

(n=72) 

Disagree/unsure 

(n=72) 

Total 

(n=72) 

1800 mL is not correct 10 (14%) 25 (34%) 35 (49%) 

1800 mL is correct 20 (28%) 17 (23%) 37 (51%) 

Total 30 (42%) 42 (58%) 72 (100%) 

The Impact of Instruction 

Only the BEd Year 4 cohort had received instruction on teaching students about ‘Volume 

and Capacity’ at the time when the survey was conducted. Table 3 shows a comparison between 

the responses of these PSTs and the remaining 49 PSTs. 

Table 3 

Responses of Pre-Service Teachers who had or had not yet Received Instruction About the Meaning of 

Capacity 

Responses Before instruction 

(n=49) 

After instruction 

(n=23) 

Agree that liquids have capacity 24 (49%) 6 (26%) 

Would mark 1800 mL as correct 25 (51%) 12 (52%) 

Both the above responses 11 (22%) 3 (13%) 

Although students having received instruction were only about half as likely to agree that 

liquids ‘have capacity’, they were just as likely as others to see the level of water shown in the 

jug as its capacity. 
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Concerns About the Wording of the Curriculum Definitions 

Only 31 PSTs responded to the final question of whether they had concerns regarding the 

curriculum definitions. Four people wrote ‘no’, three wrote ‘not yet’ and 17 wrote down their 

concerns. Most of those who expressed their concerns about the wording of the definitions of 

capacity and volume had had experience teaching the topic of ‘Volume and Capacity’. Their 

main concern was the confusing nature of the terminology. Based on their experience, one wrote 

“The terminology can be confusing, so explicitly defining the difference between the two would 

be useful for younger students. Also emphasising that measuring capacity is more for real-world 

uses rather than volume.” (PST46). A PST who had not yet taught the topic wrote “They are 

super confusing, I don’t really understand the difference, and currently wouldn’t feel 

comfortable teaching the difference.” (PST45). Several PSTs thought the reason why the terms 

are so confusing, is that they are so similar. One wrote “I just generally don’t understand why 

capacity exists” (PST69). Another thought that because they are so similar “it doesn’t seem 

necessary to use both terms” (PST63). Further suggestions for making the topic less confusing 

were to begin the topic by teaching what volume is, using both liquid and solid contexts (PST66, 

PST69) and to only use capacity informally in real-world contexts (PST46, PST72). 

Discussion and Conclusion 

The conception that capacity is an attribute of liquids and volume is an attribute of solids, 

was prevalent amongst the PSTs who participated in the study, with 28% both agreeing with a 

statement that liquids ‘have capacity’ and believing that the liquid a container ‘is holding’ is 

the capacity (Items 2a and 2b), a conception reported by Harrison (1987). 

It was surprising that about half of all the participants appeared to hold the view that the 

level of the water in the jug (Figure 2) was its capacity, including many who disagreed that 

liquids ‘have capacity’. This could be because their eyes were immediately drawn to the visual 

reading of a scale rather than the wording of the question. By placing this item after inviting 

participants to read and comment on the curriculum definitions, and by underlining the word 

capacity, the researchers had hoped misreading of the question would be minimised. 

Another reason for PTSs incorrectly answering Item 2b, while apparently knowing that 

liquids do not ‘have capacity’ (Item 2a) could be their misunderstanding of what ‘having’ 

means. Two PSTs mentioned the confusion this wording caused them. The statement could 

have also been misinterpreted by others who responded without giving a reason for agreeing or 

disagreeing. Clearer wording for Item 2a might be, “Volume is an attribute of solids and 

capacity is an attribute of liquids”. It could have also been clearer if the first half of the statement 

was excluded because it makes the whole statement partially correct. 

Another interesting finding was that some PSTs appeared to believe that the word capacity 

can be used in relation to both containers and liquids. The three participants who accepted both 

1800 mL (the volume of water in the jug) and 2000 mL (the nominal capacity of the jug) to be 

correct answers, would fit in this category. One of the elaborations in the AC:M (Year 3) 

suggests that students “measure out different capacities of liquid” (ACARA, 2022). 

Despite the limited number of participants and participants not being interviewed to clarify 

the meaning of their responses, this exploratory research suggests that there is considerable 

confusion amongst PSTs about the meaning of the word capacity in the AC:M. If these PSTs 

are confused, it follows that their future students will be confused. If capacity is only an attribute 

of containers, this needs to be stated clearly in the curriculum and emphasised by teachers. It 

could be helpful for teachers to use the term internal volume of a container as this is what is 

probably meant by capacity, rather than a container’s nominal capacity or brimful capacity. 

Another possibility (one suggested by some of the PSTs) is to formally use the word volume 

and only use capacity informally when the context makes its meaning clear. 
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In Ireland, Initial Teacher Education [ITE] standards require all teachers to possess an 

adequate level of numeracy themselves in order to teach for numeracy learning across 

the school curriculum. This paper reports on a study that investigated 204 pre-service 

post-primary teachers’ numeracy capabilities. Analysis of questionnaire data from 

participants in three universities showed that pre-service teachers tend to struggle to 

complete the numeracy tasks correctly, especially tasks related to ratio and proportional 

reasoning. If pre-service teachers of all disciplines are not capable of completing core 

numeracy concepts, then they will struggle to teach for numeracy learning. 

Internationally, educators and government stakeholders are advocating that all citizens 

should have gained the necessary literacy and numeracy competencies in school, to live and 

work in today’s world (Goos & O’ Sullivan 2023; Department of Education and Skills [DES] 

2011; Norwegian Directorate for Education and Training 2012). The Irish government 

developed a strategy for literacy and numeracy and in this strategy, have stressed the importance 

that all teachers should be teaching for numeracy learning across all subject disciplines (DES 

2011, 2015). More recently, and in a bid to support this initiative of a numerate society, The 

Teaching Council of Ireland (2020), which is the regulatory body for teachers, have agreed that 

teachers need to develop their personal numeracy knowledge and also specified that all 

universities involved in preparing pre-service teachers must: 

Ensure that student teachers are afforded opportunities to enhance their own literacy and numeracy 

and are required to demonstrate an acceptable level of proficiency in literacy and numeracy. Students 

shall be required to demonstrate their competence in teaching and assessing literacy and numeracy 

appropriate to their curricular/ subject area(s). (CÉIM, 2020, p. 14) 

Similarly, in Australia, Hall and Forgasz (2020) argue that pre-service teachers need to 

possess a certain level of numeracy skills themselves, prior to teaching for numeracy learning. 

Supporting teachers in gaining the appropriate knowledge required to teach for numeracy 

learning in an effective manner should be a priority for educators. Researchers in the field of 

numeracy argue that possessing mathematical knowledge is not enough to teach for numeracy, 

nevertheless they recognise that mathematical knowledge is a core aspect of numeracy and 

therefore is important for teachers to possess (Venkat & Winter, 2015). Forgasz and Hall (2019) 

argue that in order for teachers to improve the numeracy capabilities of their students, teachers 

must first equip themselves with the necessary skills to develop their own understanding of how 

mathematical concepts and numeracy affect their own lives and their subject area. The 

following paper presents results from a study conducted in Ireland which investigated pre-

service secondary teachers’ abilities to complete numeracy questions. For the purpose of this 

paper, responses to 2 numeracy questions were analysed to address the following research 

question: How well are pre-service post-primary teachers able to complete numeracy tasks? 

Research Design and Method 

Pre-service secondary teachers enrolled in the two-year Professional Master of Education 

(PME) programme in three different universities, were invited to take part in this research study. 

Pre-service teachers were asked to complete a questionnaire at one of their general education 

lectures at the beginning of their second year on the PME. There were 204 pre-service teachers 

who completed this questionnaire. The questionnaire consisted of three sections, Section A: 
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Demographics, Section B:Pre-service Teachers perceptions of numeracy and preparedness to 

teach for numeracy, and Section C: Preservice Teachers assessment of numerate capabilities. 

Section C of the questionnaire consisted of 7 numeracy tasks in total; however, the 

numeracy tasks were presented in 6 questions. The first two numeracy tasks were part of 

question 1. Table 1 presents a short explanation of each numeracy task in the questionnaire. 

Pre-service teachers were asked to display their workings for each task in a text box provided. 

Asking pre-service teachers to provide mathematical workings in the space provided enabled 

the authors to identify if the answer was correct or incorrect and furthermore allowed the 

authors to understand the pre-service teachers’ mathematical thinking. Three of the numeracy 

tasks were published by the OECD as PISA test questions: Earthquake task (PISA, 2003), Car 

task (PISA, 2003) and the Salad dressing task (PISA, 2012). The other three numeracy tasks 

were developed specifically for this study. Pre-service teachers were allowed to use a calculator 

and they were asked to indicate at the end of the questionnaire if they had done so. 

Table1 

Explanation of Each Numeracy Task in the Questionnaire 

Numeracy tasks Explanation 

Time task Calculate the difference between two Olympic swimmers’ finishing race times 

for a 100 metre butterfly race. The results were presented in a table and the pre-

service teachers had to subtract one decimal number from another decimal 

number (51.14–50.39) 

Distance task Joseph Schooling had a result of 50.39 in the 100 metre race and if the race was 

30 metres longer, given that he was travelling at the same average speed as he 

did in the first race, calculate the new time he would finish the 130 metre race 

Earthquake task A documentary about earthquakes and how often they occur is broadcast. A 

geologist stated “In the next twenty years, the chance that an earthquake will 

occur in Zed City is two out of three”. Pre-service teachers were asked to use 

mathematical knowledge and understanding of statistics to predict an event 

occurring in this specific context. Pre-service teachers were provided with 4 

different scenarios and asked to choose which one best reflected the meaning of 

the geologist’s statement 

Pie Chart task Given a pie-chart, calculate the proportion of the pie chart (as a percentage) that 

represented the participants who chose biology as a subject for the Leaving 

Certificate 

Best Car task Calculate the score of the “Best Car” given an equation. The “Best Car” is 

evaluated based on scores for safety features (S), fuel efficiency (F), external 

appearance (E) and internal fittings (T) and these were the variables in the given 

equation (Ca) = (3 x S) + F + E + T. Pre-service teachers had to substitute 

values into the equation and work out the final answer for the Best Car 

Salad Dressing task A recipe for 100mls of salad dressing has three ingredients which are Salad Oil 

(60mls), Vinegar (30mls) and Soy sauce (10mls). Pre-service teachers were 

asked to calculate how much salad oil is required to make 175mls of salad 

dressing 

Mobile Phone task David uses 500 minutes per month and 15GB of data. Recommend the best 

mobile phone plan for David, given price tariffs for 3 mobile phone companies 

Pre-Service Teachers’ Numeracy Capabilities 

The results of the overall numeracy tasks are presented in Table 2, which shows the number 

of pre-service teachers who answered each task correctly, incorrectly or left it blank. 
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Table 2 

Breakdown of Correct, Incorrect and Blank Answers for Each Numeracy Task 

 Correct Incorrect Blank 

Time 112 (54.9%) 89 (43.6%) 3 (1.5%) 

Distance 99 (48.5%) 68 (33.4%) 37 (18.1%) 

Earthquake 165 (80.9%) 36 (17.6%) 3 (1.5%) 

Pie chart 135 (66.2%) 53 (25.9%) 16 (7.8%) 

Best Car  160 (78.4%) 22 (10.8%) 22 (10.8%) 

Salad Dressing 118 (57.8%) 59 (29%) 27 (13.2%) 

Mobile Phone 48 (23.5%) 94 (46%) 62 (30.5%) 

The question with the highest number of correct answers was the Earthquake task with 165 

(80.9%) pre-service teachers answering this task correctly. The Earthquake task was taken from 

PISA (2003) released sample items. It was the only question for which the pre-service teachers 

were given multiple choice options for their answer. 

As can be seen in Table 2, the Time task had nearly as high a proportion of incorrect answers 

as it had of correct answers, which is interesting as I had considered this task one of the easier 

tasks as it involves only subtracting two decimal numbers. Also, it was noted that over 40% of 

pre-service teachers either answered incorrectly or left the task blank in four out of seven of the 

numeracy tasks. The Mobile Phone task was the question with the lowest number of correct 

answers. This question was also the only question for which there were more pre-service 

teachers who answered the question incorrectly than those who answered it correctly. The 

Mobile Phone task was also the question for which there was a substantial number of pre-

service teachers who left the question blank. This may be due to the nature of the question and 

the fact that it involved much more time and more mathematical calculations such as working 

out how much extra data was needed per month and working out the cost of the extra data. Pre-

service teachers needed to consider the total cost was over the course of 24 months and not just 

the price for one month when initially purchasing the phone. This question was also the last 

question on the questionnaire which may also have contributed to the low response rate. 

From the initial analysis, 8 (3.9%) pre-service teachers were able to answer all 7 numeracy 

tasks correctly. There were 156 (76.5%) pre-service teachers who were able to answer 3, 4, 5 

or 6 numeracy tasks correctly. However, there were still a considerable number of pre-service 

teachers (32, 15.7%), who were only able to answer either 1 or 2 numeracy tasks correctly. 

Finally, 8 (3.9%) pre-service teachers were unable to answer any numeracy task correctly and 

only one of these eight pre-service teachers left each answer blank, which means that 7 pre-

service teachers attempted to answer the numeracy tasks but answered them all incorrectly. 

Pre-Service Teachers’ Struggles with Core Numeracy Concepts 

This section presents the different types of answers pre-service teachers provided when 

completing the numeracy tasks. Initially, the numeracy tasks were coded as correct, incorrect 

or blank but then it became evident that many pre-service teachers had proceeded with 

answering the question incorrectly in the same way, thus suggesting there were many 

commonly held misconceptions. Therefore, I decided to code the types of answers which meant 

I was able to better understand the mathematical thinking and errors some pre-service teachers 

had made. For the purpose of this paper, I will focus on Question 1 which focussed on the Time 

and Distance tasks and I will also present errors in Question 5 which was the Salad Dressing 

Task. Both questions expect teachers to draw on their mathematical knowledge of ratio and 

proportional reasoning, which is fundamental and a core aspect of many numeracy tasks in the 

school curriculum and in the wider society that we live in. 
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The first numeracy task in Section C of the questionnaire asked pre-service teachers to 

calculate the winning margin in the 100 metre butterfly final in the 2016 Olympic Games, and 

then calculate the time to swim the race at this average speed over an additional 30 metres. The 

question and a model solution are shown in Figure 1. 

Figure 1 

Sample Correct Answer to Time and Distance Task 

 

There were 89 pre-service teachers who answered this task incorrectly, and of this cohort, 

a considerable number of pre-service teachers arrived at the same incorrect answer. Different 

types of incorrect answers were observed and the mathematical thinking behind each error was 

also identified. As described in Table 3, there were three notable incorrect answers for the Time 

Task. There were 20 (22.5%) answers to this question which could not be allocated to either 

Type 1, Type 2 or Type 3 and the mathematical thinking of the error could not be drawn from 

the answer the pre-service teachers presented for these 20 answers. The incorrect answers for 

each type of answer are presented in the brackets in Table 3 along with a description of the 

error. 
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Table 3 

Types and Frequency of Occurrence of Incorrect Answers for Time Task 

Types of answers Description of misconception n (%) 

Type 1 (0.35 seconds or 

35 seconds) 

The number of centi-seconds in a second is the same as the 

number of seconds in a minute or number of minutes in an 

hour 

52 (58.5%) 

Type 2 (1 minute 15 

seconds or 75 seconds) 

Convert 0.75 to 1 minute and 15 seconds or 75 seconds 

whereby the respondents omitted the decimal place in their 

answer 

9 (10.1%) 

Type 3 (1.25 Seconds) Subtract the smaller number from the larger number 8 (8.9%) 

The main difficulties that led pre-service teachers to give a Type 1 answer (0.35 seconds or 

35 seconds) involved the misconception that the number of centi-seconds in a second is the 

same as the number of seconds in a minute or number of minutes in an hour. Hence, 52 of the 

89 pre-service teachers who gave a Type 1 answer incorrectly calculated the answer as either 

0.35 seconds or 35 seconds. Examples of how some of these 52 participants calculated these 

answers are given in Figure 2. It seems that they have “carried over” 60 seconds after the 

decimal point to change the task from 51.14 − 50.39 to 50.74 − 50.39, which gives an answer 

of 0.35. However, some pre-service teachers who worked only with the numbers after the 

decimal point interpreted the answer as 35 seconds, which might suggest that students who 

answered 35 seconds do not understand the place of a decimal point. 

Figure 2 

Examples of Type 1 and 2 Incorrect Answers to Time Task 

 

The second numeracy task presented in Question 1 was based on distance, average speed 

and time. This numeracy task asked pre-service teachers to calculate the result time of the 

butterfly race, if it was an extra 30 metres in distance. Here the pre-service teachers had to use 
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the results table provided in the first part of the question to calculate the new finishing time for 

Joseph Schooling, given that he was swimming at the same average speed as when he completed 

the 100 metre butterfly race. Two possible correct responses to this numeracy task are presented 

in Figure 3. 

Fewer pre-service teachers responded to this numeracy task in comparison to the first one, 

with only 167 (81.9%) completing this part. Of the 167 pre-service teachers who answered the 

Distance task, 101 (60.5%) answered it correctly. There were 10 (6%) pre-service teachers who 

had partially completed workings for this task. For example, some had calculated how many 

more seconds it would take for the extra 30 metres, but never added it to the time for 100 metres 

which can be seen in an example in Figure 3, while others recalled the formula to calculate the 

distance, average speed and time but didn’t complete the task. One pre-service teacher stated 

that they would be able to complete the task if they knew how to beforehand. 

Figure 3 

Pre-Service Teachers Partial Working for the Distance Task 

 

The next task was Salad Dressing and 177 (86.8%) pre-service teachers answered this task. 

This was a question adapted from PISA (2012) that involved applying their mathematical 

knowledge of ratio and proportion to make a salad dressing of 175millilitres, when given a 

recipe for 100 millilitres. Two-thirds of the pre-service teachers (118, 66.6%) who answered 

this question gave a correct response, answered correctly. Figure 4 shows the correct answer to 

this numeracy task. 

Seven (4%) pre-service teachers stated that they understood what they were being asked to 

do but didn’t understand how to answer the numeracy task. These pre-service teachers stated 

that the numeracy task was to do with “ratio”, “fractions”, and “working out the correct 

proportion”, but stated they didn’t know how to “get the answer” and also stated, “it would be 

easier if it was double the amount because you just double each portion”. Additionally, there 

were 52 (29.4%) pre-service teachers who answered the task incorrectly. While there were two 

different types of incorrect answers, I was unable to decipher how they arrived at the answer 

provided. However, I did manage to categorise the answers and the different types are presented 

in Table 4, along with pre-service teachers’ sample answers in Figure 5. 
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Figure 4 

Sample Correct Answer to Salad Dressing Task 

 

Table 4 

Different Types of Incorrect Answers for the Salad Dressing Task 

Types of answers Description of misconception n (%) 

Type 1 

(Random Number) 

This type of answer saw pre-service teacher write down a 

random, incorrect number but they did not provide any 

evidence of mathematical workings 

35 (19.8%) 

Type 2 

(Obscure working out) 

This type of answer showed pre-service teachers demonstrate 

some mathematical workings but the mathematical reasoning 

did not make sense 

17 (9.6%) 

 

Figure 5 

Examples of Type 1 and Type 2 Incorrect Answers to Numeracy Task 

 



O’ Sullivan 

422 

Discussion 

Researchers in Australia have advocated that in order for teachers to teach for numeracy 

learning in the classroom, they must also be proficient in their own numeracy capabilities 

(Forgasz & Hall, 2020; Goos et al., 2019). The findings presented in this paper showed that 

overall, two-thirds of the pre-service teachers were able to answer four or more numeracy tasks 

correctly and approximately one-third of the pre-service teachers answered fewer than half of 

the numeracy tasks correctly. Nevertheless, it did not deter them from completing the tasks and 

it was obvious that the pre-service teachers demonstrated a high level of engagement by 

attempting the numeracy tasks. The error analysis revealing the struggles of pre-service teachers 

that are presented in this paper is informative, in that identifiable errors and common 

misconceptions in the numeracy tasks were ascertained. This is interesting to note as these pre-

service teachers had come through an undergraduate degree but were presenting with common 

errors that students in primary school settings may also make. 

Furthermore, these results also highlight the gaps in pre-service teachers’ competency 

which need to be addressed. It is important for pre-service teachers to identify the common 

misconceptions students may have, with a specific focus on misconceptions relating to 

numeracy within their specific subject discipline. I argue that pre-service teachers could discuss 

and identify the different numeracy misconceptions that their students may encounter when 

teaching a certain topic. This would be in line with the current mandate from The Teaching 

Council of Ireland (2020), who have stated that pre-service teachers need to be given ample 

opportunity to develop their own personal numeracy skills which in turn will have an impact 

on the way in which they teach for numeracy learning. 
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Mathematical thinking is a complex, multi-faceted process that has been described as 

messy and difficult but can also show growth and insights into conceptual understanding 

and knowing. This paper explores the application of Edward de Bono’s practical 

thinking, in particular, the occurrence of porridge words to examine the mathematical 

thinking of primary school students. The research employed qualitative research 

techniques using participant’s drawings, their written descriptions, and interviews about 

their drawings. Employing discourse analysis uncovered patterns in how students used 

porridge words to communicate their mathematical thinking. 

In the realm of mathematics education, understanding and unravelling the intricacies of 

students’ mathematical thinking is an enduring challenge. Mathematical thinking underpins 

students’ abilities to problem solve in mathematics (Monteleone et al., 2023), and can lead to a 

more thorough understanding of mathematics (Stein et al., 1996). Further, mathematical 

thinking is a means to “describe mathematical growth” (Rasmussen et al., 2005, p. 52) and is a 

function of mathematical processes and operations (Burton, 1984). To achieve a deep level of 

understanding of mathematics, researchers suggest that students need to engage in the process 

of mathematical thinking (Schoenfeld, 1989; Stein et al., 1996). However, the thinking process 

is complex, and multi-faceted (Quane & Booth, 2023). Liljedahl (2021) describes mathematical 

thinking as “messy” requiring risk-taking (p. 72) is “difficult” (p. 87) and “is a necessary 

precursor to learning” (p. 5). 

Despite the increased attention and acknowledgment of the important role mathematical 

thinking plays in mathematical understanding, there is little research examining how primary-

aged children communicate their mathematical thinking and make their thinking visible to 

others. Research has investigated professional learning for teachers and pedagogical practices 

in the areas of mathematical thinking (Liljedahl, 2021; Sfard, 2008; Stein et al., 1996). Few 

studies have explored mathematical thinking from a student’s perspective. No studies as far as 

the author is aware, have examined students’ mathematical thinking and the use of porridge 

words. 

Different scholars have theorised the thinking process. Edward de Bono, a proponent of 

teaching thinking and renowned for theorising thinking eloquently describes thinking as 

“simply a matter of moving from one idea to another” (de Bono, 1971, p. 55). The transition 

between ideas can be challenging, resulting in students using filler words phrases or emergent 

language to describe the transition. de Bono (1971) refers to these words or phrases as “porridge 

words” (p. 60) and uses the phrase in generalised contexts and not subject-specific contexts 

such as mathematics. This research investigated the research question: 

• How do students use porridge words to communicate their mathematical thinking? 

Conceptualisation of Porridge Words in Mathematics Education 

Generalised language can inhibit and also enable thinking with de Bono (1971) using the 

term “porridge words” which, “allow us to make definite statements or ask definite questions 

when we do not really know what we are talking about”. These vague blurred porridge words 
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have an extremely important part to play in thinking (p. 61). 

As such, “porridge words” help us make the connections to keep thinking moving and 

progressing “from one idea to another” (de Bono, 1971, p. 67). Without “porridge words” de 

Bono (1971) warns that thinking will cease providing no way to keep thinking moving. Further, 

“porridge words” can be a means to ask “vague questions” when a person is not yet familiar 

with a topic to help develop their thinking and understanding of a topic (de Bono, 1971, p. 67). 

Giving a name to different aspects of thinking allows for the identification of the different 

processes used when engaging in thinking. While de Bono (1971) used “porridge words” in 

generalised contexts, it can be argued that the process of using “porridge words” be applied to 

specific contexts and topics including mathematics education. In mathematics, the word ‘sum’ 

could be considered a porridge word, especially for children who use the word to mean ‘perform 

a mathematical operation’ such as multiplication. Here the word ‘sum’ is vague and does not 

accurately describe the processes involved in or the concept of multiplication. 

However, de Bono (1971) warns that we often dismiss porridge words, especially in the 

thinking process. Yet, it is through such devices as “porridge words” that we can make a 

commitment to thinking, take action on our thinking, develop ideas through thinking, have 

parallel and intersecting thoughts, and abstract our thinking. de Bono (1971) posits that often 

we start with very general, non-specific thinking to establish more specific ideas and that there 

is a general attitude that we need to start with rigid, constrained, and specific thinking. The 

caveat of this attitude is that we are at risk of being “completely trapped by existing ideas” 

(p. 68). Porridge words in mathematics education, therefore, could be defined as words or 

phrases that have an ambiguous meaning or may not describe the mathematical concept, 

process, or skill in a highly accurate manner using appropriate and accurate mathematical 

language. That is, porridge words act as a device to facilitate mathematical thinking. In 

communicating mathematical thinking, even through the use of porridge words, students are 

engaging in mathematical discourse. 

Mathematical Discourse and Discourse Analysis 

Andreas (2011) argues that mathematical discourse differs from other forms of discourse 

due to the nature in which mathematics is communicated. Communicating mathematical 

thinking and understanding is multi-modal, involving various forms of communication and 

semiotic systems. These forms include but are not limited to words, symbols, graphs, drawings, 

and gestures (Andreas, 2011; Sfard, 2008). In communicating mathematics, andreas (2011) 

suggests students engage in both mathematical and generic discourses and explains that generic 

discourse may be relevant to the mathematical discourse that is occurring. In doing so, 

mathematical discourse is a dynamic and interactive process that can provide opportunities for 

students to explore, explain, and deepen their mathematical understanding. 

To investigate the occurrence of porridge words in students’ mathematical thinking, 

discourse analysis was employed. Discourse analysis examines spoken or written texts to 

understand the ways words or phrases function in a particular context (Paltridge, 2008). 

Adopting a pragmatic approach, whereby understanding what students are saying rather than 

what the words or phrases mean in the “most literal sense” (Paltridge, 2008, p. 3) is used to 

understand the meaning behind what a student has said. In this way, the spoken text is analysed 

to identify porridge words and how they are used by students. In terms of mathematics, students 

may also have a “linguistic repertoire” (Paltridge, 2008, p. 29) that they use when 

communicating their mathematical understanding. A student’s linguistic repertoire then 

depends on the domain in which the mathematical language is used, such as the primary 

classroom and the interactions with others. Paltridge (2008) used the term “speech 

communities” to describe a group of people that interact with each other, using the same 

language that includes common geographical, cultural, age, and social factors (p. 28). In terms 
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of social factors, Paltridge (2008) describes that the linguistic repertoire of a member will 

depend on who we are interacting with, the social context, the topic function and goal of the 

discussion or conversation as well as the formality of the setting and the status of each of the 

members. To understand the relationship between what is spoken and the meaning, pragmatics 

is employed as a means to study the context in which the spoken act has occurred. In this way, 

the context of the situation is crucial in interpreting and understanding what has been said. 

Context 

The study was conducted at a small inner-regional South Australian State School. The 

school had a total student population of 36 students separated into two classes. A junior class 

comprising Reception (first year of primary school), to year 2 inclusive. An upper class 

comprising of students in Years 3–6 inclusive. Flexible grouping was used for several learning 

areas including mathematics. The school is located in a small regional town, with an Index of 

Community Socio-Educational Advantage (ICSEA) value of 942 (Australian Curriculum, 

Assessment and Reporting Authority [ACARA], 2023). ICSEA is calculated by adding a) the 

social education advantage, b) remoteness, and c) percentage of indigenous students. The social 

education advantage is determined by parental occupation, school education, and non-education 

levels. ACARA (2023) reports that the ICSEA measure provides the opportunity to compare 

Australian Schools where the median value is 1000 and the standard deviation is 100. The 

school has an ongoing strong community relationship, maintaining close connections with 

community groups and promoting the sharing of the school’s facilities. The school population 

has experienced almost a 30% increase between 2020 to 2023 (ACARA, 2023). 

Method 

Children were withdrawn from class to complete a drawing and semi-structured interview. 

A drawing prompt was read to each child, outlining the requirement for children to “draw 

themselves doing mathematics” (Quane et al., 2021) with further instructions stating that 

children needed to include their face and that the focus of the drawing could be any aspect of 

mathematics. The drawing prompt guided students to show the mathematics that they were 

doing, thereby providing unique insights into how they communicate the mathematics depicted 

in their drawing. The same prompt was read to all children to ensure consistency. Children were 

prompted to write about their drawing and participated in a semi-structured interview that asked 

clarifying questions about what was drawn. To prompt students to communicate the 

mathematics that they had depicted in their drawing, students were asked “Can you explain the 

maths that you have drawn in your picture?”. The semi-structured interviews were transcribed 

verbatim by the researcher including pauses, laughter, and filler words such as um, ah, er. The 

transcripts and audio recordings were reviewed numerous times for initial understanding to 

identify the occurrence of porridge words or phrases and the context in which the porridge 

words were used. Each interview transcript was uploaded to the NVivo 12 software, which 

provides “powerful processes of indexing, searching, and theorizing” (Creswell, 2012, p. 243). 

NVivo 12 was used to create nodes, cases, and case classifications to explore the data further 

in preparation for the coding process. The coding process identified words and phrases used by 

students that had an ambiguous meaning and therefore, constituted a porridge word or phrase. 

Each drawing, written description, and transcribed interview were viewed initially as three 

separate pieces of data and then as a collection of work. Two main coding systems were then 

employed. First, a systematic analysis using the principle of atomism was used to examine each 

drawing. Once the drawing was examined at the atomic level, drawings were viewed 

holistically (Quane et al., 2019). The process of analysing at the atomic and holistic levels was 

repeated with the child’s written description and interview responses. Second, the data 

generated from the three individual data collection techniques were analysed, they were 

combined to form a more holistic and comprehensive picture of children’s mathematical 
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thinking and, in particular, their use of porridge words. An inductive approach was used to 

identify porridge words within the generated data (Pezzica et al., 2016). To ensure that the data 

was consistently coded for the occurrence of porridge words, the researcher and an educator 

coded the data independently. Cohen’s Kappa and the percentage of agreement were calculated 

using SPSS. Complete agreement between the two raters, that is 100% agreement (Fleiss et al., 

2004), was achieved for the identification of porridge words. 

Participants 

An information letter and consent form were sent home via their child. The response rate 

64%, with 13 male (57%) and 10 female (43%) students with all year levels except reception 

represented in the sample. Five students identified as Aboriginal or Torres Strait Islander. 

Table 1 shows the distribution of participating students by year level. 

Table 1 

Participant Numbers 

Year level 1 2 3 4 5 6 Total 

Male 3 3 0 1 2 4 13 

Female 1 2 1 3 1 2 10 

Findings 

The first level of analysis was to identify the porridge words in the generated data. A total 

of 34 different porridge words or phrases were identified with 17 words being used once by 

different students (Table 2). D1 (Figure 1) used the most porridge words (n = 11), whereas 

there was a single child (Year 1, male) who did not use any porridge words. The most common 

porridge word was math or maths with 13 children ambiguously using the word, followed by 

the word plus or plusses (n = 6) and the phrase figured out (n = 4). At the surface level, some 

words classified as porridge words will appear to be used correctly. However, the examination 

of the intent of the use of these words, such as diameter, counting, and measure reveals that 

they are indeed used ambiguously. 

Table 2 

Occurrence and Frequency of Porridge Words 

Porridge word n Porridge word n Porridge word n 

A blocks and B blocks 1 Figured out 4 Plus/plusses 6 

Add 1 Getting answers 1 Practicing 1 

Algebra 1 Groups 1 Problems 2 

Big 1 Growing 1 Pop them/Put them/put some 2 

Break 1 Make them 1 Shape 1 

Break the numbers in Half 1 Making 1 Stuff 2 

Building 1 Math/maths 13 Sums  3 

Bunch/bunch of 2 Mental math 1 Take away 2 

Counting 5 Measure 2 Times/timsing 2 

Diameter 1 Numbers 4 Those/them 2 

Equalling 2 Number maths 2 Thing 1 

Find out 1   Working out 1 

Note. n denotes the number of students. 

The second level of analysis examined the intent and context in which the porridge words 

were used. Math or Maths were used as porridge words, particularly by younger students to 
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provide a general description of what they had depicted in their drawing. For example, D5 (year 

3) states “um, ah, I’m doing maths and I’d doing plusses” and similarly D7 (Figure 2) states 

she is “doing my maths” and later adds “I’m doing sums”. D7 uses the word “sums” as a 

porridge word to describe “the sums are two times eight and twelve times nine”. 

“Figure out” was used to describe the process of solving a problem, deriving an answer, or 

identifying and classifying an object. For example, D21 (Figure 6) used the phrase “figure out” 

to describe her process of identifying and classifying the type of angle she depicted in her 

drawing, “Ah, just sitting, (pause), like just looking trying to figure out the best way, trying to 

concentrate.” D10 used the phrase “figure out” to describe the process of determining the next 

number in a number pattern increasing by fives “it’s um, where you, um (pause) try to figure 

out what’s the answer and not guessing”. D6 used the phrase multiple times to “figure out 

equations” and to describe an authentic situation of determining the number of carpet tiles 

required for a games room: 

Well we are finished now, but when we were doing the games room I was helping my dad built it 

and we had to figure out um cause we were putting carpet tiles down on the floor because I was 

getting my cast off and I was sad that I had to miss a day of school so he said I could do the maths 

and figure out cause they were a metre square each and I had to figure out the dia (sic), the diameter 

of the room and figure out how many boxes we needed of carpet tiles. 

In all instances, students hesitated before using the phrase “figure out” by either pausing or 

using filler words such as ‘um’ or ‘ah’. As such the hesitancy may be an indication of students 

attempting to process their thoughts and communicate their understanding clearly but stumble, 

unable to find the most appropriate mathematical language. This is also the case in D6’s use of 

the word diameter to describe the dimensions of a rectangular room. 

There were varying degrees of invisible thinking from students from not being able to 

articulate their thinking “I can’t really describe it” (D8, Figure 3) or “I don’t really know how 

to explain it” (D21), to students who gave an indication that they were thinking but providing 

little or no description or explanation. For example, “I did it in my head and I also know my 

two times tables pretty well” (D7). Porridge words were further categorised as either having a 

conceptual intention or a process intention. Invisible thinking also manifested in students’ 

partial descriptions of the mathematics they had shown in their drawing. For example, D17 

(Figure 4) provided the following description of adding decimals: 

There was these, thousandths, hundredths, and tenths, and then there were these ones and tens. We 

had to pop them into (pause) add the numbers up and then after over 10 we had to put the one over 

to the next. 

In D17’s description, we see how important language plays in describing and explaining 

mathematical thinking. In attempting to describe his thinking, D17 has used several porridge 

words (“pop them into” and “put the one over to the next”) to describe what he has done. The 

use of porridge words broadly describes the processes used, but D17 has yet to provide a clear 

conceptual explanation of the mathematics he has shown, rendering part of his thinking 

invisible. Continuing with porridge words to describe processes, D20 (Figure 5) uses several 

porridge words and phrases to describe her recollection of grouping and regrouping numbers: 

So, if the teacher said if you have 200 and 20 tens and twenty fives then you had to make them take 

away some and put them in the tens and put some of the tens in the tens, I mean ones into the tens. 

In examining, D20’s use of porridge words, we can see that she is attempting to describe 

the place value of numbers as well as attempting to explain the process of regrouping. Here the 

intention of the phrases “make them”, “take away some”, “put them” and “put some” may be 

initially unclear. However, examining D20’s drawing we can see that she had depicted a range 

of Multiple Attribute Blocks, depicting these blocks as units (ones), longs (tens), and flats 

(hundreds). It appears that the porridge words used by D20 are evidence of early emergent 

informal mathematical language. 
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Figures 1–6 

Student Drawings: Draw Yourself Doing Mathematics, Write About Your Drawing 

 

D1’s drawing (Figure 1), written description and interview responses show many examples 

of porridge words. D1 provides a partial explanation of the mathematics he has depicted. 

Interviewer: Can you tell me about your picture 

D1: My drawing is me working on a maths question that I didn’t understand that was in the mental 

math book before but now that I have understood it. When I first got the question the first week 

that we had maths I got a question like 37 times 5 and I had no idea how to do that but then I 

figured out that I needed to break the numbers in half, I had to break the 30 away from the 7. 

Interviewer:  Yes 

D1:  So, I have 30 and I have 7. The number which would either be 5 times that number 

Interviewer:  Yes 

D1:  So then 5 times 30 would be, I would take off the 0 then it would be 5 times 3, 15 then I would 

add the 0 on which would be 150 I would write that down in the first box. Then I’d do the unit 

which would be 7 times 5 then I would add whatever that number is to the other number to get 

the answer 

Interviewer: And how do you feel about that strategy? 

D1: I feel it is a very good strategy to figure out big numbers times a little number 

First, D1 was able to describe the mathematical procedure that he used to multiply a two-

digit number by a single-digit number. In doing so, D1 used several porridge words including 

“break”, “take off”, “figured out”, “box”, “little numbers, and “big numbers”. D1 used “break” 

to describe the procedure he has used in two different ways. Initially, D1 described that he 

needed to “break the numbers in half” and started to explain how he did this by adding “I had 

to break the 30 away from the 7”. In attempting to explain how he partitioned the number 37, 

D1 used the word “half” to indicate partitioning the numerical value of the tens and units, which 

contradicts the true meaning of half. Further probing would have provided the opportunity to 

clarify D1’s understanding of partitioning. D1 then launches into describing further how he 

multiplied the partitioned numbers by five, again using a series of porridge words including “I 

would take off the 0” and then returning to his description “I would add the 0 on”. In this 

description, we gain insights into the procedure that D1 has applied, and we are starting to see 
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a conceptual explanation of the mathematics in terms of D1 reference to “(t)hen I’d do the unit”. 

It appears that the use of porridge words is helping D1 describe the procedure and providing an 

opportunity to develop the conceptual understanding to explain his thinking. 

Discussion 

Communicating mathematical thinking is multifaceted and the results from this study have 

shown that students are developing their mathematical linguistic repertoire via the use of 

porridge words. Most students (n = 22, 96%) engaged in invisible thinking either in their 

drawing, written description, or discussing their drawing as a means to attempt to communicate 

their mathematical thinking. Further analysis of the occurrence of invisible thinking revealed 

that students use invisible thinking in several ways. Returning to the work of de Bono (1971) 

helps us make sense of possible reasons why students communicate mathematical thinking that 

is invisible. First, thinking may be “intermediate impossible” which de Bono (1971, p. 139) 

describes as an idea that is not right but acts as a transitional point to another idea that is right. 

D17 could be considered an example of “intermediate impossible” where he describes his 

thinking using emergent language. It appears that many students knew that they were not using 

the most appropriate mathematical term but found familiar words to continue their descriptions 

or explanations of the mathematics that they depicted. 

Second, ideation and conceptual understanding forms slowly over time as new knowledge 

is acquired. The data analysis suggests that the use of porridge words which may result in 

invisible thinking is a sign that students are hunting for mathematical clues to help them explain 

their mathematical thinking to others. de Bono (1971) classified clues into three types: (1) Clues 

that are obvious to everyone—but may still be misinterpreted; (2) Features that are obvious to 

everyone but do not become clues unless some significance is attached to them; and (3) Clues 

that are not at all obvious and have to be worked on (pp. 170–171). 

de Bono (1971) describes clues have three distinct purposes. First, clues can be used “to 

suggest ideas” to help understand unfamiliar concepts by generating ideas, and engaging in 

noticing to focus on elements or features to understand the significance. Second, clues can 

“confirm ideas” to determine whether an idea fits with the schema that is developing and as 

such can be situational, or memory-based. Third, clues can be used to “exclude ideas” by 

eliminating possibilities that prove that thinking does not fit the situation, concept, or that 

thinking may need modifying (pp. 170–171). In this way porridge words “can serve as a starting 

point for a new line of thought” and in doing so, can provide insights into both conceptual 

understanding and possible alternate conceptions. 

Conclusion 

Communicating mathematical thinking is a core part of ‘doing mathematics’ providing 

insights into students’ conceptual understanding of mathematics. However, the processes 

involved in communicating mathematical thinking can often be invisible. This paper reported 

a small-scale qualitative study examining primary students’ mathematical thinking. The use of 

children’s drawings, written descriptions, and interview responses provided illustrative case 

studies that moved beyond the identification of the aspects of mathematical thinking to 

understanding how mathematical thinking is enacted in the primary years. The study was 

situated in a small regional South Australian school which delimits the study to a very specific 

context. Studying students at a single school enriched the identification and classification of 

students’ mathematical thinking across the primary years of schooling. The use of de Bono’s 

(1971) porridge words may resonate with a wider context and prove to be invaluable in 

capturing students’ mathematical thinking. An aim of applying porridge words to students’ 

mathematical thinking was to make an ambiguous aspect of mathematical practice transparent 

and relatable. Further research into how why students use porridge words is warranted in a 

larger variety of contexts. Having participants review their explanations and their use of 
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porridge words would yield further information about the use of porridge words. Additionally, 

research that explores how teachers use porridge words and how they address the occurrence 

of porridge words in a class context is recommended. 
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This paper reports on part of a longitudinal project investigating the formation of 

preservice secondary mathematics teachers’ identities at one Australian university. 

Given that school-based placement experiences impact teacher identity development, 

the Flourishing Mathematics Teacher (FMT) project focuses on this experience and 

aims to identify features of placement experiences that enable beginning secondary 

mathematics teachers to flourish, and remain, in their teaching careers. In this paper, we 

report on preliminary data exploring changes to 23 preservice secondary mathematics 

teachers anticipated job enjoyment after their first teaching placement. 

The recruitment and retention of teachers are pressing issues both nationally (Australian 

Institute for Teaching and School Leadership [AITSL], 2021) and internationally (Organisation 

for Economic Co-operation and Development [OECD], 2020), with shortages especially 

pronounced in secondary mathematics (Shah et al., 2022). Despite notable financial investment 

in teacher supply initiatives in Australia (e.g., NSW Government, 2021), teacher shortages 

remain. Currently, there is a noticeable lack of funding directed towards initiatives aimed at 

retaining beginning mathematics teachers, despite significant early career attrition (Wyatt & 

O’Neill, 2021). Retaining quality teachers is vital to Australia’s ability to deliver quality 

mathematics education to all students. The Flourishing Mathematics Teacher (FMT) project 

addresses an important gap in beginning teacher retention interventions by investigating the 

conditions conducive to the success and ‘flourishing’ of beginning secondary mathematics 

teachers as they navigate through their initial teacher education and embark on their teaching 

career. 

Teacher Identity 

Teacher identity is multidimensional and encompasses cognitive and affective elements that 

influence how teachers view themselves and how they are viewed by others (Kaasila et al., 

2012). Teacher identity is constantly formed and re-formed due to complex interactions 

between the personal, professional, and political (Mockler, 2011). It is shaped by career 

motivations and goals, and reflects the degree to which one believes they ascribe to being a 

member of the profession (Richardson & Watt, 2018). Given the fluid nature of identity, teacher 

identity can be influenced by the experiences they have during initial teacher education (Bobis 

et al., 2020), making this time crucial in setting future teachers up for success in their career. In 

this study, we consider teacher identity as “teachers’ perceptions of their cognitive knowledge, 

sense of agency, self-awareness, voice, confidence, and relationship with colleagues, pupils and 

parents” (Izadinia, 2018, p. 109). 

We coin the term ‘flourishing mathematics teacher identity’ and choose the verb ‘flourish’ 

to elicit the literal meaning of the word—“grow or develop in a healthy or vigorous way, 

especially as the result of a particularly congenial environment” (Oxford English Dictionary, 

2023). To define a ‘flourishing mathematics teacher identity’, we consider motivational and 

contextual factors that enable the development of positive mathematics teacher identities. First, 

considering motivational factors, expectancy-value theory describes how career choices are 

informed by teachers’ beliefs, expectancies for success, and values (Eccles & Wigfield, 2002; 

mailto:bronwyn.reidoconnor@sydney.edu.au
mailto:benjamin.zunica@sydney.edu.au
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Richardson & Watt, 2018). The “FIT-choice” framework (Factors Influencing Teaching 

Choice) proposed that motivators to teach include intrinsic values, utility values, and attainment 

values (Watt & Richardson, 2024). Intrinsic value pertains to enjoyment or interest, utility value 

can relate to personal utility (e.g., job security) or social utility (e.g., a desire to make a 

meaningful difference), and attainment value concerns one’s perceived teaching abilities 

(Wigfield & Eccles, 2000). Teacher self-efficacy and social-utility motivations have been 

empirically linked to job satisfaction (Zakariya & Wardat, 2023). In addition to these factors, 

innovativeness and creativity in teaching has also been linked to teacher job satisfaction 

(Blömeke et al., 2021; Uçar, 2022). Therefore, for preservice teachers, motivational factors that 

may impact their flourishing teacher identity include their self-efficacy, enjoyment, interest, 

and ability to be innovative and creative in their anticipated career. A growth-mindset is also 

pertinent to flourishing as a teacher, given that a growth mindset can support beginning 

teachers’ resilience (Gero, 2013) and such mindsets have been positively linked to career 

motivation and engagement for teachers (Nalipay et al., 2021). Second, considering contextual 

factors and drawing on self-determination theory, a teachers’ intrinsic career motivation can be 

supported if they feel a sense of autonomy, relatedness, and competence in their anticipated 

work environment (Ryan & Deci, 2017). Relatedness in particular aligns with the concept of 

the social identities of teachers, which pertain to interpersonal relationships and group 

membership (Richardson & Watt, 2018). 

A core aim of the wider research project is aimed at the retention of early career 

mathematics teachers. Previous research indicated that job satisfaction is closely associated 

with early career teacher retention (Kelly et al., 2019). In addition to satisfaction, Sullivan et al. 

(2021) found that the enjoyment teachers got out of teaching others was vital to their 

commitment to the profession. Teachers who exhibit lower levels of satisfaction and 

commitment to teaching are more likely to leave the profession (Skaalvik & Skaalvik, 2016). 

The FIT-Choice project affirmed that intrinsic values predicted professional engagement 

(planned persistence) at the end of initial teacher education when transitioning to the workforce 

(Watt & Richardson, 2024). 

The Flourishing Mathematics Teachers Project 

The FMT project measured preservice secondary mathematics teachers’ ratings for the 

flourishing identity factors enjoyment, interest, innovation, and autonomy, and will track how 

these change and reasons for changes throughout their initial teacher education program and 

their first years of teaching. The project will conclude with interventions to support preservice 

teacher flourishing, whether that be through interventions at the tertiary level or interventions 

during school-based placements. In this paper, preliminary data on preservice teachers 

anticipated job enjoyment is focused on and we report how school-based placement experiences 

influenced one cohort of preservice teachers’ anticipated job enjoyment. Analysis of preservice 

teachers anticipated job enjoyment is important as research has identified that teachers who 

enjoy teaching mathematics are more likely to spend time teaching mathematics, have higher 

self-efficacy, and reduced teacher burnout (Russo et al., 2021). Though the concept of a 

flourishing identity has been theoretically explained, the FMT project also confirmed the extent 

to which preservice teachers value each of the examined factors, and this will also be discussed 

in this paper. The research questions that will be answered in this paper are: 

• How does preservice secondary mathematics teachers’ anticipated job enjoyment 

change as a result of placement? 

• What experiences during placement influence preservice secondary mathematics 

teachers’ anticipated job enjoyment? 

• To what extent do preservice secondary mathematics teachers value each of the 

flourishing identity factors (i.e., self-efficacy, enjoyment, interest, and innovation)? 
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Methodology 

Participants were undergraduate and postgraduate preservice secondary mathematics 

teachers from one Australian university. There were 54 students in the entire cohort, and 23 

students form the final sample as they had completed their first school-based placement in 

secondary mathematics (the others completed a placement in their other teaching area and had 

not yet completed a placement in secondary mathematics). 

Participants were administered a modified version of Frenzel et al.’s (2009) Teacher 

Enjoyment of Teaching Mathematics (TETM) questionnaire prior to and after their first school-

based placement. The TETM was utilised to answer the first research question and ascertain 

how placement experiences influenced participants anticipated enjoyment in teaching 

mathematics. The questionnaire had 5-items, and items were modified to ask participants to 

reflect on their anticipated career enjoyment, given they were preservice teachers. Each of the 

TETM items was answered using a 6-point Likert scale with each being scored a value from 1 

to 6 (strongly disagree = 1 to strongly agree = 6). Therefore, the minimum possible mean score 

across all items on the TETM was 1 and the maximum was 6. 

Prior to placement, participants had completed one unit of study focused on teaching 

mathematics and had not yet undergone any formal professional experiences in schools. The 

school-based placements constituted a four-week teaching experience where participants 

engaged in observing and teaching secondary mathematics under the supervision of an in-

service teacher. To answer research question two and understand reasons for any changes found 

on the TETM questionnaire after placement, qualitative questions were added to the post-

placement survey. These questions were “what experiences on placement, if any, have changed 

your interest in teaching mathematics?” and “what did you enjoy the most on placement?” 

In addition to measuring participants anticipated enjoyment, their values were explored. 

Using the framework for flourishing teacher identity, participants were asked pre- and post-

placement to rate the importance of enjoying, having autonomy, being interested, and having 

flexibility to be innovative in their job. This allowed the third research question to be answered. 

Each of the values were rated on the same 6-point scale as the TETM and were scored in the 

same way. 

Findings 

Pre-Placement 

Table 1 shows the descriptive statistics for each of the TETM items. 

Table 1 

Descriptive Statistics for the Pre-Placement TETM Questionnaire (n = 23) 

Question Mean SD σ2 

I anticipate that I will really enjoy teaching 

mathematics 

4.83 1.07 1.10 

I anticipate that I will look forward to mathematics 

lessons 

4.88 0.92 0.81 

I anticipate that teaching mathematics is so enjoyable 

that I will like preparing and planning my lessons 

4.45 1.12 1.20 

I anticipate that when teaching mathematics, I will be 

good-humored 

4.83 0.88 0.75 

I anticipate that teaching mathematics will give me 

many reasons to be pleased 
4.73 1.05 1.06 
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Participants responses on the pre-placement TETM questionnaire had an overall mean score 

of 4.74 (SD = 1.02), demonstrating that the cohort anticipated that they would find enjoyment 

in teaching mathematics. This mean is indicative of high anticipated enjoyment when compared 

to participants in Frenzel et al.’s (2009) study with 71 German teachers (Mean = 3.69, 

SD = 0.68). 

To explore the significance of the results outlined in Table 1, participants’ ratings for the 

importance of each of the flourishing teacher identity factors in their prospective workplace 

illuminate the most important values for this cohort (Table 2). Of the explored factors, 

enjoyment was the highest rated followed by interest. Participants rated the importance of 

enjoying their job, on average, higher than their anticipated enjoyment. 

Table 2 

Descriptive Statistics for Values Questionnaire Items (Prior to Placement),(n = 23) 

Question Mean SD σ2 

Enjoying my job is important to me. 5.40 0.78 0.59 

Having autonomy in my job is important to me. 5.00 0.90 0.78 

Being interested in my job is important to me. 5.34 0.71 0.49 

Being creative in my job is important to me. 5.04 0.93 0.83 

Though the cohort’s overall TETM mean indicated high anticipated enjoyment, analysis of 

individuals responses revealed variation among the cohort. Some participants, prior to 

embarking on a school-based placement, reported low anticipated enjoyment of their job on the 

TETM. To explore this further, participants with a mean overall score of 4 or below (n = 4) on 

the pre-placement TETM survey were identified and their responses to the career values 

importance questions were analysed. Of these four participants, two rated “enjoying my job is 

important to me” as strongly agree and one rated this question as agree. The combination of 

low anticipated enjoyment and agreeing that enjoyment is important categorises these four 

participants in an “at-risk” category for not flourishing in their career due to potentially low 

enjoyment, which could indicate potentially lower levels of satisfaction with a teaching career 

and a greater likelihood of leaving the profession (Skaalvik & Skaalvik, 2016). 

Table 3 

Descriptive Statistics for the Post-Placement TETM Questionnaire (n = 23) 

Question Mean +/- SD +/- Var +/- 

I anticipate that I will really enjoy teaching 

mathematics 

4.86 +0.03 1.18 +0.11 1.33 +0.23 

I anticipate that I will look forward to mathematics 

lessons 

4.73 -0.14 0.96 +0.04 0.89 +0.08 

I anticipate that teaching mathematics is so 

enjoyable that I will like preparing and planning 

my lessons 

4.30 -0.15 1.18 +0.06 1.34 +0.14 

I anticipate that when teaching mathematics, I will 

be good-humoured 

4.79 -0.04 1.04 +0.16 1.05 +0.3 

I anticipate that teaching mathematics will give me 

many reasons to be pleased 

4.97 +0.24 0.98 -0.07 0.92 -0.14 

Note. +/- denotes the difference from pre-placement questionnaire. 

Post-Placement 

Table 3 shows the descriptive statistics for the post-placement TETM, and the differences 

in the pre- and post-placement item means. The overall mean score of the post-placement 

TETM was 4.73 (SD = 1.07), demonstrating little overall change in anticipated enjoyment. 
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The question where participants were asked to assess whether teaching mathematics would 

give them many reasons to be pleased scored higher in the post-placement questionnaire. This 

higher score suggests that the placement experience had given participants more cause to 

anticipate that their future mathematics teaching careers would be satisfying. A further, 

qualitative question added to the post-placement questionnaire asked participants about the 

most enjoyable aspect of their placement. It was striking that 87% of responses (20 out of 23) 

mentioned an element of student interaction as the most enjoyable aspect of their placement, 

with individual participants saying they enjoyed “connecting with the students, and seeing them 

become more motivated” (participant 1), “seeing the students actually learned something” 

(participant 2), and “the interaction and relationships I got to build with the students” 

(participant 3). The ability to relate to and interact with actual students is a unique component 

of school-based placements, which cannot be easily replicated at university. The ability to 

interact with students seemed to be the feature of placement that preservice mathematics 

teachers found most enjoyable and rewarding. 

Post-placement, participants were asked again to rate the flourishing teacher identity values. 

Each identity value mean score was the same pre- and post-placement apart from innovation, 

which scored lower post-placement (change in mean = −0.3). Of the flourishing identity factors, 

enjoyment was still rated highest, further affirming the need to scrutinise anticipated enjoyment 

for potential teacher flourishing. 

When analysing individual responses on the TETM, eight students reported no difference 

in their anticipated enjoyment pre/post placement. Seven students reported increased 

anticipated enjoyment post-placement and cited reasons noted above about the rewarding nature 

of interacting with students. Concerningly, eight students reported decreased anticipated 

enjoyment post-placement. Qualitative responses from these students indicated that their 

placement experience had demonstrated to them that teaching was a more challenging 

profession than originally anticipated. Encapsulating this, one participant stated, “I’ve realised 

that the reality of teaching is a lot more difficult than I expected it to be” (participant 4). 

Supporting this finding was the quantitative data from the entire cohort, where a decline in 

anticipated enjoyment was observed for the TETM items relating to planning and teaching 

lessons. This suggests that the realities of planning and teaching impacted preservice teachers’ 

anticipated job enjoyment. One student who reported decreases in anticipated enjoyment 

reported that difficulties with their supervising teacher made the placement experience less 

enjoyable than hoped, “my supervising teacher constantly correct me in front of students and 

peers, damaging my confidence … I now am unsure about a career in teaching” (participant 5). 

Of the four students who were identified as “at-risk” pre-placement, two reported decreases 

in anticipated enjoyment, one reported no change, and one reported an increase but did not 

report an overall TETM score above 4 (classing them as “at risk” still). No students moved into 

the “at risk” category in the post-placement TETM. Given that all students who were originally 

identified as “at risk” remained so after placement potentially demonstrates that the TETM 

items can be a useful measure of determining students’ risk status prior to teaching placements. 

It also indicates that a typical placement with no additional intervention is not effective in 

increasing their anticipated job enjoyment and can potentially be detrimental. 

Discussion 

The results of the TETM questionnaire indicate that the placement experience overall did 

not have a substantial effect on the cohort’s anticipated enjoyment in teaching mathematics. 

Given that the pre-placement questionnaire indicated that many students anticipated that they 

would enjoy teaching mathematics, these results suggest that placements have overall not 

materially dampened or enhanced their predicted enjoyment in teaching mathematics. This may 

be a positive finding for a cohort who already reported high anticipated enjoyment, however it 
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is somewhat surprising that there was no meaningful increase (even small) in anticipated 

enjoyment after a practical experience in a school. Whilst the cohort reported high anticipated 

enjoyment as a whole, variations among individuals are worth noting as some participants did 

report decreased anticipated enjoyment or consistently low anticipated enjoyment. 

As evidenced in the minimal change in the TETM overall mean after placement, it seems 

plausible to suggest that most participants had a good understanding of what to expect on the 

placement experience. The small shifts seen in individual TETM items suggest that placement 

had shown them that teaching is a challenging profession that places significant demands on 

teachers. However, for this cohort, placement also affirmed that the profession is enjoyable and 

working with students is rewarding. The qualitative responses of participants suggest that the 

strongest influence on preservice teacher enjoyment was that that they were able to teach actual 

students. For these participants, this placement was their first opportunity to teach students in 

the classroom. The placement experience gave them a sense of relatedness with students, which 

has been showed to improve career motivation (Ryan & Deci, 2017). In addition, making 

connections with students should serve to help participants value the profession by improving 

the social utility of their work in schools, where they can see the fruits of their teaching 

(Wigfield & Eccles, 2000; Zakariya & Wardat, 2023). 

Of the flourishing identity factors, it was clear that enjoying their job was important to this 

cohort. After enjoyment, interest was scored highest in the values questionnaire. People who 

do what they like enjoy their work and find it interesting (Benz & Frey, 2008). The data from 

this survey suggests that the participants want to do what they like. Therefore, for these 

preservice teachers to flourish it is important that they view mathematics teaching as what they 

want to do professionally. The data from the TETM suggests that most participants are doing 

what they want, but the variation in overall TETM scores among individuals indicates that some 

are not yet convinced that mathematics teaching is what they want to do. Therefore, where the 

TETM questionnaire appears to be most valuable in supporting beginning teachers to flourish 

is analysing their individual scores rather than only observing cohort means. 

At an individual level, several students were identified as “at risk” prior to placement and 

this worsened or did not change after placement. These “at risk” students reported that they did 

not anticipate they would enjoy a career teaching despite reporting that it is important to them 

that they enjoy their work teaching. Potentially the TETM is a valuable tool to evaluate at risk 

status, as intervention is likely needed for these teachers as the typical placement experience 

was not sufficient to address their low anticipated enjoyment. For these at-risk students, 

frequent mention of “the realities of teaching” seem to indicate that some had mismatched 

expectations of the placement experience. A potential intervention to address this issue could 

occur at the university level, where we consider how well teacher training is preparing students 

for “the realities” of the classroom. Alternatively, intervention could occur at the placement 

level where supervising teachers consider strategies that better induct preservice teachers to 

classroom teaching, allowing for a smoother transition from university learning to professional 

practice. Comments from “at risk” students highlight the detrimental impact of negative 

interactions with supervising teachers, highlighting the importance of careful selection of 

supervising teachers. To further aid in design future interventions, the broader Flourishing 

Mathematics Teachers study will conduct case studies with preservice mathematics teacher’s 

during their placement experiences to better understand where and why this mismatch in 

expectations occurs. 

Conclusion 

The data presented in this preliminary study on the what preservice teachers valued in their 

future work environment, and the impact of school-based placements showed that enjoyment 

and interest are highly valued factors for preservice secondary mathematics teachers. The 
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participants anticipated that they would largely enjoy teaching mathematics, and this is a 

positive finding given that enjoyment has been proposed as crucial to flourishing as a 

mathematics teacher. Placement experiences did not affect the anticipated enjoyment of the 

cohort overall. Responses to qualitative survey questions indicated that placement had shown 

these preservice teachers that teaching was a challenging but rewarding career. This was evident 

in the enjoyment they derived from connecting with students and seeing their knowledge grow. 

The social identity (Richardson & Watt, 2018) that preservice teachers developed during 

placement due to interactions with students seemed to be most meaningful for developing a 

flourishing teacher identity. For participants who did report low anticipated job enjoyment, this 

finding was of concern given they rated enjoyment as important. Reasons for low anticipated 

enjoyment centred on a mismatch of expectations when faced with the realities of the 

classroom, and negative interactions with supervising teachers. It is worthwhile conducting 

further studies to ascertain whether “at risk” students remained so because they lacked the right 

type of experiences to develop the same positive social identity as others, or if those experiences 

were not sufficient to overcome the mismatch in expectations and negative experiences with 

supervising teachers. 

The project from which this paper is drawn will conduct further research into preservice 

teacher placement experiences by carrying out multiple case studies to develop a deeper 

understanding of the factors that determine perceived enjoyment in teaching, along with the 

other flourishing teacher factors. These case studies will help to further illuminate the impact 

of initial placement experiences on the preservice teachers’ perceptions of the teaching 

profession and how those perceptions change through engaging in classroom practice. 

Completing the remaining stages of the broader study will allow for deeper analysis and 

identification of supports that assist the flourishing of secondary mathematics teachers as they 

enter the teaching profession. 
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Determining the most effective ways to support student-to-student talk requires some 

negotiating from a responsive teacher. This paper reports on a case study of two 

emergent multilingual students in Grade 3 (seven to eight-year-olds) who explained 

their strategies to each other. The transcript of their conversation was analysed using 

Chan and Sfard’s (2020) participation profile framework. Findings indicate that the two 

students learned from each other during the interaction because they revised their work 

to be more precise. One implication of this study is that strategic pairing may be a useful 

practice to eliminate inequitable power dynamics. 

The value in having learners share their verbal or nonverbal mathematical ideas with each 

other is of increasing interest to mathematics educators around the globe. A growing body of 

research has emphasised the importance and many ways educators can create learning 

environments that support all students, specifically multilingual students, with engaging 

productively in rich mathematical activities and classroom discussions (Turner, Dominguez, 

Maldonado, & Empson, 2013; Moschkovich, 2007, 2013; Khisty & Chval, 2002). Participating 

in discourse is also important for developing conceptual understanding (Moschkovich 2015; 

Bailey 2007). When students share solutions publicly, they strengthen their own 

comprehension, learn how peers make sense of the mathematics, and present opportunities for 

teachers to better understand student reasoning and mathematical thinking. 

The more students talk about mathematics, the more they see themselves as doers of 

mathematics, therefore dismantling and restructuring the current negative stereotypes about 

multilingual learners. Furthermore, students benefit from responsive teaching (Richards & 

Robertson, 2015), where teachers promote peer interactions by getting to know students as 

individual learners, differentiating instruction with enabling or extending prompts, and seating 

students in heterogeneous groups (Bobis, et al., 2021). 

Finally, student learning through sharing can also be facilitated by Cognitively Guided 

Instruction (CGI, Carpenter & Fennema, 1992), which encourages exploration of student-

centred thinking and problem solving over the provision of teacher-structured solution 

strategies. CGI is a foundational element of our work with teachers, specifically, Empson and 

Levi’s (2011) framework for building students’ conceptual understanding of fractions and 

decimals through discussing and solving word problems. The framework also guides our 

support of teachers with understanding the progression of student learning trajectories for 

solving fraction word problems to further guide instructional practice. In CGI classrooms, 

students learn mathematics by engaging in problem solving, explaining their problem-solving 

strategies to the teacher and their peers, and by listening to various ways of solving problems 

(Carpenter et al., 1999; Carpenter & Franke, 2004). 
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Although we know that responsive teaching and CGI can help teachers provide valuable 

opportunities for interaction and discussion during mathematics instruction, additional research 

is needed on how to plan for, scaffold, and facilitate peer interactions effectively while also 

maintaining a high level of rigor and genuine inquiry, especially in the context of mathematics 

instruction with multilingual learners (Tai & Wei, 2020). Facilitating effective mathematical 

discussions, such as supporting students to produce conceptual explanations and connections 

between ideas, may be more difficult and take longer for teachers to develop (Hufferd-Ackles 

et al., 2009), and is more challenging in classrooms with linguistically diverse learners at 

various stages of English development (Walshaw & Anthony, 2008). Our study, part of a larger 

project on developing linguistic repertoires and mathematical conceptual knowledge in tandem 

in multilingual classrooms in the United States (US), sheds light on these important issues. 

Our research seeks to understand:  

• What does it look like when multilingual students have conversations with their peers 

about their solution strategies for equal sharing problems?  

We examine here a conversation between two emergent multilingual students discussing 

their solutions to an equal-sharing fractions problem. We summarise key findings, including 

how CGI and responsive teaching can address inequitable power dynamics through strategic 

pairing while also encouraging collaborative revision when problem solving. 

Relevant Literature 

Most documented peer-to-peer interactions consist of either a pair or a small group of 

students collaborating on a problem together or one student tutoring another. Both types of 

peer-to-peer interactions can lead to asymmetric power relations which could be 

disadvantageous to learners. For instance, Chan and Sfard (2020) identified a phenomenon 

where pairs of students did not benefit from learning afforded by the participation structure 

because one student led the problem-solving effort and the other followed along without 

comprehending what the partner was doing. Given the possibility that partner work can be 

unproductive, we assert that partner and small group conversations need to be strategically 

organised to be effective. 

One strategy teachers can use to address the power relationships during partner talk is to 

provide protocols for students to follow. In the UK, Amodia-Bidakowska et al., (2023) 

identified as one of their design principles that establishing various mathematics language 

routines may be beneficial to children as they interact with one another when sharing strategy 

explanations. The students in their study engaged in peer-to-peer dialogue that supported 

elaboration and querying of each other’s ideas. Zwiers et al. (2014) suggest providing sentence 

frames that support development of certain conversation skills to help students build on each 

other’s ideas. These skills include creating, clarifying, fortifying, and negotiating. To create an 

idea, students are provided with multiple opportunities to express original ideas about the 

content. Clarifying involves both partners figuring out ways to represent their idea through 

elaboration, paraphrasing and explanation. Fortifying ideas requires students to support or 

justify their ideas/problem solving with logic or models. Sometimes ideas are challenged with 

opposing ideas or strategies which requires the need to negotiate ideas. It may result in coming 

to a compromise, agreeing to disagree, or conceding to a new idea. All ideas are valued by both 

partners. Teaching students how to use conversation skills can prepare and support children for 

more effective interactions. 

There are additional participation structures, tasks, and roles that teachers can leverage to 

facilitate productive interactions between students. In New Zealand, Hunter and Miller (2022) 

worked alongside a primary classroom teacher that used translanguaging and cultural artefacts 

in problem contexts to connect the mathematical situations to students’ cultural backgrounds. 

Specifically, waka was a commonly used term for boat, whanau was a well-known term for 
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family, tamariki for children, and iwi for tribe/community, etc. Discussing indigenous words 

and cultural situations during the launch of the problem supported students in making sense of 

the mathematical situation, identifying with classroom mathematics, and learning about the 

Indigenous and Pacific Island cultures in New Zealand. In Australia, Muir (2023) reported on 

a case study of a Grade 3–4 teacher who implemented some of Liljedahl’s (2021) Thinking 

Classroom Strategies. The teacher noticed her students were more likely to engage in 

collaboration and persevere on tasks when they were given challenging tasks, when they 

believed they were grouped randomly, and when there was one person holding the pen for the 

group and that person was only allowed to write down other people’s ideas. Researchers in the 

Netherlands found that groups of children, including multilingual students, discussed the 

meaning of unfamiliar words in story problems before they set out to solve the problems (Elbers 

& de Haan, 2005). They focused on the aspects of the words that were relevant to the 

mathematics at hand rather than the more general meaning of a word. For example, when asked 

what “rye bread” is, the children pointed to a picture in the textbook. Hence, peer-to-peer 

conversations have the potential to help or hinder student learning depending on how problems 

are launched and discussions are structured. Formal protocols such as sentence frames, random 

grouping, and one person holding the pen combined with rigorous, culturally-sustaining 

contexts are a few ways educators have eliminated inequitable power dynamics, leading to 

productive conversation between peers. 

Theoretical Framework 

We draw upon Chan and Sfard’s (2020) participation profile framework, based on their 

commognitive framework, to evaluate the effectiveness of dyadic learning. They posited that 

conversations can be multi-modal, multi-channel, and not exclusively verbal. Chan and Sfard 

described one type of learning as a change in the command of mathematical discourse. They 

distinguished between mathematising talk and subjectifying talk. When learners use 

mathematising language they describe the mathematical features of the topic at hand (e.g., 

“intercept is negative 5”). Subjectifying occurs when learners navigate their moves out loud 

(e.g., “I was thinking”, “oh then that makes sense to me”). Being able to assess what they’ve 

done so far and what their next steps are is the crux of learning. On the other hand, stating 

subjective evaluations of one’s identity is not helpful for learning (e.g., “I’m not good at 

maths”). Chan and Sfard theorised that the proportion of mathematising and subjectifying 

utterances make up a learner’s thematic profile and demonstrate the level of their command of 

mathematical discourse. 

Methods 

Context 

This study was conducted in a large urban area in the western US from 2021 to 2024. 

Students came from linguistically, ethnically, and economically diverse backgrounds. 

Participants were involved in a design-based research project in which researchers met with 

teachers and coaches. Researchers met once a month with twelve participants during the first 

year and once every two to three months with the remaining eight participants during the second 

year. Teachers mostly taught Grades 3 to 5 students (seven to eleven-year-olds), with one 

teacher who switched to second grade and one who switched to transitional kindergarten during 

the second year. Each year of the study, participants identified four students who were classified 

as Emergent Bilingual because they spoke a language other than English at home. Following a 

CGI method of lesson planning during the integrated English Language Development 

mathematics period, the teachers asked pairs of students to share answers with each other after 

solving on their own. In addition, the pairs used a partner interview protocol (script) with Zwiers 

et al.’s (2014) conversation skills included as sentence frames. The pairs took turns explaining 
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their strategies to each other using the protocol and then following up by asking each other 

questions about their individual strategies. 

Data Collection and Analysis 

Each month, the participants brought video, audio, written transcripts, and copies of 

students’ solution strategies of one of the four focal students explaining to a partner how 

he/she/they independently solved an equal-sharing fraction problem. To code the transcripts, 

the research team used inductive and deductive codes to analyse the mathematical discourse 

between dyads. Following Chan and Sfard’s (2020) framework, we differentiated between 

mathematising language and subjectifying language. When children described the mathematics 

that they or their peers did to solve the problem it was coded as mathematising. Comments 

about the mathematisers’ actions were coded as subjectifying. We also noted intrapersonal and 

interpersonal talk between peers. Additionally, we used Amodia-Bidakowska et al.’s (2023) 

two core dialogue features, elaboration (including clarification/building) and querying (i.e. 

“doubting, full/partial disagreement, challenging, or rejecting a statement”). 

During deductive open-coding, we found that we also needed to include other codes such 

as justification (because reasoning is different than clarifying) and equal-sharing language 

(‘what was your whole?’ ‘how many parts did you partition it into?’) that were specific to the 

problems the students solved. Utterances were double-coded using both the umbrella codes, 

mathematising or subjectifying, and using the subcodes under each umbrella code. We used 

these codes to analyse the proportion of mathematising and subjectifying the pairs of students 

engaged in during each recorded session. 

Findings 

We highlight a case where two Grade 3 (seven and eight-year-olds) multilingual students 

individually solved an equal-sharing fraction problem using similar strategies. Conceptually, 

both student solutions were correct. The two peers, Student 1 (S1), male, and Student 2 (S2), 

female, started the conversation by each taking a turn explaining how they solved this problem, 

‘Four children share ten cookies. How much will they each get? Explain how you know your 

solution is correct’. Following the “partner interview protocol” (Zwiers et al., 2014), they each 

took turns sharing their explanations. Then, S1 probed his partner S2 for more justification. We 

found that the querying that occurred during the second part of the conversation fortified their 

understanding of unit fractions (“thirds”). 

Figure 1 

Written Work from Student 1 Male (Left) and Student 2 Female (Right) 
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Table 1 

Transcript (First 1 Minute, 30 Seconds) of a Dyad Conversation and Associated Codes 

Transcript Codes 

S1: How I solved it, S2, is that I wanted to skip 

 count by twos. But when I did, I actually saw 

 that if I add one here and another one here. 

S2:  Hmmm. 

S1:  I was just, it will be three, three, and two. So 

 I decided to make little things like that 

 they’re cracked. 

S2: Yeah. 

S1: To put in each all of them. So then I put two 

 and then half, two and half again, and two 

 and a half like, and I put the same thing. So I 

 put four and ah … four in … four twos and a 

 half. So I did two plus two plus two plus two 

 because I see one, two, three, four, so all of 

 these equal to four. Then four plus four 

 equals eight. So, the answer is, um, two and a 

 half. So, and what did you do? 

S2: First, I saw that there were four kids, right? 

S1: Mmhmm. 

S2: There was a partition ten cookies. And then 

 what I did was do like line first and then like 

 in each until I got to ten. 

S1: Mmhmm. 

S2: But then I saw like two, these two didn’t 

 have, so, one I broke it in half, because there 

 were two and there were supposed to be, so I 

 broke it. And I just put that it’s broken. And 

 then like, I split them in half. 

Subjectifying (“How I solved it … “) 

Subjectifying (“I actually saw … “) 

 

 

Subjectifying (“I decided … “) 

 

 

 

Mathematising/equal-sharing (distributing and 

halving cookies) 

 

 

 

 

Asked peer to share her explanation 

 

 

Mathematising/equal-sharing (distributing and 

halving cookies) 

 

 

Subjectifying (“I saw”) 

Mathematising/justifying (“because … “) 

Mathematising/equal-sharing (“I split them in 

half”)  

Table 1 displays the initial transcription where each student took turns explaining their 

individual strategies to each other. Both explanations resembled what could be described as 

simply reporting or recounting of procedural steps as neither engaged in elaborating or querying 

into each other’s strategies. Both children used a similar strategy in which they distributed two 

whole cookies to each of the four children in the problem. Then S2 partitioned the last two 

cookies into halves to share equally between the four children. Although the method is 

conceptually accurate, S2 drew three similar-sized lines on their paper. She also wrote, “3,” on 

her paper, implying that she knew the people in the problem each received three pieces of 

cookies without differentiating between wholes and halves. What occurred next is when the 

crux of the learning happened. 
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Table 2 

Transcript (1:30–2:30) of a Dyad Conversation and Associated Codes 

Transcript Codes 

S1: But S2, how does this one have two and this one 

 have three? I thought it was supposed to be some 

 little lines to make it like half and half. 

S2: This one is half. And then like this one is half. 

S1: Yeah but why are they all in three little rows? 

 Like, for example like, this one, why would you 

 put it in half? If you put it in half it would be two 

 and a half, too. And this one would be two and a 

 half too, also, because it’s the same as this one. 

 But this one would just be, um, two, and this one 

 would be just three. So like I believe that that 

 answer is not correct, so. But that does kind of 

 make sense because you wanted to put them in 

 half. 

S2: Like, split them. 

S1: Yeah, split them in half. 

Querying 

 

 

Mathematising/elaborating 

Querying 

Mathematising 

 

 

 

Subjectifying (correctness) 

 

Elaborating (clarifying) 

In the second part of the conversation, the two children genuinely engaged in a productive 

dialogue as S1 argued that S2’s written work did not align with her verbal explanation (Table 2). 

S1 stated that S2 initially drew “three little rows,” even though S2 said aloud that the cookies 

were, “half.” S2’s written work (Figure 1) displays her revised solution after talking with S1. 

S2 erased the third tally mark and replaced it with a semicircle, similar to how S1 drew his 

diagram. S2 also wrote, “my solution is split the cookies in half”, as if to clarify her solution 

strategy. Although S2 conceptually understood how to equally partition the cookies among the 

four people in the problem, her written and verbal explanations were fortified after engaging in 

a conversation with her peer. The student sample highlighted in this study, further demonstrates 

the importance of providing frequent and supported opportunities for students to interact. 

Engaging in mathematical discourse practices, such as explaining one’s thinking to others can 

promote learning by encouraging learners to strengthen or restructure their own knowledge and 

understandings as well as acquire new strategies and knowledge (Webb et al., 2019; Erath 

2017). 

Discussion 

In this case study, two students helped each other deepen their understanding of fractions 

via interpersonal dialogue. They both used similar strategies after they had solved it 

individually. The two students in this example were able to correctly partition the cookies even 

though they still needed to learn how to name the parts. This aligns with the learning trajectory 

put forth by Empson and Levi (2011). During the peer dialogue, S1 helped S2 clarify her 

thinking by asking why she drew three lines of equal length. After explaining her reasoning, S2 

realised she needed to revise her picture to match her strategy. S1 also deepened his 

understanding of fractions when formulating his argument as to why S2’s picture was 

inaccurate. 

Unlike Chan and Sfard’s (2020) observations, there was not an unequal power struggle 

between the two students because they had solved the problem individually and used similar 

strategies. S1’s picture was more accurate than S2’s, even though her verbal explanation 

implied that she “split the cookies in half”. Rather than one student “tutoring” the other, S1 and 

S2 shared and compared their written and verbal explanations. They genuinely explored each 

other’s reasoning and S1 helped S2 and himself accurately name the size of the parts. S1’s 

querying helped S2 revise her work to reflect the mathematising she shared in her verbal 
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description. This example demonstrates the ways S1 and S2 deepened their understanding of 

an equal-sharing fraction problem through dialogue. 

The partner conversations that we are concerned with belong to a specific category of peer 

interaction that distinguish them from collaboration. Because CGI frameworks draw attention 

to students’ development along a concrete to abstract trajectory, we do not advocate for students 

to collaborate in solving problems. Instead, we see value in independent problem solving 

followed by peer interaction. In this case, students explained their own approach to each other 

and the expectation was that they strove to understand what their partner had done. 

Conclusion 

This case study illustrates the importance of pairing students who have individually solved 

the problem with different, or in this case, slightly different strategies, and providing language 

scaffolds or protocols to extend student talk and meaning making. The two students in this 

example modelled conversation skills using a partner interview protocol. They also extended 

the script to query each other’s ideas. Valuing students’ solution strategies and asking their 

peers to listen to and respond to their explanations is not only beneficial for their mathematical 

and language development, it also elevates students’ discipline-specific dispositions towards 

mathematics (Gresalfi & Cobb, 2006). This has implications for in-service and preservice 

teachers around the globe who understand the value of peer-to-peer discussions but need 

support with structuring those conversations, in-the-moment, in ways that lead to productive 

conversations between peers. 
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In this position paper we highlight language as a perennial factor contributing to 

compromised meaning-making in multilingual primary school mathematics classrooms. 

We note use of the term ‘translanguaging’ in discussions around mitigating this 

meaning-making challenge. The paper argues that, while much work remains to be done 

towards clarifying the pedagogical insights, skills, and resources needed to ensure that 

translanguaging practices achieve their intended goals, potentially important parallels 

may be found between horizontal and vertical forms of translanguaging and horizontal 

and vertical mathematisation. 

This position paper explores some implications for primary-level school mathematics of the 

increasing use of the term ‘translanguaging’ in our professional literature on ways for enhancing 

bi- and multilingual learners’ opportunities to make meaning of classroom mathematics. Our 

focus is principally upon ways for improving circumstances in mathematics classrooms in our 

own, South African, context, but we see our discussion as having relevance for many other 

contexts where mathematics learners may not yet have developed sufficient proficiency in the 

de facto dominant language of learning and teaching (LoLT). 

As we discuss in our penultimate sub-section, the word translanguaging first entered 

educational parlance some two decades ago in relation to a particular pedagogical strategy for 

developing and strengthening learners’ bilingual proficiencies. Perhaps the earliest use of the 

term in a publication in English was a 2000 journal article by Cen Williams. In the 1980s he 

coined, in Welsh, the term trawsieithu to describe a particular approach to bilingual 

(Welsh/English) language pedagogy. The term has subsequently taken on more of a social 

justice orientation; this in response to concerns about the educational prospects of bilingual 

learners whose full access to mainstream education may be compromised by the dominance of 

a particular LoLT. A leading figure in this more political facet of the term’s (re-) emergence is 

Cuban-born Ofelia García, Professor Emerita (Urban Education and Latin American, Iberian, 

and Latino Cultures) for the City University of New York’s Graduate Centre. Translanguaging 

theory poses significant challenges to ‘established’ theory around second-language teaching 

and learning and about how best teachers (mathematics teachers in this instance) might harness 

and mediate the linguistic and other meaning-making (semiotic) resources their learners bring 

into their classrooms. These challenges derive from the fact that, traditionally, as Makalela 

(2015) notes, the language teaching profession has tended to focus on languages as “separate 

and bounded entities” (p. 200). In other words, the teaching profession’s focus is essentially 

‘monolingual’ and ‘purist’. By contrast, translanguaging advocates (see, e.g., Garcia & Wei, 

2014), focus on bilingual speakers’ languaging practices. They argue that these practices derive 

not from two or more separate language systems, but rather from a single, unified linguistic 

system or repertoire. 

In honour of MERGA 46’s surfing theme, our title speaks to the notion of ‘catching’ the 

translanguaging wave. Much more important, however, is the issue of successfully ‘riding’ this 

wave once caught. In this paper we argue that not being able to do so poses the real threat to 

equity, and that much work is still required towards ensuring that we clarify what pedagogical 

insights, skills, and resources are needed to ensure that our translanguaging practices do indeed 

help our learners get safely to their hoped-for shorelines. 

mailto:s.a.robertson@ru.ac.za
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Our Trajectory Towards the Translanguaging Space 

English remains the preferred LoLT in South African schools despite its being the native 

language of less than a tenth of our population. Reports on our learners’ achievement in national 

and international assessments of mathematical proficiency directly implicate levels of 

proficiency in the LoLT as a significant factor influencing their performance. In light, for 

instance, of South Africa’s disappointing TIMSS 2015 outcomes it was decided that, although 

TIMSS generally assesses learners at Grade 4 level, for 2019 we would instead test our learners 

at Grade 5 level using an easier version of the assessment (Reddy et al., 2020). These 

adjustments notwithstanding, only 5% of South Africa’s participating Grade 5s attained the 

‘High and advanced’ benchmark category (> 550); a distressing 63% scored in the ‘Below low’ 

benchmark category (< 399) (Gondwe, 2022). In relation to participating learners from no fee 

schools, only one in four spoke the language of the test at home (Reddy et al., 2022). “No silver 

bullet,” these authors cautioned, “will fix low performance, remediate years of social imbalance 

throughout the system, and penetrate the indelible association between one’s circumstances at 

birth and economic and social outcomes” (p. xvi). We regard the fact that the overwhelming 

majority of South African learners do not have sustained and systematic opportunities to take 

advantage of the mediating power of their strongest linguistic resource, their first language (L1), 

for making meaning of their school subjects, as central to addressing at least part of these 

inequitable circumstances. This requires that we clarify how best we might harness the 

meaning-making potential translanguaging offers. 

Our pathway towards the translanguaging space began with our work at the literacy/ 

numeracy interface where we looked at the place of language in supporting young learners’ 

mathematical development. Our focus was almost exclusively on classroom talk (or the virtual 

absence thereof from learners). Our analysis of the talk taking place in one Grade 4 mathematics 

classroom where English was the school’s chosen official LoLT revealed that such talk as did 

take place was almost exclusively teacher talk. Observed learner talk was limited, largely 

monosyllabic and formulaic, often chorused, and frequently no more than a mirroring of small 

chunks of the teacher’s talk. It gave scant evidence that the children were engaging in genuine 

mathematically-oriented verbal exploration of the ideas their teacher was putting before them 

(Robertson & Graven, 2019). Both the teacher and all of her learners were first language (L1) 

speakers of isiXhosa, the principal language for almost 80% of people living in the Eastern 

Cape province. Were it not for the school’s stringent adherence to its straight-for-English policy 

and its discouragement of using isiXhosa anywhere other than in the isiXhosa language class, 

we believe that use of isiXhosa alongside English would have greatly aided learners in their 

mathematical meaning-making, encouraging also more participatory behaviour. Our analysis 

of the talk taking place in another Grade 4 mathematics classroom at a school where isiXhosa 

was the official LoLT for the first three years followed by a gradual transition across into 

English from Grade 4, showed a different picture. Although the teacher did most of the talking, 

her scaffolding of the learners’ mathematical meaning-making through allowing access to 

isiXhosa, the L1 she shared with all her learners, appeared to give the learners a greater sense 

of confidence and agency in managing various mathematical tasks (Robertson & Graven, 

2020a; Robertson & Graven, 2020b). To exemplify we share an excerpt from one of her Grade 4 

mathematics lessons. It shows her blend of English and isiXhosa (in italics) usage, with some 

transliteration. English translations are in square brackets: 

Pointing to the test written up on the chalkboard, the teacher says,  

Nantsi itest ebhodini, Bethuna. Nantsi test ebhodini. Bendinixelele, mos? [Here is a test on the board, 

People. Here is the test on the board. I told you that you going to write, didn’t I?]  

She quickly goes through various of the test item requirements. Pointing, for example, to one such 

item (to do with recognising number patterns), she says,  
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Copy and complete. It’s 93; 83; 73; -; - . What is next? 5, 9, 13; -; - . What is next? Siyevana? [Do 

you understand?] … Ukuba aku understandi uphakamise osandla. [If you don’t understand, just put 

your hand up.] 

Our next step towards the translanguaging space took us into multimodal territory. Here we 

focussed on the role non-linguistic semiotic resources can play alongside talk around 

mathematical ideas. This formed the substance of our presentations at the last three MERGA 

Conferences (Robertson & Graven, 2021; Robertson & Graven, 2022; Robertson & Graven, 

2023) where we shared micro-ethnographic data illustrating some of the ways in which 

mathematical meaning was co-constructed in the course of an after-school mathematics club 

session with Grade 3 learners. The session was conducted almost exclusively in English, a 

language none of the children were at ease with even though it was the language of instruction 

in their classrooms. Most of the verbal input thus came from the club facilitator. With the 

additional semiotic input via gesturing, looking at and producing various images and 

inscriptions, and the use of concrete objects, the club members were able to work with the 

facilitator in reaching the solution to the mathematical challenge she had set them. This success 

highlighted the power of multi-modality for harnessing as much mathematical meaning-making 

potential as possible alongside the linguistic input, especially in contexts where understanding 

the linguistic input might be a challenge for learners. This could simply be because they have 

not yet become proficient users of a particular language. It might be a result of differences 

between the language registers of schooling and those experienced at home. In the case of the 

club members, both of these factors were at play. Not only were all of the children from 

isiXhosa- or Afrikaans-speaking homes, but all came also from socio-economically vulnerable 

backgrounds. Quite frequently in the latter circumstance, the oral and literacy patterns of the 

home differ substantially from such patterns at school. The seminal work of, for example, 

Bernstein (1971) bears testament to some of the challenges arising from such home/school 

linguistic divergence. 

Most recently our edging towards the translanguaging space has involved exploring the 

growing importance of making multilingualism official. This is particularly important for 

educational contexts such as ours. Our colonial history has resulted in the imposition of a 

language from outside, with, as noted relative to our learners’ TIMSS outcomes, potentially 

extremely negative consequences for academic and other success. We have frequently cited 

Setati’s point (2008) about the perception that an English-medium education is the one most 

likely to provide learners their access to what she termed ‘social goods’ (p. 115). Such 

perception takes little account, however, of the additional burden learning through a second 

language (L2) often poses in relation to learners’ epistemological access to, in the context of 

Setati’s research, mathematics. We take the view that biliteracy is the obvious route through 

this impasse: academic proficiency in one’s L1 plus academic proficiency in a global language 

(in this instance, English). Such biliteracy is more easily asserted than achieved, though, hence 

the almost worldwide ruing of the slowness of what has been called ‘the multilingual turn’ (after 

May, 2014). In two recent publications (Robertson & Graven, 2024a; 2024b) we explore 

reasons behind this slowness and highlight the importance that this turn be taken. Ironically our 

own country’s Language in Education Policy strongly advocates multilingualism; and, in 

particular, the principle of additive bilingualism, yet with a ‘purist’ approach to the use of 

languages and translated mathematical terms in the classroom. The politics of language is 

preventing teachers and their learners from using their everyday home language for 

epistemological access, and, for a variety of reasons which we do not explore here, mere 

advocacy is proving an inadequate driver for ensuring its implementation. Increasingly, 

however, the idea of translanguaging is being identified as an important means of mitigating 

the linguistic hurdles faced by African learners (Essien et al., 2024). 
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‘Translanguaging’: Origins and Some ways Forward 

Poza (2017) observes that “many questions remain about translanguaging pedagogies, 

especially regarding their implementation and outcomes” (p. 120). He cautions that 

inconsistencies in the way the term is conceived may dilute its ‘social justice’ implications. 

Heugh (2019) notes that while linguists agree that translanguaging “can benefit learning”, there 

are some “contradictory understandings” of what this involves (para. 1). She distinguishes 

between two such understandings: one originating in the Welsh context in the 1990s; the other, 

a more recent, and increasingly popular understanding, of which Ofelia García (e.g., 2017) is 

amongst its leading proponents. 

Vertical and Horizontal Translanguaging 

In describing key elements of these contradictory understandings, Heugh makes the useful 

distinction between horizontal and vertical translanguaging. And, while she makes it clear that 

she accepts there is considerable merit in horizontal translanguaging relative to the initial stages 

of any meaning-making endeavour, she identifies the original (Welsh) practice of ‘trawsieithu’ 

(translanguaging) as coming closer to the kind of vertical translanguaging most conducive to 

learners’ development of higher levels of academic proficiency in both their L1 and in whatever 

is their target L2. Williams (2000) explains of the Welsh bilingual education, that “where two 

languages are used equally in both oral and written contexts, there is room for 

‘translanguaging’, i.e. reading in one language and writing in the other” (p. 144). We note the 

implicit emphasis on ‘equally’. Such purposeful and systematic switching across discrete 

languages involves, as Heugh (2019) remarks, “highly complex metacognitive and 

metalinguistic processes and capabilities” (para. 3). 

The emphasis in horizontal translanguaging foregrounded by linguists such as García is 

more on “fluid linguistic practices rather than deliberate alternation between two clearly 

demarcated standard languages” (Heugh, 2019, para. 4). Here the goal appears to be geared 

more towards political, social justice imperatives in education than towards pedagogical ones. 

This is not, of course, to imply that these imperatives are mutually exclusive goals. School 

language, García argues, “acts as the barrera that keeps the very few powerful” (2017, p. 257). 

She contends that “only those whose language practices can easily pass through the narrow 

linguistic passageway that schools construct, have then access to knowledge, knowledge of 

ciencia, historia, literature, matemáticas, and all other ways of understanding the world” (2017, 

p. 257). We note in these statements García’s exercise of translanguaging. As she explained in 

an earlier article co-authored with Wei (2014), the ‘trans-’ in ‘translanguaging’ allows for this 

kind of transgression of traditional language boundaries of, for instance, the structures and 

practices both of language and of education systems. This transgression, achieved in 

transdisciplinary ways, aims at transforming conventional cognitive and social structures. 

Amongst the important social justice imperatives identified by García (2023a) is “ensuring that 

racialised bilingual speakers’ lives and languaging are valued as meaning-making systems that 

are not only legitimate, but also academic [so flattening] … the hierarchies produced when 

named languages are attached to national or social groups that are always ranked on a social 

scale” (p. 7). In another recent publication she explains that “racialized bilinguals do language 

by assembling a repertoire of language and semiotic features and practices from all the different 

communities and individuals with whom they interact” (García, 2023b, pp. xxi–xxii). 

Ways Forward 

The above descriptions of the apparently contradictory interpretations of translanguaging 

derive from what Bonacina-Pugh et al. (2021) call the differences between the ‘fixed language 

approach’ and the ‘fluid languaging approach’. Both, in our view, have a place in the 

mathematics classroom. This is particularly so for the multilingual classrooms that predominate 
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in South Africa where, for too long, a majority of learners have had only diminished opportunity 

to use their dominant (L1) language as a genuine resource (after Ruiz, 1984), a genuine source 

of linguistic capital with which to invest (after Bourdieu, 1977) in their mathematical meaning-

making. Heugh (2019), too, urges the need to focus on both the vertical and the horizontal forms 

of translanguaging, arguing that without such dual focus “we will neither reduce socio-

economic and political inequalities nor achieve equitable opportunities for our students’ 

futures” (Conclusion section). What we argue for here is that our mathematics education 

community comes to see the two forms as complementary rather than contradictory. Both have 

value, serving different purposes at different stages of the learning trajectory in the same way 

that movement from the more concrete (and familiar) towards the more abstract and symbolic 

(from the horizontal to the vertical) mathematisation occurs (after Freudenthal, 1973). A ‘fluid’ 

form of languaging using whatever linguistic and other semiotic resources are available is what 

happens in the initial phase of meaning-making. ‘Fixed language’ representations of the 

meanings are then built upon this, ideally in both the L1 and the L2, so consolidating and 

refining these meaning/s in more formal and mathematically-appropriate ways. Mathematics 

requires learners to (particularly in the assessment stage) express ideas from within the 

boundaries of a single language system. This facilitates maximal exploitation of that system’s 

power of linguistic expression. In systemic functional linguistics Halliday and Matthiessen 

(2004) use the phrase ‘cline of instantiation’ to describe the movement towards increasingly 

sophisticated, precise, discipline-specific expressions of ideas. In the same way that using the 

language of, say, school geography to talk about school mathematics would inevitably 

compromise the precision with which mathematical ideas could be expressed, so too, we 

believe, could stepping too far beyond the boundaries of a particular language system 

compromise this precision. 

A great deal of well-researched evidence around second language acquisition has 

demonstrated that, even in the case of so-called ‘fixed language’ views, it is impossible, and—

indeed—undesirable to exclude learners’ L1s from the classroom (see, e.g., Swain & Lapkin, 

2013). We have elsewhere written (e.g., Robertson & Graven, 2024b) on the compelling 

evidence put forward by, amongst others, Skutnabb-Kangas (1981) and Cummins (2005) about 

the important role that learners’ L1s play in the subsequent development of their L2 proficiency, 

and the longer-term benefit of working towards high levels of academic proficiency in both 

languages. In specific reference to the work of Cummins, and as Conteh (2018) noted, 

Cummins’s “concepts of ‘common underlying proficiency’ and linguistic interdependence 

stress the positive benefits of transfer in language learning” (p. 445). Included amongst the 

benefits of bilingualism are the metacognitive and metalinguistic advantages that can accrue 

from becoming proficient users of more than a single language. Bialystok et al. (2012) reported 

on this. Included in their list of advantages are greater mental flexibility, increased executive 

and cognitive control, and, reassuringly, in the long term, a potential extension of the timeline 

towards the onset of age-related dementia. More immediately, in relation to young learners, are 

what might be termed the socio-emotional advantages of having classroom access to their L1 

alongside an L2. These include making closer links between learners’ home and classroom 

lives; developing a stronger sense of socio-cultural and personal identity and agency; and 

thereby increasing the likelihood of a greater willingness and motivation to participate actively 

in classroom activities and discussion. 

Conteh (2018) notes that some question the need for the notion of ‘translanguaging’ “when 

the familiar concepts of code-switching and code mixing already provide a framework to 

understand multilingual language use” (p. 446). In the South African context, code-switching 

was frowned upon during the apartheid era as it was thought that mixing languages would 

interfere with learners’ L2 acquisition. One isiXhosa-speaking science teacher captured this 

view ‘confessing’ to a researcher (Probyn, 2001) that he felt guilty of ‘smuggling the vernacular 
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into the classroom’. The liberation involved in increased acceptance of pedagogies employing 

translanguaging is captured in the third paper included in a recent symposium presentation. (See 

Tyler et al., 2024.) Paper 3’s title began: ‘No more smuggling the vernacular.’ 

A difficulty identified in relation to South Africa’s constitutional commitment to 12 official 

languages (the recent 12th addition being sign language), and the Language in Education Policy 

ratification that, depending upon the decisions and circumstances of individual school’s 

contexts, any one of these languages may be chosen as the official LoLT, is that standardisation 

of South Africa’s indigenous African languages is still underway. Despite isiXhosa having a 

long history of lexicography dating back to the 18th century (Nkomo & Wababa, 2013), it is as 

yet not fully standardised, and disagreements about terminology and means of expression are 

common. Booi et al. (2024) note considerable variation depending on where speakers’ come 

from creating problems both for teachers and for their learners. Translations of written texts 

have “tended to adopt a purist approach to language that results in the use of outdated or 

unfamiliar so-called ‘standardised version’ of isiXhosa that is unfamiliar” (Booi et al., 2024, 

p. 3). A further challenge these authors have identified is that of finding common terms across 

regional dialects, perhaps most particularly across the urban/ rural divide. These authors point 

out that the formal standardised isiXhosa used in school teaching and learning support materials 

is often at odds with the spoken home language—informal non-standardised isiXhosa used 

outside of school (‘lokshin’ isiXhosa). ‘Lokshin’ here refers to a ‘location’ (English) or, in 

Afrikaans, ‘lokasie’, a residential area set aside for black Africans during the apartheid era. 

Booi et al. (2024) suggest the use of translanguaging to mediate such differences (e.g., using 

the less formal term ‘ukudabulisha’ for ‘double’, the ‘uku-’ meaning ‘to’ and ‘-dabulisha’ 

‘double’) in place of the more formal and ‘standardised’, but less familiar phrase ‘ukuphinda 

kabini’ (also meaning ‘to repeat’ or ‘to multiply twice’). Evident in this example is some 

phonetic transliteration between English and isiXhosa in the less formal term (‘dabul’/ 

‘double’). Such transliteration is useful in the sense that it potentially offers learners a ‘double 

dip’ at discerning the meanings of certain words. Another example would be using the word 

‘isikwere’ (or ‘isqueri’) to refer to a ‘square’, a shape which one local isiXhosa-speaking person 

initially told us she would call ‘ifourcorners’. Working cross-lingually in this way, and asking 

children to consider the different equivalents for various mathematical terms would be one way 

of raising their metalinguistic awareness about how different languages work in expressing the 

same or similar ideas. More challenging than terminology, is mediating the learning of ‘the 

language in-between’ (Prediger, personal communication, January 12, 2023). This is the 

language required for exploring and reasoning through the demands of mathematical ideas and 

tasks, for justifying one’s interpretations of what a task requires, or for responding 

constructively to the interpretations of others. It is perhaps in this largely oral domain that 

horizontal translanguaging can prove particularly powerful for helping learners’ mathematical 

meaning-making, especially when augmented with other semiotic modes (e.g., gesture, image, 

inscriptions of various sorts). 

Concluding Remarks 

In this paper we have shared our concern that catching the translanguaging wave is all well 

and good, but that knowing how to ride it successfully is more important. We have outlined 

some of the differences in viewpoint reflected in the literature around translanguaging, and 

argued that such differences are perhaps more apparent than real. Heugh’s distinction between 

horizontal and vertical forms of translanguaging (2019) is important. It helps towards the 

understanding that these forms can be seen as complementary rather than contradictory. We 

recognise complementarity also between these translanguaging axes and the axes of horizontal 

and vertical mathematisation. Just as horizontal mathematization starts with a focus on the 

everyday, so too does initial classroom discussion around mathematical ideas, concepts and 

procedures need a more everyday register, drawing on the widest possible repertoire of 
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linguistic and other semiotic resources. Beyond this initial horizontal stage of communication 

more careful consideration is then needed in the vertical where specific terminology is key to 

faithfully capturing critical ideas in the concept. So, for example, the everyday, ‘ifourcorners’ 

provides a mathematics teacher with a potentially valuable opportunity to start learners thinking 

through the reasons why there needs to be the specific name ‘square’ (‘isikwere’) in order to 

distinguish this shape from other four-cornered shapes. This is critical for vertical 

mathematisation of understanding squares as a special subset of quadrilaterals, parallelograms, 

and rectangles. The final point we want to reiterate is the meaning-making and conceptual value 

of what we called the ‘double dip’ aspect to the transliteration of English, and, frequently too, 

Afrikaans words into their isiXhosa form. 
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Diminishing duplication and finding connections between the Australian Curriculum: 

Mathematics and Digital Technologies were a focus of the revision to version 9. This 

emphasis has provided enhanced opportunities for integration of these learning areas. 

In this exploratory multiple case study, interviews with teachers following teaching an 

integrated task identified connections to other mathematical concepts that had not been 

considered during planning. These findings indicate that integrating mathematics and 

digital technologies can potentially provide opportunities to deepen and consolidate 

learning in mathematics through connections beyond the initially intended concepts. 

An emphasis on reducing duplication of content has meant that the Australian Curriculum 

(AC) version 9 was written to make the connections between learning areas more explicit 

(Australian Curriculum, Assessment and Reporting Authority [ACARA], 2021). These 

connections emphasise the shared focus on data and computational thinking across AC: 

Mathematics and AC: Digital Technologies (ACARA, 2022a). Now, definitions and content in 

computational thinking and data collection, analysis, and representation are shared. Previously, 

there was insufficient alignment between the learning areas to develop synergies (Larkin & 

Miller, 2020). AC: Technologies is intended to be taught through integration with other learning 

areas, and this shared content provides clear opportunities for teachers to integrate. 

In this project, professional development (PD) focused on integrating mathematics 

curriculum and technological content knowledge to demonstrate connections between version 9 

of the AC: Mathematics and AC: Digital Technologies in the primary years. The effective 

integration of this content poses a challenge for generalist primary teachers (Larkin & Miller, 

2020). The project aimed to support teachers in developing integrated tasks and learning 

experiences for their students through professional development and mentoring. The 

professional development focused on seamlessly integrating mathematics and digital 

technologies, teaching and assessing both curriculum areas in a single task. The tasks teachers 

developed were trialled in their classrooms, and their reflections were the focus of mentoring 

sessions. The mentoring sessions supported teachers’ exploration of students’ mathematics and 

digital technologies learning experiences during the task and determining the next steps for 

effective integration. 

The project aimed to investigate the integration of the AC: Mathematics and AC: Digital 

Technologies, with a specific focus on diminishing duplication and uncovering connections 

between the two disciplines. This paper explored instances of unplanned teaching where 

connections emerge spontaneously when teachers leveraged their knowledge of content and 

curriculum to identify opportunities for establishing mathematical connections. 
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Curriculum Perspectives and Conceptual Threads 

Curriculum integration allows teachers to weave learning experiences across subject 

boundaries to apply transdisciplinary skills for learning (Ross & Marshman, 2023). An 

integrated approach to teaching is often complex. Teachers can spend hours of planning time 

considering the curriculum to find threads that draw together learning areas (Ross & Marshman, 

2023). Sometimes, these threads provide successful opportunities for learning. However, the 

challenge arises from developing these connections at age-appropriate curriculum levels. 

While the teachers’ plan describes the concepts and purposeful sequencing of learning 

experiences that they intend, the developed plan is not necessarily followed precisely in the 

enactment process (Ross, 2024). During the lesson, a teacher may take an unplanned detour to 

consider student questions or adjust the pitch of the content they are teaching. Further, there 

may be incidental topics that can be covered, i.e., topics covered that were not planned to be 

covered during that lesson or sequence. Srinivasa et al. (2022) described incidental learning as 

the unintended, unplanned, or additional learning that can occur because of other activities. 

Incidental learning may be additional content that needs to be taught to support a gap in student 

knowledge, or concepts that are beyond those intended for the lesson, or perhaps student-

directed exploration or questioning beyond the scope of the planned lesson. In recognising these 

incidental teaching moments, the teacher needs deep knowledge to see the potential and 

capitalise on the learning opportunities (Nayler, 2014). 

The Importance of Making Mathematical Connections 

Ball et al. (2008) developed their six domains of mathematical knowledge for teaching by 

building on Shulman’s (1987) content knowledge and pedagogical content knowledge (PCK). 

Subject matter knowledge is the mathematics knowledge that most people have. Specialised 

content knowledge is the mathematical knowledge and skills unique to teaching and may 

include “looking for patterns in student errors” (Ball et al., 2008, p. 400), identifying 

nonstandard approaches and unpacking mathematical ideas to make them more accessible to 

students. Horizon content knowledge is an awareness of where mathematical topics go in future 

learning. Knowledge of content and students includes anticipating students’ thinking and 

responses to tasks, what they will find confusing, and the level of challenge, the language that 

students will use with “emerging and incomplete thinking” (p. 401) as well as common 

conceptions and misconceptions of the mathematical content. Knowledge of content and 

teaching includes knowledge of how to sequence the content and the usefulness of different 

representations, methods, and procedures. The final category, knowledge of content and 

curriculum, includes knowledge of both the mathematics and the pedagogical underpinnings of 

the curriculum including understanding the underpinning sequence of mathematical concepts. 

Rowland et al. developed the knowledge quartet to describe the categories of knowledge 

needed to teach mathematics. Foundation is the knowledge, understanding, and beliefs acquired 

during initial teacher education; transformation is the ability to transform content knowledge 

so that it is accessible for students including the choice of resources and activities; connections 

include the sequencing of topics and the connections between different areas of mathematics; 

and contingency, sees a teacher responding to unexpected student responses. Contingency refers 

to the teachers’ capacity to make in-the-moment decisions to decide whether to pursue their 

predetermined plan or to deviate to follow the student’s introduced line of thinking. during 

teaching and learning (Rowland et al., 2009). 

In this paper we explore teacher’s knowledge of content and curriculum in AC: Mathematics 

and AC: Digital Technologies. We focussed on definitions and content in computational 

thinking and data collection, analysis, and representation. Teachers’ capacity to select digital 
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resources to teach mathematics using their pedagogical content knowledge can enhance 

students’ mathematical learning (Loong & Herbert, 2018). Teachers are often provided with 

the technologies in primary mathematics classrooms and expected to integrate these 

technologies without the necessary PD support (Attard, 2013). Teachers can struggle to 

understand how the technology can be integrated (Perienen, 2020), and there is a need for 

further training to integrate digital technology into their mathematics teaching (Attard, 2013; 

Perienen, 2020) to enhance student learning opportunities. 

Research literature has long emphasised that making mathematical connections between 

facts, procedures, and relationships is essential in constructing mathematical understanding 

(e.g., Eli et al., 2011) and between learning areas and the real world (e.g., National Council of 

Teachers of Mathematics, 2000). This is reinforced in one of the aims of the AC: Mathematics, 

“make connections between areas of mathematics and apply mathematics to model situations 

in various fields and disciplines” (ACARA, 2022b). The curriculum also identifies the role that 

integrated STEM learning can play in building these connections, “Interdisciplinary STEM 

learning can enhance students’ scientific and mathematical literacy, design and computational 

thinking, problem-solving and collaboration skills.” (ACARA, 2022b). The research presented 

here investigates how an integrated mathematics and digital technology task can create 

opportunities for making mathematical connections beyond the initial learning intention. The 

research question was: How can teachers best use knowledge of content and curriculum when 

integrating mathematics and digital technologies? 

Research Design 

Context 

This 6-month study is part of a larger study. This smaller study focused on the initial 

experiences of teachers from two schools. Their data has been included in the analysis, and 

pseudonyms used. All teachers in the project attended a professional development (PD) day 

focused on developing an understanding of task design and integration. The PD event provided 

examples of integrated lessons using digital technologies to teach and consolidate mathematical 

concepts focused on statistics. After a trial period for the teachers with their integrated 

classroom task, they were offered a mentoring session to discuss the task and its enactment. An 

exploratory multiple-case study design (Yin, 2009) used mixed methods for collecting data, 

including surveys and a semi-structured interview protocol during the mentoring session. 

Participants 

This paper describes case studies of teachers in the study from two different schools in the 

Moreton Bay region in Queensland. Case study one shares the experiences of an early-career 

teacher from a designated special school, while Case study two reflects a team of two teachers 

(one early-career and one mid-career) from a government primary school. Both schools planned 

teaching and learning using the early primary levels of the AC: Mathematics integrated with 

AC: Digital Technologies. 

Data Collection 

The teachers completed a pre-PD survey to ascertain their starting beliefs and participated 

in a mentoring session once they had trailed a task in their classroom. The survey included 

questions from the Technology Beliefs and Barriers to Creating Technology-Enhanced, 

Learner-Centred Classrooms sections of An and Reigeluth’s (2012) survey. Additional 

questions included beliefs about and barriers to integrating AC: Mathematics and AC: Digital 

Technologies. 

The mentoring sessions were held through Teams and recorded. The discussion prompts 

used during the mentoring sessions were based on Rolfe et al.’s (2001) framework for reflective 
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practice, asking the teachers to describe the integrated lesson the teacher had completed, 

including aspects that worked well and challenges (what); highlighted aspects that the teacher 

found interesting or surprising (so what); and outlined what they planned to do next (now what). 

Teachers were asked to recall the enactment of their integrated mathematics and digital 

technology tasks. They were asked to highlight what happened and encouraged to provide 

details about the nature of the task and the students’ responses. The teachers were also asked to 

reflect on and analyse the event, including anything the students did that interested or surprised 

to them. These answers gave rise to several key examples of incidental mathematics learning. 

Data Analysis 

Data were analysed thematically using Braun and Clarke’s (2006) six phases of thematic 

analysis. Researchers each analysed the data they had collected for individual schools, including 

survey responses and transcripts of mentoring sessions. Through a comparative discussion 

between the researchers presenting the data sets they were familiar with; emerging themes were 

used to code the transcripts of the mentoring sessions. This paper draws on data from one clear 

theme from mentoring sessions’ data: the incidental mathematics the teachers recognised and 

taught that arose from the integrated mathematics and digital technologies task. 

Findings 

Case Study 1 

David is formally an early career teacher; however, he has come from a career in teaching 

in another education-related field. He works in a special school where his students are 

developing their mathematical knowledge at a Preparatory (Foundation) level. In his task, 

David planned to explore mathematical concepts related to position and location in 

mathematics. To explore these concepts, he used the Bee-Bots and integrated the activity with 

digital technologies by considering data representation with his students. The students were 

tasked with moving a Bee-Bot with a small photo of them on it, through a maze representing 

the school to several pre-determined destinations (e.g., from the classroom to the library). While 

enacting the task, David noticed opportunities to explore other aspects of mathematics crucial 

to the students’ capacity to complete the task: 

One thing that came up was that one-to-one correspondence is really helpful and that it wasn’t 

planned. But the fact that they have to hit the button on the Bee-Bot and count as 1, 2, 3 is something 

that I sort of, I guess overlooked. And then [I] realised as they were doing it. Oh, yes, there is some 

underlying skill here that needs to be worked on. Yeah. So that was eye opening... [if] I had my time 

again, I would have just let them play with the Bee-Bot first. Yeah, just go nuts and push all the 

buttons that you want to push and make it do whatever you want it to do. And then I’ll do the one-

to-one correspondence. 

David recognised the importance of the incidental mathematical concept of one-to-one 

correspondence as essential to the students being able to use the Bee-Bot buttons to program 

the robot. Without this knowledge and skill, David’s students could not complete the task. 

Consequently, this aspect would need to be incorporated into future iterations of this lesson 

sequence. Further, David saw the opportunities in the incidental mathematics concept for one 

of his students: 

I was just like, basically counting breaking down the steps ... And he was struggling a lot with the 

one-to-one correspondence and the fact that he had to slow down and there was like a tangible goal, 

I think really helped him. 

David describes a student racing through counting activities and other mathematical tasks. 

In the student’s haste to finish, he was making errors. David felt that using the Bee-Bots meant 

the student had to slow down to ensure the correct entry of data, and this helped reinforce the 

one-to-one correspondence that the student was lacking. David also saw the students finding 

further opportunities to use this concept creatively in more complex coding patterns: 
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This student did something that was shockingly creative. At first, I didn’t know what he did ... they 

just installed a new spinner [at school]. So, he sent it [the Bee-Bot] to the spinner [on the map]. And 

then he made it spin. And at first when he did it, I didn’t get it. And I was like what did you want it 

to do? Like I thought he made a mistake. And then he did it and I was like floored. (David) 

The student programmed the Bee-Bot to leave the classroom on the map and head straight 

for the new spinner in the playground. Using the left turn button, he programmed the Bee-Bot 

to turn in a circle like the students would when using the spinner in the playground. David was 

excited by the student’s capacity to quickly pick up the coding skills and the mathematical 

concepts that allowed for the creative expression of this mathematical knowledge. 

Case Study 2 

Vera was a young, early-career teacher and Sarah, an older, very experienced teacher from 

a government primary school. Together, they designed their integrated lesson to explore the 

mathematical concept of symmetry, which was shared with the other Year 3 teachers at their 

school. Their lesson used Pro-Bots to draw the mirror image of a symmetrical drawing, asking 

Year 3 students to “draw or follow instructions to draw the other side of the symmetrical item” 

(Vera). The task required students to follow and implement simple algorithms linked to learning 

in digital technologies. The teachers were aware that students had not done any programming 

previously, so gave the students a pre-lesson, “That I had like a pre-lesson on them just playing 

with the Pro-Bots before getting them to set a task because they’ve not done any sort of robotic 

stuff up into this point or any coding” (Sarah). 

The teachers acknowledged that the activity included more mathematics than just the 

symmetry they planned to address. In their discussion of the activity, they explained the 

incidental mathematics that the students used in the lesson, which included the need to consider 

what angles to turn the Pro-Bots in the intended direction, directions (turning left or right), 

measuring how far the Pro-Bot travelled to set up grid references and ensure the Pro-Bot went 

the correct distance, patterning and mirroring, and inverse relationships, which they connected 

with addition and subtraction (connections). During mentoring, Sarah and Vera reported 

opportunities for developing directional language, including clockwise, anti-clockwise, quarter 

turn, and half turn: 

Vera: It was not just good for their symmetry, but as well their directions, and actually realising which 

way was which and then, you know, we’d lift up the paper, and they go, “Oh, I actually went left 

instead of right. I didn’t follow the instructions properly”. 

Vera: I think getting them to realise that it’s not just forward because we had the Pro-Bots not Bee-Bots. 

So, actually, having the angle and making the angle first and then moving forward. That got them 

a few times. ... It was that directional language. It was measurement. It was symmetry, which the 

lesson was based around. Grids, as well, it had tons [of mathematics]. 

Sarah:  Because the measuring was pretty tricky. ... they could work out that it had to be part of the grid 

system. You know, your turns that we talked about earlier in the year, where we’re going 

clockwise, anti-clockwise, quarter turn, half turn, and then technology-wise, it being a specific 

pattern and code. Yeah, that had to be followed. Otherwise, it [Pro-Bot] wasn’t going. 

Vera:  All that sequence. So, you’re patterning that … And then mirroring. 

Sarah:  Mirroring. Yeah. With your symmetry. Yeah. So, then you had to reverse it. You had to think the 

opposite. 

Sarah:  Yeah. And so … you put that into the relationship of add and take away … they’re the opposites 

of each other. So, you sort of make that connection. They’re doing this and your turns are the 

opposite. Yeah. I mean, that’s the same amount of steps, but just the direction is slightly different. 

The teachers also identified that they could extend the task and incorporate a map and grid 

references as they moved into the next school term’s learning and assessment: 

Sarah:  And I think it led into this term when the first maths assessment was looking at grid references in 

their assessment. So, I think they got really good at direction and giving directions from that 
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[integrated task] as well...we could’ve maybe incorporated that with more of a map situation like 

we had on the day that we were playing. Yeah. With the grid and things like that. More of that. 

Discussion 

This study focused on the initial experiences of teachers from two schools and the incidental 

mathematics the teachers recognised and taught, which arose from the integrated tasks they 

designed. Analysis of the case studies provided insight into how integrating learning in 

mathematics and digital technologies supported the teaching of incidental mathematics and 

strengthened teachers’ knowledge of content and curriculum, allowing connections to be made. 

The activity in Case 1, focused on location and direction. Students programmed Bee-Bot 

using a series of arrows (forward, backward, left, and right) to visit areas of the school on a 

floor map and describe the robot’s position relative to items depicted on the map. David 

recognised the incidental mathematical concept of one-to-one correspondence as essential to 

students being able to use the Bee-Bot buttons to program the robot before exploring concepts 

of position and location. 

In Case 2, Vera and Sarah had planned their lesson to focus on symmetry using Pro-Bots. 

When teaching the lesson, they recognised that the use of the Pro-Bot provided an opportunity 

to consolidate previous learning in mathematics. This incidental mathematics included 

directions and directional language, angles, measurement, and patterning and mirroring. There 

was also an opportunity to discuss inverse relationships with the students, which they did by 

connecting with addition and subtraction. 

The teachers, in both cases, leveraged their deep understanding of content, curriculum, and 

pedagogy to design and deliver an integrated mathematics and digital technologies task, 

demonstrating some knowledge of content and curriculum (Ball et al., 2008). They used their 

comprehensive knowledge of the subject matter to identify key mathematical concepts that 

could be effectively taught using robotics and computational thinking skills. Teachers were also 

willing to respond to students’ needs and deviate from their original plans (contingency) and 

help students make connections (Rowland et al., 2005). The teachers chose technologies such 

as Bee-Bots for foundation years and Pro-Bots for primary years to enhance students’ 

mathematics learning (Loong & Herbert, 2018). Thus, demonstrating an understanding of the 

pedagogical underpinnings of the curriculum and how both learning areas are connected. 

Robotics provide students with tangible programming outcomes and an interactive context 

to apply mathematics and digital technologies concepts. Of interest to the study was the 

incidental mathematics that occurred due to the integration and use of these robotics in a task. 

In Case 1, David’s knowledge of the concepts that underpin the understanding required to 

complete the task meant that he recognised that his students also needed to learn one-to-one 

correspondence, even though it is not listed in the developmental sequence in mathematics. 

One-to-one correspondence is an essential part of learning to count and is assumed knowledge 

at the Prep level. The need for one-to-one correspondence demonstrated how an integrated task 

using digital technologies can help bring up the students’ level of mathematics and develop 

other mathematical concepts not in the original task design. David’s ability to identify the 

connection between digital technology and mathematics enabled him to enhance the learning 

opportunities for his students. David realised during the lesson that he needed to draw on further 

knowledge of content and curriculum (Ball et al., 2008) that he had not considered whilst 

planning the lesson. 

Teachers need a solid understanding of curriculum to integrate (Ross & Marshman, 2023). 

For Vera and Sarah (Case 2), it was only after they began teaching the lesson that they 

recognised the incidental mathematics underpinning the task. Programming robots to move 

involves understanding geometry and spatial reasoning. In Case 2, the teachers reported how 

concepts such as angles, distances and measurement were incidentally taught; for students to 
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succeed in the task, they needed to use these concepts in a tangible manner to control the robot’s 

movement. The integrated task using a Pro-Bot included more mathematics than just the 

symmetry they planned to address; it provided an opportunity to make mathematical 

connections between facts, procedures and relationships, an essential component in 

constructing mathematical understanding (Eli et al., 2011). Whilst teaching this integrated task 

Vera and Sarah realised that they too needed to draw on further knowledge of content and 

curriculum (Ball et al., 2008) not considered during lesson planning. 

The incidental mathematics learning in the cases outlined was unplanned, underscoring the 

importance of teachers possessing understanding of both the mathematics and digital 

technologies curriculum content to design integrated tasks and optimal learning opportunities. 

Evident also in the cases was how integrated applications of mathematical skills and concepts 

required students to demonstrate a deeper understanding of mathematics than simple memory 

of formulas and procedures. In these examples, the integrated task allowed students to see 

connections between different mathematical concepts and the relationship between 

mathematics and the real world. 

Conclusion 

This paper provided a small snapshot of data analysed from a larger study. The paper serves 

to highlight the incidental mathematics that arose for teachers from two participating schools 

during teaching of integrated mathematics and digital technologies tasks. While the scope of 

the paper is confined to the experiences of these two schools, their insights serve to demonstrate 

the broader connections across mathematical concepts that can emanate from across diverse 

educational settings if the teachers see the conceptual connections. 

The deliberate focus in version 9 of the Australian Curriculum to establish connections 

between mathematics and digital technologies has enriched the possibilities for seamless 

integration in these learning areas. As highlighted in the two case studies, the incorporation of 

digital technologies into mathematics education has unveiled opportunities for incidental 

mathematical learning. Making mathematical connections is an essential component in the 

construction of mathematical knowledge, and this study indicates that teachers need to possess 

knowledge of content and curriculum (Ball et al., 2008). Specifically, an understanding of both 

AC: Mathematics and AC: Digital Technologies curriculum content, and an understanding of 

the pedagogical underpinnings of the curriculum and knowledge of how both learning areas are 

connected, to create integrated learning experiences. Emphasising connections between the two 

curriculum areas and promoting a holistic view of mathematics lays the foundation for students 

to apply a range of mathematical concepts in real-world situations using digital technologies. 

Further, more sustained research across a broader range of contexts would be useful to further 

analyse the range of connections teachers are able to find from integrated contexts. 
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In this paper we explored primary school teachers preference for different game modes 

to support mathematics teaching and learning. Eighty-four teachers played digital and 

non-digital addition and subtraction games that were functionally equivalent during 

professional learning workshops. Most teachers indicated that they would be more 

likely to use the non-digital mode; despite more mixed views around perceived 

effectiveness for supporting learning and anticipated student preferences. Key reasons 

as to why teachers tended to prefer non-digital or digital games are examined. 

The majority of primary school teachers use games in the majority of their mathematics 

lessons to support instruction (Russo et al., 2021). Accordingly, playing mathematical games 

has received substantial interest in the research and practitioner literature, partially because 

games are viewed as an effective pedagogy for making mathematics education more engaging 

for students, particularly in the primary school years (Bragg, 2012; Bright et al., 1985; Russo 

et al., 2021). In addition to facilitating engagement with mathematics, non-digital games have 

been associated with many positive cognitive and affective outcomes, including but not limited 

to: promoting mathematical reasoning (McFeeters & Palfy, 2018); supporting mathematics 

achievement (Kamii et al., 2005); reducing anxiety in learning mathematics (Alanazi, 2020); 

developing students’ growth mindset (White & McCoy, 2019); and encouraging active 

learning, cooperation, and interactivity (Ernest, 1986). Moreover, studies focussed on using 

digital games to support mathematics instruction for primary-aged students have also revealed 

many cognitive and affective benefits, including mastery of number facts (Abdullah et al., 

2012), improved attitudes towards learning mathematics (Miller & Robertson, 2011), and 

enhanced mathematical self-efficacy (Hung et al., 2014). 

Despite evidence that they generate similar educational outcomes when used to support 

mathematics instruction, there are at least two differences between digital and non-digital 

games that are worth noting. First, non-digital games often incorporate physical activity, 

sometimes outside the mathematics classroom (e.g., Bahrami et al., 2012; Cichy et al., 2020), 

which tends to not be the case for digital games. Secondly, digital games involve students 

interfacing in an environment that has been principally “regarded as an entertainment medium” 

(Cojocariu & Boghian, 2014, p. 641), whereas non-digital games tend to involve repurposing 

educational resources and mathematical representations as game objects e.g., fraction walls 

(Clarke & Roche, 2010); and number lines, (Bofferding, 2014). 

Generally, research into the effectiveness of mathematical games has focussed on one 

particular mode of game, either digital or non-digital, and compared playing games in this mode 

with non-game activities (e.g., Abdullah et al., 2012; Bragg, 2012; Kamii et al., 2005; Miller & 

Robertson, 2011). Indeed, we could not identify any studies that directly compared playing 

digital games to support mathematics learning with playing non-digital games. In addition, 

existing research into mathematical games has tended to focus on the impact of games on 

student outcomes, with fewer studies concerning themselves with how teachers use games in 

classrooms to support mathematics instruction (Russo et al., 2021). Consequently, substantial 

gaps exist in the literature, both with regards to research that aims to directly compare and 

contrast digital and non-digital games in mathematics education, as well as studies that examine 

the issue of how and why teachers choose to use particular games. 

mailto:james.russo@monash.edu
mailto:anne.roche@monash.edu
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Background to the Current Study 

We recently undertook a questionnaire asking primary school teachers if they preferred, and 

were more inclined to use, digital games or non-digital games to support mathematics 

instruction, and the reasons for these preferences (Russo et al., in press). It is important to note 

that the questionnaire asked about these teachers’ general game mode preferences, rather than 

asking them to compare a specific non-digital and digital game. Teachers reported that they 

were three times more likely to use a non-digital game in a whole-class setting compared with 

a digital game, and five times more likely in a small-group setting. Moreover, most teachers 

indicated they preferred using non-digital games (59% whole class setting; 70% small group 

setting), with only a small number of teachers indicating a preference for digital games (6% 

whole class setting; 5% small group setting). The remaining participants had no general 

preference for a particular game mode (35% whole class setting; 25% small group setting). 

When asked to elaborate on the reasons why they were more likely to use, and preferred, 

non-digital games, teachers tended to put forward pedagogical reasons first and foremost. This 

included elements such as non-digital games’ enhanced capacity to promote collaboration and 

communication, that non-digital games could be more easily adapted by the teacher to suit the 

learning needs of students, and that non-digital games afforded the students opportunities to 

engage with manipulatives and concrete materials that would support their mathematics 

learning. Teachers also indicated that it was easier to monitor and assess students when they 

were engaged in a non-digital game, and that they valued the fact that choosing to use non-

digital games rather than a digital game reduced the amount of screen time students were 

exposed to (Russo et al., in press). 

However, in addition to these pedagogical and assessment related reasons for preferring 

non-digital games, some teacher participants indicated that this preference was driven by 

specific barriers to utilising digital games. Although some of these barriers were related to 

technology usage in the classroom more generally (e.g., a lack of expertise in technology, lack 

of access to reliable technology), others related to digital mathematical games in particular. For 

instance, some teachers described a lack of awareness of what they would deem to be high 

quality/suitable ‘digital’ games, which they juxtaposed with their deep knowledge and 

familiarity with non-digital games. As one teacher stated: “I found it is hard to find games 

online which match what you are trying to teach the kids” (Participant #120); whilst another 

indicated: “My own knowledge of good mathematical games tends towards non-digital” 

(Participant #190) (see also Russo et al., in press). 

Reflecting on these findings, we speculated that it was at least possible that a lack of 

awareness of what teachers determined to be high quality digital games was the principal reason 

that teachers preferred non-digital games, effectively because they were not comparing ‘like 

with like’. The contention is that this lack of awareness might be interacting with pedagogical 

factors to determine their preferences. For example, a teacher who states that “often the answer 

is required with little knowledge of strategy or understanding in online games” (Participant #12) 

is unlikely to view digital games as supporting effective collaboration and communication 

(Russo et al., in press). Consequently, we decided it would be valuable to explore the issue of 

game mode preference in a workshop context, where the barrier to being able to access high 

quality digital games was removed and the digital and non-digital modes of the game being 

compared were ‘functionally equivalent’. The general research question guiding the current 

study can be stated as: Do primary school teachers prefer digital or non-digital games to support 

mathematics instruction? Our two sub-questions included: 

• What preference, if any, do primary school teachers have for a particular game mode 

(digital versus non-digital) to support mathematics instruction, in the context of 

comparing two functionally equivalent games? 
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• To the extent that they exist, what are the reasons for these preferences? 

Before proceeding, it is worth noting that, in this context, we use the term ‘functionally 

equivalent’ to refer to the fact that the digital and non-digital mode of the game were equivalent 

in important ways including: the specific mathematical concept(s) in focus; the game objective; 

the rules that governed game play; and the types of mathematical representations used within 

the game. This functional equivalence was a direct result of the two digital games being 

designed to be digitised versions of the non-digital games Get Out of My House and Part-Whole 

Triangles (Russo, 2020), as part of the ABC GOAT Maths Suite (Gervasoni & Russo, 2023). 

Method 

Participants and Procedure 

Eighty-four primary school teachers from five Victorian schools participated in one of a 

series of school-based professional learning workshops with the first author, where they were 

given an opportunity to play three pairs of non-digital and digital games focussed on addition 

and subtraction concepts. For each pair of games, the digital game was explained and played 

(approx. 10 minutes), followed by the corresponding non-digital game (approx. 10 minutes). 

After playing each pair of games, teachers were then invited to complete a pen and paper 

questionnaire to reflect on their experiences. For each game pair, participants were presented 

with three forced-choice items with a corresponding open-response item where they were asked 

to ‘please explain their response’. The forced-choice items were each presented on a five-point 

scale. See Table 1, Table 2 and Table 3 for details about both the items and response options. 

Following these workshops, the questionnaire data was subsequently entered into a 

spreadsheet program (Microsoft Excel v. 6.2.14) in preparation for analysis. Note that, although 

teachers played three pairs of games (six games in total) during these workshops, only two of 

these pairs (Pair 1: Get Out of My House and Goat Crashers; Pair 2: Goat Squad and Part-

Whole Triangles) can be clearly described as ‘functionally equivalent’. It is these comparisons 

that form the focus of the current study. Note that readers interested in learning about the precise 

mechanics of these digital games can read about (and play) these games through the ABC 

website: https://www.abc.net.au/education/topic-goat-maths/102180130. 

Approach to Data Analysis 

In order to address the first research question, quantitative data were imported into SPSS 

Statistics, v. 26 for analysis. This enabled differences between teachers’ preferences and usage 

of functionally equivalent digital and non-digital games to be explored. In addition to the 

presentation of descriptive statistics, a series of one-sample t-tests were undertaken to compare 

the obtained mean values regarding teacher views about game mode with expected results if, 

on average, teachers did not have game mode preferences (reference mean score = 3.0). 

By contrast, the second research question focussing on the reasons for these preferences 

involved analysing the open-response items qualitatively. Specifically, for each question 

(which one do students prefer, which one is more effective for learning, and which one are you 

more likely to use) the teacher’s open responses were sorted into whether they had preferred (a 

lot or somewhat) Get Out of My House or Goat Crashers or whether they preferred each game 

equally. Note that only the qualitative analysis of the Get Out of My House and Goat Crashers 

comparison is included, as time constraints towards the end of three of the workshops meant 

that participants were not afforded adequate opportunity to respond to the final open-ended item 

inviting them to explain their preference for either Part-Whole Triangles or Goat Squad. 

The written responses to the three questions were each analysed separately using qualitative 

line-by-line coding as outlined by Braun and Clarke (2012). The following stages were 

conducted: familiarisation with the data; generating initial themes; merging responses that can 
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be accommodated into a single theme; defining and naming themes; and producing a table with 

illustrative quotes for each theme. For brevity, the data from each table that described teachers’ 

explanations for choosing Goat Crashers or Get Out of My House were combined and are 

synthesised in Tables 4 and 5 respectively. Illustrative quotes that elaborate the definition for 

each theme are provided. Note that some responses were coded to more than one theme. Hence 

the sum of the n values may be greater than the number of responses (n). For example, when 

responding to: Which game would you be more likely to use with students in a primary school 

classroom, Participant A11 (who selected Get Out of My House) wrote “Easier to set up and 

more monitorable.” This response was assigned to two themes Easier to set up and Easier to 

monitor students (see Table 4). 

Results and Discussion 

The first research question was focussed on the extent to which primary school teachers 

indicated a preference for a particular game mode (digital versus non-digital) to support 

mathematics instruction, in the context of comparing two functionally equivalent games. This 

involved teachers’ comparing each pair of games along three dimensions: which mode they 

thought students would prefer playing; which mode they thought was more effective for 

supporting mathematics learning; and which mode they would be more inclined to use in the 

classroom with students. Results of these comparisons are detailed in Table 1, Table 2 and 

Table 3 respectively and are summarised below. Note that, within these tables, Pair 1 refers to 

Get Out of My House (non-digital) and Goat Crashers (digital), whilst Pair 2 refers to Part-

Whole Triangles (non-digital) and Goat Squad (digital). 

Table 1 

Question: Which Game do you Think Students Would Prefer Playing? 

Teachers’ response option (percentage of respondents) Pair 1 (n=84) Pair 2 (n=81) 

(1) Students would strongly prefer [Non-Digital Game] 12% 21% 

(2) Students would somewhat prefer [Non-Digital Game] 15% 30% 

(3) Students would like them the same 40% 28% 

(4) Students would somewhat prefer [Digital Game] 23% 15% 

(5) Students would strongly prefer [Digital Game] 10% 6% 

Mean score (SD) 3.0 (1.1) 2.6 (1.2) 

Overall, there was partial evidence that teachers anticipated students would prefer playing 

non-digital games. Specifically, while teachers, on average, anticipated that students would 

prefer playing Part-Whole Triangles to Goat Squad, t(80) = −3.44, p < 0.01, a one-way t-test 

using “Students would like them the same” (3.0) as the reference value revealed that, on 

average, teachers did not anticipate that students would prefer Get Out of My House to Goat 

Crashers, t(83) = 0.19, p > 0.05. Indeed, Table 1 indicates that around half of primary teachers 

thought that students would prefer Part-Whole Triangles (51%), compared with less than one-

quarter anticipating that students would prefer the digital equivalent Goat Squad (21%). By 

contrast, there was comparatively little difference between the number of teachers who thought 

that students would prefer Get Out of My House (27%) compared with Goat Crashers (33%). 

Similarly, there was only partial evidence that teachers believed that the non-digital mode 

of the game would be more effective for supporting mathematical learning than the digital 

mode. Again, while a one-way t-test using “They are both equally effective for supporting 

maths learning” (3.0) as the reference value indicated that, on average, teachers believed Part-

Whole Triangles was more effective than Goat Squad t(81) = −4.65, p<0.01, there was no 

significant difference in perceived effectiveness when comparing Get Out of My House with 

Goat Crashers, t(83) = −1.51, p > 0.05. Whereas Table 2 indicates that most teachers (54%) 
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thought that Get Out of My House and Goat Crashers were equally effective for supporting 

student learning, only just over one-third of teachers (39%) held this view when comparing 

Part-Whole Triangles to Goat Squad. 

Table 2 

Question: Which Game do you Think is More Effective for Supporting Student Maths Learning? 

Teachers’ response option (percentage of respondents) Pair 1 (n=84) Pair 2 (n=82) 

(1) [Non-Digital Game] is a lot more effective for supporting maths 

learning  

10% 20% 

(2) [Non-Digital Game] is somewhat more effective for supporting 

maths learning 

19% 29% 

(3) They are both equally effective for supporting maths learning 54% 39% 

(4) [Digital Game] is somewhat more effective for supporting maths 

learning 

13% 9% 

(5) [Digital Game] is a lot more effective for supporting maths learning 5% 4% 

Mean score (SD) 2.9 (0.9) 2.5 (1.0) 

Contrasting somewhat with the data revealed in Tables 1 and 2, there was clear evidence 

that teachers believed they would be more likely to use the non-digital game mode of the game 

with students in the future. Specifically, using “I would be equally likely to use either game” 

(3.0) as the reference value, teachers indicated they were more likely to use both Part-Whole 

Triangles, t(80) = −6.99, p < 0.01, and Get Out of My House t(82) = −3.19, p < 0.01. Table 3 

confirms that teachers were substantially more inclined to report having a strong preference for 

using the non-digital games (38% Part-Whole Triangles; 22% Get Out of My House) compared 

with their digital counterparts (2% Goat Squad; 6% Goat Crashers). 

Table 3 

Question: Which Would you be More Likely to use With Students in a Primary School Classroom? 

Teachers’ response option (percentage of respondents) Pair 1 (n=83) Pair 2 (n=81) 

(1) I would be a lot more likely to use [Non-Digital Game] 22% 38% 

(2) I would be somewhat more likely to use [Non-Digital Game] 16% 21% 

(3) I would be equally likely to use either game 48% 31% 

(4) I would be somewhat more likely to use [Digital Game] 8% 7% 

(5) I would be a lot more likely to use [Digital Game] 6% 2% 

Mean score (SD) 2.6 (1.1) 2.2 (1.1) 

To summarise, teachers were far more likely to indicate interest in using the non-digital 

mode of a game with students back in their classrooms after playing both functionally 

equivalent modes in a workshop setting. This is despite the fact that their views about whether 

the non-digital game was more effective for supporting learning, or would be preferred by 

students, appeared to depend at least somewhat on the specific pair of games being compared. 

It is worth noting that such preferences for non-digital games are consistent with prior research 

inquiring into primary school teachers existing practice (Russo et al., in press). 

In juxtaposing the two digital games, it was apparent that teachers viewed Goat Crashers 

more favourably than Goat Squad. Potential reasons for this might include the comparative 

richness of their respective digital landscapes in drawing students into the game world, and 

perceived opportunities to support mathematical thinking. Regarding this latter point, it is worth 

noting that Goat Crashers allowed students to choose an operation to construct an incomplete 

number sentence, and then provided immediate feedback to students about whether or not they 

are correct (e.g., an incorrect response brings up the prompt, “Think again: Is there another way 

to work out the problem?”). By contrast, Goat Squad only provided feedback once students had 
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correctly placed three numbers that shared a part-part-whole relationship in the appropriate box 

(e.g., 3, 4, 7), and did not make connections back to number sentences. 

The second research question was concerned with examining the reasons teachers provided 

for these preferences and was limited to comparing Goat Crashers with Get Out of My House. 

Results of the thematic analysis are presented in Tables 4 and 5. Note that explanations for 

neutral responses are not presented in this paper due to space constraints, however the most 

frequently provided explanation for a neutral response could be coded to the theme Prefer both 

equally as they are similar in content or serve the same purpose (e.g., “It is really the exact 

same game, so they are equally effective”, Participant A42). Most remaining neutral responses 

could be coded to a second theme of Prefer both equally but for different reasons (e.g., 

“Students would like Get Out of My House as they could physically throw the opponents 

counter off the board. Likewise, the digital mode would appeal to students because of the 

animation, sound, as well as using a computer … Different formats appeal to different students 

to support their maths learning”, Participant A39). 

As indicated by Table 4, comfortably the most common reason provided for preferring Goat 

Crashers was the reported richness of the digital landscape to draw students into the game; that 

is, sound effects, graphics, movement, characters and storyline. This explanation resonates with 

the notion that digital games involve players interfacing in an environment that has been 

principally constructed to entertain (Cojocariu & Boghian, 2014). 

Table 4 

Teachers’ Preferences for ‘Goat Crashers’ Including Their Beliefs Around Student Preferences, 

Effectiveness for Learning, and Their Likelihood to Use 

Main themes Response 

(n=52) 

Illustrative quotes  

Sound effects, graphics, move–

ment, characters, & storyline 

23 A3—Children would enjoy the sounds effects and 

graphics 

More engaging “fun” 10 A8—It is more stimulating and engaging being an 

online game 

Preference for digital games 8 A12—[I prefer] the tech aspect 

Easier to set up 6 A32—Less preparation, easier access 

Multiplayer/Group work 6 A36—Accessible for small groups to share and discuss 

Feedback 5 A4—Goat Crashers gives instant feedback for students. 

If they’re playing in pairs and get the answer wrong, in 

Get Out of My House they may not necessarily realise 

By contrast, the most frequently offered reason for preferring Get Out of My House related 

to its hands-on nature and opportunity to utilise concrete materials (see Table 5). Other notable 

reasons included opportunities for interaction and discourse, and the potential to modify the 

game for different learners. Indeed, these three most frequently offered explanations for 

preferring Get Out of My House resonated with teachers’ pedagogical reasons for preferring 

non-digital games in general as gleaned from previous research, namely: better for promoting 

collaboration, interaction, and communication; more ‘hands-on’ and opportunities to use 

manipulatives; and easily adapted/ differentiated (Russo et al., in press). 

The notion that a comparative advantage of Get Out of My House is its ‘modifiability’ is 

particularly noteworthy and perhaps somewhat surprising, given that teachers were shown 

multiple versions of Goat Crashers in addition to the addition and subtraction mode that they 

played. This included versions to support multiplication and division fact practice with various 

target multiples, and a more cognitively demanding version that involved the choice of using 

any operation. 
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Table 5 

Teachers’ Preferences for ‘Get Out of My House’ Including Their Beliefs Around Student Preferences, 

Effectiveness for Learning, and Their Likelihood to Use 

Main themes Response (n=83) Illustrative quotes  

Use of materials/ 

Hands-on 

20 A1—The rolling of the dice and the counters I see the 

students really engaging with 

More interaction and 

discourse 

14 B28—It provided opportunity for collaboration and 

exchange of emotions between players 

Easier to modify, 

adapt or differentiate 

12 A20—There are multiple ways you can play the game (i.e., 

more counters, multiplication, sight words) 

More engaging “fun” 11 A30—Students would enjoy saying ‘get out of my house’ 

and having a laugh 

Disadvantages of 

digital games 

10 A14—Cognitive overload in the Goat Crashers game; 

noises detract from application of mathematical skill 

Suitability for age 

group 

10 A40—Easier for younger students. 

A29—[Suitable] for older students 

Easier to set up 8 

 

A15—Materials are on hand in the classroom. Quicker than 

getting out devices and logging on 

Easier to monitor 

students 

7 A5—Has ability for the teacher to monitor student progress 

better, so as to be able to scaffold students if needed 

More opportunities 

for challenging maths 

work  

6 A43—GOMH gives children more opportunity to think 

about their equations, decide on an operation, write it down 

if needed. More skills involved than the digital version 

Consequently, it appears that teachers valued the capacity to adapt and modify Get Out of 

My House in highly specific ways to support students, rather than merely having access to pre-

set variations. Interestingly, the idea that a given mode of the game was more engaging from a 

student perspective, or easier to setup, emerged as a reason for preferring both the digital and 

non-digital modes. Moreover, while some teachers preferred Goat Crashers specifically 

because they preferred using digital games, other teachers indicated a preference for Get Out 

of My House precisely because they perceived digital games to have specific disadvantages, 

such as the potential for cognitive overload. 

Conclusions 

Although research has revealed similar cognitive and affective benefits to using non-digital 

and digital games in the primary mathematics classroom, previous studies have tended to not 

consider teacher views concerning the types of games they prefer to utilise to support 

instruction. The current study supports our recent finding that most teachers prefer using non-

digital games over digital games, principally for pedagogical reasons (Russo et al., in press). 

That these preferences were revealed even in a context where the non-digital and digital modes 

of the game were functionally equivalent is noteworthy. It suggests that teachers’ tendency to 

prefer non-digital games is not principally driven by issues such as a lack of access to high-

quality digital games. Future research should consider conducting classroom-based quasi-

experimental and/or observational studies to examine whether the comparative pedagogical 

benefits of playing non-digital games anticipated by teachers are actually borne out in practice. 

Moreover, such research should examine the extent to which these benefits are moderated by 

factors such as the teacher’s digital literacy, as well as their beliefs about digital technology. 
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Prior to the COVID-19 pandemic, the university educational system in Nigeria largely 

employed traditional, face-to-face classroom approaches for teaching. This study 

examines how mathematics lecturers adapted to online teaching in response to COVID-

19 restrictions. A mixed methods approach was used to obtain both qualitative and 

quantitative data from ten mathematics and mathematics education lecturers, using 

questionnaires and semi-structured interviews. The results highlight mathematics and 

mathematics education lecturers’ use of virtual boards, writing pads, and WhatsApp to 

improve interactions while teaching online via Zoom. 

The online medium has created an entirely new landscape of educational opportunities 

(Sven & Julie, 2020). The globe is rapidly becoming more interconnected and online education 

is growing rapidly (Okyere et al., 2022). As a result, students can access a high-quality 

education at a reduced cost, regardless of their location or schedule (Xu & Xu, 2019). In 

Nigeria, online teaching and learning practices are at the developmental stage. Socioeconomic, 

sociocultural, and IT infrastructural factors are recognised challenges hindering the adoption of 

online learning in Nigeria (Abdulmajeed et al., 2020). The global outbreak of COVID-19 

greatly impacted educational systems worldwide, including Nigeria, where institutions were 

compelled to close in response to the pandemic (Lawal, 2020; Oyedotun, 2020). This closure 

necessitated a shift to online delivery methods, utilizing various platforms such as radio, TV, 

WhatsApp, Zoom, Google Meet, YouTube, and other internet-based learning (Lawal, 2020). 

This transition was a significant move from traditional reliance on in-person teaching methods, 

prompting educational institutions to adapt online approaches for their content dissemination 

(Lawal, 2020). Prior to the pandemic, Nigeria had only 13 approved distance learning centres 

among its 221 universities and 123 affiliate campuses (National Universities Commission 

[NUC], 2023). Amidst the COVID-19 pandemic, lecturers and students adapted from a face-

to-face instructional approach to teaching and learning remotely using online media (Lawal, 

2020). Consequently, lecturers and students had to adapt to the new teaching and learning 

approaches (Sabitu et al., 2022) and utilise technology in the teaching and learning process 

(Sven & Julie, 2020). In addition, educational institutions had to upgrade their IT infrastructure 

to enhance students’ synchronous and asynchronous learning experiences (Lawal, 2020). 

According to Lawal (2020), educational institutions and providers have the primary 

responsibility for creating an enabling environment for online teaching, offering sufficient 

materials and resources to support the flexibility of online teaching. Adaptation involves 

making adjustments to teaching and learning methods, enabling teachers to devise strategies 

suitable for operating in the new teaching environment (Mardiana, 2020). The pandemic 

necessitated the widespread adoption of online teaching and learning as an alternative method 

of education. 

Undergraduate mathematics courses necessitate students’ comprehension of the taught 

concepts, which often entails engaging in various activities during lecture sessions. 

Mathematics is a subject that is often not preferred by many students (Sven & Julie, 2020). The 

technical nature of mathematics can make it difficult to teach online (Trenholm, 2013), although 

Borba et al. (2016) see online mathematics teaching as an opportunity to disrupt traditional 

teaching processes to the benefit of students and their learning. Teaching using online media 
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and technology is not new, but online teaching approaches are thought to be more suited for non-

mathematical courses (Hamdan & Amorri, 2022). Mathematics holds considerable importance 

in Nigerian tertiary education, serving as a fundamental unit across various undergraduate 

courses, particularly in STEM fields (National Universities Commission [NUC], 2015). All 

first-year undergraduate students are required to take a mathematics course as part of their 

general studies curriculum. This course is crucial as it equips students with essential 

mathematical and computational skills necessary for their studies. In Nigerian universities, 

mathematics lecturers typically belong to two categories: those teaching mathematics courses 

and those focusing on mathematics teaching methodology, covering primary and secondary 

mathematics content. The mathematics education curriculum includes both mathematics and 

methodology courses, with students being taught by both types of lecturers ( NUC, 2015). 

Onyema (2020) advocated for educators to incorporate and utilise emerging technologies 

in their teaching and learning. He observed that utilizing technology is now essential due to the 

need for flexibility in methods. The influence of technology on education shows the growing 

need for adaptable teaching methods to promote creativity and innovation in the teaching 

process (Lawal, 2020). The COVID-19 pandemic prompted a shift from traditional face-to-face 

teaching to online instruction. This transition led to modifications in the teaching approaches 

of lecturers, highlighting the importance of understanding their methods and actions during 

online interactions with students (Muir et al., 2022). The rapid switch from face-to-face to 

online teaching within a short period had its impact on lecturers (Tella & Obim, 2022). The 

impacts identified included lecturers’ inability to communicate their intended learning content 

to students via the online mode, and the inability to effectively use the technological devices 

and platforms provided for effective teaching and learning (Lawal, 2020). Trenholm (2013) had 

already identified lack of student-teacher interactions as an issue for teaching and learning of 

mathematics online. 

According to Trenholm, teaching mathematics online presents a challenging environment 

for instructors to effectively adapt their teaching methods to promote students’ understanding 

of mathematics. To address this challenge, lecturers should utilise devices and tools that 

facilitate interaction during the teaching process (UNESCO UNICEF, 2020). Tella and Obim 

(2022) identified several barriers to online teaching and learning in Nigeria, including limited 

access to electronic devices, inadequate internet connectivity, power, challenges in time 

management, and financial constraints associated with hosting online lectures. 

Therefore, this study investigates how lecturers in Nigeria adapted their teaching from face-

to-face to online. The study explores mathematics and mathematics education lecturers’ 

transition to online teaching as caused by responses to COVID-19. This study discusses how 

lecturers adopted online teaching tools for mathematics teaching, their perspectives about the 

nature of teaching mathematics online, and their knowledge and use of online teaching tools 

during the pandemic. This study seeks to answer the research question: 

How did mathematics and mathematics education lecturers in a Nigerian university adapt 

their teaching approach to online teaching during the COVID-19 pandemic? 

Methodology 

This study, which comes from the first author’s ongoing PhD research project, adopted a 

mixed-methods approach (Creswell & Clark, 2017) to obtain in-depth information about the 

lecturers’ online teaching experiences. The study was exploratory and both qualitative and 

quantitative data were collected. A case study approach was adopted to explore the phenomenon 

of transition to online mathematics teaching among mathematics education lecturers (MEduL) 

as Case 1 and mathematics lecturers (ML) as Case 2. The research took place at a private 

university in southwestern Nigeria, involving five participants each from Case 1 and Case 2, 

who had prior experience or had recently transitioned to online mathematics teaching due to 
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COVID-19. The selection of these groups was based on the involvement of both mathematics 

and mathematics education lecturers in teaching the undergraduate mathematics education 

curriculum. Full ethical approval was obtained from the researcher’s university and the 

participating institution. 

A survey was conducted and followed up with a semi-structured interview; these were used 

to explore the experiences, interactions, perspectives, and technological knowledge in both 

cases. Semi-structured interviews allowed for tailored questions and prompts, facilitating in-

depth discussions (Galletta, 2013) on topics such as previous teaching experiences, engagement 

processes, challenges and successes in online teaching, and perspectives on the transition to 

online mathematics education. Purposive sampling was used to select five participants from 

each case, and interviews were conducted at convenient times for the participants. Prior to the 

interviews, all ten lecturers indicated varying levels of agreement with specific survey 

questions. These questions covered statements such as “I find it easy teaching mathematics 

face-to-face”, “I prefer to teach mathematics face-to-face than online”, “I spend more time 

preparing to teach mathematics online than face-to-face”, “My ability to use technology impacts 

my teaching abilities”, and “Teaching online has helped to improve my overall teaching of 

mathematics”. 

Data analysis involved transcription of interviews, confirmation of transcribed data by 

participants, and thematic analysis using NVivo software. The iterative process included 

familiarization with the data, generating codes, identifying initial themes, reviewing and 

refining themes, and writing the final report (Clarke & Braun, 2021). The findings presented 

the experiences of mathematics education and mathematics lecturers during the transition to 

online teaching. Quotations from participants’ interview transcripts were included with 

anonymization to protect participant identities. 

Findings 

Table 1 details participants’ demographics, and their pre-COVID-19 online teaching 

experiences. Table 1 indicates that among mathematics education lecturers, three had previous 

experience using online tools for teaching, while two had no prior online teaching experience 

before COVID-19. Similarly, among mathematics lecturers, only two had previously utilised 

online tools for teaching. The semi-structured interview responses indicated that prior to 

COVID-19, all lecturers and students engaged with online tools or content asynchronously 

rather than in real-time (synchronously). This was due to the challenges associated with 

conducting real-time classes. However, students were able to access or search for online content 

at their own convenience, facilitating deeper understanding. The discussion below gives 

examples of participants’ experiences with online tools prior to the pandemic, “I give students 

tasks and assignments from online material to encourage their internet use and search for 

materials on their own. To further motivate students, I conclude my classes by providing 

additional links to concepts taught” (ML2). 

While not all lecturers explicitly provided links, some assigned students tasks that involved 

online research and assignments. Additionally, ML2 emphasised that these links exposed 

students to various learning materials related to the concepts taught. He believed this approach 

motivated students and accommodated different learning styles “Yes, sometimes I use online 

content to provide students [pre-service teachers] with additional explanations and examples on 

the approach to teaching children [in school] with high-level need” (MEduL3). 

All lecturers attributed their limited usage of online tools for teaching before the pandemic 

to challenges such as poor internet infrastructure and power supply. 
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Table 1 

Participants’ Information 

Participant 

information 

Highest 

qualification 

Teaching 

experiences 

(years) 

Computer and 

internet skills 

usage 

Using 

online 

platforms 

(years) 

Used online tools 

for teaching prior 

to COVID 

ML1 PhD 7 Proficient 5 Yes 

ML2 PhD 8 Proficient 3 Yes 

ML3 PhD 12 Proficient 5 No 

ML4 PhD 6 Proficient 3 No 

ML5 PhD 8 Intermediate 3 No 

MEduL1 Masters 5 Proficient 3 Yes 

MEduL2 PhD 6 Intermediate 2 No 

MEduL3 PhD 27 Proficient 4 Yes 

MEduL4 PhD 16 Proficient 4 Yes 

MEduL5 PhD 8 Intermediate 1 No 

Table 2 identifies the three key themes in the data along with the corresponding generated 

codes, illustrating how mathematics and mathematics education lecturers adapt to online 

teaching during the pandemic. The themes were developed through reflexive thematic analysis, 

derived from the dataset without any preconceptions (Braun & Clarke, 2019), and emerged 

from generated codes about the mathematics and mathematics education lecturers’ adaption to 

online teaching. The themes represent the combined results from both Case 1 and Case 2, 

reflecting participants’ responses regarding the themes explored in this study. 

Table 2 

Themes and Codes 

Themes  Codes  

Online teaching engagement Approach to teaching, interactions with students, 

class control, and time management 

Perspectives about online mathematics teaching Nature of mathematics, beliefs, readiness, and 

capacity to teach 

Knowledge and use of technology for teaching Software used, use of internet to teach or learn, use 

for professional development 

Online Teaching Engagement 

The theme “Online teaching engagement” emerged from codes generated during the study, 

capturing lecturers’ approaches to teaching, interactions with students, class control, and time 

management while teaching online during COVID-19. All participants acknowledged 

challenges during the initial transition to online teaching, including technical difficulties, poor 

internet reception, and adjusting to fully online teaching. For example, ML3 said “I transferred 

my usual face-to-face method to online, but less interaction made it one-sided.” He added: 

Unlike the educational system in other parts of the world, our educational system is still developing. 

So, the experiences are new to most of our students since teaching and learning is usually in face-

to-face. It was a fine experience but difficult during the initial lockdown. 

Mathematics lecturers mentioned that they create recorded versions of their face-to-face 

lectures by teaching on the board in the university’s ICT centre, with the sessions being 

recorded. These videos were accessible to students on the university portal before live lectures, 

aiding comprehension and allowing for questions on areas of difficulty and making the lecture 
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interactive. One participant mentioned that his lack of technical skills, combined with poor 

internet and power at home, hindered his use of university-provided platforms for online 

teaching (MEduL2). Another participant expressed concerns about the educational 

infrastructure’s limitations for online teaching, citing challenges such as power generation 

costs, internet access, and infrastructure expenses beyond the university’s control (MEduL3). 

He further noted: 

As for me during the lockdown, my recorded lectures are online, I used demonstration method and 

during my presentation I will deliver a summarized lecture utilizing slides … Additionally, I will 

incorporate gestures to enhance communication, and occasionally, I will play video clips 

demonstrating responses and actions used for teaching pupils with special needs. Furthermore, 

students will have access to recorded Zoom lectures, allowing them to re-view the content at any 

time. 

All participants expressed their concern about the level of interactions they had with 

students. They all expressed the importance of interaction in a mathematics class. ML1 stated: 

Considering the fact that mathematics science requires a lot of interactions during the teaching 

process. Lecturers’ students, relationships on difficult aspects cannot be achieved due to timing in 

an online class. So, the direct observation of students’ understanding through their facial gestures 

and interactions is missing. 

MEduL2 shared similar sentiments regarding facial expressions, gestures, and interactions 

with students. In contrast, ML2 expressed that, “I feel online teaching has brought students 

closer to me in terms of interactions and at any time ... They are happy to communicate and 

resolve pressing problems outside lecture periods with me or their colleagues if need be”. 

Additionally, MEduL1 noted how the breakout room enhanced students’ interactions and 

collaboration while teaching and observed an increased confidence in students presenting the 

groups viewpoints despite being shy or hesitant in a regular face-to-face setting. MEduL3 

mentioned challenges he observed and using WhatsApp to increase students’ interactions 

despite students using the application to chat socially. He also said, “Teaching online also 

presents challenges as it consumes time, and I find it difficult to monitor or assist slow learners’ 

progress”. WhatsApp was used more by mathematics education lecturers due to better tolerance 

with poor internet connectivity. 

Perspectives About Online Mathematics Teaching 

The theme “Perspectives about online mathematics teaching” emerged from the generated 

codes, covering aspects such as the nature of mathematics, beliefs, readiness, and capacity to 

teach mathematics online. Both groups of lecturers expressed similar beliefs regarding online 

mathematics teaching, as reflected in the codes. Their attitudes align with the findings of 

Hamdan and Amorri (2022) and Trenholm (2013) who highlighted the technical nature of 

mathematics as a significant challenge in online teaching. MEDuL4 “With my background in 

mathematical science, I feel there are difficult branches of mathematics that are not suitable for 

online teaching”. Both Case 1 and 2 participants talked about considering the nature of 

mathematics in the teaching and learning processes. Specifically, ML5 talked about “the content 

should be from simple to complex for students to understand”. He noted that “Personally, I find 

teaching mathematics online particularly challenging due to the lack of appropriate teaching 

tools and the delayed response to and from students’ questions”. 

The lecturers had varying views on how difficult they thought it was to teach mathematics 

content and mathematics pedagogical content online. ML4 noted that “online teaching 

platforms are more suitable for theoretical courses” and he relied on students’ facial expressions 

and the questions asked to measure the level of understanding. The assertions of ML2 and 

MEduL2 supported ML4’s view on mathematics teaching processes as they engaged with the 

contents. Additionally, ML3 noted: 



Saddiq & Chick 

476 

I cannot observe students’ work in an online class, I cannot guide or give student hints when they 

are hooked [stuck] with steps while finding solution to the question. Unlike face-to-face where facial 

expressions, questions asked, collaborative solutions of problems on the board by students speak 

volume to their understanding of the concept taught”. 

In contrast, MEduL5 noted that “Teaching mathematics methodology online was easier 

compared to teaching mathematics content for secondary schools”. Other participants made 

similar reference to the difficulty of teaching mathematics education content online, “My 

concern is how to equip undergraduate students with the practical skills and methods required 

for teaching mathematics to children [in schools]. These I feel are not exclusively available 

while teaching online” (MEduL4). 

MEDuL3 commented on the significant role that interaction plays in the teaching/learning 

process. He further identified interactions between the lecturers and students as the major 

difference between teaching mathematics face-to-face or online. 

Knowledge and Use of Technology for Teaching 

All ten lecturers were familiar with the use of computers and the internet as shown in 

Table 1. The semi-structured interviews further revealed participants’ use of the internet to 

search for information, use of emails, and use of online platforms such as Zoom and Google 

Meet for presentation at conferences, workshops, or seminars. Mathematics lecturers used 

additional tools like Latex, Math Lab, and equation editors for their research papers, and ML1 

said he lectures students on how to use these tools and others to build software. 

Three mathematics education lecturers and two mathematics lecturers identified using 

online teaching platforms prior to COVID-19. This was a result of their IT experience, and/or 

their use of asynchronous tools to teach or learn during their further studies. For example, ML2 

said “I used most of these facilities during my studies in United States, therefore I found it much 

simpler” and MEduL1 said “I am familiar with the tools provided by the university. This is due 

to my experience with IT tools and some I learned with my current PhD colleagues.” 

Their passion for teaching, coupled with their experiences and the necessity for research, 

drove them to utilise online tools. However, this came at a personal expense, particularly 

regarding providing alternative power sources, and internet subscription fees for home and 

office use, especially during instances of university internet downtime or poor quality. 

Generally, both mathematics and mathematics education lecturers shared similar opinions 

on their personal learning gains during lockdown in respect to teaching and learning. For 

example, MEduL5 said “The lockdown gave me more experience in teaching using online 

platforms. Because I never believed that mathematics and mathematics-related concepts could 

be taught online with our present IT infrastructure and skills”. Similarly, ML1 noted “My 

experience with teaching online has encouraged the development of my understanding of online 

teaching processes and has boosted my confidence in utilizing online tools for teaching and 

research purposes.” 

Discussion and Conclusion 

This study examined the perspectives of mathematics and mathematics education lecturers 

and their adaption of online mathematics teaching in response to COVID-19. Three themes 

were derived from the data analysis of ten interviews. The findings centred on the viewpoints 

of individual lecturers regarding their adoption and involvement in online mathematics 

teaching. The perspectives on online mathematics teaching and the level of technology 

utilization among both groups of lecturers were influenced by their prior experience with the 

internet and various online platforms. Personal and professional development with online tools 

played a key role during the transition to online teaching. Both groups of lecturers noted 

challenges in adapting face-to-face teaching methods to an online format, particularly among 
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those with no prior online teaching experience, but there were some positive views on online 

mathematics teaching. Mathematics education lecturers were concerned about how to teach 

students (pre-service teachers) the practical approach required for teaching in schools. These 

findings are consistent with the observations of Hamdan and Amorri (2022) and Trenholm 

(2013) on the constraints of online courses in fostering students’ understanding of mathematics. 

The quality of lecturer-student interactions during the teaching process was identified a 

major concern while teaching mathematics online. That students had difficulty being able to 

give timely responses during lectures was a challenge. Both groups of lecturers emphasised the 

need for two-way communication between the students and the lecturer. Trenholm (2013) 

suggests the importance of synchronous interaction to enrich teaching and learning mathematics 

online. As a result of this, mathematics lecturers were provided with virtual board software and 

the use of tablets as a writing pad to improve illustrations of what the lecturers might write 

during online lectures. Others used the facilities at the university ICT centre. Similarly, 

mathematics education lecturers used video clips for further clarification. Also, both groups of 

lecturers noted the use of WhatsApp for synchronous voice and image interaction in 

conjunction with Zoom and Google Meet to enhance teaching. In situations when internet 

connectivity was poor, lecturers utilised WhatsApp to enhance interaction. Also, mathematics 

lecturers prepared pre-recorded lectures to mirror their face-to-face lectures. Additionally 

Zoom-recorded lectures, alongside the pre-recorded lectures, were uploaded on the university 

learning management system to enhance students understanding. This aligns with the findings 

of Muir et al. (2022), which examined the strategies and actions employed by lecturers to 

achieve success in an online mathematics course. 

All the lecturers endorsed the blended approach to teaching mathematics, emphasising that 

online platforms ought to complement face-to-face instruction, which aligns with the 

conclusions of Adnan and Yaman (2015). Previous utilisation of online resources for teaching 

or learning, as reported by both mathematics and mathematics education lecturers, had a 

substantial impact on their teaching. The utilisation of online technologies, whether for their 

continued education or for academic endeavours such as conferences, workshops, and seminars, 

also had a substantial impact on their teaching. Enhancing professional development in the 

context of online teaching and learning will significantly contribute to the advancement of 

online teaching methodologies. Both mathematics and mathematics education lecturers 

expressed a strong desire to continue utilising online teaching methods, provided the necessary 

infrastructure is readily accessible. Given the lecturers’ worried over conveying the nature of 

mathematics, it would be interesting to ascertain which facets of mathematics pose challenges 

in terms of instruction using online platforms. 
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Little research is evident about integration of mathematics in sustainability tasks to raise 

students’ awareness and actions to solve a sustainability challenge. In this paper, we 

explore how a teacher designed and implemented a sustainability project, which 

included mathematics to raise Year 10 students’ (aged 15–16) awareness and actions 

about sustainability. Data, including classroom observations and interviews, were 

analysed based on one characteristic of the green mathematics framework: projection. 

We report on how students used mathematics to project future situations and how the 

projection may raise students’ awareness and actions to address sustainability. 

Greta Thunberg has been school-striking every Friday for years to campaign for climate 

justice; her campaign has inspired other people including students from all over the world to do 

the same (Sabherwal et al., 2021). To participate in public discussion and debate to convince 

people about the urgency of climate change, students need to understand how climate change 

eventuates and how to address the problem (Barwell & Hauge, 2021). School education can 

play a pivotal role in engaging students in the topic of sustainability and providing opportunities 

to become curious about and aware of current environmental challenges (UNESCO, 2020). 

“To develop students’ ability to tackle real-world problems and apply mathematical 

knowledge successfully, schools and education systems need to go beyond formal mathematics 

education” (OECD, 2023, p. 60). Formal mathematics education aims to help students 

understand mathematics concepts and use them to solve problems that relate to reality. 

However, such problems are often intentionally simplified for educational purposes (Vos, 

2018). Meanwhile, problems that humanity faces, such as climate change, are very complex 

(Barwell & Hauge, 2021). If students are only taught mathematics as a means to solve contrived 

problems, it may be challenging for them to use mathematics in complex real-world problems 

(Tran & Dougherty, 2014). Therefore, students should be given the opportunity to investigate 

complex problems, including sustainability challenges, using mathematical ideas. 

Sustainability has been increasingly included in school curricula and research has shown 

how teachers have taught sustainability either through learning areas (da Silva-Branco & 

Woods-McConney, 2021) or co-curricular projects (Anggraena et al., 2022). However, little 

research is evident about how their implementation used mathematics to raise students’ 

awareness and actions. In this paper, we aim to explore how a high school teacher, Kartini 

(pseudonym), designed and implemented a sustainability project, in which students investigated 

a local environmental challenge, then proposed and took actions in addressing the problem. We 

used the green mathematics framework (Salim, 2023) to analyse the project design and 

implementation to understand how projects could raise students’ awareness and actions. 

Educational Policies and Sustainability: Raising Knowledge 

The United Nations Educational, Scientific and Cultural Organization (UNESCO) has 

called on all countries to start teaching students about climate change and other sustainability 

challenges through Education for Sustainable Development (ESD) for 2030 (UNESCO, 2020). 
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ESD for 2030 aims to “raise knowledge, awareness, and action” (p. 17). Some countries have 

already included sustainability into their curricula (e.g., Anggraena et al., 2022; da Silva-Branco 

& Woods-McConney, 2021). In Australian curriculum, for example, sustainability is one of 

cross-curriculum priorities, which is to be integrated across learning areas. In Indonesia’s new 

curriculum (known as kurikulum merdeka or emancipated curriculum), sustainability is one of 

seven co-curricular project themes, taught separately from intra-curricular subjects (learning 

areas in Australian curriculum) (Anggraena et al., 2022). Indonesian schools must allocate 25–

30% of school time to thematic co-curricular projects. 

Such educational policies aim to give opportunities for students to learn about sustainability 

challenges, but only teachers can provide students with a learning experience that is meaningful 

and potentially raises their awareness of sustainability challenges (UNESCO, 2020). Some 

Australian teachers self-reported that they were able to integrate sustainability across learning 

areas like science, digital technologies, and mathematics (da Silva-Branco & Woods-

McConney, 2021). Likewise, some Indonesian schools have implemented a sustainability 

themed co-curricular project (Anggraena et al., 2022). However, little research is evident about 

how the integration of sustainability into learning areas (especially mathematics) can influence 

students’ awareness and actions. In the next section, we discuss how mathematics and 

sustainability education can be integrated to raise students’ awareness. 

Integrating Mathematics and Sustainability Education: Raising Awareness 

The focus in mathematics classrooms is often on concepts and procedures, which can be 

categorised as formal mathematics (OECD, 2023; Schmidt et al., 2022). Word problems, 

intended to show how mathematics can be used, are often inauthentic and lack complexity of 

realistic situations. Students may therefore focus only on prescribed mathematical procedures, 

disregarding the problem context (Lubienski, 2000; Palm, 2007). However, mathematics 

education could play a role in supporting students’ understanding and awareness of complex 

sustainability challenges (Barwell & Hauge, 2021). For example, by investigating variability in 

data collection, students could experience some of the complexity of a real-life system 

(Dierdorp et al., 2017). Using mathematics as a tool to analyse the system and interpret data 

within the system provides a path to building awareness of a sustainability phenomenon. 

Another important aspect to consider is that students need to have purpose to use 

mathematical ideas (e.g., measurement and statistics) if they are to meaningfully analyse data 

to understand a problem (Ainley et al., 2006). Sustainability contexts that can be related to 

students’ lives may motivate them to use authentic data to investigate a complex problem 

thoroughly (Smith & Watson, 2023). The more the students consider the task as being authentic 

and understand the complexity of a sustainability challenge, the more likely they become aware 

of the problem that addressing this challenge presents (Endsley, 2017). In addition to 

importance of authenticity and complexity, Salim (2023) previously emphasised that 

integrating mathematics and sustainability education requires opportunities for projection 

(Figure 1). After outlining the green mathematics framework, we explore how opportunities for 

projection may strengthen sustainability projects by invoking students’ actions to address a 

sustainability challenge. 

Projection in the Green Mathematics Framework: Raising Actions 

Three basic elements need to be present in tasks or projects that allow to successfully 

integrate mathematics and sustainability education: a sustainability challenge(s), mathematical 

ideas, and problem solving. These elements are interdependent; missing one of them may make 

it difficult for students to understand a sustainability challenge (Salim, 2023). We explained 

above that to raise students’ awareness, the task also needs to be authentic and complex. By 

authenticity, we refer to adoption for classroom use of data/information, context and problem 
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related to a sustainability challenge that has happened, is currently happening, or is predicted 

to happen, and where task designers expect that students would come to have a stake in 

addressing the challenge. Complexity refers to the extent to which the task is presented in a 

classroom as a real-life system, where mathematical ideas and activities (e.g., data collection 

and analysis) may need to be called upon when students engage in the task. To raise students’ 

actions to address a sustainability challenge, the students need to encounter a need to project 

(predict or estimate) future possibilities of the sustainability challenge being investigated in the 

task (Endsley, 2017). 

Figure 1 

The Green Mathematics Framework (Adapted from Salim, 2023) 

 

The term projection in this framework refers to predicting and visualising future 

implications based on current data and information (which is different from projection in 

geometry). Making predictions requires students to reason and make sense of patterns and 

“allows students to activate and refine their existing knowledge [and] … to increase students’ 

level of engagement” (Lim et al., 2010, p. 598). Likewise, projection in the green mathematics 

framework is expected to support students in attending to patterns and connections between 

past, present, and future situations (Endsley, 2017), thus engage in activities that are overtly 

mathematical while working towards understanding a sustainability problem. 

The complexity in the framework is expected to give students opportunities to investigate a 

sustainability challenge as if they were experts and scientists in the field who engage in a real-

world problem solving activity (Schoenfeld, 2016). Projecting throughout a complex 

sustainability challenge may allow students to see a problem from different perspectives. The 

projection makes it possible for students to see themselves being impacted by or perhaps 

contributing to the problem, which can raise not only their awareness of the problem but also a 

need for action. By allowing students to see themselves in future situations, projection may 

motivate them to explore possible solutions and actions to avoid unwanted outcomes. 

Research Methods 

This paper is part of a research project exploring a case in which a high school teacher, 

Kartini, designed and implemented a sustainability project, following Indonesia’s emancipated 

curriculum. We employed the green mathematics framework to analyse the design and 
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implementation of Kartini’s sustainability project. In this paper, we focus on how students used 

mathematics in making projections and how this raised their sustainability awareness and 

actions. The project was designed by a team of teachers, but only Kartini (the chair) participated 

in this study. The data were collected through interviews with Kartini, classroom observations, 

focus group discussion with students, a survey for students, and document artefacts. 

School Context, Participants, and the Sustainability Project 

The research was conducted in an Indonesian Islamic secondary boarding school. The 

school was established in a village surrounded by green mountains, located around 35 

kilometres from the nearest city centre. The school employed approximately 50 teachers and 

accommodated around 150–200 students from Year 10 to 12 (15–18 years old). The school 

started implementing the emancipated curriculum in 2022. Kartini is a biology teacher with 

four years of teaching experience. She designed the sustainability project for Year 10 students 

(15–16 years old). Twenty-seven students who worked on the project participated in this study. 

Kartini and the team designed the sustainability project to address a local environmental 

challenge in the school: waste management. Kartini was concerned about the waste being burnt 

around the school and not managed properly. Since the students spent most of their time at the 

school, they were familiar with the issue. Through this project, Kartini involved the students to 

investigate the problem in order to make them aware that they were contributing to the school 

waste. This project was implemented in five sessions (3–4 hours each). First, Kartini explained 

the project’s aims and introduced the waste problem around the school (introduction). The 

students then collected data about the school waste in groups (contextualisation). Each group 

investigated different types of waste (e.g., single-use plastic bottles, food waste, and paper). In 

the next session, each group presented their data and findings to other students in a mini 

exhibition, then they reflected on their findings to discuss possible actions to address the waste 

problem. The students carried out proposed actions and solutions, and, in the last session, they 

reflected on the project. 

Data Collection and Analysis 

In this case study, four audio-recorded interviews (30–60 minutes) were conducted with 

Kartini: one interview before the project implementation and three interviews afterwards. Of 

five project sessions observed, only two could be video recorded due to the nature of the project 

that was mostly outdoors and required the students to interact with non-participants. After the 

project implementation, the students participated in a focus group discussion and filled in a 

short, anonymous survey to explore their experience in working on the project. Copies of 

documents related to the project (e.g., students’ work, the project’s plan) were also collected. 

The data were analysed by identifying critical events, defined as episodes in which students 

use mathematics as part of their project work, and then coding the transcriptions based on the 

green mathematics framework (Powell et al., 2003). More specifically, we focused on analysing 

a set of questions requiring students to make predictions and estimations, which we term 

projective questions. The data were analysed to investigate how the projective questions in the 

sustainability project oriented the students to use mathematics to understand the local waste 

problem (raising knowledge). We also investigated how the projection could raise students’ 

awareness and actions to address the problem. 

Results 

We report on the analysis of the projective questions in the sustainability project, students’ 

projections, and their responses to the waste problem after the project implementation. 
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Projective Questions in the Sustainability Project 

Kartini and her team designed what they called the ‘Save The Earth Project’, in which five 

structured questions were created for students (Figure 2). Questions 1, 2, and 3 required 

students to observe and collect data around the school related to waste production and 

management. Questions 4 and 5 required them to predict the future situation based the data 

collected. 

Figure 2 

The Questions Designed by Kartini’s Team as Part of the Sustainability Project Design 

 

These questions make the sustainability project complex because students had to plan how 

they collected the data (research design), how they analysed the data (proportion, percentage, 

and statistics), and how they presented their findings (graphs, charts, and tables) in a mini 

exhibition. The aim of these questions was indeed to investigate the waste management, 

including the waste sources, as well as its current and future impact. 

The aim I made the questions is so that students become aware of the fact that the waste they 

produce, although it is small and often neglected, but if it is accumulated in a month, two months, 

or even in one year, that can be a lot. My aim for the questions … is to make it well-structured, so 

that there is a visualisation regarding the source of the waste, either in small or big amount, it is from 

us. Hence, later when doing the actions, certainly any small things that can be done need to start 

from us first. (Kartini, Interview 1, 12:09) 

Kartini did not ask students about waste production in the abstract, but she sought to help 

students to envision their personal contributions to the waste production problem. Her questions 

encouraged the use of mathematics to facilitate students’ predictions, and hence projection 

towards personal awareness and future action. 

Projection Throughout the Project Implementation 

In the introduction session, Kartini asked her students to work in groups on the questions. 

Figure 3 shows an estimation made by Nadya’s group in response to question 3. The students 

estimated that in one day each student used one single-use plastic bottle, two pieces of plastic 

wraps, and three pieces of paper. They estimated the mass of each and calculated that if there 

were 180 students in the school, how much waste they would produce in one day and one month. 

The quantities increased significantly when the students responded to question 4, projecting 

that in five years students at the school would use 1.6 tons of single-use plastic bottles and food 

wraps respectively, and 2.9 tons of paper. In ten years, these numbers were doubled. 

Other groups made different estimations than Nadya’s group estimations. Instead of using 

180 students, one group used 130 students considering the Year 12 students had graduated 

(Introduction Observation, 01:23:39). Another group used 148 people by including the school 
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staff (Introduction Observation, 01:44:02). The evidence showed how students considered 

different variables that could influence their estimations. 

Figure 3 

A Group Students’ Estimation of the School Waste Production 

 

In the contextualisation session, each group collected data about different types of waste. 

This time, students used collected data (rather than estimates) to make a projection. Nadya’s 

group collected data about students’ use of single-use plastic bottles. In the focus group 

discussion, I asked the students which part of the project helped them to understand the waste 

problem. The following was Nadya’s response, “when collecting the data, we finally know that 

the students at the school produce, um since I am in the plastic bottle group, so I know that on 

average a student uses one to two bottles per day” (Focus Group Discussion, 09:47). 

The students found that, on average, each student used one to two plastic bottles per day. 

This was higher than their estimation in the introduction session (one bottle per student per 

day). This means that their initial estimation in Figure 3 could be doubled. Most students agreed 

with Nadya that the data they found from interviewing the school community (students, 

teachers, and staff) helped them to understand the problem better. 

Students’ Awareness and Actions  

While implementing the project, Kartini noticed some changes in the students’ behaviours: 

After the mini exhibition, I saw that the students have been cautious to sort out their plastic waste. 

In their dormitory, I got information that in every level—there are three levels there—students have 

provided bins for plastic waste. (Interview 2, 03:54) 

Only a couple of students seemed to believe that “the waste problem in the school is not 

very urgent” (Survey #1). Most students’ survey responses show that the sustainability project 

made them aware of the waste problem and that they needed to solve the problem immediately. 

For example, one student wrote “I became aware that waste is a serious problem that if not 

addressed, will lead to a huge problem” (Survey #15). Another student responded, “the 

sustainability issue needs to be addressed properly to prevent negative impacts from the 
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problem” (Survey #14). Based on these responses, using current data to project the future 

situation of the waste problem may have helped the students to become aware of how serious 

the problem was. They then proposed some solutions like sorting out recyclable materials, 

encouraging the use of re-usable tumblers, and urging the school to provide water dispensers. 

Ultimately, they used the data not only to justify their proposed solutions, but also to raise other 

students’ awareness and actions during the mini exhibition. 

Discussion and Conclusion 

The analysis showed that as the students used mathematics to project future situations, they 

became more aware of the environmental challenge and proposed actions to address the 

problem. The results indicate that the projective questions in the design and implementation of 

the sustainability project had likely helped the students to become aware of a local sustainability 

challenge and motivated their actions to tackle the problem. In this part, we discuss two notions 

that could have contributed to raising students’ awareness and actions: purpose and projection. 

First, because the context in the project was made local and relevant to their lives, the students 

had their own purpose to use mathematics when attempting to understand a real-world situation 

(Ainley et al., 2006). The students might have learned the mathematics (e.g., proportion, 

percentage, and statistics) previously and used it in a pseudo-realistic problem. An authentic, 

relevant context allowed the students to notice utility of mathematics in understanding a local 

sustainability challenge. Having used mathematics as an essential tool in analysing and 

interpreting environmental data, the students encountered mathematics as being important to 

addressing an environmental problem (Barwell & Hauge, 2021). 

In Kartini’s view, quantifying the school’s waste production was essential to making 

students aware that the accumulation of individual production of waste could make a significant 

impact. This is where projection of the future situation based on the data that they collected 

could have helped students to clearly see their own impact. For example, the students predicted 

that in the next five years, their school will have produced around 1.6–3.2 tons of single-use 

plastic bottles if 180 students keep using 1–2 bottles each every day. This could be a great 

opportunity to further engage the students to think about sources of variability in their projection 

(e.g., whose waste production was included) to make the practical use of mathematics even 

more authentic and realistic (Dierdorp et al., 2017). 

Questions 4 and 5 in Figure 2, which we refer to as projective questions, made it possible 

for students to envisage the future situation of the waste problem. The student projections were 

based on two variables: the number of students and the amount of waste produced by each 

student per day. As the number of students was not likely to decrease in the future, the students 

explored actions and solutions that could reduce the individual waste production, such as water 

dispenser and re-usable tumbler use in school. The findings from the projections were used to 

justify the proposed solutions and then to convince the school and other students (the mini 

exhibition visitors) to take actions. 

To conclude, purposeful use of mathematics appears to be essential in integrating 

mathematics and sustainability education. Including the need for projection (e.g., from current 

to future data) in a task or a project design appears to afford mathematics use to become 

purposeful from students’ perspectives. Additionally, choosing a local problem that can readily 

be brought to matter to students may play a pivotal role in whether students choose to engage 

in complex project activities (e.g., data collection, exhibition, etc.). As the problem matters, the 

students have their own purpose to work on the project and motivate their actions to use 

mathematical ideas to understand and address a local sustainability challenge. 
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This paper explores the complex problem of project sustainability, focusing on the 

leadership of three primary school mathematics leaders. Using cultural-historical 

activity theory (CHAT), the leaders’ efforts are reported, highlighting their contribution 

to project sustainability. The CHAT-informed research design supported the generation 

of findings, revealing how the mathematics leaders enacted a form of resourceful 

practice. This paper contributes new knowledge about mathematics leaders, 

characterising how they acted as agents of project sustainability. Implications for 

mathematics education project design are also offered. 

Project sustainability in mathematics education is defined as the continuous adaptation and 

integration of reform efforts that remain true to the project’s intent and content in response to 

the ever-changing post-project contexts within which the efforts are enacted (Clements et al., 

2012; Tirosh et al., 2015). The sustainability of project reforms is a complex problem because 

the development initiated during the life of the project tends to cease once participation in the 

project concludes (Tirosh et al., 201), and there is also a lack of research about how reform 

efforts continue beyond project participation (Bobis, 2011). It is recognised that school 

leadership acts as a crucial factor of project sustainability, but this tends to focus on principal 

leadership (Coburn et al.), neglecting the influence of middle leading practice enacted by 

mathematics leaders. Drawing on concepts from cultural-historical activity theory (CHAT), I 

report on the efforts of three mathematics leaders working as middle leaders in their schools 

(Grootenboer, 2018). I aim to present their contribution to project sustainability as a form of 

the CHAT-aligned activity known as resourceful practice (Edwards, 2010). By doing so, I 

characterise how the mathematics leaders acted as agents of project sustainability, providing a 

new perspective on the leadership activity of mathematics leaders enacted in primary schools.  

Background Literature 

Project sustainability involves the maintenance of the impact on student learning outcomes 

and the continued influence of the reform on mathematics teaching practice beyond project 

participation (Clements et al., 2015; Coburn et al., 2012). The sustainability of projects requires 

fidelity to the project intent and content (Clements et al., 2015), and it also involves engagement 

in processes of self-renewal where new routines and practices surface (Coburn et al., 2012; 

Zehetmeier, 2017). As such, there is a need for school staff to adapt and integrate project intent 

and content in response to the changed conditions that face schools beyond project participation 

(Tirosh et al., 2015). Fullan (2008) named school staff who engage in project sustainability as 

change agents, but this title was reserved for principals and executive leaders only. 

Studies of project sustainability have focused on the factors that sustain practice reform, 

recognising their potential to enable and constrain sustainability efforts (Saito et al., 2012; 

Zehetmeier, 2017). Sustainability factors within schools are considered internal factors (Saito 

et al., 2012). Internal factors focus on the primacy of school leadership with other factors 

mediated by that school leadership factor including staff turnover, school-based professional 

learning, and project resource use (Bobis, 2011; Datnow et al., 2005; Kaur, 2015; Fishman et 

al., 2011; Pritchard & McDiarmid, 2006; Tirosh et al., 2015; Warren & Miller, 2016). 

School leadership is critical in project sustainability, with principals featured predominately 

within the literature due to their authority in creating the conditions that maintain the project-
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initiated reform and development (Coburn et al., 2012; Datnow et al., 2005; Saito et al., 2012; 

Tirosh et al., 2015). Principals can make decisions, set expectations, and provide the resources 

for continued teacher professional learning (Bobis, 2011; Warren & Miller, 2016). A lack of 

principal leadership can constrain sustainability efforts, leading to practice regression that sees 

the resurfacing of pre-reform pedagogies (Tirosh et al., 2015). Rare cases in the literature have 

reported teacher leaders who have contributed to project sustainability, naming them as school-

based facilitators (Bobis, 2011) and reform coordinators (Datnow et al., 2005).  

Staff turnover is understood as the changes at the teacher (Pritchard & McDiarmid, 2006), 

principal (Saito et al., 2012), and district levels (Datnow et al., 2005). Staff turnover tends to 

constrain sustainability, disrupting the continuity of institutional knowledge and practice 

initiated through project participation (Pritchard & McDiarmid, 2006). Staff turnover requires 

professional learning for newly appointed staff which tends to revise project content rather than 

extend practice development (Saito et al., 2012). Continued professional learning is crucial for 

sustaining practice development, with principals positioned as the leaders who create the 

conditions and provide resources necessary for school-based professional learning (Bobis, 

2011; Saito et al., 2012; Warren & Miller, 2016; Zehetmeier, 2017). It is vital that post-project 

professional learning maintains fidelity to the project's intent and content (Clements et al., 2015; 

Kaur, 2015). This fidelity extends to the continued use of project resources with leaders and 

teachers maintaining shared understanding of the pedagogical potential of resources following 

project participation (Fishman et al., 2011; Saito et al., 2012; Warren & Miller, 2016).  

In recent years, mathematics leadership has received attention from mathematics education 

researchers as a form of school leadership (Driscoll, 2017; Grootenboer, 2018; Sexton, 2023). 

Mathematics leadership has been conceptualised as middle leading practice different from 

teacher leadership because mathematics leaders tend to hold formal school leadership positions 

and undertake teaching responsibilities (Grootenboer, 2018). Mathematics leaders practise 

leadership in the space between the principal and the teachers working in classrooms 

(Grootenboer, 2018; Sexton, 2023). As middle leaders, mathematics leaders engage in 

leadership that influences teaching practice due to their unique positioning and proximity to 

classrooms (Grootenboer, 2018). Their influence is realised in the ways they lead school-based 

professional learning (Jorgensen, 2016; Sexton, 2023) using co-teaching episodes (Driscoll, 

2017), developing assessment practices (Jorgensen, 2016), leading staff meetings (Driscoll, 

2017), and developing visions for mathematics teaching practice (Sexton, 2023). Jorgensen 

(2016) named mathematics leaders as change agents due to their influence on teaching practice 

in ways that principals may not because of their executive positioning. 

Despite knowledge of its factors, project sustainability remains a complex problem for 

schools and mathematics education researchers (Bobis, 2011; Clements et al., 2015). This 

problem tends to exist because project-initiated reforms tend not to last once project 

participation ceases (Tirosh et al., 2015), and most research reports about project impact tend 

to focus only on the change that happens during the life of projects (Coburn et al., 2012; 

Fishman et al., 2011). While existing literature emphasises the pivotal role of principal 

leadership as a sustainability factor (e.g., Tirosh et al., 2015), a notable knowledge gap exists 

regarding how the efforts of mathematics leaders, as middle leaders within school leadership 

systems, contribute to project sustainability. To address the research problem, I pose the 

following question: How do mathematics leaders contribute to project sustainability through 

their post-project leadership activity as middle leaders in schools? 

Research Design 

This paper is drawn from my doctoral study (Sexton, 2023), that investigated mathematics 

leaders’ contribution to project sustainability. Recognising mathematics leadership as a form of 
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middle leading practice (Grootenboer, 2018), the practice-based theory of CHAT was chosen 

to investigate mathematics leadership as a form of activity (Engeström, 2015). 

Theoretical Framework 

CHAT understands activity as object-oriented and draws psychological and practical 

development forward in simultaneous ways. The CHAT concept of the activity system acts as 

the unit of analysis, providing ways of understanding activity by situating it within the context 

in which the activity occurs (Engeström, 2015). Within the activity system, the subject 

(individuals or a collective group) acts on the motive-object(s) in order to transform it, using 

cultural tools through a process known as mediation (Engeström, 2015). The subject directs 

their activity towards the motive-object to achieve a desired and valued outcome (Engeström, 

2015). Motive-objects are interpreted as the driving force of activity (Leont'ev, 1978) and are 

understood as the problem space at which the subject directs their activity (Engeström, 2015). 

Mediation within the activity system occurs through the influence of mediational means 

beyond cultural tools, which include rules that are the implicit and explicit norms and routines 

that govern interactions within the activity system (Engeström, 2015); community, which 

includes the other people involved in the activity as human activity does not exist outside of 

social relations (Leont'ev, 1978); and, the division of labour that includes the distribution of 

power and responsibility for tasks and actions enacted within the activity system (Engeström, 

2015). In CHAT, the subject enacts a series of actions that mediate motive-objects (Leont'ev, 

1978) whilst using the mediational means present and available within the activity system. 

Resourceful Practice 

Resourceful practice, a contemporary CHAT concept, has explanatory power to understand 

how the subject, when faced with practice problems (Edwards, 2010), uses resources creatively 

to resolve contradictions or tensions within the activity system (Edwards & Thompson, 2013). 

Resourceful practice recognises resources as the cultural tools, rules, and division of labour 

within and beyond the subject’s activity system. It also highlights the subject’s use of the 

transformative potential of resources (Edwards, 2010). Resourceful practice also theorises the 

agentic role of the subject in driving activity forward amid contradiction resolution. 

Resourceful practice is characterised by several actions, including reconfiguring motive-

objects, adapting cultural tools, rule-bending, and accessing distributed expertise (Edwards, 

2010; Edwards & Thompson, 2013). Reconfiguration of motive-objects is realised when the 

subject objectifies what matters in new ways when faced with practice problems (Edwards & 

Thompson, 2013). Tool adaptation involves using resources in adaptive and creative ways to 

resolve contradictions by attributing new meaning to them to pursue reconfigured motive-

objects (Edwards, 2010). Rule-bending entails adapting norms and routines by modifying or 

breaking historically followed rules (Edwards & Thompson, 2013). As a collective process, 

resourceful practice also emphasises engagement with others within and across activity 

systems. Accessing distributed expertise involves using resources from various practices and 

using expertise from neighbouring systems to drive activity forward (Edwards, 2010). 

Context and Participants 

Contemporary Teaching and Learning of Mathematics (CTLM) was a large-scale project 

that involved 82 Catholic primary schools in Victoria between 2008 to 2012 inclusive. Each 

CTLM school participated in a two-year program supported by Australian Catholic University 

(ACU) and Catholic education staff members. As a requirement, participating schools 

nominated at least one staff member to undertake the mathematics leadership role. During 

CTLM, mathematics leaders led teaching practice development in accordance with the project’s 

intent and content. Their leadership was realised through the facilitation of teachers’ planning 
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meetings, co-teaching lessons with colleagues, the organisation of demonstration lessons 

undertaken by ACU staff, and the leadership of fortnightly professional learning meetings. 

Three mathematics leaders, Penny, Cindy, and Rachel (pseudonyms), who worked in three 

schools that participated in the CTLM project in 2011 and 2012, were participants in my study. 

Each mathematics leader remained in the role for the entirety of the data generation period, 

where they engaged in leadership activity that saw them leading teachers’ professional learning, 

completing management tasks associated with their schools’ mathematics program, and 

undertaking mathematics teaching responsibilities in classrooms. 

Data Generation and Analysis 

The research design included a prolonged data generation period involving site visits to the 

mathematics leaders’ schools from November 2014 to February 2018. The extended data 

generation period was enacted to investigate the lasting effect of project sustainability 

(Zehetmeier, 2017). Semi-structured interviews were coupled with observations of the 

mathematics leaders’ practice, with interviews used prior to (~15-min interview) and after (~60-

min interview) observations of professional learning opportunities (~70-min observations). 

This was done to mitigate methodological issues related to the reliance on self-reports of project 

sustainability efforts, which can impact validation of findings (Tirosh et al., 2015). Documents 

were collected as cultural tools used by the leaders. Each mathematics leader was visited at 

least five times during the data generation period. Interviews and observation records were 

transcribed and uploaded into NVivoTM with the retrieved documents for data analysis. 

To analyse data, I used concepts from CHAT and resourceful practice as sensitising 

concepts to support a deductive thematic analysis (DTA) approach (Fereday & Muir-Cochrane, 

2006). This allowed the opportunity to create and use a coding scheme that supported the 

generation of evidence of theoretical concepts within the dataset. The concepts within the 

scheme were also used as nodes in NVivoTM, and data were tagged and captured within those 

nodes. The DTA approach also supported the development of themes from the deductively 

coded data. The analysis involved seeking evidence of concepts through reading, coding, and 

interrogating data with my doctoral supervisors, ensuring the saturation of themes. The themes 

supported naming the mathematics leaders’ efforts as leadership actions, thus explaining the 

mathematics leaders’ contribution to project sustainability. 

Findings and Discussion 

I report and discuss findings together in relation to the theoretical and background literature 

(Sutton & Austin, 2015). This is done to support achievement of my aim which is to present the 

mathematics leaders’ contribution to project sustainability as a form of resourceful practice. 

Before explaining the mathematics leaders’ contribution, it is essential to state that they 

were afforded that contribution because of their principals’ commitment to maintaining the 

mathematics leadership role after CTLM had ended. This supports previous evidence that, as a 

school leadership factor, principals play a critical role in engaging their authority that sets the 

direction for project sustainability (Bobis, 2011; Datnow et al., 2005; Warren & Miller, 2016). 

In the case of my study, this principal direction setting was concerned with the continuation of 

funding for the mathematics leadership role and maintaining Penny, Cindy, and Rachel in their 

leadership roles in the six years following CTLM participation. 

Leadership Actions: Realising Resourceful Practice 

I now focus on explaining the leadership actions enacted by the mathematics leaders that 

realised their contribution to project sustainability. The six leadership actions are evidenced 

through the discussion of data, supporting my explanation of the mathematics leaders’ 

contribution to project sustainability as a form of resourceful practice. 
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Committing to Sustaining Project-Initiated Reforms 

Despite facing the changed post-project school conditions (Tirosh et al., 2015), which 

included the practice problems of withdrawn district leadership and shifted principal support, 

teacher turnover, and diminished priority and frequency of mathematics professional learning, 

the mathematics leaders enacted a clear commitment to sustaining the CTLM reforms. Penny 

evidenced this when she explained what motivated her leadership in the years following CTLM 

participation: 

This is what I know to be right, and these are the things that a leader needs to be doing, but lack of 

time and maths priority is stopping me. But I keep going because I care for the students and the 

teachers. I care about maths and what we started in CTLM, so I try to be creative. (26.03.15) 

The leaders’ commitment to project sustainability focused on care for improving students’ 

learning, maintaining the project-initiated practice development, and honouring the historical 

changes in practice initiated through CTLM participation. This focus on “what mattered to 

them” (Edwards & Thompson, 2013) was their way of reconfiguring the motive-object of their 

leadership activity in response to the post-project practice problems they faced. 

Influencing Principals to Maintain Facilitated Mathematics Planning Meetings 

Facilitated mathematics planning meetings were established as a routine in the mathematics 

leaders’ schools during CTLM. Post-CTLM participation saw the mathematics leaders engage 

in leadership that sustained that project-initiated routine (Clements et al., 2015). This was 

realised in their efforts to persuade their principals to retain the planning meetings as a school 

routine. Rachel confirmed this when she explained the reason why facilitated planning meetings 

remained an enduring routine and why the leadership of them stayed part of her work activity: 

You’ve got to keep the planning meetings going for the changes we started to become part of the 

common practice and shared practice. I keep the principal informed about how the planning 

meetings are important because change takes time, and I want them to continue. (29.04.15) 

This “influencing principals” action was also highlighted by Penny in 2016, “I spend time 

sharing, especially with the principal, that we should keep the facilitated planning meetings 

here. I tell him that we should keep them.” Acknowledging their middle leadership role and 

their limited authority (Grootenboer, 2018), the mathematics leaders knew that principal 

endorsement was crucial for maintaining facilitated planning meetings as routines that sustained 

practice development. This is an example of how the SMLs leveraged the division of labour 

within their activity system (Engeström, 2015) and engaged in resourceful practice by accessing 

the distributed expertise of their principals within their activity system (Edwards, 2010). This 

action also mediated the leaders’ focus on what mattered through their reconfigured motive-

object realised in their commitment to project sustainability (Edwards & Thompson, 2013). 

Enactment of this action saw the mathematics leaders maintain facilitated planning meetings as 

a routine and co-opt those meetings as professional learning opportunities. This action 

resourcefully addressed the practice problem of diminished mathematics professional learning 

opportunities they faced following CTLM participation. 

Co-Opting Facilitated Planning Meetings as Professional Learning Opportunities 

All three leaders claimed that mathematics professional learning became scarce following 

CTLM participation because other curriculum areas claimed space in school improvement 

agendas. This was highlighted by Penny when she shared: “Our PLTs [professional learning 

team meetings] used to be numeracy and literacy, and that was a fortnightly seeing each team 

[of teachers], but now, I am very lucky to have two PLT meetings a term” (25.03.15). 

The mathematics leaders creatively repurposed facilitated planning meetings as teachers’ 

professional learning opportunities to resolve that practice problem. This move became a 

recurring leadership action observed during each school visit, emphasising its prevalence in 



Sexton 

492 

their contribution to project sustainability. Cindy evidenced what I have interpreted as rule-

bending (Edwards, 2010) through her co-option of facilitated planning meetings: 

I use the facilitated planning meetings as PD with teachers. I mean, we don’t have the PD in maths 

like we used to in the “CTLM days”, so the planning meetings are a way for me to get around that 

and so that we can keep going on with what we started in CTLM. (06.11.14) 

The mathematics leaders repositioned facilitated planning meetings by attributing new 

meaning to them and adapting the meetings as a resource to mediate their reconfigured motive-

object of what mattered for project sustainability (Edwards, 2010; Edwards & Thompson, 

2013). They created spaces for continued professional learning, understood as a factor of project 

sustainability (Bobis, 2011; Kaur, 2015; Pritchard & McDiarmid, 2006). Their enactment of 

this action further realised resourceful practice (Edwards, 2010) as they adapted to the changed 

condition of reduced professional learning opportunities following CTLM participation. 

Repurposing Project Resources as Sustainability Tools 

The mathematics leaders also demonstrated resourceful practice by repurposing CTLM 

resources as sustainability tools. As the leaders co-opted facilitated planning meetings as 

professional learning opportunities through rule-bending (Edwards, 2010), they redefined the 

purposes of project resources. Those resources included mathematics tasks highlighted in 

CTLM workshops and planning documentation created during CTLM participation. As 

evidenced by Penny, the mathematics leaders preserved and extended the use of the project 

resources, acknowledging their historical significance and potential as sustainability tools: 

By using those tasks from CTLM, we are keeping CTLM going here and what we started in CTLM 

keeps going. It’s important that those who went through CTLM use them so that teachers who didn’t 

do CTLM get to know about them, and they use them in their teaching, too. (02.12.16) 

This repurposing was not merely a continuation of resource use (Fishman et al., 2011). 

Instead, the CTLM resources strategically served as cultural tools that mediated the motive 

object of what mattered to the leaders’ sustainability efforts (Edwards & Thompson, 2013). 

Furthermore, the mathematics leaders extended their resourceful practice to engage in tool 

adaptation and rule-bending (Edwards, 2010). This was done as they attributed new meanings 

to the CTLM resources as enduring cultural tools within their activity system. This leadership 

action highlights the importance of access to and use of project resources (Bobis, 2011; Fishman 

et al., 2012; Warren & Miller, 2016) and contributes new knowledge about how mathematics 

leaders resourcefully repurposed them as project sustainability tools. 

Using Student Assessment Data as a Convincing Tool 

Another leadership action concerned the innovative use of student assessment data. While 

the CTLM project developed practices for data use to inform teachers’ planning decisions, the 

mathematics leaders redefined the significance of data following CTLM participation. As they 

facilitated planning meetings, the leaders used data as a cultural tool to persuade teachers to 

continue using the teaching practices developed during CTLM. This was exemplified by Rachel 

when she explained why she used NAPLAN data during facilitated planning meetings: 

It’s good to use the NAPLAN data with teachers to show them that by continuing with what we 

started with CTLM, we have kept going, and we saw improvements in the NAPLAN data. That’s 

why we have to keep going, too. The NAPLAN data is good for that. (19.11.15) 

I interpret this as further evidence of resourceful practice by how the mathematics leaders 

engaged in tool adaptation and rule-bending (Edwards, 2010). Due to their commitment to what 

mattered, the leaders attributed new meaning to data as convincing tools by bending the rules 

about data use. Data were no longer only used to inform teachers’ planning decisions; instead, 

data were used to persuade teachers to maintain the use of CTLM resources, including 

mathematical tasks, and to continue using teaching practices developed during the project. 
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Seeking Support From External Mathematics Educators 

The final leadership action that I interpret as the mathematics leaders’ resourceful practice 

concerned how they sought support from outside their schools. Faced with the contradiction of 

changed district and principal leadership, the leaders proactively sought relationships and 

assistance from mathematics educators beyond their school sites. This included mathematics 

leaders in other schools, mathematics consultants, and university mathematics educators. Cindy 

exemplified this leadership action as she explained how she dealt with diminished support from 

her principal and withdrawn assistance from Catholic office district staff: 

Having an outside person from the school who is into maths is so helpful for me as the maths leader. 

That person acts as a ‘sounding board’ because I know I cannot access the [central Catholic office] 

staff, and the principal support has really dropped off with maths. You need that outside person who 

‘gets it’ for advice on ways to continue what we started. (23.10.18) 

I interpret this action as a new routine for the mathematics leaders and as evidence of 

accessing distributed expertise beyond the mathematics leaders’ activity system (Edwards, 

2010). They acted in agentic ways as they sought advice from others’ practice in neighbouring 

activity systems. The mathematics leaders recognised the expertise of others and engaged in 

volitional action as they accessed distributed expertise (Edwards, 2010). 

I have focused on the efforts of the mathematics leaders, presenting them as leadership 

actions and interpreting them as their contribution to project sustainability. This provides a new 

perspective on how mathematics leadership, as a form of middle leading, acts as a school 

leadership factor neglected in previous project sustainability studies (e.g., Datnow et al., 2005; 

Saito et al., 2012). I evidenced that through the enactment of middle leading practice by 

focusing on what mattered, engaging in rule bending, adapting cultural tools, and accessing 

distributed expertise, the mathematics leaders surfaced new and adapted routines that 

contributed to sustained practice development (Coburn et al., 2012; Tirosh et al., 2012). The 

mathematics leaders were not only change agents who engaged in project sustainability and 

influenced teaching practice (Fullan, 2008; Jorgensen, 2016), but they sought to lead in agentic 

ways by driving practice development forward amid the post-project practice problems they 

faced (Edwards, 2010). Drawing together my interpretation of their efforts, I claim that the 

mathematics leaders’ contribution to project sustainability was realised through a form of 

resourceful practice that saw them act as agents of project sustainability. 

Conclusion and Implications 

Addressing the complexity of project sustainability requires an expanded understanding of 

school leadership beyond principal leadership. While existing literature focuses on principals 

and, to some degree, teacher leaders, I drew on CHAT and the explanatory power of resourceful 

practice to claim that mathematics leaders acted as agents of project sustainability. This is a 

new contribution to mathematics education research about project sustainability that theorises 

mathematics leadership activity as a crucial element of the sustainability factor of school 

leadership. Recognising that CHAT interprets activity within the context in which it occurs, 

further investigations must take place into how other mathematics leaders act as agents of 

project sustainability in situations different from the one reported in this paper. 

The impact of my study for mathematics education relates to project design. Projects can 

be costly endeavours with their impact fading once projects cease. One implication to mitigate 

this phenomenon concerns leveraging the role of mathematics leaders in project design. By 

building in intent and content that supports practice development for mathematics leaders 

focused on efforts that sustain reforms, the continued impact of projects could be mediated. 

This could happen by offering school leaders the concepts of resourceful practice during project 

participation and exploring how other mathematics leaders have enacted leadership of project 

sustainability. Findings about Rachel, Penny, and Cindy’s leadership could be used as “stories 
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of resourceful practice” to inform the design of school project sustainability plans that utilise 

the mathematics leader as an agent of project sustainability. 
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This paper provides evidence that a short, fully online, well-constructed diagnostic test 

based on research literature can give teachers information about their students’ thinking 

and strategies that is sufficiently accurate to use for formative assessment purposes. The 

example is a test for students beginning to learn to solve equations. The main goal is to 

inform their teacher of the solving strategies each can use. Accuracy data from 3010 

students is analysed to judge how well the overall performance of each group matches 

predictions. Alongside a previous analysis of misconceptions and common errors, we 

show this test gives teachers a good picture of most students to plan their lessons. 

The purpose of this paper is to provide evidence that a short, fully online diagnostic test can 

give teachers information about their students’ thinking and strategies that is sufficiently 

accurate to use for formative assessment purposes, i.e., to identify individual student’s 

understandings and to plan future teaching that builds on their current knowledge. Of course, 

we do not claim that a computerised test is the best way to learn about an individual’s 

mathematical thinking and knowledge, but our focus is on developing quick and easy tools to 

give teachers a ‘good enough’ guide for teaching an up-coming topic to all their students. Over 

many years, we have created Specific Mathematics Assessments that Reveal Thinking 

(SMART::tests) on 66 topics for middle years students. 

In this paper, using a test of solving equations as an example, we illustrate one part of the 

evaluation of these tests from the large-scale data, here using the accuracy of student responses 

to assess its adequacy as a diagnostic tool and to identify refinements. To evaluate a 

SMART::test, we also conduct an in-depth analysis of students’ common errors and 

misconceptions, as demonstrated for the present test by Steinle, Stacey, et al. (2022). Small-

scale mixed methods studies have also been undertaken to validate SMART::tests (e.g., 

Klingbeil et al., 2024) 

SMART::tests (www.smartvic.com) have been described elsewhere (e.g., Stacey et al., 

2018). For this paper, the key points are that volunteer teachers assign the tests, which students 

can do at school or at home when needed. All aspects of the test are fully automated. The 

diagnosis is not just based on the correctness of items but also considers actual responses. The 

teacher receives, for each student, a ‘stage of learning’ and possibly some flags which indicate 

that there is evidence of a misconception, a missing conception or a common (procedural) error. 

Each test has a highly specific focus on a central aspect of a topic that we believe influences 

students’ underlying understandings. The focus is on what mathematics education researchers 

have identified lies behind students’ work and affects their success, not what is easy to see from 

a standard test. Professional learning is an important goal, by helping to deepen teachers’ 

knowledge of hidden cognitive obstacles as they see how their own students think and see 

teaching suggestions for students at each stage. 

In the next section, we describe the Australian curriculum expectations that are the focus of 

this test; briefly describe research which identifies an important learning challenge; give a 

mathematical analysis of the three strategies that students should learn, and explain the 

diagnosis made by the test. The method section briefly describes the test and its construction, 

mailto:v.steinle@unimelb.edu.au
mailto:k.stacey@unimelb.edu.au
http://www.smartvic.com/
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and the data collection. We then look in turn at the performance of students in each of the 

diagnosed stages, examining whether their performance supports the diagnosis supplied. 

Space limitations restrict this paper to reporting only on analyses of accuracy statistics—

the numbers of students who are correct, incorrect or omit each item. This paper is 

supplemented by data from a detailed study of errors within the item responses (Steinle, Stacey 

et al., 2022). In this paper, it is valuable to see how much accuracy statistics can reveal. 

Solving Linear Equations—Mathematical Analysis and Research 

Curriculum Expectations 

This paper focusses on the SMART::test Solving Linear Equations. Its target group is 

students beginning to learn (symbolic) algebra. The Australian Curriculum: Mathematics 

(Version 9) (Australian Curriculum, Assessment Reporting Authority [ACARA], 2022) has one 

main content descriptor for learning to solve linear equations, placed at Year 7 “AC9M7A03 

“Solve one-variable linear equations with natural number solutions; verify the solution by 

substitution” (https://acara.edu.au/curriculum). 

Supporting this, the (non-compulsory) elaborations suggest that students might use 

substitution to determine whether a given number is a solution, or solve using backtracking 

(called unwinding in this paper), or balance equations perhaps illustrated with a concrete model. 

The only given example of an equation is 3x + 7 = 19 which has one occurrence of the 

pronumeral, and a natural number solution. 

These elaborations for AC9M7A03 point to three different strategies for solving equations, 

all of which significantly contribute to mathematical progress. In order of cognitive complexity, 

these are substituting, unwinding then balancing. Both substituting and unwinding are 

foreshadowed in Year 6 by AC9M6A02 which is about finding unknown numbers in numerical 

equations (e.g., an equation where a square placeholder is written instead of the unknown 

number). At Year 8, AC9M8A01 highlights algebraic manipulation including rearranging, 

simplifying linear expressions, and using inverse properties (presumably to solve equations). 

These capabilities open up the range of equations that can be solved, especially by the balancing 

method. 

Literature Review 

The fundamental research on the teaching of equation solving was conducted several 

decades ago, although related research continues (e.g., Linsell 2010; Knuth et al., 2006). At that 

time, researchers were interested in characterising the essential elements of ‘algebraic thinking’ 

with a goal to move teachers’ and researchers’ conceptualisation of the school topic of algebra 

away from emphasis on the manipulation of symbols towards understanding the fundamental 

concepts that students must develop. This movement led to the formalisation of an algebra 

strand in primary school curriculum descriptions. Within the topic of solving linear equations, 

Filloy and Rojano (1989) observed there was a ‘didactic cut’ between the demands of solving 

‘arithmetic equations’ that can be solved by successively unwinding operations on numbers 

(e.g., Ax ± B = C, x/A = B) and other ‘non-arithmetical equations’ like Ax ± B = Cx ± D (for 

A, B, C, D positive numbers). As other researchers have, they showed that this ‘didactic cut’ 

was hard for students to cross, not just because of new procedures to be followed but because 

the second required a different way of thinking about equations. Kieran (1992) described this 

distinction as being (p. 392) between (i) procedural operations with “ostensibly” algebraic 

items, i.e., “arithmetic operations carried out on numbers to yield numbers” and (ii) structural 

operations “that are carried out, not on numbers, but on algebraic expressions” which can have 

the result being an algebraic expression. Herscovics and Linchevski (1994) referred to a similar 

‘cognitive gap’ between arithmetic and algebra, (p. 59) which is “characterised as the students’ 

inability to spontaneously operate with or on the unknown”. They observed that Year 7 

https://acara.edu.au/curriculum
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students’ strategies and success changed depending on the location of the unknown in the 

equation, especially for subtraction and division. For example, the most frequent strategy for 

solving n − 13 = 24 was to add 13 to 24 (using the inverse operation), but 37 − n = 18 was 

solved by a variety of strategies such as “complementary subtrahend” (37 − 18) using 

knowledge of subtraction. They concluded that the difference in success solving these two 

similar equations resulted from students “working around the unknown at a purely numerical 

level” (p. 70). This literature provides a justification for the importance of this test, as well as 

the fundamental concepts that illuminate the three strategies and enable the design of the 

Solving Linear Equations test. Note that there is no indication of the ‘cognitive gap’ in the 

curriculum statements, so helping teachers understand it is a major goal of this test. 

Analysis of Strategies 

Table 1 analyses the three strategies, their roles, and the characteristics of items that the test 

uses to identify the strategies that students are able to use. In practice, experts use all these 

strategies, often interchangeably in the case of unwinding and balancing, but for beginners they 

are separate skills drawing on separate concepts. The various statements about students in the 

early stages of learning algebra in Table 1 draw on evidence from the literature and our pilot 

studies (Steinle, Price, & Stacey, 2022). 

Table 1 

Characteristics of Three Equation Solving Strategies 

Feature Substituting Unwindingα Balancingβ 

General statement A guess and check 

strategy, sometimes with 

an ‘improve’ step. 

Read notation as 

specifying a sequence of 

operations applied to an 

unknown number. 

A series of transformed 

equations including 

simplifying and 

reorganising steps. 

Example: 

Solve 2n + 5 = 20 

Guess n = 3 

Substitute: 2  3 + 5 = 11. 

Compare result: 11 is too 

small, try larger n, etc. 

Unknown was multiplied 

by 2, then 5 was added to 

give 20. To undo, first 

subtract 5 (gives 15) and 

divide by 2 (gives 7.5) 

2n + 5 = 20 

2n + 5 − 5 = 20 − 5 

2n = 15 

2n ÷ 2 = 15 ÷ 2 

n = 7.5 

Operations used Given operations Inverse operations Inverse operations 

Operations on and 

with 

Numbers  Numbers  Numbers and 

pronumerals  

Applicability Can be used to solve any 

equation, but beginners 

only successful with small 

natural number solution.  

Beginners only successful 

with one occurrence of the 

variable easily seen to be 

at the start of the ‘story’. 

Powerful for a wide 

variety of equations.  

Main teaching 

purposes 

Reading algebraic notation; 

understanding what a 

solution is; introducing 

tables of values.  

Introducing inverse 

operations; connecting to 

‘function machine’ 

diagrams. 

Widely applicable 

principle for equation 

solving. 

αUsed to describe a process which is applied without any preliminary algebraic manipulation. 

βOften referred to as do the same to both sides and process often abbreviated to change side-change sign. 

Table 1 includes a simple example and then specifies various salient characteristics from 

the literature. The example does not show operating on or with pronumerals and expressions, 

which is required when there is more than one occurrence of the pronumeral (e.g., to solve 

5x + 9 = 2x). Not noted is the fact that the logic of balancing additionally requires a conception 

of operating structurally on a whole equation to gradually transform it to a form where the 

solution is obvious. To stress the importance of all the strategies to progress in algebra, the table 

also briefly outlines their curriculum functions. The applicability row is the key to the diagnosis 
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made by the test. We exploit the limitations of the methods, in particular for beginners, to 

identify what strategies students can use. 

Method 

The present test is an outcome of considerable preliminary investigation, pilot testing, and 

data analysis as recorded by Steinle, Price, and Stacey (2022). Each item requires the student 

to type the solution to the equation. Table 2 gives the 14 equations, noting features of equation 

structure and the solution, as well as a label which indicates which of the five groups each 

equation belongs to. Students are allocated to one of five stages according to accuracy of 

responses to items in Groups A to D, as described in Table 3. Items in Group E provide another 

part of the report to teachers. In specific terms, the research question for this paper is to 

determine the extent to which the performance of the students diagnosed in each stage matches 

the predictions based on the strategies. 

Space does not allow a thorough discussion of the choice of items, but we note a few general 

points. The pilot work and literature highlighted how much beginning students are affected by 

apparently small changes of algebraic structure (e.g., changing 14 − 2x to 2x − 14). Therefore, 

to be able to attribute changed success to just the identified features of structure (and hence 

strategy), the items in the diagnostic Groups A, B, C and D are as close to the canonical linear 

form as possible. Because teachers want to know about how students deal with various algebraic 

notations, the Group E items were included but not used for the main diagnosis. The number of 

equations were reduced to a minimum, to keep the average time of completion under 15 

minutes. This test is Version 1; there is also a parallel test (Version 2) which can be used as a 

post-test, which has been similarly analysed. Results are similar to those reported here. 

The data was collected from the 3010 anonymous students in the classes of volunteer 

teachers who assigned this test during the years 2016 to 2018. Most students were in Year 8 or 

9. In general, the teachers seemed to have allocated the test to the intended target group, since 

the median test score was 7/14. We have no information about the conditions for taking the test, 

which may have varied significantly. Some students had trouble typing fraction and decimal 

answers (e.g., typing 1\5 instead of 1/5 or 1.1.625 instead of 1.625). Teachers can access any 

completed SMART::test to see why a student has received an unexpected result. 

Results 

In this section, we examine the extent to which the performance of the students diagnosed 

in each stage matches the predictions based on the strategies. Table 2 shows which items are 

expected to be within the capability of students who can use each strategy. The validity of the 

tests requires evidence that students in each diagnosed stage can use the strategy specified in 

Table 3. Of course, beginning algebra students make many slips, so that giving an incorrect 

response is not always indicative of a lack of knowledge of a strategy. Hence we have used the 

word ‘feasible’ in Table 2 for an appropriate strategy rather than ‘correct’. However, we expect 

that the predicted successes of Table 2 should give a good guide to the observed success on all 

items, including Group E items not used for diagnosis. 
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Table 2 

Items Showing Equations, Details of Structure and Applicability of Strategies (Test Version 1) 
L

a
b

el
 

Equation Equation Structure 

S
o

lu
ti

o
n

 

Strategy Applicability 

Pronumeral 

Location: 

Left, Right 

Explicit 

Oper-

ations 

S
u

b
st

it
u

te
 

U
n

w
in

d
 

B
a

la
n

ce
 

A1 3x + 8 = 23 1, 0 + 5 F F F 

A2 4x + 9 = 37 1, 0 + 7 F F F 

B1 5x + 7 = 15 1, 0 + 1.6 A F F 

B2 8x + 3 = 16 1, 0 + 1.625 A F F 

C1 8x + 5 = 3x + 14 1, 1 +   + 1.8 A N F 

C2 12x + 2 = 8x + 15 1, 1 +   + 3.25 A N F 

D1 7x − 11 = 2x − 4 1, 1 −   − 1.4 A N F 

D2 12 − 11x = 5 − x 1, 1 −   − 0.7 A N F 

E1 7x − 2 = 16 1, 0 − 18/7 A F F 

E2 14 − 2x = 8 1, 0 − 3 F N F 

E3 3x + 6 + 2x = 7 2, 0 +   + 0.2 A N F 

E4 𝑥 + 2

5
= 3 

1, 0 +   ÷ 13 F F F 

E5 𝑥

3
+ 1 = 5 1, 0 ÷   + 12 F F F 

E6 4(x − 3) = 21 1, 0 −   × 8.25 A A F 

F: strategy is feasible, A: strategy is awkward, N: strategy not possible without initial algebra. 

Fraction or brackets may or may not be seen as ‘explicit’ operations. 

Notes. E1 is only item with solution longer than three decimal places. Pronumeral a was used in Version 1. 

Table 3 

Rubric for Allocating Stages to Students Based on Scores on Groups of Items 

Stage Description of stages 
Score on group of items 

A B C D E 

0 Not yet at Stage 1 0 − − − − 

1 Students can solve simple linear equations that are easy to solve 

by repeat substituting;  

1,2 0  − − − 

2 …and can solve linear equations with more difficult solutions 

requiring systematic strategy (such as unwinding);  

1,2 1,2 0  − − 

3 …and can solve linear equations involving addition only, with 

the pronumeral on both sides (balancing strategy needed); 

1,2 1,2 1,2 0  − 

4 …and can further solve linear equations involving subtraction 

with the pronumeral on both sides and non-integer solutions.  

1,2 1,2 1,2 1,2 − 

Note. “−” indicates that group is not used in the stage diagnosis. 

Table 4 shows the accuracy for each item by stage, reporting two measures: Facility 1 is the 

percentage of all students who are correct on an item and Facility 3 is the percentage of the 

students who respond who are correct. If there are any omissions, Facility 3 is larger. When 

reading the tables, it is useful to note that algebraic manipulation shows the omission rate for 

an item is (Facility 3 − Facility 1) / Facility 3. If Facility 3 − Facility 1, there are no omissions; 

if Facility 3 = 1.5 × Facility 1, one third of students omitted; and if Facility 3 = 2 × Facility 1, 
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the same number of students omitted the item as responded. Omissions generally increase later 

in the test although students also look through the test selecting items that look easy. (See 

Steinle, Stacey, et al. (2022) if you are curious about Facility 2.) 

Table 4 

Facility Range (Facility 1~Facility 3) of Test Items by Diagnosed Stage 
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A1 3x + 8 = 23 5 rubric 0% 94%~94% 96%~96% 98%~98% 97%~97% 

A2 4x + 9 = 37 7 rubric 0% 87%~89% 95%~96% 95%~95% 97%~97% 

B1 5x + 7 = 15 1.6 3%~4% rubric 0% 95%~95% 97%~97% 97%~97% 

B2 8x + 3 = 16 1.625 3%~3% rubric 0% 83%~88% 87%~90% 95%~95% 

C1 8x + 5 = 3x + 14 1.8 6%~9% 12%~22% rubric 0% 90%~91% 96%~96% 

C2 12x + 2 = 8x + 15 3.25 5%~8% 7%~15% rubric 0% 63%~76% 94%~94% 

D1 7x − 11 = 2x − 4 1.4 4%~7% 6%~13% 3%~9% rubric 0% 92%~93% 

D2 12 − 11x = 5 − x 0.7 3%~5% 5%~10% 3%~9% rubric 0% 69%~72% 

E1 7x − 2 = 16 18/7 4%~6% 11%~20% 40%~61% 53%~70% 81%~83% 

E2 14 − 2x = 8 3 7%~10% 27%~46% 33%~54% 39%~52% 77%~81% 

E3 3x + 6 + 2x = 7 0.2 2%~4% 7%~15% 19%~44% 39%~61% 81%~87% 

E4 
𝑥 + 2

5
= 3 13  9%~16% 23%~46% 35%~68% 52%~78% 79%~87% 

E5 
𝑥

3
+ 1 = 5 12 10%~19% 22%~46% 34%~66% 46%~70% 76%~84% 

E6 4(x − 3) = 21 8.25 3%~6% 5%~11% 18%~39% 37%~59% 72%~80% 

The shading (from Table 2) indicates the applicability (F, A, N) of the hypothesised strategy for each stage. ‘Rubric 

0%’ indicates the item must be incorrect for student to be allocated to that Stage (as in Table 3). 

Stages 3 and 4: Do Responses Match the Balancing Strategy? 

Stage 3 and 4 students were predicted (Table 2) to do well on all items (except Stage 3 on 

Group D). They have very high performance on Group A, B and C and higher performance 

than other stages on all other items. After A1, Stage 4 students had a somewhat higher facility 

range than Stage 3 on every item. We see that Stage 4 students are more secure than Stage 3 in 

their balancing strategy (e.g., comparing Group C facilities) and the Group E facilities show 

they are better able to manage algebraic variations. Importantly, the facility ranges for Group 

D reveal the importance difference between subtraction of a number (D1) and subtraction of a 

pronumeral (D2) even for these relatively accomplished students (as noted by Herscovics & 

Linchevski, 1994). This difference is also apparent in the decrease in facility between E1 and 

E2 for students in Stages 2, 3 and 4. Only Stage 0 and Stage 1 students had higher facility on 

E2 than on E1, supporting the hypothesis that these students are substituting numbers rather 

than working with the algebra and hence found the item with a natural number solution easier. 

Stage 3 students’ responses generally fit the predicted pattern, with high success on items 

in Groups A, B, and C, and moderate success on Group E. We have no good explanation for 

the large drop in facility for C2 compared to C1. Overall, the Stage 3 pattern is consistent with 

students still developing the balancing strategy and the algebraic skills that are necessary to 

manage variations in algebraic structure (see, for example E3 and E6). 
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Stage 2: Do Responses Match the Unwinding Strategy? 

The a priori analysis in Table 2 predicted the unwinding strategy would give success with 

eight items but, assuming no prior algebraic manipulation to put the equation in an amenable 

form, it would fail for six items (C1, C2, D1, D2, E2, E3) and that E6 would be difficult. The 

facility ranges for the Group A, B, C and D items match the prediction. Items E1, E4, E5 were 

predicted to be feasible with the unwinding strategy (Table 2), and around two thirds of those 

Stage 2 students who attempted these were successful. Item E6 can also be solved by 

unwinding, but success relies on reading the brackets notation appropriately; first 3 is subtracted 

from the unknown number then the answer is multiplied by 4. Perhaps this is why the facility 

was much lower. Items E2 and E3 cannot be solved by unwinding without preliminary algebraic 

manipulation. After collecting like terms, E3 belongs to Group B where this group of students 

have already shown very high facility, but only 44% of those who responded to E3 were 

successful and the omission rate was high. This is consistent with students learning unwinding 

strategies with clear stories of what happened to the unknown number, written in algebra (e.g., 

E4, E5, A, and B items), and not yet doing preliminary algebraic manipulation. Stage 2 students 

did much better on item E2 than predicted with nearly half being successful; we assume they 

turned to substitution (natural number answer), which may also have boosted facilities of E4 

and E5. The omission rate was high for all E items, supporting the picture of these students just 

beginning to learn equation solving, still having little exposure to variations of algebraic form. 

Stage 1: Do Responses Match the Substituting Strategy? 

The a priori analysis in Table 2 predicted the substituting strategy would be successful 

when solutions were small natural numbers, but in other cases would be awkward for beginners. 

Locating a non-integer solution takes a relatively long time and is prone to error because more 

complex arithmetic is required. This is well supported by the data. All the items with Facility 3 

over 40% have small natural number solutions. All other facilities are under 25%. The omission 

rate is high at around one third after Group A items, which is consistent with students taking a 

long time to complete the questions. Further support for use of substituting was presented by 

the error analysis (Steinle, Stacey et al., 2022). Stage 1 students often gave an answer of 1 more 

or less than the correct answer (so a numerical slip) or answered N.5 when the correct answer 

was between N and N + 1 (e.g., to give an answer 3.5 instead of 3.25). We hypothesise that this 

response was used to indicate that they know the answer is somewhere between 3 and 4. 

Stage 0: What do These Students Know? 

Students were put into Stage 0 if they answered neither A1 nor A2 correctly. It is to be 

expected that a small number of capable students made slips (mathematical or response entry) 

on both A1 and A2 and therefore are misdiagnosed by the strictly hierarchical rubric we have 

used (see Table 3). A small rate of misdiagnosis is supported by the observation that every item 

in Groups B, C and D was answered correctly by at least 3% of the Stage 0 students. The items 

with the highest facility for Stage 0 students are E2, E4, and E5, all of which have small natural 

number solutions, indicating some students were substituting. For E4 and E5, around 10% of 

students were correct. These are the only items that do not include implicit multiplication. We 

conclude that at least 10% of the students diagnosed as Stage 0 are using substitution (and we 

estimate about a half), but they do not reliably interpret implicit multiplication. In support of 

this, the error analysis (Steinle, Stacey et al., 2022) found that incorrect responses consistent 

with interpreting mx as m + x were given by over one-third of Stage 0 students. 

Conclusion 

The purpose of this paper was to demonstrate that a short online test can diagnose students’ 

thinking sufficiently well to help a teacher plan teaching. The constraints were that the test must 
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be short, student responses must be machine-readable, and the diagnosis given to the teacher 

must be easily understood and important. The literature review and curriculum analysis 

demonstrated the importance of the strategies for solving linear equations. This paper illustrated 

the contribution of analysis of overall accuracy to validating the resulting diagnoses; error 

analysis reported elsewhere supplements this. The match between the theoretical predictions of 

item facility and the actual facilities provided evidence that most students in Stage 1 use 

substituting only, most students in Stage 2 can (also) use unwinding and that students in Stages 

3 and 4 can use balancing, at least with basic algebraic structures. The distinction between Stage 

3 and 4 students was not as clear-cut as expected, so could be refined. The test results also 

highlighted the importance of students frequently working with linear equations that are not 

written in the canonical ax + b form. 
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This article presents research focused on establishing ways that dialogic talk between 

teachers and students promotes mathematical reasoning in early years classrooms. Data 

are drawn from recorded and transcribed Year 1 mathematics lessons. Conversation 

analysis provides close examination of the talk-in-interaction practices of teachers and 

students and reveals how mathematical reasoning is co-produced through the turn-by-

turn exchange structures between teachers and students. Analysis of selected transcripts 

illustrates how different teacher talk moves create a dialogic space that make student 

mathematical reasoning possible. Implications for classroom practices are made. 

Lessons by their very nature are interactive events where teachers and students come 

together in interactions centred around promoting and eliciting student’s learning (Edwards-

Groves, 2024). In mathematics lessons, one of the central pedagogical goals is facilitating 

students’ reasoning; for students, reasoning is generally experienced as they participate in 

whole class, small group or paired discussions (Mercer, 2008). Mathematical reasoning is well 

addressed in both the research literature and curriculum documents as being a critical process 

necessary for supporting young learners to identify patterns, organise ideas, solve problems, 

discern relationships between concepts, and draw logical well justified conclusions (Australian 

Curriculum, Assessment Reporting Authority [ACARA], 2022; Russell,1999). Interaction 

research also establishes that talk and interaction itself is a reasoning activity (Hutchby & 

Wooffitt, 2008) which requires interlocutors, like teachers and students in lessons, to display 

their reasoning in their turns where intersubjectively, sense is made as conversations unfold 

turn-by-turn (Schegloff, 2007). Therefore, to support early years teachers to develop deeper 

understandings about mathematical reasoning, there is a critical need to draw closer attention 

to the complexity that reasoning talk in mathematics lessons presents. For effective teaching, 

this requires accounting for the inextricable interrelationship between classroom dialogue, 

communication practices and mathematical reasoning, and what this means for early reasoning 

proficiency. To understand the nature and influence of classroom talk on young children’s 

mathematical reasoning, this article examines some core (and often taken-for-granted) dialogic 

talk practices of teachers and students in their mathematics lessons. 

Literature Review 

In this section, two main bodies of literature relevant to mathematical reasoning and 

classroom talk are presented. 

Mathematical Reasoning 

Mathematical reasoning has a central role in learning mathematics and is critical for 

student’s developing mathematical understandings, creative thinking, problem solving, and 

knowledge (Chapin et al., 2007; Vale et al., 2017). In classroom lessons, developing 

mathematics reasoning aims to strengthen student competencies for solving increasingly 

complex mathematical problems (Stein et al., 1996; Wusterberg et al., 2012). Mathematical 

mailto:astibbard@csu.edu.au
mailto:c.edwards-groves@griffith.edu.au
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reasoning is comprised of three main reasoning actions: analysing, generalising and justifying. 

These reasoning actions are necessary for engaging in tasks requiring students to examine and 

interpret concepts and problems, elicit generalisations and provide well-reasoned justifications. 

It is through participating in more extended discussions with and among students that account 

for these reasoning actions, that an interconnected web of understandings and knowledge is 

built (Zevenbergen et al., 2001). This provides a foundation for mathematical sensemaking and 

so create conditions for developing one’s mathematical memory (Russell, 1999). 

In the Australian Curriculum: F–10 Mathematics (ACARA, 2022), reasoning is one of four 

interrelated proficiencies students are expected to develop as part of their learning. Along with 

understanding, fluency and problem-solving, reasoning is described as a necessary process for 

working mathematically. In lessons, students are required to engage in reasoning by working 

on mathematical tasks that require them to ‘discover’ and make sense of mathematics concepts 

and ideas. According to the curriculum, the reasoning process and the actions which comprise 

it, requires Early Stage One and Stage One students to demonstrate: (1) an increasingly 

sophisticated capacity for logical thought and actions; (2) thinking through their explanations; 

(3) mathematical thinking that creates and validates mathematical ideas and new knowledge; 

and (4) meaning making. Further, an emphasis on mathematical reasoning incorporates the 

study of flawed or incorrect reasoning as an avenue towards a deeper development of 

mathematical knowledge (ACARA, 2022, pp. 1–2). “Greater discussion among students and 

the recognition that mathematics is not constrained by always having a single answer” 

(Zevenbergen et al., 2001, p. 9) is necessary for providing educative conditions for students to 

produce and display mathematical reasoning. One way to foster such discussion is by creating 

a dialogic talk space that forms a strong pedagogical basis for facilitating mathematical 

reasoning. 

Dialogic Talk 

A growing body of research has focused on understanding and promoting teachers and 

students’ repertoires of talk moves that form a critical feature of pedagogical efficacy (Attard 

et al., 2018; Chapin et al., 2013). As explained by Edwards-Groves et al. (2014), understanding 

talk moves concerns the work of a turn in an interaction; for example, this might be in the form 

of a question that opens a discussion sequence, a response to a prior speaker’s turn/question, or 

an assessment of a turn through verbal (a comment, a rephrasing) and/or nonverbal (a gesture, 

a nod) means. Each, and in combination, evoke a particular kind of next turn speaker action and 

signals the function of a speaker’s turn (e.g., a why question solicits a reasoning response) 

(Edwards-Groves, 2024). Hinton et al. (2021) described dialogic talk moves as turns which 

deliberately and strategically move student turns to: 

• Sustain a point where a particular line of thinking is pursued and to produce evidentiary 

talk by providing clarifications, exemplifications, reasons and justifications; 

• Extend and deepen thinking about their ideas by orienting to and building on the 

thinking of others, to learn from the opinions, reasons and knowledge of others; 

• Challenge and question the thinking of others by building argumentation through 

agreeing and disagreeing and promoting the acceptance and production of a range of 

alternative points of views; 

• Demonstrate active listening by providing feedback to the turns of others, asking for 

clarification, and responding directly to the thinking of others (saying what they think 

about what they’d heard in the prior turn or across a sequence), repeating (word-for-

word) and revoicing (rephrasing in their own words) what they have heard; 

• Reflect on and review their learning (often through retelling, paraphrasing or 

summarising) at different points across a lesson. 
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It is argued that these moves are dialogic since they move the next turn speaker towards 

producing longer more sustained turns, and so have the potential to make discussions more 

academically productive, high leverage and intellectually rigorous (Chapin et al., 2007). 

Edwards-Groves (2014) identified two deliberately used communicative strategies that further 

extend opportunities for student to talk and engage with the thinking of others: i) wait time (a 

deliberate pause of more than three seconds after a teacher turn); and ii) vacating the floor 

(reflected in strategies such as turn-to-talk, walk-and-talk, think-pair-share). Allowing longer 

wait time provides more time for student thinking, formulating and rehearsing ideas, helping 

them produce a more considered, and often longer, response before they ‘go public’ with their 

contribution. When teachers vacate the floor they ‘remove’ themselves from the immediacy of 

the conversation to allow students time and opportunity for practicing, rehearsing and ‘testing’ 

ideas, and managing, controlling and taking responsibility for the conversation, their 

contributions, and ultimately their learning. Vacating the floor might take the form of the 

teacher withholding of turns to allow students take consecutive turns. Importantly as Stibbard 

et al. (2020) also showed, that student-student talk sequences focused on the task (in paired or 

small group interactions) are reflective of a dialogic classroom. 

The Study 

Participants and Contexts 

Data for this article are drawn from a broader study conducted in five Early Stage One/Stage 

One classrooms in three primary schools in regional NSW, Australia, aiming to understand the 

nature and influence of classroom talk on young children’s mathematical reasoning. This article 

examines some core (and often taken-for-granted) dialogic talk practices of teachers and 

students in their mathematics lessons, and sought to answer this specific research question: 

What is the nature of teacher talk moves which promote mathematical reasoning in early years 

problem solving lessons? To answer this question, recorded and transcribed mathematics 

lessons (15 in total) formed the corpus of data for analysis. Participants were recommended by 

the district mathematics consultant, then invited to participate. Informed consent was requested 

and given from teacher participants, along with the parents of students in each class. Class sizes 

ranged from 14–28 students. Selected transcript excerpts are from one Year 1 problem solving 

lesson where in the whole classroom discussion phase the teacher was focused on eliciting 

student’s understandings about the differences between rows and columns. 

Data Analysis 

In this study, conversation analysis (Sacks et al., 1974) was employed to reveal the detail 

and intricacies of conversational exchanges in Year 1 mathematics lessons to show how 

reasoning is accomplished turn-by-turn and across teacher and student sequences. Reasoning, 

as a core process for working mathematically, emerged as a prominent analytic focus since 

accomplishing mathematical reasoning simultaneously requires interactive reasoning. 

Conversation analysis (CA) was applied to the data as a method for conducting a systematic 

analysis of the turn structure and organisation in the lesson talk-in-interaction (Sacks et al., 

1974). As a premise, CA researchers study audio and/or video recordings of interactions, 

transcribing them into detailed transcripts, followed by the close analysis of interactional 

phenomena as it is produced in the talk (Davidson, 2009). Analysis focuses on the basic 

taxonomy (presented below) for understanding the speech-exchange system suggested by 

conversation analyst Emmanuel Schegloff (2007). This system is useful for identifying and 

understanding the talk-in-interaction produced by teachers and students in lessons (Edwards-

Groves, 2024); specifically, attention is given to the: 

• Length of the turns and exchanges; 

• Nature of the contributions provided by each party to the talk (teachers and students); 
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• Types of interactive processes used in the task-setting, instructional or discussion parts 

of the talk (e.g., what is being asked of the students in terms of mental activity or what 

thinking is needed, verbal/literate activity or what language and discourses are required, 

material activity or what activities, tasks and resources will be spoken about, and 

relational activity or what grouping and interactive arrangements are required); 

• Orientation, logical order, and relevance of the talk related to the: 

o local—what was just said or done then and there in the interaction; 

o sequential—what has been said & heard in and across a sequence or lesson; 

o topical—the relationship of the turn to the topic at hand; 

o categorical—the expectations or norms displayed by participants in and by their 

turns, like a teacher or student (as they talk in pairs, groups or whole class); and 

o reasoning—the specialised reasoning and/or linguistic practices of a discipline/ 

curriculum like mathematics (Schegloff, 2007). 

These features are typical of how meanings are produced in ordinary talk-in-interaction, but 

also highlight the complex interactional demands required of students participating in lessons 

asking them to demonstrate reasoned sensemaking about what is happening at the same time 

produce mathematical reasoning. 

Results and Discussion 

The excerpts presented next are drawn from the ‘launch’ phase (Sullivan et al., 2016) in the 

final lesson of a five-lesson sequence focusing on multiplication and division. To begin, the 14 

students were asked to organise themselves into rows of three, after which the teacher asked 

the framing question “what’s a row?” The mathematical knowledge for the task included 

understanding arrays (specifically arrays with the dimensions of 4 by 3); knowledge of arrays 

being structured using equal rows and columns; and understanding remainders (items left over). 

The students were expected to make four rows of three students, with two students ‘left over’. 

In this first excerpt, several teacher and student talk moves illustrate how reasoning is promoted 

across a series of turns. (Note: each excerpt accounts for less than two minutes of talk). 

Excerpt 1: Producing and Co-Producing Reasoning 

37 Tea: Charlie↑ have you thought about how many rows we will have↑(0.5) 

38 Cha: four rows 

39 Tea: you’ll end up with four rows↑(.) okay↑ 

40  how did you(.) why do you think four Charlie? 

41 Cha: because I knew four 

42 Tea: one row yep↑ tell me more 

46 Cha: and um Mischa and(.)and Cassie and (.) 

47 Tea: ye:ah↑= 

48 Cha: =and me and Fletcher= 

49 Fle: =but there’s not enough three peoples 

50 Tea: hang on, let Charlie finish↑ 

51 Cha: me, Noah and Fletcher then two (.) then we’d need one more 

53 Tea: we’d need one more to make our↑(.) 

54 Fle: fifth row 

55 Mis: it has to be one, to make a full row= 

56 Tea: =row Charlie(.) well done I think you did some good maths thinking 

57  then↓ remember you are making rows of three 

In this sequence, the teacher’s use of wait time (the non-typical extended pause of 5 seconds 

(0.5) in line 37), the “why” question (line 40), the “tell me more” request (line 42), that more 
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turns than is typical is allocated to Charlie to sustain his point so that he could continue his line 

of thinking where he could explain his reasons for his initial answer “four” (line 38), form a 

collection of turns that exemplify a more dialogic sequence of talk. 

The “why” question (line 40) not only functioned as a pass on talk move which returned the 

floor to the Charlie after his first response (Willemsen et al., 2020), but signalled that a 

reasoning response was required. Why questions form a dialogic talk move as they typically 

provoke a reasoning response whereby student/s are asked to explain their thinking (Edwards-

Groves, 2024). Here, reasoning is produced not as a single student response, but as evident in 

this excerpt, across a series of turns involving Charlie, other students, and the teacher. The 

teacher, in a deliberately orchestrated way, allowed Charlie more turns to provide a more 

complete explanation, then justification for his answer. That the teacher (line 50) made it clear 

that she wanted Charlie’s line of thinking to not be interrupted by another student created the 

space for Charlie to do so. Charlie extended his initial response by explaining the thinking he 

used to work out his answer of four; he did this by grouping students into rows. Contributions 

by other students Fletcher and Mischa provided additional evidence of how mathematical 

reasoning was co-produced in this instance. 

As the lesson progressed, the teacher called for students to suggest other examples that 

answer the framing question, “what’s a row”? The next excerpt shows how the responsibility 

for producing examples and explanations is shared among the students as they work through 

the problem. 

Excerpt 2: Sharing the Responsibility for Making Thinking Evident 

121 Tea: ok so back to our question, what’s a row↑ (0.3) what’s a row↑ (0.3) 

122       do you know what a row is↑ (0.2) what do you think Cleo↑ 

123 Cle: um(.) like a line↑ (0.2) 

124 Tea: like a line↑ so do you think rows can go (.) like this? ((teacher draws 

125  three 0’s horizontally on the whiteboard)) or this↑ ((draws three 0’s 

126  vertically)) or this (.) or this↑ ((draws three 0’S diagonally)) 

127 Sts: no↓ ((no:o)) ((one student saying “they’re not rows when they go down”)) 

128 Lia: any way↑ they can go any way↑ rows can go any way↑ 

129 Tea: you think rows can go any way↑ 

130 Cle: look they’re going that way, going that way 

131 Tea: I heard someone say no though↓ who said no↓ you don’t think they’re 

132  rows↓ alright (.) Cassie you said they’re not rows when they go down↑ 

133  (0.3) tell us why you think that 

134 Cas: rows are like(.) the movie theatre 

135 Tea: can you show us (0.1) can you draw some rows for us↑ ((Cassie draws 

136  straight lines horizontally on the whiteboard to demonstrate rows)) 

137  so Cassie(.) said rows are like when go to the movie theatre (0.5) thanks 

138  Cassie↓ (0.4) what do you think about what Cassie has just shown us↑(.) 

139 Lin: Cassie’s right, she said rows are like (.) when you go to the movie theatre 

140   and you sit in the seats in rows … 

In this sequence, producing mathematical reasoning is aligned with both articulating 

thinking and showing evidence (e.g., Cassie’s drawing her ideas on the board). This is made 

prominent in the teacher’s prompts and requests, such as “what do you think” (line 122), “so 

do you think?”(line 124), “you think” (line 129), “you don’t think” (line 131), “why you think 

that’ (line 133), “can you draw some rows…” (line 135), and “what do you think about...” (line 

138). The sequence progresses with a range of student responses, that “rows are like lines”, that 

“rows can go any way”, and that “rows are not rows if they go down”. It is at line 131, that the 
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teacher shifts the student responses to move from the reasoning action of generalising (rows are 

like lines) to exemplifying (drawing rows on the board) to justifying (tell us why you think 

that). Here the teacher turn “Can you show us…?” (line 136) functions as a request for 

producing evidence to support Cassie’s earlier point (line 127) that “they’re not rows when they 

go down”. Lincoln’s subsequent agreement with and rephrasing of Cassie’s explanation (lines 

139/140) is a demonstration of active listening by overtly indicating his orientation and 

interpretation of another person’s ideas. This brief excerpt shows how the mathematical 

reasoning is co-produced in the talk-in-interaction that students are supported (through prompts 

and requests) to make their thinking ‘public’ through extended explanations and justifications. 

In this final excerpt, alternative responses are offered as possible solutions to the framing 

“why” question. Teacher prompted the dialogue in strategically and sequentially relevant ways, 

through talk moves such as using “I wonder”, inviting multiple ideas like “let’s have thumbs 

up if you have something to share”, or asking open questions that require students to produce 

analysing, generalising and justifying their reasoning. 

Excerpt 3: Using ‘I wonder’ for Producing Alternative Responses 

141 Tea: I wonder what other ideas (.) let’s have thumbs up (.) if you’ve 

142  got something else to share (.)…((turns omitted)) what do you think Noah↑ 

143 Noa: um when Cassie said rows at the civic theatre but they they 

144  could not be equal because you don’t know if people could make it↑ 

145 Tea: [okay 

146 Noa: [there could be some empty seats↓ 

147 Tea: there could be empty seats but can you see what Cassie has [drawn↑ 

148 Noa:            [yeah 

149 Tea: so let’s look at what Cassie is saying that (0.1) lines like that are rows↑ 

150 Noa: yes 

151 Tea: whereas before people said that lines could go anyway(.) and 

152  they’re rows so what do you think about that↑(.) I wonder if it’s a row 

153  or is it just a line? (0.3) which one do you think might be rows(.) Noah↑ 

154 Noa: the top one ((Noah refers to teacher drawing horizontal 0s)) 

155 Tea: you think that’s rows(.) why↑ 

156 Noa: because um it doesn’t matter how long your row is because(.) they’re rows 

157  aren’t different to most of the [rows 

In the first turn of this excerpt, the teacher’s use of “I wonder” (line 141) functions as a 

move designed to open up the conversation to elicit other ideas and thoughts. Here, the teacher 

moves provided students with extended opportunities to articulate their thinking and justify 

their ideas and form evidence of the dialogic nature of this exchange. The use of ‘I wonder’ 

frees the students to contribute further explanations and designed to enhance student 

participation. This is a direct dialogic move as it is an opening-up rather than closing-down 

move. According to Houen et al. (2016), the use of “I wonder” plays an important role in 

discussions as a move that intentionally elicits additional “thoughts, ideas and opinions rather 

than being required to recite facts” (p. 75). 

In this example, the “I wonder” formulation recruits Noah to answer. He subsequently 

demonstrates the analysing reasoning action (lines 143–4, 146, 154, 156) as he orients to, 

engages with, and challenges, Cassies’ earlier explanation. Noah challenges Cassie’s point by 

proposing a problem with her idea (albeit not entirely correct in terms of what she was 

proposing). To address this flawed reasoning (Russell, 1999), the teacher reformulates her 

question “what do you think about that” (line 152) into a wondering, “I wonder if it’s a row or 

is it just a line?” (lines 152–53). This wondering seeks clarification and solicits more reasoning 
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to rectify Noah’s partially correct answer. As a response, Noah pursued his thinking by adding 

“but they need to be parallel”, and on his reasoning, rows in a movie theatre are not parallel. 

Summary 

Analysis of these brief excerpts from this Year 1 mathematics lesson showed ways dialogic 

talk in this problem-solving lesson supported these early years students to produce the 

mathematical reasoning actions of analysing, explaining, and justifying. Across the sequences, 

dialogic talk was evident in how teacher talk moves opened the communicative space for 

students to analyse the ideas and the turns of others, generalise concepts (like rows and lines) 

and justify their responses as they attempted to explore ‘rows’ at the local, sequential, and 

topical levels. Across the turns, through interpretations, explanations and justifications, students 

jointly produced mathematical reasoning as they oriented to, took up, and extended the thinking 

of others. When the teacher vacated the floor (to withhold a turn or wait longer with a pause), 

students directly built on and responded to the ideas of others. It was evident that students were 

provided with extended and additional opportunities to offer alternatives to other student’s 

ideas, take up or present new ideas, challenge others, and/or contribute additional information, 

personal opinions and alternative reasons. 

Findings shows ways that Schegloff’s (2007) five interactional features for meaning making 

and coherence is evident across the turns as students created and maintained meaning at the 

local turn level, sequential (across the turns and sequences), topical (about rows), categorical 

(as student and teachers co-producing meaning) and reasoning (in terms of producing 

mathematical reasonings) as they displayed their meanings about the talk, the topic and the task 

at hand was displayed. 

Implications 

Conversation analysis, through its fine-grained attention to how talk unfolds turn by turn, 

provided a useful method for understanding the nature of interconnectedness of interactive and 

mathematic reasoning with implications for dialogic talk practices. Analysis of this Year 1 

lesson showed evidence that mathematical reasoning is co-produced across a series of turns 

rather that found in a single student response. It is shown that through the strategic and 

deliberate teacher use of talk moves, mathematical reasoning is accomplished. For example, 

moves such as the use of “I wonder”, the use of a “why” question to provoke a reasoning 

response, affording students the opportunity to sustain and/or extend a point, challenging ideas, 

and/or producing alternatives are notable. This has important implications for teachers’ 

understandings about how mathematical reasoning is produced as a process, and that it is made 

evident by students as a lesson unfolds, turn by turn, and across sequences of talk-in-interaction. 

Further, it is necessary to understand that talk-in-interaction is a reasoning task requiring 

intersubjective meaning making, that at the same time produces mathematical reasoning. 

Conclusion 

This article examines one of the most fundamental, yet taken-for-granted, activities that 

goes in classrooms—the talk and interaction that happens between teachers and students in their 

lessons. It is through this talk and interaction that intersubjective meanings are made, that 

mathematical reasoning is promoted and demonstrated, and that mathematical knowledge is 

developed. Given what is at stake, how lesson talk is understood and practiced by teachers and 

students matters to student learning is necessary for improving mathematical reasoning. 
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An understanding of the equal sign is a fundamental concept for early algebra. While 

literature claimed that Chinese students commonly master the relational understanding 

of the equal sign in the elementary school, these claims are under-researched. This study 

used the Mathematics Equivalence Assessment with 237 Chinese Grade 5 students. The 

results showed that the majority of students possess a relational understanding of the 

equal sign, with some able to confidently apply the concept of structural equivalence. 

To complement the test results, six Grade 5 teachers were also interviewed to explore 

teaching approaches and contexts used to foster an understanding of the equal sign. 

Students’ misconceptions of the equal sign still remain widespread in many western 

countries nowadays (Stephens et al., 2022). Many students possess an operational 

understanding of the equal sign, considering the equal sign as a symbol of indicating calculation 

results, instead of perceiving the equal sign as an indication of an equivalent relationship of 

both sides (i.e., a relational understanding, McNeil et al., 2015). A relational understanding of 

the equal sign is fundamental during students’ progression from arithmetic to algebra (e.g., 

Carpenter et al., 2003). A narrow operational conception of the equal sign can cause students’ 

difficulties in algebra (Stephens et al., 2022). For instance, students without the relational 

understanding of the equal sign struggle to understand the number sentences such as ‘3 = 3’, 

and ‘3 + 2 = 4 + 1’, and these students will further experience difficulties in making sense of 

solving equations with unknowns on both sides (e.g., 3x + 2 = 2x + 1) when learning algebra. 

There has been extensive research contributing to pedagogical approaches to develop students’ 

relational understanding of the equal sign, such as the number sentence evaluation activity 

(Carpenter et al., 2003) and exposing students to non-conventional forms of arithmetic 

expressions, such as ‘__ = 1 + 2’ and ‘3 = 1 + __’. (McNeil et al., 2015). These pedagogies aim 

to interrupt students’ one-directional (left to right) conception of the equal sign and provide 

students with an opportunity to attend to the equivalence of both sides of the equal sign. 

While the misconception of the equal sign is common in western countries, it is not 

universal. Researchers (e.g., Li et al., 2008; Jones et al., 2012) reported that by the end of 

primary school, students in China generally have developed a relational conception of the equal 

sign. For instance, a pioneer work by Li et al. (2008) revealed that the majority (98%) of Grade 6 

tested students (n = 145) in China possess a robust relational understanding of the equal sign. 

Since Li et al. (2008), a growing body of literature is exploring Chinese students’ conceptions 

of the equal sign, indicating their process of gaining the solid relational understanding is not 

without setbacks (e.g., Sun et al., 2023; Yang et al., 2014). This leaves a space for a further 

investigation on how Chinese students develop a relational understanding of the equal sign. The 

purpose of this report is to contribute further insights to this topic by examining Chinese 

Grade 5 students’ understanding of the equal sign and exploring the possible factors influencing 

the development of their understanding. 
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Literature Review 

As mentioned, Li et al. (2008) reported students in China generally hold a relational 

understanding of the equal sign. Through a text-book analysis, Li et al. (2008) found that in 

China the equal sign was introduced to students before their exposure to addition and 

subtraction. Students started learning the formal symbol of the equal sign in a context of 

comparing and describing quantities relationship (e.g., ‘more than’, ‘the same as’, ‘less than’) 

of concrete objects, with the formal symbol of the equal sign being introduced afterwards. (Sun 

& Gu, 2023) conducted a close examination of the pedagogical approach to introduce equal 

sign in China. Echoing Li et al. (2008), Sun and Gu (2023) showed that the concept of the 

equality and the formal symbol of the equal sign is first introduced to children in kindergarten 

(for the children aged 5) in a quantity comparison context before they begin learning arithmetic 

operations (addition and subtraction), so the interference of misconception that the equal sign 

is a symbol of displaying results of calculation possibly brought by traditional forms of 

arithmetic expressions (e.g., 1 + 2 = 3, 7 − 5 = 2) can be reduced. Furthermore, they showed 

that children in kindergarten were introduced to an activity of drawing an equivalent number of 

any objects they like to match the other side of the equal sign, and the objects to be matched 

were allocated on either right side or left side of the equal sign (see Figure 1 below). 

Figure 1 

Match the Quantity of Objects Activity (Sun & Gu, 2023) 

 

This activity supported students in building a bi-directional view of the equal sign. Finally, 

Sun and Gu (2023) mentioned introducing the formal symbol of the equal sign, the official 

curriculum document requires teachers to highlight the way of drawing the equal sign: ‘two 

short horizontal lines with the same length’. This step appeared to reinforce students’ 

conception that the equal sign refers to the ‘sameness’. Overall, Sun and Gu (2023) concluded 

that children’s experiences with the equal sign in kindergarten provided them with a foundation 

of a relational view towards the equal sign before beginning primary school. However, Sun et 

al. (2023) reported that only about half of Grade 3 tested Chinese students (n = 501) held the 

robust relational understanding of the equal sign. This percentage is even lower for Grade 1 

students tested (approximately 36%, n = 497). Similarly, Yang et al. (2014) showed about 30% 

of tested Grade 3 students (n = 110) considered the equal sign as ‘show results’. These results 

tended to demonstrate that while Chinese students may have a foundation of relational 

understanding of the equal sign at pre-school level, their emerging relational view can revert to 

operational view after they enter early grades in primary school. Sun et al. (2023) speculated 

the extensive arithmetic operation drill in early primary grades could be a major factor leading 

to this failure. On the other hand, as mentioned above, others (e.g., Jones et al., 2012; Li et al., 

2008) showed by Grade 6, students in China generally possessed a more robust relational 

understanding of the equal sign. While these studies were conducted in the different contexts 

(e.g., schools, regions) in China, the high degree of uniformity of national curriculum, 

nationally approved textbooks, and the consistency of teaching approaches in Chinese schools 
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suggest that these findings from different studies are likely to be well-grounded to portray a 

landscape of students’ conception of the equal sign in China. That is, while students in China 

generally have developed a relational understanding of the equal sign by end of primary school, 

the process that they gain this understanding is not without obstacles. 

In this sense, there is a space to further explore how Chinese students’ development of 

conception of the equal sign, in particular, to understand how their conceptions are further 

supported in progressing to relational level since Grade 3. This study contributes to this research 

gap by focusing on students who were at the start of Grade 5. The main part of this study reports 

on the use of the Mathematical Equivalence Assessment (MEA) to investigate students 

relational understanding of the equal sign. In addition, to complement the MEA test results, 

exploratory interviews with the students’ teachers were conducted to identify possible factors 

that may help explain students’ developing conceptions of the equal sign. 

Methodology 

The research was conducted in a primary school in Changchun, Jilin Province, China. The 

context of the participating school and students is similar to those in Sun et al. (2023), in terms 

of similar region, SES background and academic rankings. A total of 237 Grade 5 (aged 11–

12) students participated in this study, 110 boys and 127 girls. Students took a diagnostic test 

that examined their understanding of the equal sign (elaborated below). Their responses were 

coded against three categories of understanding of the equal sign suggested by Stephens et al. 

(2013). Afterward, interviews were conducted with six mathematics teachers to gather their 

insights on the factors enhancing or impeding students’ relational conception of the equal sign 

(four were the teachers of participating students when they were in Grade 4, the other two were 

not, but they also taught Grade 4). The study was conducted in September, when students had 

just started Grade 5. 

Instrument 

The Mathematics Equivalence Assessment (MEA) instrument is a well-established tool 

designed to measure students’ understanding of the equal sign, and it has been proved effective 

in cross-cultural contexts, including its application in China (Simsek et al., 2021). 

Table 1 

Example Test Items for Number Sentence Evaluation and Solving 

Number sentence type Elaboration and example 

a + b = c Students evaluate true or false for number sentences such as 31 + 12 = 43 

Students fill the missing number to the form __ + 35 = 91  

c = a + b Students evaluate true or false for number sentences such as 25 = 16 + 9 

Students fill the missing number to the form 52 = 13 + __ 

a = a Students evaluate true or false for number sentences such as 41 = 41 

Students fill the missing number for the form 23 = __ 

a + b = c + d Students evaluate true or false for number sentences such as 

41 + 23 = 31 + 33 

Students fill the missing number for the form 53 + 31= __ + 21 

MEA consists of three types of problems: (1) structure evaluation, students to determine 

whether number sentences such as 10 = 3 + 7, 7 = 7 and 3 + 7 = 4 + 6, are true or false; (2) 

structure solving, students to fill the missing number in a number sentence such as 

12 + 23 = __ + 25; and (3) definition of the equal sign, students to explain the meaning of the 

equal sign. Sun et al. (2023) further modified the items in MEA to the context in China (e.g., 

modifying the numbers to better align with students’ grade levels) and applied them to measure 

students’ understanding of the equal sign in the first three grades. Considering the similarity in 
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school contexts between this research and Sun et al. (2023), this study used the same test items 

as Sun et al. (2023). In the test, students evaluated true/false for number sentences given first. 

They then filled the missing numbers in the number sentences. For number sentence evaluation 

and solving items, students were required to explain how they arrived at the answers. There are 

four types of number sentences for evaluation and solving, as shown in Table 1, which are 

conventional and non-conventional forms of number sentences that are commonly applied to 

examine students’ understanding of equal sign. Finally, students wrote the definition of the 

equal sign. 

Coding Process 

Students’ responses were coded according to three levels of understanding of the equal sign 

in Stephens et al. (2013). The first level is ‘operational’: students perceive the equal sign as 

‘show answer’ symbol displaying the results of calculation carried out from the left side. The 

second level is ‘relational-computational’: students recognise the equal sign as indicating an 

equivalence of both sides, but they use full calculations to demonstrate this equivalence. The 

third level is ‘relational-structural’: students can apply relationships among the quantities to 

show the equivalence of both sides, with a minimum calculation. Both the second and third 

levels are evidence that students possess the relational understanding of the equal sign 

(Stephens et al., 2013). In this study, for the definition of equal sign, if a student stated that the 

equal sign meant “adding numbers”, “answers”, “results” or “totals”, this response was coded 

as ‘operational’; if a student explained equal sign means equivalence of both sides with a 

specific calculation example, it was coded as ‘relational-computational’; if a student expressed 

equal sign meant equivalent quantities of both sides in general, it was coded as ‘relational-

structural’. For number sentence solving, for instance, when solving “7 + 3 = __ + 4”, if a 

student filled in 10 or 14 for the missing number, it was coded as ‘operational’; if a student 

calculated 7 + 3 = 10 and then 10 − 4 = 6 for the missing number, it was coded as relational-

computational; if a student recognised that 4 is 1 more than 3 and so the missing number should 

be 1 less than 7 so it is 6, it was coded as ‘relational-structural’. The coding procedure for 

number sentence evaluation items was similar. 

Interview 

After the test was coded, six mathematics teachers were interviewed. The experiences of 

these teachers range from five to twenty years. All teachers had taught lower and middle 

primary levels. In the interviews, they shared their experiences in developing students’ 

conceptions of the equal sign and provided their opinion about factors that supported and/or 

impeded the relational understanding of the equal sign. The interviews were open-ended and 

prompted by questions such as “In your everyday teaching, would you emphasise the conception 

of the equal sign? If so, how?”, and “What do you think helps or hinders students to understand 

the equal sign as a symbol indicating the equivalent relationship of both sides?” 

Results and Discussion 

MEA Test 

Figure 2 below shows the coded test results. There are ten result columns, with the first one 

for the definition of the equal sign. Subsequently, there are two columns for each type of number 

sentence (one for evaluation and one for solving). The final column shows the average results 

of the previous nine columns. For each column, the percentages of students’ responses at three 

levels of understanding of the equal sign are categorised. 
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Figure 2 

Distribution of Students’ Responses to Test Items Against Level of Understanding (%) 

 

Figure 2 indicates that by the start of Grade 5, the majority of tested students possessed 

relational understanding of the equal sign. Across all number sentence items, at least 87% of 

responses fall at either relational-computational or relational-structural levels. Furthermore, the 

results shows that a substantial number of students used a strategy of applying quantity relations 

to fill the missing number in number sentences, without full calculations. For instance, 53.8% 

of answers to solving the number sentence type a + b = c + d are classified as relational-

structural level. For example, many students explained their approach to answer 

53 + 31 = 63 + 21 as “since 21 is 10 smaller than 31, to keep two sides the same, the missing 

number needs to be 10 greater than 53, so it must be 63”. Students with this structural view 

towards a number sentence have departed from focusing on calculating the results of operations 

and have started attending to the general structure and relations among terms in a number 

sentence, which is a hallmark of the early algebraic thinking (Molina & Ambrose, 2008). In this 

sense, it could be argued that a significant portion of tested students demonstrated their 

emergence of early algebraic thinking. On the other hand, it is noted that compared to number 

sentence items, fewer responses to the definition item are classified as relational understanding 

levels (74% compared to 87%). This result appears to suggest some students, who can apply 

their relational understanding of the equal sign to solve the problems, described the meaning of 

the equal sign as being coded as ‘operational’. The possible explanation is that when expressing 

the meaning of the equal sign, some students stated, “the equal sign is to connect between the 

answer and the calculation”. According to the coding scheme, this kind of responses was 

categorised as ‘operational’. However, the use of words like “connection” and “between” 

implied that these students may hold the relational understanding, so they can apply it in solving 

number sentence items. There was an ambiguity in their explanation of their conceptions. This 

finding tended to suggest that students who have developed certain mathematical thinking 

possibly have difficulties in articulating this thinking verbally or in written form due to a lack 

of appropriate mathematical vocabulary. This was echoed by Kranda (2008), who showed many 

students had difficulties in updating their mathematical language to adapt to the new situations. 

While an earlier study (Sun et al., 2023) documented that approximately half of the 

participating Chinese Grade 3 students still possessed an operational understanding of the equal 

sign, in this study, the majority of tested students, who had recently completed Grade 4, 

demonstrated their conception of the equal sign reached the relational level. Given that 

participating schools in both studies had the similar context (e.g., region, SES, academic 

ranking), it seems that by the start of Grade 5, Chinese students’ relational understanding of the 
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equal sign has been enhanced, compared to those in Grade 3. As will been seen later, teachers’ 

comments in the interview also endorsed this claim. However, this claim may need more careful 

longitudinal evaluation (see Conclusion and Limitation section). 

Teacher Interviews 

In interviews, six teachers shared their experiences in facilitating students’ development of 

the relational understanding of the equal sign. These experiences enabled this study to have an 

explorative understanding of factors promoting students’ relational understanding of the equal 

sign. All teachers commented they would not formally highlight the definition of the equal sign 

in everyday teaching. However, teachers recognised that some learning activities, introduced 

not specifically for fostering students’ relational understanding of the equal sign, actually 

promoted it. For instance, teachers revealed that students were exposed to number sentences 

such as ‘2 + 4 = 5 + __’ and ‘__ + 3 = 5 − 1’ sometimes during classroom practice, homework 

or tests. For completing these tasks, students needed to notice the equivalence of both sides. 

Three teachers used the word “embedding” to describe this experience, saying “embedding the 

conception of the equal sign into daily teaching practice.” These words are concurred with by 

Cai et al. (2013), who showed that in Chinese primary school, the emergence of early algebraic 

thinking was immersed in everyday teaching and learning on arithmetic. 

Furthermore, this study considers that an interesting finding from the interview is that five 

out of six teachers mentioned the introduction of solving simple formal equations (e.g., 

2x + 1 = 5, 5 = x − 2) in Grade 4 contributed to reinforcing students’ relational conception of 

the equal sign, and the revealed how they believed learning equations enhanced relational 

understanding. First, using a balance model to demonstrate the equation solving is frequently 

mentioned by teachers. For instance, Teacher A commented: 

When introducing equations, we used the balance model. Students visualised the similarity between 

the abstract equations and the concrete balance. So, they easily comprehend the equal sign as 

indicating equivalent relationship of both sides, like the balance beam. 

Similarly, Teacher C said, “the use of balance model can help them to visualise the meaning 

of the equation and understand equal sign as … just like a balance, indicating two sides have 

the same weight”. 

Teachers’ responses tended to suggest that the resemblance between the concrete 

representation (balance beam) and formal equation visually supports a conception that the equal 

sign refers to the equivalence of both sides. This supporting process is further elaborated by 

some teachers. For instance, Teacher B mentioned when learning equations, students engaged 

in a hands-on play with the balance, they saw the beam tilting if one side was heavier, and they 

observed it balancing again when they adjusted the weights to make both sides weight equally. 

This dynamic process led students to attend to the simultaneous changes of both sides of an 

equation, so as to further reinforce the conception of the equal sign that is to represent the 

equivalence of two sides. This kind of teachers’ comment appeared to reveal that that students’ 

hands-on interactions with the balance served as means to promote students’ relational 

understanding of the equal sign. Teacher B stated, “students had learnt the equal sign in the 

context of comparing quantities at earlier age, but this comparison was static. In contrast, the 

dynamic play of balance model could press the meaning of the equal sign more”. These words 

tended to highlight that compared to simply comparing quantities on two sides, the interactive 

play with the balance model is richer, enabling students to grasp a clearer understanding. 

Other than the balance model, teachers commonly commented that, when learning 

equations, compared to earlier grades, students are exposed to more non-conventional form of 

arithmetic expressions, helping them depart from the operational mindset. As Teacher D stated: 

Before learning equations, students experienced traditional arithmetic expressions for years, so they 

tend to have a mindset that the equal sign connects a calculated result. When learning equations, 



Chinese grade 5 students’ understanding of the equal sign 

517 

they see many operators and the unknowns can appear on either side of the equal sign, this breaks 

this mindset. 

Likewise, Teacher C and E said: 

Students normally do lots of the arithmetic operation questions with traditional form of number 

sentences, like the number to be answered on the right side. When they are learning to solve 

equations, they start experiencing many operations with unknown number on either side. They need 

to understand equal sign as ‘two sides are equivalent’ to make sense to these equations. (Teacher C) 

Before learning equations, students predominately see and think about calculating results, but when 

they were learning equations, they were pushed to consider the equivalent relations of quantities 

more than calculating results. (Teacher E) 

The teachers’ responses demonstrated that they recognised that overcoming a focus on 

calculating results (left to right) is an important premise for developing the relational 

understanding of the equal sign. They consider when learning formal equations in Grade 4, 

students were exposed to many non-conventional arithmetic expressions with operators and 

unknowns in different positions, providing students with ample opportunities to be aware of the 

equivalence of quantities on both sides. This finding concurs with other researchers (e.g., 

McNeil et al., 2015) who proposed non-conventional form of arithmetic expressions are 

effective to support students’ relational understanding of the equal sign. Furthermore, teachers’ 

comments suggested that during equation learning, students were facilitated to depart from 

focusing on calculating results, and they started noticing the relationships between the 

quantities, this focus on relationship might explain why a substantial number of students had 

started applying a structural strategy to evaluate or solve number sentence problems. 

Taken together, teacher interview tended to show that the introduction of the formal 

equation could: (1) allow students to visualise the connection between the formal equation and 

the balance model through the hands-on experiences; (2) expose students to many non-

conventional arithmetic expressions with operators and unknowns in different positions, 

whereby it promoted students’ relational conception of the equal sign. This finding echoes an 

early study (Cai et al., 2013), which put forth that learning formal equations supported students 

in attending to quantity relationships in number sentences in Chinese primary school. Notably, 

recently researchers in western countries also start paying attention to use equations with the 

balance model to support students’ relational understanding of the equal sign. For instance, 

Stephens et al. (2022) showed that equation solving activity with the assistance of a pan balance 

can promote US Grade 2 students’ relational understanding of the equal sign. Therefore, it could 

be understood that the literature on utilising equation learning activity to promote students’ 

relational understanding of the equal sign is emerging and is worth further exploration. 

Finally, Sun et al. (2023) showed that many Chinese students’ conceptions of the equal sign 

possibly revert to an operational level during the first three grades, and they speculated that this 

reversion might be to the excessive arithmetic operation drill practice. Teachers’ comments in 

this research confirmed this speculation. Many teachers reported that students need to drill an 

extensive amount arithmetic expressions that are in the traditional ‘left to right’ form in early 

grades, this can press a ‘show result’ conception of the equal sign to students. However, all 

teachers agreed that most students are able to view equal sign as indicating the equivalence of 

two sides after equation learning in Grade 4. This aligns with the claim made earlier: at the start 

of Grade 5, students’ relational understanding of the equal sign has been strengthened. 

Conclusion and Limitations 

In this study, the MEA test result suggested that by the start of Grade 5, the majority of 

tested Chinese students demonstrated a relational understanding of the equal sign, based on 

understanding levels categorised by Stephens et al. (2013), with some of the students exhibiting 

structural thinking that is a hallmark of early algebraic thinking. Teacher interview revealed 

that students’ exposure to simple formal equations with the balance model in Grade 4 can 
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strengthen their relational understanding of the equal sign. When learning formal equations, the 

concrete representation (balance model) visually aided students to perceive equal sign as 

indicating the equivalence of both sides. Also, students encountered many non-conventional 

arithmetic expressions during equation learning, which pushed them to notice the equivalence 

relationship instead of focusing on calculating results. With these findings, this study 

contributes to the research gap in literature on Chinese students’ understanding of the equal 

sign, exploratively explaining how students were supported to step towards a robust relational 

understanding of the equal sign since Grade 3. 

The claim that the relational understanding of Grade 5 is enhanced compared to Grade 3 

students is obtained by comparing the test results of Grade 5 students in this report with the 

results of Grade 3 students in a similar research context (Sun et al., 2023), and this claim was 

echoed by teacher interview. However, in the future, a longitudinal study that tracks the same 

cohort of students from Grade 3 to Grade 5 will be highly desirable to make a more rigorous 

conclusion. Also, as stressed early, the findings of this study are explorative, therefore, a further 

investigation is worth conducting to understand more about how exposure to simple formal 

equations can enhance students’ relational conception of equal sign in details, possibly with 

some in-depth classroom research. 
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At the end of Primary 6, students in Singapore schools take a national examination, the 

Primary School Leaving Examination (PSLE). Society at large view the PSLE as a high-

stakes examination. In addition to out-of-class work assigned by mathematics teachers 

for students to prepare for the PSLE mathematics, parents may also draw on out-of-

school practice books to further support their children’s preparation for the examination. 

A study of two main types of such books show that these books do generally support 

students in reviewing content knowledge for the examination and test preparation. 

The Primary School Leaving Examination (PSLE) is a national examination in Singapore. 

It is conducted by the Singapore Examinations and Assessment Board (SEAB). It is taken by 

12-year-olds at the end of their primary schooling. The examination tests student’s proficiency 

in the English language, their respective mother tongue languages (typically Chinese, Malay or 

Tamil), mathematics and science. The purpose of PSLE is to emplace students in a course of 

study that is suited to their learning ability in a secondary school. Singaporeans place great 

emphasis on education and examinations are gatekeepers to educational opportunities 

throughout the Singaporean educational education system (Gregory & Clarke, 2003). As such 

the PSLE is viewed as a high-stakes examination by society at large (Loke, 2016). 

Though out-of-school mathematics practice books, particularly those for the PSLE, have 

been available for the last three decades or more, there appears to be no apparent study on these 

books in Singapore. This study that is part of a larger study (Teo, 2023) attempts to explore the 

research question: How do the PSLE Mathematics practice books support test-taking 

preparation and test-taking skills for the PSLE Mathematics? 

Examination Preparation 

In addition to out-of-class work assigned by mathematics teachers for students to prepare 

for examinations, like the PSLE, parents may also draw on out-of-school practice books to 

further support their children’s preparation for examinations. The PSLE examination for 

mathematics (PSLE Mathematics), is a paper-based examination, i.e., students respond 

individually to a set of questions in writing under supervision of examiners. To be successful, 

students require the skill or ability to do the mathematics within a given time frame. The 

development of these skills or abilities—influenced by the nature of the examination appears 

to be pertinent in examination preparation (Minott, 2020). 

Examination preparation with a goal to enhance learning may take several forms, such as 

review sessions and or practice examinations (Bord, 2008). Review sessions allow students to 

clarify their questions about content, procedures, etc., that they will be tested on (Gurung, 

2005). Practice examinations would involve students doing mock examination or past 

examination papers in a similar manner to that of the examination. Balch (1998) noted that 

practice examinations in contrast to review sessions led to positive gains in student performance 

in final examinations. In the study by Muchiri and Mawira (2020), it is evident that mathematics 

practice has positive impact with or without teacher’s intervention as it gives “students an 

opportunity to attempt and familiarise themselves with questions and the way they are set in an 

exam” (p. 539). 

Naujoks et al. (2022) noted that practice tests function as a (repeated) retrieval opportunity, 

which has the potential to empower future learning, recall and recognition. In addition, it is also 
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suggested that practice test participation establishes potentials for learning processes like 

metacognitive judgement accuracy (Karpicke & Roediger, 2008). Students who do practice 

tests have an idea of how well they would do on an exam without any further practice or 

studying and this allows them to adjust their studying accordingly or focus on areas that may 

need more of their attention (Balch, 1998). A practice exam engages the student in self-

assessment and metacognition. They can see their scores on the practice exam, evaluate their 

confidence with the tasks and assess what they know and what they need to study further or 

seek help with (Bord, 2008). 

Students must be proficient in test-taking for the test to adequately serve as a measure of 

their mastery of a learning content (Dixon & Erinosho, 2020). It is possible to have knowledge 

of the content of a subject but perform poorly on a test due to poor test-taking strategies. The 

ability to utilise appropriate strategies to demonstrate competence and perform at optimal level 

on a test is referred to as test-taking skills. Such skills enable students to recognise what to do 

before-test, during-test, and after-test to achieve success (Bicak, 2013; Dodeen et al., 2014). As 

noted by Dixon and Erinosho (2020), “before-test skills include the study strategies prior to a 

test such as practicing past test / examination questions or self-quizzing; during-test skills are 

the strategies employed while taking a test which include time management, structure and 

organization, correctness of information, control of test anxiety and test-wiseness; whereas 

after-test skills include use of hints and feedback on test answers or scoring rubrics for 

managing future testing situation” (p. 4287). In their study that examined the interplay of test 

taking skills and performance in an open-ended mathematics test among secondary school 

students in Nigeria, Dixon and Erinosho (2020) found that test preparation comprising before, 

during and after test skills contributed significant positive variance to the prediction of students’ 

performance on the tests. 

PSLE Mathematics 

The SEAB guide (SEAB, 2022) for the PSLE Mathematics outlines the format, content and 

assessment objectives of the examination. 

The Format 

PSLE Mathematics comprises two written papers, Paper 1 and Paper 2, that are taken at one 

sitting with an hour’s break between them. Paper 1 is divided into two parts, Booklet A and 

Booklet B. Booklet A has fifteen multiple-choice questions while Booklet B has 15 short-

answer questions. The use of calculators is not allowed for Paper 1 and students are expected 

to complete the paper within the one-hour allocated. Paper 2 consist of 5 short-answer questions 

and 12 structured questions. Calculators are allowed in Paper 2 and the duration for this paper 

is 1hour and 30mins. The allotment of marks for each paper is shown in Table 1. 

The Content 

The PSLE Mathematics covers three mathematics content strands, namely, i) Number and 

Algebra, ii) Measurement and Geometry, and iii) Statistics. The weightage of the strands and 

topics in the strands are shown in Table 2. 

Assessment Objectives 

The assessment objectives (AOs) for the PSLE Mathematics reflect the emphasis of the 

syllabuses and describe what students should know and be able to do with the concepts and 

skills learned in the syllabus. The AOs framed in three levels of increasing cognitive demand 

are: (i) AO1—recall mathematical facts, concepts, rules and formulae and perform 

straightforward computations, (ii) AO2—interpret information, understand and apply 

mathematical concepts and skills in a variety of contexts, and (iii) AO3—reason 
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mathematically; analyse information and make inferences; select appropriate strategies to solve 

problems. The weightage of the AOs in the PSLE mathematics papers is shown in Table 3. 

The Study 

The study adopted a qualitative research design involving a single case study approach 

(Creswell, 2007). It attempted to examine a specific aspect of out-of-school support for students 

preparing for the PSLE Mathematics. It used a purposeful survey to collect information about 

out-of-school PSLE Mathematics practice books and again purposeful sampling to carry out 

content analysis (Patton, 1990) of a sample of the practice books. 

Object of Study 

A survey of out-of-school PSLE mathematics practice books, available at the largest school 

bookstore in Singapore, was undertaken in December 2022. December is the month of the year 

when parents of students going on to Primary six in the following year are most active sourcing 

for resources to support their children’s preparation for the PSLE Mathematics. During this 

period most practice books are available. We limited the scope of our survey. It excluded books 

that were wrapped and could not be examined by us, books with solution parts sold separately 

and any other book not specifically focused on PSLE Mathematics practice. 

Data and Analysis 

A total of 76 practice books were surveyed. Ten of the books had PSLE mathematics mock 

exams for timed practice only. Forty-nine of them comprised topical revision exercises and 

PSLE mathematics mock exams. Seventeen focused on problem solving strategies and solving 

of challenging problems. All the books had stepwise solutions provided. Thirty-nine had 

worked examples as part of the topical exercises and three had detailed marked scheme 

provided including examiners comments. 

To answer the research question that guided the study reported in this paper, we limited our 

purposeful selection of the PSLE Mathematics practice books to those with mock exams only 

and those with topical revision exercises and mock exams. The rationale for this was that books 

in these two categories were most suited for the general preparation for the PSLE Mathematics. 

The books selected for study were: 

• Lau & Yang (2018). Countdown to PSLE Maths Primary 6. Marshall Cavendish; 

• Lee (2002). Mathematics weekly revision for Primary 6. Educational Publishing House 

Pte Ltd. 

The first book: Countdown to PSLE Maths Primary 6, based on the 2018 PSLE examination 

guidelines and 2013 revised mathematics syllabus, comprises mock PSLE Mathematics exams. 

It has detailed marking schemes for self-assessment by learners. The second book, Mathematics 

weekly revision for Primary 6, was first published in 2011.The third edition (present one), 

published in 2018, is based on the 2018 PSLE examination guidelines and the 2013 revised 

mathematics syllabus. It comprises both topical revision exercises and mock PSLE exams. 

To examine how the mathematics practice tasks in the mock PSLE Mathematics exams 

compared with the SEAB guide for PSLE Mathematics we analysed the first and last mock 

PSLE exams in the book Countdown to PSLE Maths Primary 6. There were 8 mock exams in 

the book and we purposively selected the first and last of these. As in all practices, easy 

questions precede difficult ones so as to allow the confidence of test takers to develop. In a 

similar manner we anticipated that the first and last mock exams would be the easiest and 

toughest respectively and allow us to see it’s comparability with the SEAB guide for PSLE 

Mathematics. 

The items in the mock exams were coded for type, content, and assessment objective. The 

papers were coded independently by the first author and a Primary 6 mathematics teacher for 
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type, content, and assessment objectives. There was 100% agreement for the type and content 

of all the test items. However, this was not the case for the assessment objectives, where the 

agreement was only 80%. For items where there were disagreements both the coders reviewed 

the codes during a meeting and mutually agreed on a code. 

To study how the books facilitated test-taking preparation and test-taking skills we 

examined the organization and contents of the book: Mathematics weekly revision for Primary 

6 (Lee, 2002). 

Findings 

How did the Mock PSLE Exams Compare With the SEAB Guide? 

Table 1 shows that for Paper 1 the spread of the item types for the mock exams1 and 8 was 

similar. The number of items per item type and mark allocated was exactly as in the SEAB 

guide. However, for Paper 2 though the overall numbers per item type were as the SEAB guide, 

there was variation for the structured answer and long answer items. In mock exam 1, there 

were more long answer items compared to the structured answer items, while in mock exam 8, 

there were more structured answer items than the long answer items. 

Table 1 

Type and Mark of Mathematics Test Items in the Mock PSLE Exams 1 and 8 

Paper 
Type of test 

item 

SEAB guide 
Mock PSLE exams 

Exam 1 Exam 8 

No of 

items 

Mark per 

question 

No of 

items 

Mark per 

question 

No of 

items 

Mark per 

question 

1 

(Booklet A) 

MCQ 10 1 10 1 10 1 

5 2 5 2 5 2 

1 

(Booklet B) 

Short answer 5 1 5 1 5 1 

10 2 10 2 10 2 

2 Short answer 5 2 5 2 5 2 

 Structured 

answer 

 

12 

 

3, 4 or 5 

5 4, 5 8 3, 4, 5 

 Long answer 7 3, 5 4 3 

 Total 47 100 47 100 47 100 

Table 2 shows that the spread of the strand and topics in the mock exams 1 and 8 were 

within a margin of ± 5% and consistent with the SEAB guidelines. 

Table 3 shows that the spread of the assessment objectives for the mock exams 1 and 8 was 

skewed towards assessment objectives 2 and 3. The spread of assessment objectives in both 

mock exams was not consistent with the SEAB guidelines. Compared to mock exam 1, mock 

exam 8 was more challenging with 39% of the marks being allocated for test items with 

assessment objective 3, instead of 26%. 
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Table 2 

Weightage of Topics in the  SEAB Guide and Mock PSLE Exams 1 and 8 

  SEAB 

guide 

Mock PSLE exams 

Exam 1 Exam 8 

Strand Topics % Total 

% 

% Total 

% 

% Total 

% 

Number and 

algebra 

Whole numbers, 

fractions, decimals 

25 45 27 46 32 49 

Ratio, percentage 10 9 10 

Rate, speed 5 5 5 

Algebra 5 5 2 

Measurement 

and geometry 

Measurement 20 40 20 40 21 41 

Geometry 20 20 20 

Statistics Statistics 15 15 14 14 10 10 

Total 100 100 100 100 100 100 

 

Table 3 

Weightage of Assessment Objectives in the SEAB Guide and Mock PSLE Exams 1 and 8 

Assessment objective 
SEAB guide Mock PSLE exams 

Exam  Exam 8 

 % % % 

1 25 13 11 

2 40 61 50 

3 35 26 39 

Total 100 100 100 

A total of six items in the mock exams were inappropriate for PSLE mathematics. The first 

item required the students to draw on the concept of congruent triangles and find the area of a 

figure. The concept of congruent triangles is part of the secondary school mathematics 

curriculum and hence this item was beyond the mathematical knowledge of the students. The 

assessment objectives of the second, third and fourth items did not match the marks allocated 

for them. The fifth item tested a skill, drawing bar graphs, that was no longer in the PSLE 

mathematics syllabuses. The last and sixth item was a poorly constructed test item. 

How did the Mock PSLE Exams Provide Support for Self-Assessment? 

The mock PSLE exams provided students with support for self-assessment. For every 

practice the answer key for the multiple-choice questions, stepwise solutions for short answer 

questions and stepwise solutions together with mark schemes for questions 6–17 of paper 2 

were provided. At times additional support in terms of explanations specific to a suggested 

strategy was also provided. 

How was the Topical Revision PSLE Mathematics Practice Book Structured? 

In tandem with the school calendar year, the topical revision book was organised into four 

terms. Each term was again organised into weeks. Terms 1, 2, and 3 had ten weeks each while 

term 4 had only 6 weeks. 
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How did the Content of the Topical Revision PSLE Mathematics Practice Book Support 

Test Preparation and Test-Taking Skills? 

Table 4 shows the content of weekly practices for term 1. The weekly practices review 

essential concepts and skills tested during the PSLE Mathematics. In weeks 1, 2, and 3 the 

revision was focused on two or three topics each week. In week 4, the revision included all the 

topics worked through in weeks 1, 2, and 3. This provides students with an opportunity to revisit 

topics they did in the past weeks. This pattern of revising topics carries on for the first nine 

weeks. For all the nine weeks, the practices comprise of ten short answer questions and 4 

structured / long answer questions. There are no multiple-choice questions. Also, no marks are 

allocated for any of the questions. 

In week 10, students do a mock exam (Practice 10) that is modelled like the PSLE 

Mathematics comprising two papers. Paper 1 has two booklets, with booklet A comprising 15 

multiple choice questions and booklet B comprising 15 short answer questions. Paper 2 has 17 

questions, the first 5 are short answer questions and the next 12 are structured or long answer 

questions. The marks allocated for all the questions mirror PSLE Mathematics questions. 

For term 2 (weeks 1–10) and term 3 (weeks 1–10) the practices are similar in structure with 

that of term 1. In term 4, there are only 6 weeks of practice. In week 1, there is revision 

comprising 10 short answer questions and 4 structured / long answer questions on topics that 

preceded term 4. The following five weeks provide students with opportunities to hone test-

taking skills through timed mock PSLE mathematics exams. 

Table 4 

Content of Topical Revision PSLE Mathematics Practice Book for Term 1 

Week  Content Focus Item types  Time  

1 & 2 Whole numbers, Algebraic 

expressions 

Revision of 

content 

Section A–10 SAQ 

Section B–4 Str A / LA Q 

No time limit 

3 Solid figures, Nets, 

Volume of cuboids 

Revision of 

content 

Section A–10 SAQ 

Section B–4 Str A / LA Q 

No time limit 

4 Revision 

Whole numbers, Algebraic 

expressions, Solid figures, 

Nets, Volume of cuboids 

Revision of 

content 

Section A–10 SAQ 

Section B–4 Str A / LA Q 

No time limit 

5, 6 

& 7 

Fractions, Ratio Revision of 

content 

Section A–10 SAQ 

Section B–4 Str A / LA Q 

No time limit 

8 Whole numbers, Fractions, 

Ratio 

Revision of 

content 

Section A–10 SAQ 

Section B–4 Str A / LA Q 

No time limit 

9 Revision 

Whole numbers, Algebraic 

expressions, Solid figures, 

Nets, Volume of cuboids, 

Fractions, Ratio 

Revision of 

content 

Section A–10 SAQ 

Section B–4 Str A / LA Q 

No time limit 

10 Term 1 Revision 

Whole numbers, Algebraic 

expressions, Solid figures, 

Nets, Volume of cuboids, 

Fractions, Ratio 

Test taking 

preparation 

and test-

taking skills  

Paper 1–Booklet A (15 MCQ) 

Booklet B (15 SAQ) 

Paper 2–5 SAQ, 12 Str / LA Q 

Paper 1–1 hour 

Paper 2–1 hour 

30 minutes 
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How did the Topical Revision PSLE Mathematics Practice Book Provide Support for Self-

Assessment? 

The support for self-assessment provided in the book was in the form of stepwise detailed 

solutions for both the topical practices and the mock PSLE mathematics practices. For the mock 

PSLE mathematics exams marks were also indicated at milestone steps. 

Discussion and Conclusion 

Past research suggests that learning may be enhanced through practice for examination 

preparation (Bord, 2008). Therefore, the two types of PSLE mathematics practice books 

examined as part of the study reported in this paper are critical in providing practice for the 

PSLE Mathematics. However, of concern is how closely do the practices in such books match 

the PSLE mathematics as outlined in the SEAB guide. 

We found the mock exams 1 and 8 papers less adherent to the SEAB guide and past PSLE 

Mathematics papers. The test item types were according to the SEAB guide and of interest were 

the number of long answer items compared with the structured answer items. The SEAB guide 

just states that the total number of both type of items should be 12. In the mock exam 1, there 

were 5 structured answer and 7 long answer items and in the mock exam 8, there were 8 

structured answer and 4 long answer items. The distribution of structured answer and long 

answer items in the mock PSLE Mathematics practice papers were not representative of the 

trend in the 2020 and 2021 PSLE Mathematics (see Teo, 2023), which is at most 3 long 

questions in paper 2. 

The spread of the strand and topics in the mock exams 1 and 8 were generally consistent 

with the SEAB guide. The spread of the assessment objectives for both exams was not 

consistent with the SEAB guide. It is apparent from the spread that the items in the mock exams 

were more challenging than stipulated in the SEAB guide. In addition, there were several items 

in the mock exams that were inappropriate as they: were testing concepts in the secondary 

school mathematics curriculum; had a mismatch between assessment objective and mark 

allocated; were poorly constructed; had test objectives that were no longer in the PSLE 

Mathematics syllabuses. Otherwise, the mock exams were framed as per the PSLE Mathematics 

papers with time limits of papers just like the PSLE Mathematics. 

Bearing in mind that the intent of such practices is to provide students with practise for a 

high-stakes examination like the PSLE, these books need to be representative of the 

examination in all aspects. Such practices do provide students with test-taking experiences that 

facilitate proficiency (Dixon & Erinosho, 2020). 

Other than doing mock PSLE Mathematics exams, students preparing for the PSLE 

Mathematics may also need to engage with “before-test skills” which would include review of 

past knowledge (Bicak, 2013; Dodeen et al., 2014). In the book examined as part of the study 

reported here, i.e., Mathematics weekly revision for Primary 6, preparation for the PSLE 

mathematics was spread over the academic year and detailed by terms. There was emphasis on 

both mastery of content and test-taking skills. Mastery of content was through bite-sized 

exercises and development of test-taking skills was through periodic mock PSLE Mathematics 

exams that gradually extended the content coverage sequentially. 

In both types of practice book the support provided by the books through worked solutions 

for the test items allowed the students to develop ‘after-test’ skills (Dixon & Erinosho, 2020). 

This involved using the stepwise solutions and mark schemes to engage in self-assessment and 

metacognitive activity to identify gaps in knowledge and remediate before doing more practice 

for the PSLE Mathematics. In conclusion, it is recommended that more studies be carried out 

on how students use such books for examination preparation. Teachers’ perspectives of such 
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books would also be helpful for parents who may need resources to support their children’s 

PSLE Mathematics preparation. 
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This study was conducted in Maharashtra, India with children studying in a regional 

medium (Marathi) government school. In Marathi, the translation of the word ‘about’ is 

not very commonly used. The aim of the study was to see how the children used 

uncertain language about prediction while engaged in a statistical investigation and how 

children would respond to the uncertain language introduced by the researcher. The 

findings suggest that children did not use the equivalent word for ‘about’ without 

prompting from the researcher. The study has the potential of exploring and impacting 

the influences of language on the learning of statistics in a non-Western culture. 

Being able to use uncertain language has always been an important aspect of informal 

statistical inference (Makar & Rubin, 2009). This includes both acknowledgement of variation 

in the data and to express uncertainty regarding future events. However, language is a social 

phenomenon and social interactions play an important role in the development of language, 

particularly social interactions with a significant adult (Vygotsky, 2012). It is reasonable to 

assume that children negotiate the usage of syntax and semantics of uncertain language through 

various interactions in contexts where they have to reason about uncertainty. 

This paper explores the interactions between a researcher and children a school in 

Maharashtra, India while the children were engaged in a statistical investigation. The medium 

of instruction was Marathi, which is the same language that the children spoke at home, 

although children’s home dialect was slightly different than the standard dialect used in school 

textbooks. The children belonged to a socio-economically disadvantaged section of the society. 

In this study, we explore the challenges faced by the researcher and the children in arriving at 

a shared understanding of the uncertain language used by the researcher. 

Literature Review 

In this section, we look at language difficulties in statistics that may influence how non-

English learners articulate their understanding of likelihood. We also consider how language 

encodes culture, power and equitable access to learning. 

Articulating Uncertainty 

Expressions of uncertainty are often vague and subjective in nature. They can carry 

challenges conceptually in aligning the intended meaning with the context in which 

probabilistic phrases are used, as well as navigating the variety of ways to express likelihood 

and uncertainty due to variability and estimations in future predictions (Karelitz & Budescu, 

2004). “The situation in which random variation is met influences how people think about 

probability” (Pratt & Kazak, 2018, p. 214). Researchers noticed that students often articulated 

predictions under uncertainty by either being overly deterministic or overly relativistic (Ben-

Zvi et al., 2012; Rubin et al., 1990). In making predictions from data, the primary students in 

Ben-Zvi et al.’s (2012) study oscillated between certainty-only (deterministic) and uncertainty-

only (relativistic) statements before further exploration assisted them to express uncertainty 

with emerging probabilistic language (about, maybe). Therefore, attending to expressions of 

uncertainty requires attention to understanding of uncertainty, how it is expressed and 

importantly, the relationship with the context. 

mailto:mitali.thatte@quest.org.in
mailto:k.makar@uq.edu.au
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When considering how non-English language learners articulate uncertainty, challenges 

may be related to statistical concepts, distinctive statistical language, both or neither. It can be 

difficult to tease out where the challenges lie. For example, one challenge of exploring statistical 

ideas with uncertain language in Marathi (the language in this study) is that the use of some 

words in English do not translate well. For example, there is no commonly used translation of 

the word ‘about’ (such as in ‘I will sleep for about 7 hours every day’). It is on this issue of 

linguistic diversity that the researchers conducted a statistical investigation with children. 

In research with non-English speaking students, additional constraints arise as how one 

expresses statistical ideas is also related to the specifics of the language or dialect. Lesser and 

Winsor (2009) worked with Spanish-speaking pre-service teachers in an English-speaking 

environment. They argued that with second language learners, not enough emphasis is placed 

on statistical register, a subset of language relevant to a particular context and purpose. 

Learners’ proficiency in everyday language may be quite different from de-contextualised 

academic situations, which can lag behind by three or four years. Lesser and Winsor’s research 

found that even if learners are exposed to an academic term, they may be more likely to draw 

on their everyday register than to adopt the academic term. Their research recommended 

attending to how a student’s language articulates an idea and to incorporate their language, 

community, and culture into learning activities rather than see these as limitations. Other 

recommendations included using wait time, embedding instruction across several contexts, 

seeking multiple ways to express and represent a new idea, and encouraging collaboration. In 

related work, Lesser and his colleagues (2013) focused on different aspects of statistical register 

(field, mode, tenor) to identify how students in different language groups understood statistical 

concepts that were articulated in each language. Unfortunately, all of these studies took place 

in English-language contexts, even when the students were non-English speakers. This creates 

a major obstacle when seeking to locate and build on research in non-English speaking contexts. 

Beyond Language as Articulation: Culture, Power, and Equitable Access 

Cultural dimensions of language can contribute significantly to learning statistics. For 

example, Chauhan’s (2013) research showed that children with fatalist beliefs may not see the 

purpose of estimating likelihood as “ultimately everything depends on luck” (p. 153). Language 

evokes tacit assumptions about the speaker, particularly their command of the dominant 

language (Benson, 2013). In education, if a learner is not fluent in the dominant language of 

instruction in school, the “monolingual habitus causes us to view a learner in deficit” (p. 284). 

The difference in status between the language of society and the language of school can 

exacerbate this issue, particularly if content is taught and assessed in the dominant language. 

Kulkarni (1981, p. 55), while talking about the barriers that children face learning scientific 

concepts, especially children from lower socio-economic communities, stated that “More 

relevant is the role of language in classroom instruction at the school level and the comparison 

of language in and out of school”. He makes this point not when the medium of instruction in 

school was an entirely different language, but when the kind of language (formality, syntax etc) 

used in school was different than what the child used at home. They noted that in changing the 

language of textbooks to better suit the home language, children’s scholastic performance 

improved significantly; a significant finding was the removal of disparity in the performance 

of students coming from different social economic backgrounds. 

Encouraging children to use uncertain language in statistics classrooms, especially in 

socioeconomically and linguistically diverse communities is a challenging process. Teachers 

are faced with the dual challenge of encouraging the natural expression of children along with 

introducing the children to the language used by dominant groups, who hold more power. For 

example, Delpit (1988) argued that we should accept children’s home expression and also teach 

them standard (academic) language in order not to be disadvantaged. This issue is especially 



Introducing informal uncertain language in Marathi 

529 

relevant as learning is thought to be a largely social process where interactions with a significant 

adult has a large impact on learning (Vygotsky, 2012). It stands to reason that children’s ideas 

about statistics concepts are influenced by the language used by their teachers in the classroom 

and might be highly relevant when the children speak a different dialect than the standard one 

spoken by the teachers or expected in textbooks. This was a key issue that the researchers sought 

to address when it comes to natural expressions of uncertainty. 

Methodology 

The activity was conducted with four students in Grades 5 and 6 (ages 9–11). It took 

approximately 2.5 hours to complete. The researcher told the children that there was to be a 

competition in the district where multiple schools would participate. The competition would 

involve throwing a ball into a bucket and whoever got the ball in the greatest number of times 

would win the competition. The researcher told the students that they had to recommend one 

student among them who would represent their school in the competition. The children spent 

the first part of the activity discussing what they would have to do in order to recommend 

someone to the competition. With a nudge from the researcher, they decided that they would 

collect data several times and then make a decision. The children played 10 rounds each with 

10 chances per child and collected data for the number of times out of 10, the ball actually 

landed in the bucket. Based on these data the children had a discussion facilitated by the 

researcher in order to decide who to send to the competition. 

The data collection consisted of audio and video of the activities, artefacts that were created 

(e.g., tallies or graphs) and field notes. The analysis was based on an adaption of Powell et al.’s 

(2003) analysis of video data. The focus of the analysis was to identify excerpts in the data in 

which the language of uncertainty arose or did not arise (but was expected). Initially, the audio 

and video data were reviewed and briefly summarised with timestamps for content. Potential 

critical events were highlighted during this process and then transcribed. A critical event was 

identified as an interaction in which a language feature raised a challenge or insight into the 

children’s articulation of uncertainty. The pieces of transcript were coded to identify concepts 

that arose. These excerpts were discussed to locate a storyline—an articulation of key ideas told 

through a coherent linking of the transcripts. The transcripts were reviewed again to edit them 

for brevity of expression, adding further insights of analysis to create a narrative, before final 

editing of the results section presented below. 

Results 

The following is an interaction between the researchers and students after they had drawn a 

time series graph for Nikhil (Figure 1). The researcher has asked, “About how many balls does 

Nikhil get in?” While asking the question, the researcher has used the Marathi rough equivalent 

for the word ‘about’ which is ‘sadharan’ (साधारण). In the researcher’s experience, the word 

sadharan is commonly understood by adults who speak the standard dialect/variant of Marathi. 
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Figure 1 

Plot for Nikhil: The x Axis Shows the Number of the Trial While the y Axis Shows the Number of Balls 

That Went in the Bucket in That Particular Trial 

 

Researcher: About (sadharan) how many balls does 

Nikhil throw? He has ten chances right? 
साधारण किती टाितो. त्याला १० chances दिलेत 

ना? 

Vandana: 25 25 

Researcher: He has 10 chances right? About (sadharan) 

how many balls will he get in? 
त्याला १० chances दिले ना? तो िहापैिी किती 
टािेल? 

Vandana: He got 2 in the first round, 3 in the second 

round, 4 in the third round, 1 in the fourth 

round, 5 in the fifth round… 

पदहल्या फेरी २ मिळाले, िसुऱ्या फेरीत ३. ततसऱ्यात 

४, चौथ्या फेरीत १, पाचव्या फेरीत ५... 

Priya: So he got 25 overall सगळे मिळून २५ झाले 

Because questions in textbooks generally ask students to count frequency, or add up values, 

it seemed likely that children were trying to apply the same technique in this context. It was 

apparent that the children were not used to hearing the word sadharan, likely because it was not 

a part of daily use in their dialect. Considering that children did not adopt the word sadharan, 

the researcher tried to use another word as a substitute for sadharan which is the word ‘andaje’ 

‘अंिाजे’. The word sadharan is almost an exact translation of the word ‘about’ for describing the 

data, as well as for expressing uncertainty about events (including future events). Andaje is a 

broader word better suited to expressing uncertainty about events rather than data, sometimes 

used as a combination of guess and estimate. For example, the predictive statement, “It will 

take me about (andaje) 2 hours to reach my destination”, but not the descriptive statement “An 

average child scored about (andaje) 30 marks on the test”. 

Researcher: My question is a little different. Out of ten, 

about (andaje) how many balls will Nikhil 

get in? 

िाझा प्रश्न थोडासा वेगळा तो िहापैिी अंिाजे 
किती बॉल टािेल. 

Nikhil: 4 4 

Priya: 5 5 

Researcher: Why do you think 5? तुला िा असं वाटतंय ५ टािेल? 

Priya: His aim is very good त्याचा नेि चांगला आहे 
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The children used their experience seeing Nikhil throw the ball and were optimistic in 

predicting how many Nikhil would throw next time. Since the children used neither word as a 

translation of the word ‘about’ as the researcher expected, the researcher decided to explicitly 

introduce the word sadharan and model how it is used in statistics. The following excerpt shows 

how the researcher led the discussion to create good conditions for introducing the word. 

Researcher: Let’s have a bet on how many balls Nikhil 

will get in. What number will you bet on? 
आपण पैज लावूया हं. तनखिल किती बॉल टािेल 

याची. तर िुठल्या नंबर वर पैज लावायची? 

Vandana: 5 5 

Priya: 3 (Immediately changed her answer from 5 

to 3) 

3 

Researcher: Why do you think so? तुला असं िा वाटत आहे. 

Priya: His aim is not that good िारण िी जास्त नेि नाही लागलेला 

This time, rather than use their personal beliefs about how many Nikhil would throw, the 

children gravitated towards using the central tendency of the data when the researcher phrased 

the question about making a bet (preduction). The researcher and the children had a discussion 

on which number to bet on, if Nikhil gets 10 chances to throw the ball in the bucket. Then the 

researcher introduced the word sadharan as they were curious to see how the children would 

react to the introduction of the word (which is reasonably common in Marathi but apparently 

not used by the children). The following conversation is from the later half of the activity. 

Researcher: Suppose I bet that Nikhil throws 7. Will I win 

or lose? 
सिजा अशी िी पैज लावली िी तनखिल सात 

टािेल. तर िी जजंिी िा हरीन? 

Chorus: Lose  हरेन 

Researcher: Suppose I bet that Nikhil scores a two. Then 

will I win or lose? 
सिजा िी अशी पैज लावली िी तनखिल िोन 

टािेल. तर िी जजंिीन िा हररन 

Chorus: Win जजंिेन 

Researcher: Can I say Nikhil throws about (sadharan) 6 

balls in? 
तर तनखिल साधारण िहा बॉल टाितो असा पण 

म्हणू शितो िा? 

Chorus: No नाही 
Researcher: Why िा 
Asmita: Because he has not thrown 6 even once.  िारण त्यांनी एि पण सहा टािलेला नाही आहे 

Researcher: About (sadharan) how many balls does Nikhil 

throw? 
हा तर तनखिल साधारण किती टाितो? 

Priya: 2 or 3 िोन नाहीतर तीन 

Researcher: Yes, we can say that Nikhil throws about 

(sadharan) 2 or 3 balls. Meaning, he throws 2 

or 3 balls, give or take. (Around 2 or 3 balls) 

तनखिल साधारण िोन किंवा तीन टाितो असा 
आपण म्हणू शितो. म्हणजे िाय िी िोन तीन 

च्या आसपास टाितो 

The researcher explicitly introduced uncertain language (sadharan) to the children in order 

to see how they would respond to hearing such language and whether they would be able to use 

the language once the researcher modelled its use in the given context. The researcher then 

drew the time series plot for the data of the second child, Priya (Figure 2). 
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Figure 2 

Graph of the Number of Successes (y Axis) in Each Round (x Axis) for All the Children (Colour) 

 

The following is a conversation that takes place after the researcher has drawn the time 

series graph for Priya. 

Researcher About (sadharan) how many balls does Priya throw प्रप्रया साधारण किती टािते बॉल 

Asmita 2 2 

Vandana 2 2 

Nikhil  1 to 2  एि ते िोन 

Sadhana Even I think 1 to 2 िला एि ते िोनच वाटतय 

Vandana I think 2  िला िोन वाटत ं

Researcher Now don’t say about 1 to 2. Which is better. About 

(sadharan) 0, about (sadharan) 1, about (sadharan) 

2, about (sadharan) 3 

आता एि ते िोन असं नाही द्यायचा उत्तर. 

साधारण शून्य साधारण एि साधारण िोन 

किंवा साधारण तीन 

Vandana (Practising the phrasing) About 2 साधारण 2 

Asmita About 0 साधारण शून्य 

The researcher discouraged the use of “1 to 2” and asked that children use “about (sadharan) 

0” or “about (sadharan) 1” in order to see if the children would adopt the implied uncertainty 

in the word “about (sadharan)”. But it would appear that the children likely used “about” as a 

label; that is, they just attached the word “about” (sadharan) before any number or they used it 

to indicate some value in the range. From this it would seem that the children have not yet 

articulated a sense of the uncertainty implied by the word “about” (sadharan). 

Researcher: Let’s see how to use the word sadharan (about). 

Its about give or take or around (using scale, plot 

and gestures). If I say about (sadharan) 2, are her 

dots around 2. They are down (gesture) but are 

they up (gesture) With scale 

बघा हा आपण साधारण शब्ि िसा 
वापरणार होतो. िी आसपास gestures. िी 
साधारण िोन असं म्हणलं तर िोनच्या 
आसपास आहेत िा ततचे. इिडे आहेत 

(gesture down) पण इिडे आहेत िा. 
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Chorus: No नाही 
Researcher: Then I can’t say about 2. Can I say about 0? िग िी साधारण िोन नाही म्हणू शिणार. 

साधारण शून्य असं म्हणू शिीन िा? 

Nikhil: No नाही 
Asmita: We can say about 1 साधारण एि असं म्हणू शितो 
Researcher: (Looking at Nikhil) Why? (तनखिल िडे बघून) िा बरं 
Nikhil: Not many are near 0 िारण शून्याच्या जवळ नाही आहेत 

Researcher: Most of them are above 0, right. Then what can 

we say? 
हा बािीचे सगळे शून्याच्या वरचे आहेत. 

िग िी िाय म्हणू शिते? 

Asmita: About 1 साधारण एि 

This exchange suggests that the children were developing the concept of uncertain 

language, but not yet adopting the terminology, even when the researcher introduced the word 

in multiple ways. The following conversation followed after the researcher introduced the word 

using the graph. This is where the children seemed to be playing with the word to understand 

how it was being used in the context introduced by the researcher. They are using other language 

also which is going more towards uncertainty. They are looking more specifically at the data. 

Researcher: Then how much does Priya throw? िग प्रप्रया किती टािते? 

Chorus: About 1 साधारण एि 

Researcher: And Vandana? आखण वंिना किती टाित होती? 

Nikhil: 1-2 एि ते िोन 

Asmita : (Correcting Nikhil) About 2. No, about 0 साधारण िोन. साधारण शून्य 

The children went back and forth between using the language, not using it, and using the 

word as a label. Rather than being an authentic use, they were likely responding to the 

researcher’s expectation. This experimentation may have allowed them to test using “about” 

(sadharan) in context. The following conversation took place after displaying Asmita’s graph. 

Researcher: About how many does Asmita throw अजस्ितासाधारण किती टािते 
Asmita: 1 1 

Vandana: 1 1 

Nikhil: 1 1 

Chorus: About 1 साधारण एि 

Even after modelling the use of the word “about”, we did not see any spontaneous use of 

the word in the expression of the children. They later remembered they were supposed to use 

the word but likely used it as a label, again in response to the researcher’s expectation. 

Discussion 

In Marathi the exact translation of the word ‘about’ is sadharan and we could see that none 

of the children in the study were particularly comfortable in using the word or any other 

alternative suggested by the researcher. This is an unexpected complication while navigating 

the expression of uncertainty that may not be easily foreseeable in research conducted in 
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classrooms where English is the dominant language. The trajectory that the children followed 

while reasoning about data seemed to be the same one described in research. However, it may 

have been unreasonable to assume the children would pick up the word introduced by the 

researcher. This is a challenge while informally dealing with statistical ideas. It was clear that 

even though the researcher and children spoke the same language, a language barrier existed 

between the researcher and the children. In the state of Maharashtra there are multiple dialects 

of the state language of Maharashtra. There is a standard variant used in textbooks which is 

generally understood by a large percentage of the population. However, adults and children 

speak variants of this language while conversing with each other. Although the researcher did 

not use any technical terms, the language of the researcher was closer to the dominant language 

written in textbooks and the children’s dialect did not appear to utilise the same idea. While we 

completely acknowledge that there will exist other ways of expressing uncertainty that the 

children may be familiar with, the lack of similarity to dominant language of school may pose 

pedagogical challenges in introducing the informal ideas such as informal inference. 
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Despite substantial research exploring multiplicative thinking and students’ difficulty 

in the domain, the topic of multi-digit multiplication is under-researched. In this paper, 

I share a learning trajectory for multi-digit multiplication that combined social and 

cognitive perspectives of learning. Using Design Research methods and involving 45 

Year 5 (9–11-year-olds) students from two different schools, an instructional sequence 

based on the trajectory was implemented. Findings led to the refinement of a trajectory 

that has implications for teaching practice. 

Multiplicative thinking is widely recognised as an important understanding in students’ 

mathematical development (Clark & Kamii, 1996; Park & Nunes, 2001). Multiplicative 

reasoning is the ability to think and reason using a deep conceptual understanding of the 

multiplicative structure, which underlies important concepts including fractions, decimals, and 

proportional reasoning (Siemon, 2013). Concerningly, evidence suggests that students’ 10-15 

years of age struggle to think multiplicatively (Siemon, 2013). Students’ fluency with multi-

digit multiplication develops from their ability to think multiplicatively. Although 

multiplicative thinking is well-researched, there is limited work in the field of multi-digit 

multiplication (Hickendorff et al., 2019). 

In the last two decades, there has been an increased research focus on using learning 

trajectories to study the development of learning in mathematical domains. In this paper, a 

learning trajectory is presented for multi-digit multiplication that fosters the development of 

multiplicative thinking. Unlike other trajectories in the domain of multiplication, this one 

combines cognitive and social perspectives of learning. The taken-as-shared learning route that 

a class community may follow is described and a means by which an individual student’s 

learning might be supported as s/he participates in and contributes to the collective learning of 

the class. 

Literature 

Developing understanding in multiplication is complex and acquired over multiple years 

(Clark & Kamii, 1996). Multiplication is a binary operation (Barmby et al., 2009) that requires 

the coordination of composite units. Multiple theories have been presented through relevant 

literature into early multiplicative understanding. In his study of the counting scheme, Steffe 

(1994) explained that understanding of multiplication is based on the construction of a 

composite, iterable unit. Other researchers have argued that this repeated addition model of 

multiplication is incomplete (Clark & Kamii, 1996; Park & Nunes, 2001) and that repeated 

addition is a procedure for solving multiplicative problems, not a conceptual basis. Park and 

Nunes (2001) present an alternate theory, stating that multiplicative understanding is defined 

by an invariant relationship between two quantities. 

Much less is known about the development of understanding in multi-digit multiplication 

compared to single-digit multiplication (Hickendorff et al., 2019). In one study, Larsson (2016) 

described understanding in multi-digit multiplication as the result of connections between three 

elements: the arithmetic properties of commutativity, distributivity and associativity; models of 

multiplication; and strategies for solving multiplicative calculation. Although there is not a 

developmental hierarchy evident in multiplicative properties or models, Larsson (2016) reports 

an observable progression in students’ solution strategies for multi-digit multiplication, 
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developing from addition-based strategies such as repeated doubling through to strategies that 

draw on multiplicative thinking, including distribution and decomposition. Similar strategy 

progressions relating to multi-digit multiplication are reported in other studies (Ambrose et al., 

2003; Barmby et al., 2009; Izsak, 2004). 

Student difficulties in multi-digit multiplication result in many relying on additive strategies 

for prolonged periods of time (Ambrose et al., 2003; Barmby et al., 2009; Izsak, 2004). 

Evidence suggests that there is scope to extend additive strategies to more efficient ways of 

calculating. For example, students’ intuitive use of repeated doubling to solve multi-digit 

multiplication problems has supported students to develop more complex multiplication 

strategies that draw on the associative property (Ambrose et al., 2003; Tripet, 2019). On the flip 

side, there is a danger that overgeneralising addition strategies can impede students’ 

conceptualisation of the binary nature of multiplication (Larsson, 2016). 

The use of effective multiplicative strategies demonstrates a shift in students’ understanding 

of multiplication (Larsson, 2016) and their efficiency in performing calculations (Hickendorf 

et al., 2019). These strategies for multi-digit multiplication draw on the associative and 

distributive properties. Students recognise the practicality of partitioning and grouping numbers 

to solve more complex multiplication problems (Barmby et al., 2009). Ambrose et al. (2003) 

found that students in Years 3 to 5 instinctively used partitioning strategies to solve 

multiplication and division problems, concluding that many students hold an intuitive 

understanding of the distributive property. Izsak (2004) reported similar findings, noting that 

the coordinated rows and columns of the array supported students’ calculations. 

Although the associative property is an important multiplicative understanding, there is very 

limited research based on this property (Ding et al., 2013). In one notable study, Ding et al. 

(2013) evaluated primary pre-service teachers’ understanding of the associative property of 

multiplication. Their work showed general misunderstandings around the associative property, 

with many pre-service teachers confusing the associative and commutative properties. They 

concluded that students’ conceptual understanding of the associative property would be 

impeded by teachers’ misconceptions. 

Learning Trajectories 

Learning trajectories were introduced by Simon (1995) as a description of “what teaching 

might be like if it were built on a constructivist view of knowledge development” (p. 115). 

Simon’s (1995) original trajectory was based on a single instructional episode. Others have 

since applied the construct to sequences over longer periods of time. 

As “a vehicle for planning learning of a particular concept” (Simon & Tzur, 2004, p. 93), 

trajectories refocus teaching from content transmission to students’ cognitive constructions 

(Gravemeijer, 2004) and help provide focus and direction for instruction (Wright et al., 2006). 

Although most trajectories are concerned with an individual’s cognitive development, few 

acknowledge the complementary nature of social and individual aspects of learning (Stephan 

& Rasmussen, 2002). Recognising that student learning is rarely uniform, Cobb et al. (2011a) 

adapted the construct of a learning trajectory as a sequence of “mathematical practices” (p. 80). 

Mathematical practices are descriptions of the collective learning pathway of the class 

community, and individual learning is understood in terms of individual students’ reasoning as 

they participate in and contribute to the collective mathematical practices of the class (Cobb et 

al., 2011b). Describing social and individual learning provides a more comprehensive 

description of the learning that takes place in the classroom (Stephan & Rasmussen, 2002). 

The intent of this study was to better understand how students construct understanding in 

multi-digit multiplication in the social setting of the classroom and how this process of 

understanding might be reflected through a learning trajectory. My work was guided by the 
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following question: How can the social and cognitive aspects of learning be accounted for in a 

learning trajectory for multi-digit multiplication? 

Methodology 

Theoretical Perspective 

The theoretical perspective for this study draws on Cobb and Yackel’s (1996) emergent 

perspective, in which learning is recognised as both a social and individual endeavour. From 

this perspective, a reflexive relationship exists between the constructions of the individual and 

the social culture of learning in the classroom. Individuals construct new knowledge and 

understandings through mathematical activity while participating in the social role of learning 

in the classroom, and, in turn, students’ interactions and contributions influence the evolving 

learning culture in the classroom. As such, the social and cognitive aspects of learning cannot 

exist in isolation. Concern is not about which perspective is more dominant, rather how the two 

aspects work together to support the development of students’ mathematical learning. 

Methods 

Design Research methods were employed that allowed observation of students’ thinking 

and reasoning of multi-digit multiplication first-hand (Cobb & Gravemeijer, 2008). In the 

preparatory phase, a domain-specific instructional theory was developed based on a detailed 

analysis of literature (Bobis & Tripet, 2023; Tripet, 2019). The teaching experiment phase 

involved a cyclic process of designing, testing, and refining the implementation of the 

instructional theory in the classroom setting. The experiment was conducted in two different 

Year 5 (9–11-year-olds) classes in Sydney, Australia: 23 students in Class 1 and 22 in Class 2, 

creating a sample size of 45 students. The same instructional theory was used as the basis for 

teaching in both classes and was implemented over a two-week period. The author was the 

primary researcher and adopted the role of teacher in each experiment, with the regular class 

teacher present to help facilitate student activity. 

Data Collection and Analysis 

The experimental phase involved the collection and ongoing analysis of data. Data collected 

included student work samples, classroom video recordings and field notes taken by the primary 

researcher. Following each lesson, the new data were compiled with existing data and reviewed. 

To coordinate the differing cognitive and social aspects, the dataset was iteratively analysed 

from three perspectives: the social learning of the class, the cognitive constructions of 

individual students, and then the relationship between the two. 

Analysis of data from the social perspective identified the emerging mathematical practices 

(Cobb & Yackel, 1995). Cobb et al. (2011b) explain that mathematical practices comprise three 

interrelated and interdependent mathematical norms: mathematical activity, argumentation, and 

ways of reasoning with tools and symbols. Based on this, analysis of data focused on 

mathematical activity, reasoning and argumentation that became taken-as-shared in the 

classroom. A practice was considered taken-as-shared when most students were observed 

acknowledging acceptance and/or employing the practice. Along with analysis of student work 

samples after each lesson, video footage of class discussions was viewed to identify regularities 

and patterns in the way students acted, reasoned, or spoke mathematically. 

Each mathematical practice identified was attributed to conceptual events. Events were 

considered conceptual when a shift in the collective reasoning of the class was observed. 

Conceptual events were considered significant when they were observed over multiple 

instances and influenced the collective knowledge of the class. 

The cognitive perspective was informed by individual students’ reasoning and their 

participation in, and contribution to, the collective ways of acting, reasoning and arguing 
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mathematically that emerged in the class. Students’ participation and contributions were 

documented on three levels: students’ emerging use of representation, the pathways of strategy 

reinvention and the associated key understandings for these strategies, and through their 

discourse as they explained and justified their thinking. 

The final stage of analysis in the teaching experiment was to consider the relationship 

between the social and cognitive aspects of learning, that is, how students’ cognitive 

constructions contributed to the emerging social mathematical practices in the class, and then 

how students’ participation in these practices led them to more sophisticated mathematical 

thinking. Analysis of video footage of each instructional episode examined how the actions of 

the teacher, the classroom culture and the role of the context supported student cognition and 

the development of social mathematical practices. 

Results 

Four socially constructed mathematical practices were identified in the study (Table 1). 

Each mathematical practice was linked to two conceptual events. The following section 

presents a detailed description of one of the conceptual events that led to the negotiation of the 

first mathematical practice (MP1). The conceptual event describes individual students’ 

mathematical reasoning and argumentation, which serve as illustrations from both classes. 

Table 1 

The Four Mathematical Practices and Associated Conceptual Events 

Mathematical practices (MP) Conceptual events (CE) 

MP1—The array as a sense-

making tool: Partitioning the array 

CE1—Using complete rows and columns to partition the array 

CE2—The use of place value across strategies 

MP2—The array as a sense-

making tool: Rearranging the array 

CE1—Noticing a relationship between the numbers 

CE2—Using factors to manipulate the array 

MP3—Working mathematically: 

Thinking multiplicatively 

CE1—Recognising and adding all partial products 

CE2—Differing between additive and multiplicative compensation 

MP4—Working mathematically: 

Using friendly numbers 

CE1—Looking for efficiency 

CE2—Use of multiple strategies 

MP1—The Array as a Tool for Sense-Making: Partitioning the Array 

The instructional sequence followed the narrative of a cupcake bakery. The first teaching 

episode presented the narrative: A baker makes and sells eight different flavours of cupcakes. 

The cakes are baked in a tray that has four rows with six cakes in each row. He bakes one tray 

of each flavour. How many cupcakes does he bake each day? Students were asked to answer 

the question and explain how they obtained their answer. To assist in this process, students had 

access to different manipulatives, including a graphic of the cakes in an array. 

A whole class discussion formed the inciting incident for the first conceptual events central 

to the negotiation and acceptance of the first mathematical practice. The intent of the discussion 

was to compare different student strategies, and for individuals to use these observations as a 

stimulus for modifying and refining their own strategies. 

MP1 Conceptual Event 1—Using Complete Rows and Columns to Partition the Array 

Three different strategies that focused on partitioning the array were presented during the 

class discussion. Zoe and Lucille (Figure 1) demonstrated that the structure of the array allowed 

for a straight partition to create a group of 20 and a group of 4. 

Zoe: We cut it down here (pointing to an array on their poster) to make a group of 20 and a group of 

4. 

Teacher: Why did you use 20 and 4? 
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Zoe: This one is 5 times 4 and this one is 1 times 4. You can do it just by cutting down here (showing 

the cut made on one of the trays of cakes) … also we thought that 20 and 4 would be easy. 

Figure 1 

Strategy Used by Zoe and Lucille 

 

Jake (Figure 2) explained his strategy of skip counting fives and then adding on the 

remaining fours. Jasper (Figure 3) explained how he used the larger array to partition 20  8 

and two groups of 2  8, as these were multiplication calculations that he could perform 

mentally. 

Figure 2 and 3 

Strategies Used by Jake (1) and Jasper (2) 

 

Students examined the similarities and differences between the three strategies. The 

partitioning methods were identified as a key difference between strategies: Jake circled groups 

of five, Zoe and Lucille had physically cut the array, and Jasper had drawn lines. One student 

identified the similar way in which Jasper, Zoe and Lucille used columns to partition multiple 

rows. Jake commented that he could have used columns to partition rows as well: 

Teacher: Could you have split your array in a similar way to Zoe, Lucille and Jasper? 

Jake: Yes … I think … I could have just cut down there and … just cut it like Zoe and Lucille’s. I 

think our ways are sort of the same … more than Jasper’s anyway. 

Teacher: Why is your way more like Zoe and Lucille’s? 

Jake: Well, where I circled is sort of like… it’s just like where they cut. They are just the same really. 

Teacher: Do people agree with Jake? Do you think his strategy is like Zoe and Lucille’s? … Frederique? 

Frederique: Well, I think it is sort of. You can see that they both used the 4s at the end … 

Lucy: Jake could use 20 too because he has 20 with his 5s. 

Jake’s contribution was an important element in the first mathematical practice becoming 

taken-as-shared in the class. There was verbal consensus in the class that Jake could partition 

multiple rows using columns, rather than focusing on just one row at a time. Similarly, there 

was verbal consensus that Jake’s multiple rows of fives were like Zoe and Lucille’s partitioning 

of the smaller arrays into 4  5 and 4  1. The similarity between Jake’s strategy and Zoe and 
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Lucille’s strategy was accepted and reinforced by other class members, who indicated how the 

partitioning used by Zoe and Lucille was evident in Jake’s skip counting. 

Students were asked to compare Zoe and Lucille’s work with Jasper’s work. One student 

observed that both used 8  20 and 8  4, although Jasper had partitioned his 8  4 into two 

groups of 8  2, which became a focus for discussion. 

Teacher: How could they both use the same calculations? 

Luke: If you look at Jasper’s there is 24 across the top and there is 8 [motioning down the column]. 

You can just make 20 by putting in the line and then there is 4 on this side. And then in that one 

[pointing at Zoe and Lucille’s] they have 20 and then they have 4 and … if you count … there 

are 8 of them. 

The class indicated their agreement with Luke’s explanation and that Jasper’s method of 

partitioning was more efficient. Significantly, the students’ reasoning centred on the array 

which indicated that the representation was a useful sense-making tool. The array provided a 

means for students to reason conceptually, not just procedurally, about multiplication. Students’ 

argumentation, even their gesturing, centred on the array. In subsequent activity, a shift was 

observed in students’ strategy use. For example, when asked to calculate 8 trays of 16 cakes, 

most students partitioned 16 into 10 and 6. This shift in students’ strategy use demonstrated an 

acceptance of the power of the distributive property to aid efficient computation. 

Discussion 

The purpose of this research was to articulate a learning trajectory for multi-digit 

multiplication that accounted for the social and cognitive aspects of learning. The final 

trajectory is presented in Table 2. The trajectory is structured on Cobb’s et al. (2011b) 

description of mathematical practices of the interrelated and interdependent elements of 

mathematical activity, argumentation, and ways of reasoning with tools and symbols. The first 

section in the trajectory identifies the four social mathematical practices that emerged through 

the experiment. Initially, students used the array as a tool for sense-making as they explored 

partitioning the array and using factors to manipulate the array. The two subsequent practices 

related to ways that students worked mathematically, as they transitioned to thinking 

multiplicatively and identifying ‘friendly’ numbers within more complex problems. 

Students’ cognitive advances were primarily seen through use of more sophisticated 

strategies, changing interactions with the array, and their mathematical argumentation. These 

aspects form the other three categories listed in the trajectory. The computational strategies 

observed in this study were comparable to those reported in previous studies (Ambrose et al., 

2003; Barmby et al., 2009; Izsak, 2004; Larsson, 2016). The array proved integral to students’ 

reasoning. As Gravemeijer explains (2004), mathematical models bridge informal and formal 

mathematics. In this instance, the array bridged students’ experimental strategies to the 

properties of distributivity and associativity. It also formed a bridge across students’ strategies 

and their argumentation. Students were able to make sense of others’ thinking and 

argumentation using the array. This was particularly evident in the class discussion that formed 

the inciting incident for the first conceptual events central to the negotiation and acceptance of 

MP1. As students participated in this discourse, they were reorganising their own thinking, 

resulting in cognitive shifts. 

This trajectory offers significant implications to teaching practice. Typically, learning 

trajectories focus on the mathematical learning of individual students, suggesting (whether 

intentional or not) that students will engage in tasks in similar ways and develop mathematical 

insights at similar times. The uniform descriptions of learning can mean that the diversity of 

students’ reasoning fade into the background (Cobb et al., 2011a). This presents a challenge to 

teachers: how can one use a trajectory to inform instruction while still accounting for and 

responding to the diversity of student thinking? 
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The power of this trajectory and its potential impact on classroom practice is realised in the 

reflexive relationship between the social mathematical practices and the development of 

individual cognitive learning; social and individual aspects of learning are interrelated and 

interdependent, one cannot exist without the other (Cobb et al., 2011b). In this study, students’ 

participation in and contribution to classroom activity shaped the mathematical practices, and 

through their participation and contributions, students reorganised their own thinking resulting 

in cognitive advances. The mathematical practices in the trajectory provide teachers with 

instructional directionality (Wright et al., 2006). By guiding the establishment of mathematical 

practices, teachers are simultaneously supporting individual students’ cognitive advances. 

Table 2 

A Learning Trajectory for Multi-Digit Multiplication 

Mathematical 

practices (MP) 

Shared purpose Reasoning with tools and 

symbols 

Mathematical discourse 

MP1 The array as 

a sense-making 

tool: Partitioning 

the array 

Calculate the total 

number of cakes 

on 8 trays of 24 

Partitioning the array by 

physically cutting or drawing 

lines to make smaller, more 

friendly parts to aid computation 

Informal recording with symbols 

The distributive 

property—Noticing the 

similarity between the 

different partitioning 

strategies used by 

students 

MP2 The array as 

a sense-making 

tool: Rearranging 

the array 

Calculate the total 

number of cakes—

16 boxes with 12 

in each box 

Physically cutting the array and 

then rearranging all parts, 

ensuring the rectangular structure 

is maintained 

Informal recording with symbols 

The associative property 

—The array can be 

rearranged using factors 

and multiples 

MP3 Working 

mathematically: 

Thinking 

multiplicatively 

Calculate the area 

of two trays 

Using the array to see: 

• all partial products formed 

need to be added together. 

• only factors and multiples 

can be used to rearrange the 

array 

More formalised symbolic 

recording 

Additive v multiplicative 

thinking—Noticing the 

2D structure of the array 

and the way it impacts 

the working of strategies 

MP4 Working 

mathematically: 

Looking for 

friendly numbers 

Calculate the 

money raised 

through cake 

orders 

Reduced use of the array 

Formalising methods of symbolic 

recording 

Identifying friendly 

numbers in calculations 

and determining which 

strategy to use based on 

the numbers to be 

multiplied 

Conclusion 

Students’ fluency with multi-digit multiplication develops from their ability to think 

multiplicatively. In this paper, a learning trajectory for multi-digit multiplication is presented. 

Uniquely, the trajectory coordinates social and cognitive aspects of learning and, as such, 

provides a rich description of learning over the course of the instructional sequence. Practically, 

this is significant. The trajectory provides a viable theory that teachers can use to provide 

directionality for their teaching while also acknowledging student diversity. 
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Fractions remains a difficult topic for primary preservice teachers (PST). This paper 

analyses a PST teaching episode using the Refined Consensus Model (RCM) of 

Pedagogical Content Knowledge (PCK) to explore challenges faced by PST in acquiring 

specialised knowledge for effective fractions teaching. Data include semi-structured 

interviews highlighting relationships between collective and personal PCK with a 

videotaped teaching episode allowing an interrogation of her enacted PCK. Key 

findings illustrate the relationships among a PST  collective, personal, and enacted PCK, 

and the importance of the reflection phase of enacted PCK. 

Empirical work has shown the significant relationship between primary teachers’ 

mathematical content knowledge and their students’ mathematics achievement (Campbell et 

al., 2014). Teaching demands deep knowledge of “subject matter for teaching which consists 

of an understanding of how to represent specific subject matter topics and issues appropriate to 

the diverse abilities and interest of learners” (Shulman & Grossman, 1988, p. 9). This deep 

knowledge is what Shulman termed ‘Pedagogical Content Knowledge’ (PCK), a framework 

that has been taken up widely in order to better understand knowledge development for teaching 

with both inservice and preservice teachers (PST). However, there are differing conceptual 

viewpoints of PCK in the extant literature. Some scholars position PCK as the knowledge of 

expert teachers that preservice teachers begin to accumulate during initial teacher education 

(ITE), that is, knowledge for teachers. For example, Ball et al. (2008) included PCK as a 

standardised and measurable part of mathematical knowledge for teaching. Alternatively, 

knowledge of teachers describes a more responsive and adaptive kind of knowledge that is 

particular to each teacher. Whilst acknowledging the central role that the specific learning 

context plays alongside the unique composition of each individual teacher’s knowledge, the 

collective canonical knowledge in the field as developed through empirical and theoretical work 

is also key to understanding a teacher’s PCK. Thus, we consider both knowledge for and of 

teachers to be important to understand how PST knowledge develops. 

Research calls for greater clarity and rigour in PCK models (e.g., Abell, 2007), 

recommending further interrogation and refinement of models of teachers’ PCK to better 

illustrate the relationships between teachers’ knowledge and experience and how these impact 

practice and student outcomes. Building on the 2012 Consensus Model of PCK (Berry et al., 

2015), the Refined Consensus Model (RCM) of PCK now encompasses three distinct realms of 

a teacher’s PCK (Carlson & Daehler, 2019). The three realms and their proposed 

interrelationships are summarised in Figure 1. Collective PCK (cPCK) is the professional 

knowledge held in the field by the full range of educators and educationists. Personal PCK 

(pPCK), as the name suggests, is more personalised, residing in the individual teacher. Enacted 

PCK (ePCK) describes the knowledge subset upon which the teacher draws to guide 

pedagogical reasoning in planning, teaching, and reflecting on lessons taught. 

mailto:elise_vanderjagt@uow.edu.au
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Figure 1 

Refined Consensus Model of PCK (Carlson & Daehler, 2019, p. 82) 

 

Also depicted in the RCM of PCK is the two-way knowledge exchange ( ) that occurs 

between the knowledge realms. In this way, the model shows how teacher knowledge and skills 

are filtered or amplified by teacher attitudes and beliefs, thus shaping their pPCK over time. 

For example, a teacher’s attitudes and beliefs about “students, the nature of content knowledge, 

or the role of the teacher” (Carlson & Daehler, 2019, p. 82) can amplify and/or filter the 

teacher’s developing pPCK. The RCM of PCK has been taken up widely in science education 

research (Mientus et al., 2022), yet relatively few studies of mathematics teachers’ PCK have 

adopted the RCM of PCK (e.g., Botha et al., 2023), and even fewer have used this model to 

interrogate primary school teachers’ PCK (e.g., Amador et al., 2022). In the current paper, we 

use the RCM of PCK to explore its potential to conceptualise the relationships between PCK 

as both integrative (ePCK as knowledge of teachers) and transformative (cPCK as knowledge 

for teaching) as PST learn mathematics for teaching. 

Knowledge for, and of, Pre-Service Teachers: Fractions 

Often cited, Shulman’s (1986) original description of PCK as “the ways of representing and 

formulating the subject that make it comprehensible to others” (p. 9) makes clear that 

representations are key to effective teaching. In mathematics, this includes a collective 

knowledge base about effective ways of representing fractions and teaching about fraction 

representations. PST experience fraction instruction in school as children yet the content 

knowledge teachers need goes beyond that required by students. Fractions are one of the most 

complex areas of the primary school curriculum, both to learn and to teach. Whilst children’s 

knowledge of fractions has been studied extensively (e.g Roesslein & Codding, 2019), primary 

PST have similar difficulties themselves (Vula & Kingji-Kastrati, 2018). This is concerning as 

limited teacher knowledge is related to children’s difficulties in learning fractions (Van 

Steenbrugge et al., 2014) and indeed, may go some way in accounting for children’s problems. 

The development of PST knowledge during ITE for teaching mathematics is complex. PST are 

learning the mathematical content and how to teach it simultaneously. In framing PST 
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knowledge, it is important to conceptualise both the knowledge needed for teaching as well as 

PST emerging understandings, hence the value of a theoretical perspective, such as RCM, on 

teacher knowledge and its development. Additionally, PST bring with them prior experiences 

from their own education, including beliefs about the nature of mathematics and how to teach 

mathematics (Johnson & Olanoff, 2020). 

Despite the wealth of research into primary PST knowledge of fractions, few studies 

illustrate what this knowledge looks like as teachers draw on it while teaching (Thanheiser et 

al., 2014). Additionally, most research has focused on what these teachers do or do not know 

(Olanoff et al., 2014) rather than how they apply the knowledge to teaching (Mewborn, 2001). 

In the current paper, we use the constructs of the RCM to explore the relationships among 

cPCK, pPCK, and ePCK for teaching fractions. Thus, the following research question was 

posed: 

• How can the Refined Consensus Model of Pedagogical Content Knowledge be used to 

examine PST Pedagogical Content Knowledge of fractions? 

Methods 

The research took place in a post-graduate primary ITE program at a regional university in 

Australia. As part of a larger study, this instrumental case study (Stake, 1995) enables particular 

attention to key elements of the RCM. We chose Fiona, a female in her late 20s, as a single case 

in this study because (1) she taught fractions on her Professional Experience (PEx) and (2) her 

prior mathematics knowledge was typical of many PST in this program. Analysis through the 

RCM thus offers opportunity to unpack the relationships between layers of PST PCK during an 

ITE program. The instrumental case also has the potential to refine theory, which we address 

later in the paper. Fiona had completed a Bachelor of Arts in the year prior to enrolling in the 

ITE program. In high school, she had not studied any mathematics subjects in her final two 

years and thus was required to complete a 14-week pre-university access program that included 

fundamental mathematics skills. Also, prior to enrolling in the ITE program, Fiona had worked 

at an early childhood centre, which inspired her to pursue a career in primary school teaching. 

In the ITE program, PST took two sequential mathematics subjects both of which included 

numeracy content and pedagogy for teaching Kindergarten to Year 6 children (ages 5–12). 

Fraction content was addressed in three 2-hour lectures and four 1-hour tutorials. The 

instruction followed a Representational Reasoning Teaching and Learning approach (see 

Thurtell et al., 2019 for an elaboration of this approach). Key representations of fractions 

included area models, linear models (such as number lines), and discrete models that were used 

to develop PST understanding of different fraction ideas. To assist PST in constructing 

knowledge of fraction concepts and operations, discussions of PST representations and 

explanations, including the misconceptions evident, were scaffolded. These discussions also 

addressed the difficulties children experience with an explicit focus on fraction representations. 

The ITE program also included three PEx opportunities of varied duration for PST to teach in 

primary school classrooms: PEx 1 (3 weeks); PEx 2 (3 weeks); and PEx 3 (5 weeks). 

Data Collection and Analysis 

Data for the study include 30–60 minute semi-structured interviews held at four points of 

the teacher education program: before and after PEx 1 (Int. 1 and 2) and after PEx 2 and PEx 3 

(Int. 3 and 4). Additionally, a segment of Fiona’s teaching on PEx 2 was videotaped and 

transcribed alongside photographs of the fraction representations constructed by Fiona and her 

students. Interviews focused on general perceptions of mathematics, fractions, and experiences 

in the subjects and/or on PEx. As the study progressed, interviews explored how Fiona’s 

fraction knowledge developed, and Int. 3 and 4 included explicit questions interrogating the 

teaching episodes. The interviews were analysed using the RCM of PCK framework to identify 
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the ‘realms’ of knowledge (ePCK, pPCK, and cPCK) as a priori categories. Working 

definitions of each realm were developed from Carlson and Daehler (2019) and then used to 

identify examples of these layers of Fiona’s PCK. 

Since PST fraction representations serve as indicators of ePCK (Thurtell et al., 2019), we 

observed how Fiona tailored her teaching to specific children and their mathematical work and 

selected the teaching action of responding to children about their representations as the unit of 

analysis for the current case study. There were 12 such instances in the videotaped teaching 

episode; eight of these involved co-constructed representations. Only four responses addressed 

a child’s own fraction representation and all of these came in the final lesson segment. Further 

analysis of Int. 2, 3, and 4 sought additional indicators of Fiona’s ePCK. 

In the current paper, pPCK is represented by Fiona’s perceptions of her knowledge of 

mathematics, fractions, and fractions representations. Thus, Int. 1–4 were analysed to identify 

Fiona’s PCK related more broadly to teaching mathematics and fractions. Further, in alignment 

with the RCM of PCK (Carlson & Daehler, 2019), potential filters/amplifiers were identified 

as Fiona’s beliefs about and attitudes towards teaching fractions and herself as a learner and 

teacher of mathematics. Finally, cPCK is the specialised professional knowledge independent 

of a specific learning context generated and held by multiple professionals. The present paper 

focused on the concept-specific idea (Carlson & Daehler, 2019) of equality of parts of fractions. 

In identifying this concept in the data, we also drew on research about learning and teaching 

fractions, fractions as represented in curriculum documents and teaching handbooks, and the 

fraction content of the ITE program to identify illustrative examples of Fiona’s cPCK. 

Examining Fiona’s Pedagogical Content Knowledge through the RCM 

Reflecting on the content knowledge aspect of her pPCK prior to the ITE program, Fiona 

was not confident in the quality or depth of mathematics in general. Fiona stated her knowledge 

“wasn’t that great” (Int. 3) and she made the “mistakes that sometimes kids make” (Int. 4). The 

knowledge of fraction content and instruction Fiona had carried from her own schooling was 

limited. When faced with fractions in school, she stated she “just tried to learn the rules, like 

when to flip, when not to flip. We just learned that [and] all that stuff just makes me go err” 

(Int. 4). Although, she did remember “doing more of the basic stuff, halves, quarters” she felt 

that if the fraction content “got any more difficult than that I would be struggling” (Int. 1). In 

fact, Fiona continued to find the content knowledge aspect of pPCK required for teaching 

fractions difficult, “worrying about fractions, well worrying about maths in general” (Int. 1). 

She felt her procedural skill was the most important aspect of pPCK needing improvement, 

stating she “still just need[s] a lot of practice, just going over things” needing to learn “the actual 

maths of it … like doing fractions—actually adding and subtracting. Sometimes I just need to 

remember, like go back over it and do more of them” (Int. 2). This was also what she felt was 

needed to teach (i.e. for ePCK), “if I was to teach it to, say, a Year 6 or something, I wouldn’t 

be confident. I’d need to just prepare, go over it again” (Int. 2). Her lack of confidence was 

consistent with her beliefs about the nature of fractions as synonymous with fraction notation, 

typically believing that “you can still use other stuff as well to help it, but I guess you’ve got to 

be able to do the symbolic to do the maths” (Int. 1). 

The Teaching Episode and Fiona’s ePCK 

Because ePCK is the knowledge an individual teacher draws on in a particular setting with 

a particular child or children to support a specific concept, we now contextualise the teaching 

episode as an example of Fiona’s ePCK. This episode occurred during PEx 2 in the final week 

of a 3-week block of teaching and was the second of two lessons about fractions. The class was 

a Year 1/2 composite class comprised of sixteen children (aged 6–8). The focus of the lesson 

was fractions needing equal parts using scenarios of sharing food. The lesson began with a 10-
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minute, whole class introduction where individual children were invited to partition images on 

the interactive whiteboard, sharing a rectangular chocolate bar among two, four, and eight 

people, then sharing three circular lollipops between two people. The main segment of the 

lesson was completed at desks with children working individually. Children were given 

playdough with which to roll out and cut circles, partitioning to “share a cake” first between 

two then four people. Fiona showed two quarters “equals” one half, asking children to place the 

half next to two-quarters of the circle. We focus on the final moment in the lesson where 

children were invited to share a new ‘cake’ among eight people. 

The Teaching Moment 

There were four strategies used by children to partition their circles (see Table 1, one child 

did not produce a model) and Fiona responded directly to three children (Strategies 1–3). 

Table 1 

Children’s Strategies for Partitioning Circles into Eighths and Fiona’s Responses 

Strategy No. of children Work sample Fiona’s response 

1. Three partitions along 

the diameter to cut the 

circle into halves, then 

quarters, then eighths 

5 

e.g., from Kai 

 

“Great work Kai, good” 

2. Individual cuts along the 

circle’s radii with unequal 

parts 

5 

e.g., from Li 

 

“I like it, Li. Well done” 

3. One partition along the 

diameter and three 

perpendicular partitions, 

creating a grid-like pattern 

3 

e.g., from Jo 

 

 “That’s a good try, Jo. Did 

you see Li’s? Try and make it 

look like that. Okay? Maybe 

roll it back together and start 

again. But good try” 

4. A combination of 

strategies that did not result 

in eighths 

2 

e.g., from Sam 

 

Fiona did not respond 

Pseudonyms used for all children. 

A teacher’s ePCK might prompt a response to the unequally sized pieces, however Fiona 

made no mention of this important issue of partitioning with Li. The one instance of Fiona 

prompting a child to correct their representation directly was in response to Jo who used 

Strategy 3. Here, Fiona directs them to copy Li’s model, despite its unequal partitions. 

Interpreting Fiona’s ePCK in this episode, her own understanding of partitioning is poor (e.g., 

endorsing Li’s model as appropriate). Fiona later addressed the idea of equality of parts with 

the whole class but made no mention of the children’s models. Fiona partitioned a circle on the 

interactive whiteboard into eight roughly equal parts (using Strategy 1) and asked children to 

confirm that their models resembled the displayed image, noting she “saw some people did it 

another way, but we need to make sure that they’re getting the same amount of cake, don’t we?” 

She demonstrated the equality of the slices of cake but did not capitalise on specific examples 

of unequal partitioning that more than half the children produced (Strategies 2–4) and thus 

showed limited ePCK of the common misconception(s) around equivalency. Strategy 2 

highlights the difficulty of using the central angle to preserve the equality of its parts, where 

Strategy 3, the grid pattern, could be demonstrated to show that these horizontal and vertical 
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partitions did not represent eighths as the pieces produced were not equal. Modelling an 

example of Strategy 2 and/or 3 demands pPCK of the problems associated with these methods 

of partitioning a circular area model. 

Fiona’s ePCK in Lesson Reflections During Interview 3 

Fiona described the teaching as a “real[ly] basic lesson” whose motivation was to “find out 

how much they knew”. Although Fiona reasoned that the children were already “down with 

sort of halves, and some of them could kind of understand the concept of quarters”, the concept 

of eighths was new to them and she had not “necessarily planned to do the eighth part” but 

spontaneously included it “because some of them were really getting it”. Citing the tutorials 

and assignments as inspiring the implementation of the area models chosen for her lesson, 

Fiona’s pPCK had clearly been informed by the ITE program. Those teaching and learning 

activities “helped because I learned sort of all this stuff and why [the fractions] make sense, and 

why … that helps before you’re doing the symbolic stuff”. When asked to provide a rationale 

for her choice of fraction representations, Fiona drew on more general pedagogical knowledge 

rather than PCK, stating the playdough was “fun”, “concrete”, and “hands-on”, wanting 

children to “see sort of the number of people so that they had a reference … so there was a 

visual to look at”. Further, Fiona did not believe teaching this lesson had developed her own 

PCK as it was “so simple anyway, I kind of got it anyway”. However, she added “maybe if I 

had had to do something more difficult I wouldn’t have been like ‘oh my god’. And I would 

have had to really make sure I was clear on what I was doing before I went into those lessons”. 

Fiona is hinting at her awareness of the link between pPCK as developed in the ITE program 

and enacting the knowledge during teaching episodes. 

Knowledge for Teaching Fractions: Children’s Misconceptions as cPCK 

Fiona noted some specific aspects of cPCK that enabled her to feel more confident for 

teaching fractions such as being “prepared before the lesson and know[ing] all the types of areas 

that kids might go wrong” (Int. 4), citing the most helpful source of this knowledge as “the 

assignments about different misconceptions, like conceptual things” (Int. 4). The ITE program 

explored cPCK of fractions specifically including research about the potential difficulties that 

circular fraction models present for children (Gould, 2005). Drawing on this concept-specific 

cPCK, Fiona claimed awareness of the problems in partitioning circular area models and 

asserted that course content outlined children might partition circles in a grid-like pattern: 

It was funny to see because we did use circles, it sounds weird, but it’s just like what they said in 

my maths textbook about how they, rather than cutting like a pizza, they would go to do it like that 

[a grid] into those weird square shapes out of the circle. … In the lecture or something, they said if 

you used a circle that would happen. (Int. 3) 

However, being aware of difficulties that children were likely to experience with the circular 

area model (cPCK) did not prevent Fiona from employing it in her lesson (ePCK). When asked 

later in the same interview whether the children had difficulties with any of the representations, 

Fiona responded “Not really. … I think because I used circles and those basic kind of shapes” 

(Int. 3). Fiona believed she had addressed the children who had used the grid strategy to 

partition circles, “because it was playdough we could pick up and move the pieces, so it was 

kind of like we need to look at this piece and that piece and when you cut it that way, they’re 

not the same size, are they? So yeah, from there they just rolled it and cut it out again” (Int. 3). 

In the reflect phase of ePCK, Fiona identifies the problem with the grid strategy as not 

representing eighths as equivalent pieces. Yet in the teaching episode, Fiona’s ePCK was visible 

in directing a child holding the misconception to copy another inappropriate representation. 

Here, Fiona’s reasoning in the teaching moment, reflection in action, is not as robust as her 

reasoning about the episode afterwards, reflection on action, despite being part of her ePCK. 

Fiona’s case shows the complexity of ePCK and the relationships between the reasoning that 
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occurs during the lesson, reflection in action, and the reasoning before (plan phase) and after 

(reflection phase) the lesson, reflection on action (Carlson & Daehler, 2019). Fiona had only 

planned to address the concept of quarters with her class (plan phase) yet adapted the lesson 

while teaching for children who she considered to be ready for eighths (teach phase). Here, 

there is potential for the plan and teach phases of Fiona’s ePCK to be more strongly integrated. 

Discussion and Implications 

Fiona’s case illustrates the utility of the RCM of PCK to show the complexities in PST 

knowledge of and for teaching fractions. The case showed that even when there is some 

evidence of cPCK as part of a teacher’s pPCK (in this case, being aware of the difficulties a 

particular fraction representation might cause children), this may not be held in ways that 

adequately inform the teach phase of ePCK to enable a robust response to children’s 

misconceptions. Knowing about children’s potential difficulties can be insufficient as 

knowledge to address the misconceptions. This highlights the importance of PST having pPCK 

not just of likely difficulties of children but also the strategies to address these, probably best 

drawn from cPCK. Although anticipating children’s responses should mean teachers notice and 

attend to children’s responses when teaching (Vale et al., 2019), teachers also need to develop 

pPCK of ways to address children’s misconceptions. The case of Fiona suggests there could be 

filters and/or amplifiers at work between a teacher’s pPCK and their ePCK in a specific teaching 

moment. Behling et al. (2022) found that “the worse preservice teachers’ knowledge-based 

reasoning, the smaller the transformation from pPCK to ePCK” (p. 592). Many PST do not 

emphasise the equality of the parts when explaining the part-whole concept in fractions 

(Magdaş et al., 2023) and their representations are often limited to rectangular and circular area 

models when demonstrating this relationship (Castro-Rodríguez et al., 2016). Responding to 

children’s mathematics demands teacher pPCK comprising robust conceptual knowledge 

(Kahan et al., 2003) but disconnections in the plan-teach-reflect phases of ePCK were 

highlighted when Fiona spontaneously introduced eighths with circle models. It is possible that 

further developing Fiona’s pPCK with more specific cPCK about children’s misconceptions 

about fraction representations could inform the plan phase of ePCK, allowing her to prepare 

teaching moves to address children’s understanding of the concept of equal parts more directly 

in the moment. In the reflect phase of ePCK, Fiona drew from the concept-specific cPCK to 

subsequently identify an appropriate response to the child regarding the need for size 

equivalency. Her post-lesson reflection was thus a critical element of her developing pPCK 

consistent with Carlson and Daehler (2019), “the insight a teacher takes away from each 

interaction with students further informs the teacher’s pPCK” (p. 85). Analysis in this paper of 

the interactions among pPCK, cPCK, and ePCK as illustrated in the teaching episode in the 

case of Fiona demonstrate the value of such analysis and the utility of the RCM of PCK as a 

framework for unpacking the complexity of teaching and learning. We argue particularly that 

this small case study illustrates the importance of the reflect phase of ePCK during ITE and 

points to the need in ITE programs to enable this reflective work at key points of the program. 
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Problems presented in mathematics classrooms often focus on routine tasks with 

students practicing mathematical techniques demonstrated by the teacher. However, this 

does not reflect the problem-solving process in the real world, and students often find it 

difficult to connect school mathematics with authentic contexts. This paper discusses 

findings from a study of Year 5 student perceptions of problem-posing during a two-

week open mathematical inquiry. While the semi-structured interviews indicated the 

students perceived themselves to be skilled at problem-posing, triangulation of the video 

observations and work samples told a different story. 

Inquiry-based learning (IBL) in mathematics has gained prominence in Australian 

educational policy and curriculum as policy makers and educators seek to increase student 

engagement and achievement in mathematics. For example, an increase in available educator 

resources such as The Australian Academy of Science’s Mathematics ReSolve project 

(Australian Academy of Science, 2023), coupled with a growing number of presentations 

focusing on inquiry approaches at Mathematics Education Research Group of Australasia 

(MERGA) conferences (e.g., Fielding et al., 2023; Wadham et al., 2023), suggests an increased 

interest in applying this approach in classrooms. The need to provide students with 

opportunities to transfer their mathematics learning to authentic situations and to connect the 

‘real world’ to the ‘mathematics classroom’ is imperative and has been noted in the current 

version of the Australian Curriculum: Mathematics (Australian Curriculum, Assessment and 

Reporting Authority [ACARA], 2023a). One way to achieve this is through open mathematical 

inquiry, which engages students in problem posing; indeed, an aim of the Australian curriculum 

is for students to: 

Develop proficiency with mathematical concepts, skills, procedures and processes, and use them to 

demonstrate mastery in mathematics as they pose and solve problems, and reason with number, 

algebra, measurement, space, statistics and probability. (ACARA 2023b, para. 2) 

Inquiry Approaches and The Australian Curriculum 

Bruder and Prescott (2013) discuss different studies that examined IBL in both science and 

mathematics, highlighting three types of inquiry: 

Structured Inquiry: The teacher gives the students a problem or question to be solved as well as the 

appropriate method and materials to solve it. 

Guided Inquiry: The teacher provides the students with the problems or questions and the necessary 

materials. The students’ task is to find the appropriate problem-solving strategies and methods. The 

teacher guides students through the problem-solving process. 

Open Inquiry: The students’ task is to find problems or questions they would like to solve and 

answer. They also decide upon the methods and materials they would like to use. (p. 812) 

Makar’s (2012) approach to guided mathematical inquiry is slightly different to what is 

described by Bruder and Prescott (2013) as, in her approach, students are presented with a well-

considered, ill-structured question, and are supported by the teacher to identify and define 

important parts of the question and to determine what evidence is needed for them to answer 

the question. Much of the more recent research in Australia regarding inquiry-based pedagogy 
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in mathematics has focussed on guided mathematical inquiry (e.g., Fielding et al., 2023; Fry & 

English, 2023), with little classroom-based research related to open mathematical inquiry, 

which was the approach that the students in this study undertook. 

During open inquiry, students must devise questions based on a stimulus, locate additional 

information to answer their questions, and make decisions regarding the methods or materials 

they want to use. While having students formulate and pose their own problems is not a new 

phenomenon, it is less commonly used by teachers than other, non-inquiry based pedagogical 

approaches. Problems presented in mathematics classrooms are often presented by the teacher, 

and commonly focus on students finding a particular answer in a prescribed way, or practicing 

a mathematical technique demonstrated by the teacher through routine exercises (Schoenfeld, 

2017). 

In addition to being noted in the aims of curriculum, connections to problem-posing are also 

evident in the proficiency strands (ACARA, 2023c) and under Mathematical Processes: 

Mathematical modelling (ACARA, 2023a). The curriculum requires students from Year 3 

onwards to use mathematical modelling to solve practical problems, formulate problems, and 

choose operations and strategies, as well as interpret and communicate solutions (ACARA, 

2023d). We argue that open mathematical inquiry meets these curriculum requirements as, 

during open mathematical inquiry, the students must identify practical problems in situations, 

mathematise their ideas, solve the problem, and share their solutions. 

Singer et al. (2015) argue that support of problem-posing in school mathematics can be 

considered from at least two vantage points, the first historical, demonstrating that problem-

posing is an agent of change, and the second futuristic, with the knowledge economy and 

increasing societal pressure on educational systems. While both perspectives are beneficial, and 

the policy and curriculum interest in problem-posing is strong, researchers are still developing 

an understanding of the effects of problem-posing activities on engagement and achievement, 

as well as conceptualising the instructional strategies that support their effective 

implementation (Cai et al., 2015). Although the understanding of these processes may be 

somewhat limited, researchers have found that “problem-posing can enhance learners’ 

mathematics conceptual understanding, dispositions on mathematics, and mathematical 

creative thinking” (Xie & Masingila, 2017, p. 102). Furthermore, research has shown that open 

mathematical tasks promote engagement in mathematical thinking, communicating, 

problematising, and creativity (Attard, 2013; Xie & Masingila, 2017). These claims suggest 

that research on open mathematical inquiry is needed to support teachers in providing students 

with authentic problem posing and problem-solving opportunities. 

This paper reports on one aspect of a study (Zorn et al., 2022) that sought to understand the 

ability of a group of Year 5 students to problem-pose by investigating their perceptions of 

engagement and ability to create their own mathematics investigations based on a video 

stimulus. The research question for this paper is How do Year 5 students perceive their ability 

to problem-pose using a video prompt as stimulus during an IBL mathematical problem-posing 

investigation? 

Method 

The qualitative findings reported in this paper are taken from a single instrumental case-

study. Case-study methodology provides a framework to investigate various participant 

perspectives and discover patterns, relationships, and themes (Holosko & Thyer, 2011). A 

single instrumental case-study was appropriate as this study was conducted with one class 

(n = 17) and findings were developed based on the student perspectives from that one ‘bounded’ 

case. The first author led a two-week open mathematical investigation that required students to 

develop their own investigation questions based on a video stimulus centred on a tennis theme. 
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Seventeen students worked in collaborative pairs or groups of three to investigate their own 

questions and present their findings. 

Data Collection and Analysis 

Semi-structured interviews that were held with students to identify their perceptions of their 

own problem-posing ability after the open mathematical inquiry were triangulated with video 

observations and student work samples. The semi-structured interviews were recorded, 

transcribed, and analysed by the researcher, and this process allowed for multiple exposures to 

the data. Thematic analysis was used to identify, analyse, and interpret patterns as it provided 

an accessible and systematic way for generating codes and themes from the qualitative data 

(Clarke & Braun, 2017). Following thematic analysis, the video observations, student work 

samples, and literature related to the phenomenon, were used to triangulate and substantiate the 

findings. 

Participants 

The research was conducted at a co-education, independent school in South-East 

Queensland, Australia. The participating class consisted of 17 students and one teacher. Due to 

student absence, only 16 out of 17 students participated in a semi-structured interview. The 

school delivered the Australian curriculum through individualised pathways and students were 

engaged in a range of pedagogies throughout each day. From Year 5 the students learnt 

mathematics through ‘Maths Pathways’ as the school leadership believed it supported teachers 

to deliver personalised learning. Students engaged in online tutorials and questions based on 

their readiness and took fortnightly paper tests to identify growth and areas for improvement. 

As part of the program students also engaged in rich tasks and projects; however, the regularity 

of this was determined by each classroom teacher. Students had some experience with IBL 

pedagogy, and regularly posed questions for personal investigations in other curriculum areas; 

however, this was not done in mathematics. 

Findings and Discussion 

The data from the semi-structured interviews revealed that the students felt confident to 

problem-pose and develop their own mathematical investigations. When asked whether they 

found it challenging to create their own investigation and questions based on the video stimulus, 

12 students reported that they did not find it challenging, two reported that it was slightly 

challenging, one student did not respond to the question, and one student’s response was 

inaudible due to the student mumbling. Many of the student’s responses were simple and direct, 

with minimal or no elaboration to explain whether it was initially challenging for them to pose 

questions to investigate. For example, responses included, ‘no, not really’, ‘nah, not actually’, 

‘a bit’. 

However, triangulation of the interview data, video observations, and student work samples 

indicated that the students’ perceptions of their ability were not aligned with their actual ability 

to independently problem-pose. The video observations and work samples revealed that the 

students had difficulty problem-posing and that they required teacher support to make 

connections between the video and mathematics and to mathematise their ideas (Zorn, 2022). 

In the beginning of the unit, after watching the video stimulus, the students engaged in the 

Visible Thinking Routine—’see, think, wonder’ (Lowe et al., 2013). The students were 

specifically encouraged to pose mathematical questions during the ‘wonder’ phase and were 

required to post their questions to a shared Padlet. While the students recorded 54 questions, 

only four were linked to mathematical concepts (e.g., area, perimeter, and money) for 

investigation in the classroom. This revealed how challenging it was for the students to connect 
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mathematics to the stimulus. Most of the questions focussed on the emotions of the people in 

the video or were closed, subjective questions (see Table 1). 

Table 1 

Student Question Examples 

Mathematical questions Examples of non-mathematical questions 

What is the total perimeter of an average tennis court? I wonder if they play it professionally? 

How big is a tennis court? How are they feeling? 

How much does it cost to buy a tennis court? Do they get worried before a tournament? 

I wonder how much money they earn? Is there a certain technique to playing tennis? 

In addition to the 54 questions, two students explicitly questioned the connection to 

mathematics. For example, Nick wrote, “How does tennis relate to math?” A later comment 

from Nick in the semi-structured interview suggested a shift in his thinking during the two-

week investigation: 

Well, it was kind of out of the blue when you showed us the tennis video. Also, I thought how can 

this relate to maths. And when we actually go into it, I realise how like, how much maths is involved 

in everything. 

Other comments described the impact of scaffolding during the investigation. The 

scaffolding helped the students to connect mathematics to the ‘real-life’ situation presented in 

the video, and opened their eyes to a world that is full of mathematics: 

They [teachers] should have taught us that pretty much everything can be math. (Matt) 

Yeah, how you wouldn’t think it would be that involved in math, but it is and you have to use your 

brain in a way that you wouldn’t think to use it. And yeah, that was just really cool to experience. 

(Milly) 

These findings are consistent with the findings of Singer et al. (2015) who found that it was 

challenging for students to problem-pose, and that students need scaffolding to mathematise 

questions and ideas. In response to their problem-posing efforts, and to help the students in this 

study to see the mathematics in their daily life and in the mathematics in the video stimulus, 

Math Curse, a picture book by Jon Scieszka and Lane Smith (1995), was read to the class. The 

book follows a boy through his week and, as the story unfolds, he realises that he is surrounded 

by mathematics problems everywhere he goes. Table 2 illustrates a sample of the ideas as they 

developed through the two weeks. 

Table 2 

Developing Ideas 

Initial question/idea Developing questions 

Are they doing [sic] a tournament? Are there winners, how much prize money? 

How many courts and how much space is needed? 

Hitting the ball—what angles are involved? 

How many seats on each court and price per seat? 

Is Roger Federer the best tennis player of all 

time? 

How long has he played for? 

What are his scores and points? 

Who is the 1st, 2nd, 3rd and how do people vote? 

I wonder if we could have a tennis 

court at school? 

What area would we need and how long to build? 

How much money would it cost? 

How is a tennis racket made? What is the cost of the materials? 

The size—measurements, different sized rackets 

Although their ideas developed during the two weeks, and their questions became more 

mathematically focussed, the work samples and video observations demonstrated that some 
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groups still found it difficult to mathematise their investigation. For example, one group decided 

to work on ‘ticket prices’ and started to create a list with different types of tickets, randomly 

selecting a dollar figure that they felt was appropriate. After conferencing with the teacher, 

these students changed their approach and began researching the costs of hiring a local tennis 

court, umpires, and commentators for their tournament. They then used the information to 

calculate total costs for the tournament, and then worked out ticket prices based on covering 

expenses and making a profit. In doing this they also made decisions about the number of 

players, the number of games, and the number of courts that would be needed. During their 

class presentation, at the end of the two weeks, these students noted that they had started to 

create ticket prices but “it didn’t work out so well, so we had to restart.” This indicated that 

they were aware of the challenges they faced in formulating questions and solving the problem, 

and contradicted their perceptions shared during the interview that problem-posing was easy. 

It was beyond the scope of this project to fully understand why some students felt confident 

to problem-pose even though the evidence indicated they needed scaffolding and support. 

However, the kind of teacher support provided may have contributed to their confidence. It was 

observed that the students were able to maintain a sense of autonomy and competence, resulting 

in high self-efficacy. Self-efficacy has been found to increase during IBL (Dunlap, 2005); 

however, the degree to which it is influenced by teacher involvement is unclear (Tawfik et al., 

2020). The student-centred environment created in this study encouraged students to be active 

participants in their learning, with teachers often adopting more of a facilitative role, using 

skilful questioning, scaffolding thinking, and avoiding the temptation to quickly impart 

knowledge. To illustrate this point, the following student comments, shared during semi-

structured interviews, articulate the level of support provided by the teacher: 

You and Miss E checked around and looked if we had any troubles or not. And if we did, you guys 

would sit down and help us, and if we didn’t, you guys would just walk off, and be like, they don’t 

need any help, they’re fine and go see if anybody else needs help. (Koby) 

Just looking over us just to make sure that we’ve got the right criteria of what we needed to 

accomplish. But other than that, we were mainly doing it ourselves and that’s what I like. (Freya) 

The idea of the teacher as a facilitator is often associated with student-centred learning 

(Goodyear & Dudley, 2015), and is not a new phenomenon; however, it remains a common 

misconception of open mathematical inquiry, and other constructivist, student-centred 

approaches, that the teacher just creates a task and leaves the students to work together to learn 

(Goodyear & Dudley, 2015). That said, there does need to be a balance between active teacher 

involvement and student-directed learning, and it is essential that teachers provide support in 

autonomy-supportive ways. 

Cheon et al. (2020) used self-determination theory principles to develop a teacher 

intervention, which supports teachers in creating an autonomy-supportive classroom 

environment. They found that when teachers allow students to work in their own way, at their 

own pace, provide explanatory rationales, and use invitational language, that these actions 

support students to meet their autonomy need satisfaction. This was further supported by 

providing structure through clearly communicating expectations, scaffolding progress, offering 

help, and providing constructive feedback that allowed students to experience self-confidence 

and competence need satisfaction. 

In the semi-structured interviews, when the students were asked if they could pose an 

additional problem to investigate, all the students responded positively with the belief that they 

could do so. However, most of the proposed ideas reflected the ideas of their peers that were 

shared at the end of the two-week period. For example, Matt thought they would “probably 

[plan] a tournament”, and Nick agreed that “scheduling a tournament and building it up” was a 

good idea. While their ideas were investigable topics, they were all previously presented to the 

class by their peers, lacked originality and were not mathematical questions, suggesting that the 
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students may not be able to problem-pose as well as they perceived they could. It would have 

been beneficial to provide the students with a second video stimulus to develop insights into 

their evolving ability to problem-pose as it was difficult for them to move beyond their peers’ 

ideas. Other ideas suggested by the students also indicated a contradiction between the students’ 

perceived and actual ability to problem-pose. At the end of the inquiry, the students were asked 

if they could pose an additional problem related to the original prompt. Gemma and Eric’s 

additional problems demonstrated a limited understanding of mathematical concepts and 

processes, and/or a limited understanding of the idea of mathematical problem-posing: 

I’d probably come up with something like, what top 10 players would like, put into an even tennis 

match or something. But it’s like, it’s not like you’re going to have someone like, David Smith or 

something against like Roger Federer, because that’d be extremely unbalanced. (Eric) 

Writing a letter to the school to try and build one. Once we are done that, if they let us build it, we 

could host a tournament. (Gemma) 

Eric’s idea lacked logic or an understanding of the task, and did not relate to mathematics, 

rather it focussed on something that Eric found interesting. Gemma’s response focussed on 

what she’d like to do next in relation to her initial investigation rather than an additional 

mathematics question. 

Conclusion 

This paper focussed on problem-posing during an open mathematical inquiry. The findings 

indicated that while the students perceived themselves to be able to problem-pose effectively, 

the student work samples and video observations contradicted this. During the study the 

students reported experiencing high levels of autonomy and competence need satisfaction (Zorn 

et al., 2022) and this may have contributed to high levels of self-reported efficacy, confidence, 

and ability to problem-pose (Zorn, 2022). Confidence and self-efficacy have been linked to 

student growth and positive academic outcomes. Students experiencing these positive emotions 

are more likely to take academic risks, increasing the likelihood of improving their problem-

posing abilities. This reinforces the need to create an environment that ensures students feel 

supported and safe to work autonomously and feel competent in doing so. 

The challenge with problem-posing in this study possibly reflects the fact that this was the 

first time the students had been exposed to the idea of problem-posing or creating their own 

mathematical investigations. The support they were given assisted the students to develop their 

initial investigation topics and questions, and it is unknown whether they would be able to work 

more independently to pose problems that could be solved using mathematics with a new video 

stimulus. It was beyond the scope of this study to provide the students with an additional 

stimulus to evaluate whether this initial experience of problem-posing would support them to 

develop problems based on new video stimulus. 

Although some suggestions have been made regarding why the students may have self-

reported feeling confident to problem-pose, future research could involve a longer-term study 

investigating what teacher practices support students to problem-pose effectively, and how 

teacher practices change over time to support student engagement and achievement during 

problem-posing. 

Acknowledgments 

Ethics approval (GU Ref No: 2021/533) was granted by Griffith University, and 

parents/caregivers gave informed consent. 

References 

Attard, C. (2013). “If I had to pick any subject, it wouldn’t be maths”: Foundations for engagement with 

mathematics during the middle years. Mathematics Education Research Journal, 25(4), 569–587. 

https://doi.org/10.1007/s13394-013-0081-8 

https://doi.org/10.1007/s13394-013-0081-8


Student perceptions of ability to problem-pose during open mathematical inquiry 

557 

Australian Academy of Science. (2023). Teaching resources. reSolve: Maths by inquiry. Australian Academy 

of Science. https://resolve.edu.au/teaching-resources 

Australian Curriculum Assessment Reporting Authority (ACARA). (2023a). Understanding this learning 
area: Mathematics: Mathematical processes: Mathematical modelling. ACARA. 

https://v9.australiancurriculum.edu.au/teacher-resources/understand-this-learning-area/mathematics 

Australian Curriculum Assessment Reporting Authority (ACARA). (2023b). Understanding this learning 
area: Mathematics: Aims. ACARA. https://v9.australiancurriculum.edu.au/teacher-

resources/understand-this-learning-area/mathematics 

Australian Curriculum Assessment Reporting Authority (ACARA). (2023c). Understanding this learning 

area: Mathematics: Proficiencies: Problem-solving. ACARA. 

https://v9.australiancurriculum.edu.au/teacher-resources/understand-this-learning-area/mathematics 

Australian Curriculum Assessment Reporting Authority (ACARA). (2023d). Foundation to year 10 

curriculum. ACARA. https://v9.australiancurriculum.edu.au/f-10-curriculum/learning-

areas/mathematics 

Bruder, R., & Prescott, A. (2013). Research evidence on the benefits of IBL. ZDM Mathematics Education, 

45(6), 811–822. https://doi.org/10.1007/s11858-013-0542-2  

Cai, J., Hwang, S., Jian, C. & Silber, S. (2015). Problem-posing research in mathematics education: Some 

answered and unanswered questions. In F. M. Singer, N. F. Ellerton & J. Cai., Mathematical problem 

posing: From research to effective practice (pp. 3–34). New York: Springer. 

https://doi.org/10.1007/978-1-4614-6258-3 

Cheon, S. H., Reeve, J., & Vansteenkiste, M. (2020). When teachers learn how to provide classroom structure 

in an autonomy-supportive way: Benefits to teachers and their students. Teaching and Teacher 

Education, 90, 103004. https://doi.org/10.1016/j.tate.2019.103004 

Clarke. V., & Braun. V. (2017). Thematic analysis. The Journal of Positive Psychology, 12(3), 297–298. 

Dunlap, J. C. (2005). Problem-based learning and self-efficacy: How a capstone course prepares students for 

a profession. Educational Technology Research and Development, 53, 65–85. 

https://doi.org/10.1007/BF02504858 

Fielding, J., Adeniji, S., & Baker, P. (2023). Throw away the script: Examining the introduction of a guided 

mathematical inquiry unit. In B. Reid-O’Connor, E. Prieto-Rodriguez, K. Holmes, & A. Hughes (Eds.), 

Weaving mathematics education research from all perspectives. Proceedings of the 45th annual 

conference of the Mathematics Education Research Group of Australasia (pp. 27–35). Newcastle: 

MERGA. 

Fry, K. & English, L. D. (2023). How big is a leaf? Mathematical modelling through STEM inquiry. 

Mathematics Teacher: Learning and Teaching PK–12, 116(2), 99–107. 

Goodyear, V., & Dudley, D. (2015). “I’m a Facilitator of Learning!” Understanding what teachers and 

students do within student-centered physical education models. Quest, 67(3), 274–289. 

https://doi.org/10.1080/00336297.2015.1051236 

Holosko, M. J. & Thyer, B. A. (2011). Pocket glossary for commonly used research terms. Thousand Oaks: 

SAGE Publications. 

Lowe, G. M., Prout, P., & Murcia, K. (2013). I see, I think, I wonder: An evaluation of journaling as a critical 

reflective practice tool for aiding teachers in challenging or confronting contexts. Australian Journal of 

Teacher Education, 38(6). https://doi.org/10.14221/ajte.2013v38n6.6 

Makar, K. (2012). The pedagogy of mathematical inquiry. In R. Gillies (Ed.), Pedagogy: New developments 

in the learning sciences ( pp. 371–397). New York: Nova Science. 

Schoenfeld, A. H. (2017). Learning to think mathematically: Problem solving, metacognition, and sense 

making in mathematics [Reprint]. Journal of Education, 196(2), 1–38. 

doi:10.1177/002205741619600202 

Scieszka, J. & Smith, L. (1995). Math curse. Viking Press. 

Singer, F. M., Ellerton, N., & Cai, J. (Eds.). (2015). Mathematical problem posing: From research to effective 

practice. New York, NY: Springer. 

Tawfik, A. A., Hung, W., & Giabbanelli, P. J. (2020). Comparing how different inquiry-based approaches 

impact learning outcomes. The Interdisciplinary Journal of Problem-Based Learning, 14(1). 

https://doi.org/10.14434/ijpbl.v14i1.28624 

Wadham, B., Pearce, E., & Hunter, J. (2023). Learning to notice algebraically: The designed instructional 

material on student thinking. In B. Reid-O’Connor, E. Prieto-Rodriguez, K. Holmes, & A. Hughes 
(Eds.), Weaving mathematics education research from all perspectives. Proceedings of the 45th annual 

conference of the Mathematics Education Research Group of Australasia (pp. 27–35). Newcastle: 

MERGA. 

https://resolve.edu.au/teaching-resources
https://v9.australiancurriculum.edu.au/teacher-resources/understand-this-learning-area/mathematics
https://v9.australiancurriculum.edu.au/teacher-resources/understand-this-learning-area/mathematics
https://v9.australiancurriculum.edu.au/teacher-resources/understand-this-learning-area/mathematics
https://v9.australiancurriculum.edu.au/teacher-resources/understand-this-learning-area/mathematics
https://v9.australiancurriculum.edu.au/f-10-curriculum/learning-areas/mathematics
https://v9.australiancurriculum.edu.au/f-10-curriculum/learning-areas/mathematics
https://doi.org/10.1007/s11858-013-0542-2
https://doi.org/10.1007/978-1-4614-6258-3
https://doi.org/10.1016/j.tate.2019.103004
https://doi.org/10.1007/BF02504858
https://doi.org/10.1080/00336297.2015.1051236
https://doi.org/10.14221/ajte.2013v38n6.6
https://doi.org/10.1177/002205741619600202
https://doi.org/10.14434/ijpbl.v14i1.28624


Zorn, Fry, Larkin, & Grootenboer 

558 

Xie, J., & Masingila, J. O. (2017). Examining interactions between problem posing and problem solving with 

prospective primary teachers: A case of using fractions. Educational Studies in Mathematics, 96(1), 101–

118. https://doi.org/10.1007/s10649-017-9760-9 

Zorn, K. (2022). Student perceptions of engagement and problem-posing during an inquiry-based learning 

mathematical investigation. [Master’s thesis]. Griffith University. 

Zorn, K., Larkin, K., & Grootenboer, P. (2022). Student perspectives of engagement in mathematics. In 

N. Fitzallen, C. Murphy, V. Hatisaru, & N. Maher (Eds.), Mathematical confluences and journeys. 

Proceedings of the 44th annual conference of the Mathematics Education Research Group of 
Australasia, July 3‒7. (pp. 570‒577). Launceston: MERGA. 

https://doi.org/10.1007/s10649-017-9760-9


 

559 

Round Tables 

 





ROUND TABLES 

(2024). In J. Višňovská, E. Ross, & S. Getenet (Eds.), Surfing the waves of mathematics education. 

Proceedings of the 46th annual conference of the Mathematics Education Research Group of Australasia 

(pp. 561). Gold Coast: MERGA. 

561 

Supporting Out-of-Field Secondary Mathematics Teaching in 

NSW: A Multifaceted Project Design 

Judy Anderson 

The University of Sydney 
judy.anderson@sydney.edu.au 

Janette Bobis 

The University of Sydney 
janette.bobis@sydney.edu.au 

Kathryn Holmes 

Western Sydney University 
k.holmes@westernsydney.edu.au 

Helen M G Watt 

The University of Sydney 
helen.watt@sydney.edu.au 

Paul W Richardson 

Monash University 
paul.richardson@monash.edu 

Judy Anderson, Janette Bobis, Kathryn Holmes, Helen Watt, & Paul Richardson 

Understanding the extent of out-of-field (OOF) secondary mathematics teaching in 

department schools in NSW is key to addressing teacher shortages and designing professional 

learning (PL) support to ensure students have opportunities to develop deep learning in 

mathematics (Shah et al., 2020). Leveraging existing datasets as well as collecting new survey 

and interview data from 118 current in-field and 96 OOF mathematics teachers, 100 head 

teachers and other school leaders in 48 schools has provided initial data to inform PL design. 

PISA data from 2275 teachers revealed 20% of teachers who were teaching grade 10 

mathematics in NSW in 2015 were teaching OOF—they were more likely to be women, 

younger, on fixed-term contracts, working part-time, and have less than three years’ experience 

(Watt et al., 2023). Preliminary new survey data analyses reveal that OOF teaching appears 

slightly more pronounced in smaller schools, in lower socioeconomic areas, in schools with 

fewer resources, and lower parental participation. Interview data from fifteen case-study 

schools has provided in-depth information about schools’ approaches to supporting OOF 

mathematics teaching including new models of curriculum design, new approaches to recruiting 

and sustaining their mathematics teacher workforce, particularly in rural and regional areas, 

where staffing shortages are most acute. Designing PL that meets OOF mathematics teachers 

needs is challenging given the diversity of the cohort and the variety of contexts within which 

they work (Vale et al., 2021). While we are aware OOF mathematics teaching can occur in all 

secondary grades and at all levels of mathematics learning, we are focusing our PL provisions 

on teaching of grades 7 and 8 classes where most OOF mathematics teaching currently occurs. 

This roundtable provides opportunities to explore findings from this Department of 

Education funded project. Other education jurisdictions and tertiary providers have offered 

programs to address OOF mathematics teaching (Barker et al., 2022). We anticipate the 

discussion will enable participants to share their experiences and insights to enrich our project. 
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It has generally been considered that Elizabeth Fennema was a trail-blazing researcher in 

the field of gender and mathematics education. Fennema’s (1974) literature review 

encompassed 36 U.S. studies of mathematics achievement from 1960 onwards. She claimed 

that “such studies were difficult to find because often when sex is used as an independent 

variable, it is treated and discussed casually, if at all” (p. 127). Fennema’s research question 

was “Are there sex differences in mathematics achievement?” (p. 136), and, by examining this 

body of work she wanted to determine whether boys’ superiority in mathematics learning was 

a myth or a reality. In the final section of the manuscript, Fennema posed seven questions; these 

became the springboard for her subsequent research and inspired other researchers in the field. 

Not taking anything away from Fennema’s (1974) review or her subsequent ground-

breaking research in the field, it would appear that there is quite a large body of research prior 

to 1960 in which gender differences (then termed “sex differences”) in mathematics learning 

were reported. Leder’s (1992) review of the literature in the two decades prior makes mention 

of some of work published before 1960, “Then, as now, gender differences in mathematics 

learning were attributable glibly by some… to differences in innate abilities whereas others… 

to differences in … interests and perceptions of future usefulness of the subject” (p. 598). 

The narrative in the field of gender and mathematics research typically involves a ‘start’ 

date of the 1970s (despite Leder’s (1992) references to four studies from before 1960), usually 

with reference to the Fennema (1974) review or to her subsequent research with Julia Sherman 

(e.g., Fennema & Sherman, 1977). When searching for articles to add to the IOWME 

publications page (Hall, 2024), Jennifer stumbled upon an article (Lambert, 1960) about 

mathematics ability and masculinity. Following back from the references in that article, we 

continued to find earlier research about gender and mathematics, dating back more than a 

century ago. As experienced researchers in the field, we were surprised to find so many 

historical articles of which we had not been aware. 

In this session, we will explore the lessons that we learnt from our serendipitous finding of 

the trove of research on gender and mathematics learning outcomes prior to 1960. In fact, the 

research stretched back as far as the late 19th century. In light of our experience, we will also 

highlight the challenges that researchers face in their own fields of expertise in mathematics 

education, as well as suggesting ways to overcome these challenges. 
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There are substantial and ongoing concerns in the international secondary and tertiary 

education sectors about the number of students choosing Advanced Mathematics in secondary 

school. Declining enrolments in the last two years of secondary school Intermediate and 

Advanced Mathematics is seen as a major concern for the future of STEM education: 

Falling participation in higher maths and physics, especially, is a worry to me…We need to 

understand why this is happening, and work to turn it around so that Australia remains a science and 

research powerhouse (Office of the Chief Scientist, 2023). 

Student uptake of fundamental subjects in secondary school such as higher mathematics, 

intermediate mathematics and science subjects has declined nationally over recent decades (Office 

of the Chief Scientist, 2020). 

This (Advanced Maths numbers) is the lowest level recorded in more than twenty years (Australian 

Mathematical Sciences Institute, 2019). 

Nationally, the number of students studying Intermediate and Advanced Mathematics as a 

percentage of the number of students completing Year 12 of secondary school has declined over 

the past 25 years. However, the patterns across states and territories vary greatly. Following on 

from the Maths? Why Not? project (McPhan et al., 2008), Jennings (2022, 2023) investigated 

enrolment trends in Queensland, New South Wales, and Victoria, and also reasons why 

Queensland students choose to / not to study Advanced Mathematics in the last two years of 

secondary school. 

In this round table, I invite people to discuss strategies for turning around the number of 

students enrolling in Intermediate and Advanced Mathematics in the last two years of secondary 

school. 
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Traditional mathematics teaching practices built around standardisation do not result in 

socially just and equitable outcomes when working with diverse student populations (O’Keeffe 

& Paige, 2021). Pre-service teachers (PSTs) tend to enter their initial teacher education program 

having experienced traditional mathematics teaching, and these experiences form the basis for 

their beliefs and views of mathematics teaching and learning (Ma & Singer-Gabella, 2011). 

Teacher educators must consider the ways that their practice and positionalities shape the 

experiences and perspectives of the PSTs with whom they engage. Past experiences and beliefs 

systems impact the practice of teacher educators (Kalinec-Craig et al., 2019). Leibowitz and 

Bozalek (2016) indicate that both teacher educators and PSTs need to undergo a process of 

learning and unlearning and of challenging their practices and assumptions to open up the 

possibilities for transformation of their practice. Therefore, in the field of primary mathematics 

education, it is important that both preservice teachers and teacher educators engage in self-

study of their beliefs and teaching practices. 

This project aims to explore the process of deconstruction and imagining possibilities for 

social justice in mathematics teaching practice undertaken by a group containing primary PSTs 

and a mathematics teacher educator. Hitherto, a pilot study has been undertaken through 

encounters between the researcher and two primary PSTs, with a focus on interaction and 

dialogue to support reflection, along with the researcher using a reflective journal. 

In the session, I aim to share impressions and experiences from the study thus far and open 

discussion to explore teacher educator experiences of self-study and supporting PSTs to 

deconstruct and imagine possibilities for social justice in mathematics teaching. In particular, 

I am seeking guidance from experienced teacher educators to shape the ongoing development 

of the project. 
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Mathematics requires teachers to make decisions daily and often spontaneously about 

meaningful connections between concepts and instructional activities. Various curricula have 

attempted to simplify this process, while recognising that teaching is complex and nuanced. 

Curricula have centred around ‘Big Ideas and Understandings’ (Randall, 2005), ‘Powerful 

Ideas’ (Schwartz, 2008), and ‘Key Developmental Understandings’ (Simon, 2006), ‘Big Ideas 

in Number’ (Siemon, 2012), all endeavour to provide a framework for teachers to facilitate 

students in accommodating and assimilating new ideas. 

This current study uses the Threshold Concept Framework (Meyer, 2003) to identify 

concepts that are transformative for learners to become mathematical thinkers. These concepts 

are not necessarily the same as ‘core,’ ‘fundamental’, or ‘central,’ rather they irreversibly alter 

the way the learner thinks about the subject knowledge. Very often, these concepts are 

troublesome to learn as they may be counterintuitive, are understood in a particular way, and 

they connect other concepts across the discipline. This project aims to explore how primary 

teachers recognise and use these concepts in their everyday classroom teaching. 

A literature search revealed minimal evidence of Threshold Concepts having been identified 

in primary mathematics; therefore, the initial stages of this study used a Delphi survey to 

identify Candidate Threshold Concepts. A content analysis of the Australian curriculum 

determined where and how often these concepts occurred. The remaining questions are: 

• To what extent do teachers recognise these Threshold Concepts in the curriculum? 

• To what extent is the teachers’ knowledge of these Threshold Concepts reflected in 

their pedagogy? 

The purpose of the roundtable is to share the Candidate Threshold Concepts and to discuss 

how these concepts, e.g. partitioning, might be used as threads to pull together a wide and 

encompassing curriculum in an effective and manageable manner for a generalist primary 

teacher. 
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The current teacher shortage facing Australia and many other countries is leading to 

desperate measures to get teachers in front of classes. A common solution has been to assign 

teachers to teach subjects or levels of schooling for which they are not qualified—that is, to 

teach out-of-field (OOF) (Hobbs, 2013). Recent data suggests that potentially 40% of 

Mathematics teachers are teaching OOF. OOF teaching has been linked to low academic 

performance of students (Van Overschelde, 2022), teacher attrition (Sharplin, 2014), and poor 

teacher confidence and sense of belonging (Du Plessis, Carroll & Gillies, 2015). Existing 

upskilling programs, like graduate certificates and micro-credentials, may have limited impact 

on the phenomenon due to cultural norms that do not recognise or value teacher specialisation 

(Hobbs et al., 2022). 

In this round table, we wish to share insights gained as we work to map the educational 

ecosystem that creates and supports the OOF phenomena, inviting the audience to contribute to 

mapping this complex ecosystem. Participants will be asked to share their insights about the 

out-of-field teaching phenomenon, knowledge of local responses and their opinions as to what 

might influence teachers to seek professional learning. 
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Currently we find ourselves in turbulent waters within the context of mathematics 

education research and in debates about current policy, curriculum, and practice reform. 

The debate that pits ‘traditional’ approaches to teaching mathematics against ‘reform-

oriented’ approaches has recently been making waves, yet these debates are certainly 

not new. We seek to advance our understanding of effective pedagogies to help 

researchers, policy-makers, and practitioners navigate these waters. 

In Australia, the national mathematics curriculum for years F–10 aims to support students 

to “become confident, proficient and effective users and communicators of mathematics, who 

can investigate, represent and interpret situations in their personal and work lives, think 

critically, and make choices as active, engaged, numerate citizens” (Australian Curriculum, 

Assessment and Reporting Authority [ACARA], 2022). However, defining the kinds of 

knowledge and skills students need to achieve this goal and the pedagogical approaches that 

most effectively support their development remain contentious. Important work has begun 

advancing the debate through clarifying the positions of the two ‘sides’ of instruction. For 

example, Munter et al. (2015) adopted adversarial collaboration in which experts who held 

opposing views clarified their arguments about the importance and role of talk and collaboration 

and the nature of mathematical instructional tasks and representations. Yet we see potential to 

bridge the divide between these approaches rather than conceptualising them as dichotomous. 

To this end, there is a need to “contemplate instructional methods within the broader context of 

instructional goals. It is only in this context that it can be meaningful to do so” (Kuhn, 2007, 

p. 112). The MERGA Special Working Group for Effective Pedagogies in Mathematics invites 

you to this round table discussion where we will ask: 

• Where are you seeing the tensions about pedagogies of mathematics in your context? 

For example, do concepts and procedures need to be taught before introducing problem 

solving tasks? What is the purpose and role of student autonomy? 

• What do you see as the purpose(s) of mathematics education and what are the 

implications for pedagogy (and stakeholders)? 

• Where are the research gaps and how do we see our work (currently or potentially) 

contributing to this field? 
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School mathematics continues to suffer from an identity crisis. It is too often portrayed as a 

collection of facts and calculation skills to be acquired, often by mimicking the procedures 

demonstrated by the teacher and textbooks, and where correctness and speed matter (Boaler, 

2016). This is substantially different form the discipline of mathematics, where specific ways 

of doing, communicating, and looking at the world brand one as being mathematical, and where 

criteria of judging success foreground beauty and intricacy of one’s ideas. In some ways, one 

could say, school mathematics remains un-mathematical. The difference remains despite the 

focused advances in mathematics education research and curriculum shifts which advocate for 

a better alignment of the school and the disciplinary mathematics (e.g., ACARA, NCTM). 

Attempts to foreground mathematical competencies and proficiencies at times provide little 

more than additional processes to be itemised, committed to one’s memory, and assessed (e.g., 

direct teaching of problem solving). Under these circumstances we wonder whether perhaps a 

different language, or an additional theory grounding, could guide our work of supporting the 

teaching of mathematics in classrooms, especially if school mathematics that is capable of 

turning students towards mathematics, rather than away from it, is the goal.    

In this round table, we follow work of Gert Biesta and return to some of the core questions, 

including What is education for (Biesta, 2020, 2022). We contemplate the potential of Biesta’s 

theorising in addressing the problems in mathematics education outlined above. Biesta posits 

that besides the educational purpose of qualification, which is well attended to in schooling 

today, there are two additional domains of educational purpose. The purposes of socialisation 

(e.g., into practices of doing mathematics) align well with Freudenthal’s (1971) pointing out 

the importance of treating mathematics as a human activity when we bring it to classrooms. 

Finally, the purposes of subjectification are those of awaking/provoking in children the 

wish/aspiration to be a ‘subject’ in their own life (and, in a mathematics classroom, to be a 

subject in their mathematics activities) rather than being an ‘object’ responding to the requests 

and desires of others. Biesta associates being a subject (of one’s life) with both one’s freedom 

and one’s responsibility to make choices. He also points out how being an object brings one a 

comfort and security of not having to make them. It is in these terms that we would like to look 

into a mathematics classroom, and into the work of mathematics education researchers who aim 

to support school mathematics. We invite participants to consider: How do Biesta’s ideas fit 

with your current view of mathematics education? Do Biesta’s views of purposes of education 

provide an alternative path to advocating for why and how school mathematics should become 

more mathematical? What does this mean for initial teacher education?  
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There is little doubt that writing with the intention of publishing is one of the core practices 

in our field. As a result, concerted attention is devoted to supporting HDR students’ and early 

career researchers’ writing, as well as to establishing peer-based writing support structures. In 

this round table, we explore another avenue for improving the expression of mathematics 

education research ideas through writing: learning by participating in the review process. 

Regularly reading others’ manuscripts to highlight the strengths and to suggest ways to 

address weaknesses provides a fresh perspective on one’s own writing. But what is required to 

become a reviewer? How do we learn to review? And what does a good review look like? We 

will examine the review processes for the annual MERGA conference and the Mathematics 

Education Research Journal (MERJ), a high-ranked journal in our field. Emphasising that the 

aim of reviewers is to help authors get their work published, the written reviews have two main 

purposes: (1) Providing the editor with justification for the review decision; and (2) Presenting 

the author with constructive feedback and support for producing a stronger manuscript (Messa 

et al., 2021). 

Our discussion will focus both on the issues that good reviews should address and how the 

reviewers may need to go about addressing these issues. 

Through examples of review comments, we will consider their accuracy and usefulness, 

focusing on review principles of constructiveness, sensitivity and humility. We will discuss 

reviewing texts written in English by authors for whom English is a non-dominant language 

(Geiger et al., 2022) and reviewing manuscripts written from a theoretical position different 

from that of the reviewer. We will share different MERGA-related review opportunities and 

encourage participants to engage in these. Participants will be invited to share their questions, 

experiences, and suggestions related to reviewing with the aim of building the strength of our 

community. 

While the awareness gained through reviewing is said to benefit one’s writing, it is also true 

that the more one writes, the better one can review. This round table will thus round off with 

the reassurance that to write better—and to review better—we all need to keep writing. 
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This Round Table is in fact the inaugural meeting of Early Childhood Mathematics 

Education Special Working Group (ECME-SWG), sanctioned by the MERGA 

executive. The purpose of the SWG is to provide opportunity and structure for the 

collaboration of interested MERGA members to identify and articulate issues in early 

childhood mathematics education and take research-based action towards resolving the 

issues. All interested conference attendees are welcome. 

The Issue: The proposed first issue for investigation is the current lack of understanding of 

the backgrounds and professional needs of our colleagues lecturing and researching in the field 

of early childhood mathematics. While there is substantial research activity around the 

characteristics of Early Childhood (EC) educators working directly with young children, there 

is a profound lack of research about tertiary level mathematics educators teaching future EC 

pre-service teachers, as a scan of the previous issue of Research in Mathematics Education in 

Australasia (Way et. al., 2020) will attest. The positive influence that EC educators with tertiary 

qualifications have on the mathematical development of toddlers and pre-schoolers has been 

established (e.g., MacDonald et. al, 2023), but little is known about those who teach pre-service 

courses leading to such qualifications. Anecdotal evidence suggests that many EC Mathematics 

lecturers are either primary mathematics specialists without strong EC teaching experience, or 

EC specialists without strong mathematics backgrounds. The actual ‘EC Mathematics 

specialists’ seems to be a rare phenomenon. 

The Proposal 

The ECME-SWG will conduct a study to build a profile of EC Mathematics university 

lecturers and produce a report, with recommendations, for the MERGA Executive, and 

potentially produce a publication. Participants attending the Round Table will launch a data-

gathering exercise by: 

• Completing an informal mini-survey and considering the data collected; 

• Sharing perspectives on the proposed issue for investigation and discussing the design 

of a more comprehensive survey; 

• Discussing how to conduct the study and who will be active investigators. 

The outcome of the ECME-SWG (aka Round Table) will be an action plan for the study. 
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Numerous studies in teacher education programmes have revealed that pre-service teachers 

do not have sufficient knowledge to teach primary school mathematics (Taylor, 2021). For 

example, pre-service teachers enter their mathematics education courses with knowledge of 

how to implement the standard written algorithm with little conceptual place value knowledge 

(Fasteen, et al., 2015). Place value helps learners understand the position and value of the 

number (Kortenkamp & Ladel, 2014). Considering the difficulties of PV for learners, visual 

representations should assist in developing their understanding of PV (Ainsworth, 2006).  

VRs assist learners in understanding and interpreting concepts, and they transmit 

information in an aesthetically pleasing way (Arcavi, 2003). When selecting textbooks, it is 

important to pay attention to the quality of the learning opportunities in the text and whether 

the teaching and learning activities are based on the prescribed curriculum. Much research has 

been done on the content of texts, however, there is little research that focuses on analysing the 

appropriateness of the visual representations in texts (Mathews et al., 2014). This research aims 

to assist pre-service teachers in choosing suitable visual representations when teaching place 

value using a visual representation framework. The above has led to the following research 

question: How might (or not) a Visual Representation Framework assist pre-service teachers 

in analysing and selecting visual representations from texts for teaching place value? 

This research explores how a visual representation framework can assist pre-service 

teachers in analysing textbook visuals. The data collection includes document analysis, 

observations, task analysis, reflections, and interviews. The research consists of three phases: 

Phase 1 focuses on developing a Visual Representation Framework for analysing PV visual 

representations. Phases 2 and 3 focus on the use of the VRF to assist pre-service teachers’ in 

analysing and selecting visual representations for teaching PV. The Artifact-Centric Activity 

Theory (ACAT) will be used to analyse the data (Larkin et al., 2019). 
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In Singapore, the model-method is adopted as a problem-solving approach by primary 

mathematics teachers with the intention to help pupils visualise word problems correctly. It is 

the use of rectangles and numbers to encapsulate both the quantitative and relational 

information in a mathematical problem (Kho, Yeo & Lim, 2009). Model drawing provides a 

form of scaffold in the development of proportional reasoning (Ng & Lee, 2005). However, one 

of the challenges faced by pupils would be the intricacy of obtaining a diagram that reflects the 

mathematical intention of the question. For a model to satisfy this condition, it must have 

sufficient relational accuracy for one to determine the operations required. Furthermore, the 

model must be drawn such that any relationship between the units and any known parts may be 

deduced. Meeting these conditions indicate that the word problem is being understood. 

Successful problem-solving activities using models require: (a) the ability to translate the word 

problem into models; (b) the ability to use the correct operations from the model; and (c) to put 

these together. Lower progress pupils tended to have difficulty in identifying the correct 

operations (Poh, 2007).  

The Newman Error Analysis Guidelines (NEAG, 1977a) offers a structured approach in 

examining how a pupil might think when facing a word problem. It comprises five hierarchical 

stages, namely reading recognition, general and specific comprehension, transformation, 

process skills and encoding. In order to examine the difficulties encountered when solving a 

one-step fraction word problem using the model method, grade 5 low attaining pupils in 

mathematics were interviewed on their thought processes behind their models drawn and the 

mathematical equations written using the NEAG.   

The findings were similar to earlier research conducted with students of different age groups 

and nationalities (Prakitipong & Nakamura, 2006) with most of the errors being committed at 

the comprehension and transformation stages. Therefore, it is important for mathematics 

teachers to be mindful of how they can better scaffold students’ learning at these stages so that 

pupils would be able to solve these mathematical tasks accurately. 
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Mathematics is sometimes referred to as a ‘universal language’, implying anybody with 

mathematical understanding can solve mathematical problems regardless of the language they 

speak (Adoniou, 2014). Teachers are required to be adaptive experts in the teaching of 

mathematics as they cater for the differing needs of learners in their class. In addition to this, 

they need to also consider the diversity of learners, in particular students whose first language 

is a language other than Standard Australian English (EAL/D learners). 

Teachers play a critical role in supporting EAL/D Learners and their acquisition and use of 

mathematical language. Each teacher is responsible to know each learner, including their phase 

of English language acquisition, to give them the opportunity to learn, understand and develop 

the disposition to use mathematics. The challenge for EAL/D students is that they need to 

concurrently learn English, learn through (or in) English and learn about English (Australian 

Curriculum, Assessment and Reporting Authority [ACARA], 2015). These students require 

support to engage in the mathematical ideas and to communicate their thinking using 

mathematical language. Moschkovich (1999) found that rather than focussing on the acquisition 

of technical language in isolation it was more beneficial for EAL/D students to participate in 

both verbal and written practices, such as explaining solution processes, describing conjectures, 

proving conclusions, and presenting arguments (Moschkovich, 1999). 

When supporting a school in the Catholic Schools Parramatta Diocese with 76% of students 

identified as EAL/D, the focus of the work was intentional planning to scaffold language for 

students in mathematics to improve reasoning and communication processes of Working 

Mathematically. The teachers engaged in collaborative planning facilitated by the numeracy 

leaders. The focus was on anticipating possible strategies, students’ misconceptions that may 

arise and carefully consider the mathematics they want students to know, and the language 

students may need. They planned specific teaching strategies to scaffold mathematical language 

and engage students in more purposeful classroom talk. Teachers are now more intentional in 

their planning and have seen an improvement in the level of purposeful talk about mathematics. 

There is little research on which specific language features impact greatest on EAL/D 

students’ performance in mathematics. This opens the opportunity for future research 

concerning this and the support these students require to access challenging tasks and 

progressing mathematical reasoning and communication in mathematics. 
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Despite an understanding that mathematics is critical for students’ future academic and 

career options, as well as the perception that mathematics can be a ‘difficult’ subject for some 

students, out-of-field mathematics teaching remains most prevalent in regional and remote 

schools in Australia. Out-of-field mathematics teaching has been implicated with poorer student 

outcomes, including student disengagement and lower levels of participation and achievement 

(Weldon, 2016; Vale et al., 2021). Research also reveals that transition from year 6 to 7 poses 

a big challenge for both teachers and students. This transition challenge is further exacerbated 

in classrooms with out-of-field mathematics teaching (Sniedze-Gregory, 2021). 

If out-of-field mathematics teaching is prevalent and inevitable in regional and remote 

schools, then teachers need effective support to succeed, so that their students can succeed too. 

There is a need to reimagine the type of support that out-of-field teachers need to succeed. This 

pilot project investigated the support strategies that are required for out-of-field mathematics 

teaching in middle years of schooling. The study incorporated an ethnography research 

approach to capture both in-field and out-of-field mathematics teachers’ perceptions of the type 

of support required for out-of-field mathematics teaching in middle years of schooling (from 

year 7 to 9) in Far North Queensland during two professional learning workshops. 

In this presentation, we share three preliminary findings from the pilot. Firstly, both in-field 

and out-of-field teachers articulated that with a well-designed and coordinated inhouse 

program, it can take approximately two years for out-of-field teachers to upskill on-the-job and 

become in-field mathematics teachers. Secondly, the inhouse program should aim to develop 

the out-of-field teachers’ confidence, knowledge, and skills gap with teaching multiplicative, 

proportional, algebraic, and functional reasoning strategies from year 5 to 9. Thirdly, that Head 

of Departments do not have adequate time and resources to mentor and address these issues. 

There is need for a coordinated approach across schools in the district. These findings will 

inform the next phase of the project. 

References 

Sniedze-Gregory, S., Felgate, R., O’Grady, E., Buckley, S., & Lietz, P. (2021). What Australian students say 

about transition to secondary school [Final report]. Australian Council for Educational Research. 

https://doi.org/10.37517/978-1-74286-644-4 

 Vale, C., Campbell, C., & White, P. (2021). Beliefs and practices of secondary teachers crossing subject 

boundaries to teach mathematics out-of-field. Mathematics Education Research Journal, 33, 589–612. 

https://doi.org/10.1007/s13394-020-00323-0 

Weldon, P. R. (2016). Out-of-field teaching in Australian secondary schools. (Policy Insights; n.6). 

Melbourne: Australian Council for Educational Research (ACER). 

https://research.acer.edu.au/policyinsights/6/ 

mailto:philemon.chigeza@jcu.edu.au
mailto:subhashni.taylor@jcu.edu.au
https://doi.org/10.37517/978-1-74286-644-4
https://doi.org/10.1007/s13394-020-00323-0
https://research.acer.edu.au/policyinsights/6/


SHORT COMMUNICATIONS 

(2024). In J. Višňovská, E. Ross, & S. Getenet (Eds.), Surfing the waves of mathematics education. 

Proceedings of the 46th annual conference of the Mathematics Education Research Group of Australasia 

(pp. 577). Gold Coast: MERGA. 

577 

Revisiting Pedagogical Design Capacity: Mathematics Teachers’ 

Agency in Designing Instructional Materials 

Sze Looi Chin 

Massey University 
slchin@massey.ac.nz 

Ban Heng Choy 

National Institute of Education, 

Nanyang Technological University 
banheng.choy@nie.edu.sg 

Yew Hoong Leong 

National Institute of Education, Nanyang Technological University 
yewhoong.leong@nie.edu.sg 

Sze Looi Chin, Ban Heng Choy, & Yew Hoong Leong 

Knowing how to appropriate curricular resources (e.g., textbooks, workbooks) for teaching 

is an important skill for teachers to develop. To describe teachers’ ability to do so, Brown (2009) 

introduced the notion of teachers’ pedagogical design capacity (PDC), their capacity to 

“perceive and mobilise existing resources in order to craft instructional contexts” (p. 24). While 

PDC has been predominantly used to explore teachers’ decision-making during instruction, 

emergent research on teachers’ PDC during lesson planning suggests teacher agency (Cong-

Lem, 2021) is an important factor of if, when, and to what extent teachers choose to appropriate 

curricular resources (Amador, 2016; Chin et al., 2023). This is demonstrated by secondary 

mathematics teachers in Singapore, where beyond adapting from curricular resources these 

teachers commonly design their own instructional materials (IMs) (Leong et al., 2022). 

In this context, these teachers explicitly demonstrate a high level of teacher agency. Instead 

of adopting or starting with the agenda of the curricular resources, these teachers often bring 

with them their own agendas and actively draw on their PDC across lesson planning and 

instruction, and across different grain sizes (Chin et al., 2023). In this short communication, we 

revisit the notion of PDC in the context of lesson planning through the design of IMs and discuss 

preliminary findings on the different ways teacher agency is demonstrated through non-trivial 

design decisions. We invite feedback from participants on how teacher agency and PDC are 

developed through teacher education and professional development programs in their 

respective institutions. 

Acknowledgements 

The data reported is part of a larger study funded by the Singapore Ministry of Education 

under the research project OER/31/19BK which is managed by the National Institute of 

Education, Singapore. 

References 

Amador, J. M. (2016). Mathematics pedagogical design capacity from planning through teaching. 

Mathematics Teacher Education and Development, 18(1), 70–86. 

Brown, M. W. (2009). The teacher-tool relationship: Theorizing the design and use of curriculum materials. 

In J. T. Remillard, B. A. Herbel-Eisenmann, & G. M. Lloyd (Eds.), Mathematics teachers at work: 

Connecting curriculum materials and classroom instruction (pp. 17–36). Routledge. 

Chin, S. L. (2023). Design principles for raising students’ awareness of implicit features of ratio: Creating 

opportunities to make and catch mistakes. In B. Reid-O’Connor, E. Prieto-Rodriguez, K. Holmes, & 

A. Hughes (Eds.), Weaving mathematics education from all perspectives. Proceedings of the 45th annual 

conference of the Mathematics Education Research Group of Australasia (pp. 163–170). MERGA. 

Cong-Lem, N. (2021). Teacher agency: A systematic review of international literature. Issues in Educational 

Research, 31(3), 718–738. https://www.iier.org.au/iier31/cong-lem.pdf 

Leong, Y. H., Yeo, B. W. J., & Choy, B. H. (2022). Instructional materials as a site to study teachers’ planning 

and learning. Mathematics Education Research Journal, 34, 575–598. https://doi.org/10.1007/s13394-

022-00430-0 

mailto:slchin@massey.ac.nz
mailto:banheng.choy@nie.edu.sg
mailto:yewhoong.leong@nie.edu.sg
https://www.iier.org.au/iier31/cong-lem.pdf
https://doi.org/10.1007/s13394-022-00430-0
https://doi.org/10.1007/s13394-022-00430-0


SHORT COMMUNICATIONS 

(2024). In J. Višňovská, E. Ross, & S. Getenet (Eds.), Surfing the waves of mathematics education. 

Proceedings of the 46th annual conference of the Mathematics Education Research Group of Australasia 

(pp. 578). Gold Coast: MERGA. 

578 

Investigating High School Students Understanding of 

Decomposition Techniques in Mathematics 

Michael Dennis 

Catholic Schools Parramatta Diocese 
mdennis2@parra.catholic.edu.au 

Michael Dennis 

In completing arithmetic and algebraic problems during mathematics lessons, students 

are required to proficiently manipulate numbers and expression. Decomposition of 

numbers and algebraic terms is an important skill as part of this manipulation. This study 

shows that while High school students can complete mathematics problems in 

arithmetic and algebra, there is little conceptual understanding of the mathematical laws 

and properties that involve decomposition, which hinders deeper thinking about 

mathematics.  

The need for students to decompose numbers and algebra is a skill that is seen in many areas 

of mathematical computation.  

In a literature review for this investigation, three themes became evident; students number 

sense is impacted by the lack of understanding of the associative, distributive and commutative 

laws, the teacher has a large influence on student choice of strategies when solving 

mathematical problems and there are implications for student arithmetic thinking on algebraic 

thinking. This review revealed that there had been some research in this area in primary schools 

but there has been minimal research in high school settings. 

As part of this study students from two high schools (n=37) completed a written 

computational task named Computational and Algebraic Fluency Task (CAFT). Some students 

were also selected to participate in follow-up interviews. The written task was based on the 

Mental Computational Fluency Measure – Addition and Multiplication as developed by 

Downton, Russo and Hopkins (2019, 2020).  

The results from the data indicate that the themes from the literature review were evident in 

work from high school students. Many students could recognise the mathematics in the CAFT 

but could not explain their reasoning. This demonstrates that many students even in high school 

are using rules without reasons in mathematics. The impact of the teacher on the student 

understanding of these decomposition techniques was evident in some of the responses, but also 

evident in that no student in the CAFT or the interviews specifically used the terms associative, 

distributive, or commutative. The impact of arithmetic concepts on algebraic items in the CAFT 

also demonstrated that students were not generalising arithmetic concepts with algebraic 

applications. 

This study shows that while students struggle with formalising many arithmetic and 

algebraic concepts, there is the indication the teacher can influence student deep understanding 

and high school teachers, like primary colleagues, may need more training/inservicing in 

relation to explicitly teaching strategies related to arithmetic. 
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Student engagement plays a significant role in their achievement in mathematics (Martin et 

al., 2012). However, little is known about the learning preferences of students of different 

engagement and achievement levels. Although Skilling, Bobis, & Martin (2021) explored the 

engagement of 37 grades 6–7 students with high and low achievement levels using semi-

structured interviews and questionnaire data, they did not adopt an intervention design nor 

obtain qualitative information specific to the students’ perceptions of different lesson structures 

that incorporate challenging tasks. Extending the existing body of knowledge, the focus of this 

study is on how students of different engagement and achievement levels respond to different 

lesson structures (Task-first and Teach-first) involving challenging tasks. Adopting a 

qualitative, exploratory design with multiple data sources, students (n = 18) from two 

composite Year 3 and 4 classes (aged 8–10 years) completed surveys and participated in 5 

individual semi-structured interviews following a series of lessons over a 4-week period as part 

of this intervention study. Thematic analysis indicated similar enjoyment response patterns to 

the different lesson structures and the challenging tasks regardless of differences in student 

enjoyment and achievement levels. However, closer inspection of the reasons as to why 

students preferred a lesson structure over another provide insights into the learning preferences 

of students with different engagement and achievement profiles. The results have implications 

for teachers to help engage students of diverse engagement and achievement backgrounds 

during mathematics lessons. Theoretically, findings from this study will extend existing 

theories of learning and of instruction by deepening our understanding of how students 

effectively learn challenging mathematics. 
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This communication explores the parental learning outcomes of an early numeracy focused 

intervention with parents, caregivers and learners from disadvantaged communities in South 

Africa. The Family Maths Storytime Project (FMSP) aimed to build the early literacy in 

numeracy skills of young children up to 8 years of age. The learners have limited resources in 

the home, so a comprehensive range of materials were developed (i.e., number story books and 

linked resources). The storylines and pictures in the books were designed to serve as a stimulus 

for: counting, subitising, counting on, skip counting, number facts, recognising and predicting 

patterns, number word recognition and numeral recognition.  

Three workshops were conducted with parents and caregivers of Grade R (reception year 

pre-Grade 1) learners from two different schools in Makhanda in the Eastern Cape in South 

Africa. Almost all learners spoke isiXhosa or Afrikaans in their homes while the language of 

instruction in school was English. Resources were provided in English and in the language 

spoken at home. The workshops aimed to scaffold parent and caregiver learning on how to 

support their children’s early numeracy learning. The first author demonstrated dialogic reading 

(Doyle & Bramwell, 2006) of number stories with learners, engaging them in retelling the 

stories and playing mathematical games with cards, dice and finger puppets of the story 

characters. 

Data was gathered in the form of end of programme interviews with 20 parents and 

caregivers. Interviews were transcribed and all utterances were coded using Nvivo. Most of the 

interview data focused on children’s learning in terms of new practices and dispositions in the 

homes and new learner numeracy and literacy knowledge. However, when answering questions 

about their children’s learning and use of the FMSP resources, parents provided a range of 

comments relating to reflections on their own changing practices and dispositions in the home. 

In addition, the interview question: “What do you think you have learned by participating in 

this project, in terms of helping your child with reading or with numbers?” prompted rich data 

that exceeded our expectations. Thus, within our coding we had a category of responses of 

parent self-reflections which included utterances (n) about: engaging children in new ways and 

practices (n = 34); learning about numeracy and literacy learning (n = 55) and stated benefits 

of participating in the FMSP (n=16) (Graven and Jorgensen, 2023).  

In this communication we share the findings from our analysis of the carer self-reflection 

data with the aim of understanding how the FMSP may have built parental capital in supporting 

early numeracy and literacy learning. We draw on the work of Bourdieu (1977) to theorise the 

parental capital building enterprise that was an unexpected outcome of the study.  
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Student engagement is a multi-faceted construct and can be characterised as active 

involvement in learning, which includes the mental (cognitive), physical (operative) and 

emotional (affective) aspects of learning (Munns & Martin, 2005). There is evidence to suggest 

that students begin to disengage with mathematics as they move through secondary school 

(Collie et al., 2019). A negative educational experience in secondary school mathematics can 

be a burden throughout life and has the potential to negatively influence the uptake of the 

subject in the later years of schooling as well as impact on the post-school career choices 

students make (Gemici et al., 2014; Bourgeois & Boberg, 2016). 

This presentation will focus on a section of qualitative data drawn from a larger study that 

investigated the key factors influencing students’ mathematics engagement and participation in 

NSW secondary government schools. This session will draw on the opinions of 183 students 

across 41 focus groups in 21 secondary government schools in NSW who were asked ‘What 

would make mathematics more interesting? 

Findings suggest that students are looking for more opportunities to engage with 

mathematics in interactive ways including learning mathematics outside of the classroom. They 

would like more time spent working in groups and for their teachers to make mathematics 

relevant to their lives. Students also reported that they would like more time to learn 

mathematics as well as teachers who cater for their preferred ways of learning, and who would 

help them to connect more with the subject. 

These findings have implications for teachers and schools in relation to how they go about 

planning for the teaching and learning of mathematics with the aim of increasing student 

interest, engagement and participation in the subject. 
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The complex nature of onsite teacher professional learning has been well documented (e.g., 

Goldsmith et al., 2014). Fundamental to recent perspectives is the idea of schools as learning 

communities (Clarke & Hollingsworth, 2002). Studies draw attention to the critical role external 

experts or researchers play within professional learning communities, in particular how they 

interact with teachers to afford opportunities for learning (Arzarello et al., 2014; Timperley et 

al., 2007). 

Developing a model to theorise the complexity of learning processes presents challenges. 

Various studies have adopted the Interconnected Model of Professional Growth (IMPG) 

developed by Clarke and Hollingsworth (2002) to guide research in mathematics. While analysis 

of change sequences is recognised as a strength of the model, some studies have suggested 

modifications to support analysis of their data (e.g., Lomas, 2018). Others suggest drawing upon 

more than one model to analyse onsite learning processes (e.g., Wilkie, 2017). 

In this short communication, I draw upon one aspect of the third cycle of a designed-based 

research study with Year 3 teachers in which the IMPG was used to analyse change pathways 

for individual teachers in a collaborative project. Retrospective analysis of the data indicated 

influences on learning within two of the domains of the IMPG, which could not be explained by 

mediating processes of reflection and enactment within the model. Building on the work of 

Wilkie (2017), I will illustrate how a second complementary model, the Meta-Didactical 

Transposition model (MDT) developed by Arzarello et al. (2014), provided a lens to analyse 

changes in teacher knowledge, practice and dispositions during professional learning. The 

findings highlight the interplay between key variables, namely the researcher, teachers, and the 

institutional dimensions as critical to the development of teacher practice. The study contributes 

to empirical research on professional learning and suggests a theoretical framing that combines 

two models may be necessary to capture the complexity of teacher learning. 
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An important aspect of mathematics instruction in schools is its focus on presenting 

mathematics as sense-making and problem-solving rather than as a collection of facts, rules, 

and procedures (Schoenfeld, 1992). Despite the importance of developing mathematical 

problem-solving pedagogies and infusing them into lessons, many teachers struggle with the 

notion of teaching mathematics through problem-solving (Kaur et al., 2019). Given its nature, 

teachers often have to find a balance between scaffolding and challenging low-progress students 

such that their learning is maximised. Recognising the benefits of problem-solving, the key 

question that I will be focusing on in this study is: How might we then infuse mathematical 

problem-solving in classes so that low-progress school students can think creatively and 

independently while shifting away from a teacher-directed approach? A baseline study, which 

is part of a larger project, was conducted at a local primary school to examine the complexities 

of teaching problem-solving to low-progress students. A three-camera approach (Kaur et al., 

2019) was used to capture the teacher’s view, the students’ view, and the whole class’ view of 

the lesson. Data collected hence included video recordings, as well as a post-lesson interview 

with the teacher. I will examine the lesson in-depth and analyse the critical incidents observed 

during the lesson. An analysis of the critical incidents provides a detailed account of the 

significant incidents that take place in the lesson (Randall, 2002). Reflecting on these events is 

beneficial in enhancing teaching practices that strengthen students’ mathematical thinking 

(Choy, 2014). In this presentation, I will share about these critical incidents observed while 

relating them to the theoretical underpinnings of mathematical problem-solving in extant 

literature. I will then invite feedback from participants and suggest how the lesson may be 

modified differently such that it can maximise the affordances of a mathematical problem-

solving lesson for low-progress primary students. This study will support the development of a 

novel pedagogical model for teaching through problem-solving for low-progress students in 

future research. 
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In geometry, the concept of angle is complex and multi-faceted. One way of understanding 

this complexity was provided by Mitchelmore & White (1998) when they argued that three 

different classes of angle definition are present in schools at years three to eight. These are: the 

dynamic concept of turning about a point between two lines; and the static concepts of a pair 

of rays with a common endpoint and a region formed by two intersecting half-planes. These 

definitions are referred to as turn, geometric and region concepts for angle. 

Vinner’s (1991) theory of concept image and concept definition provides a framework for 

understanding angle complexity. He argues that students learn geometry primarily through the 

formation of concept image that comprises mental pictures and their associated properties and 

processes, as well as word and symbol strings that students associate with a concept. Formally 

structured mathematics is deductive, being based on theorems and axioms. Although concept 

image is central to geometry learning, it is not sufficient. The mathematics teachers’ role is to 

ensure that student concept image interacts with concept definitions so that difficulties and 

misconceptions can be overcome as students learn. 

Mitchelmore & White (1998) argue that no single definition can completely define angle. 

To understand angle students need to operate the different concepts for it simultaneously. This 

understanding needs to be acquired through experiencing many different angle contexts and 

abstracting what is common between them. Eventually students develop a concept image for 

angle which Mitchelmore and White (1998) refer to as the standard angle concept of “two lines 

meeting at a point with some relation between them (p. 5).” This concept image can be used in 

all angle situations as a mental model to identify and measure angle magnitude. 

Research has shown that teachers and students have a shallow and fragmented 

understanding of angle (Smith & Barrett, 2017). The author’s PhD research studies how 

Australian teachers conceptualise angle and how enhancements to that understanding might 

impact teaching practice. The research involved a survey of 43 Australian teachers (primary 

and secondary), which establishes a baseline of understanding for the study of how teachers 

conceptualise angle, how they view problems with angle teaching referred to in extant research 

and their interpretation of aspects of the curriculum related to angle.  

This presentation reports on findings from the survey of teachers related to their concept 

image and concept definition for angle. Although the majority (72%) of teachers in the survey 

gave a written definition for angle used in their teaching, only 33% defined angle in both static 

and dynamic terms, as conceptualised by Mitchelmore and White (1998). Teachers’ concept 

image for angle was classified in the authors’ survey. The presentation discusses some apparent 

disconnects that were found between the concept image and concept definitions for angle 

reported by survey participants. Discussion will include the potential for teaching a broader and 

deeper understanding of geometry through enhanced concept image of angle. 
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Research shows that both language and the unfamiliar expectations of a new educational 

context can be challenging for international students in first-year mathematics. Barton et al. 

(2005) showed how some multilingual learners in undergraduate mathematics courses at the 

University of Auckland were disadvantaged by their levels of English proficiency. They report 

that struggles with language in first-year mathematics are often masked by high levels of prior 

knowledge and the low language requirements of first-year mathematics courses. However, 

difficulties might surface at a later stage when mathematical knowledge needs to be extended 

to cope with the requirements of second- and third-year courses (Barton et al., 2005). My own 

doctoral research shows that some first-year international students might be constrained from 

accessing course resources such as spoken lecture content, one-to-one help from lecturers or 

tutors, and collaborative peer discussions in English. I show how both language proficiency and 

cultural interpretations of the student role can create barriers for international students when 

studying mathematics at a foreign host university (Locke et al., 2023a, 2023c, 2023b). 

Literature urges universities to meet the learning needs of their international students 

through a range of different strategies. Barton et al. (2005) suggest that mathematics 

departments implement strategies such as staff professional development, first language 

tutorials and resources, and specific mathematical English courses. Andrade (2010) supports 

the idea of linking courses with language support to enhance subject specific vocabulary. In 

this short communication I will discuss some ideas for a series of English for Mathematics 

workshops aimed to support the development of a more comprehensive mathematical register 

and facilitate collaborative practices for first-year international students. 
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Mathematics education research has classically considered several possible representations 

produced by students while engaging in mathematical activities: semiotic approaches have been 

developed to analyse students’ products and interactions. The analysis of students’ products 

becomes particularly challenging when they are so young and written language is not available 

as means of expression for them. Researchers in the field of early years mathematics are 

discussing theoretical frameworks and methods for addressing the complexity of 

communication of mathematical ideas (e.g., Maj-Tatsis et al., 2023). 

Drawings have often been used as means for understanding children’s representation of 

mathematical ideas. They can depict the context of mathematical activity (characters, objects, 

etc.) together with dynamic, pictographic, iconic, written, and symbolic marks (e.g., arrows, 

letters, numerals, etc.) (Carruthers & Worthington, 2006). Some researchers use drawings 

solely as a data source, but we believe that this might result as misleading and we argue that 

methodologically, multimodal approaches are preferrable. With the term ‘multimodality’ we 

are referring to the full range of means of representation which are observable in the 

mathematics class (or in kindergarten) including gesture, speech, bodily movements, writing, 

gazes, and tone of voice (Arzarello et al., 2009). 

Graphical representations of mathematical ideas can serve to communicate the process of 

problem solving to others, but also to oneself. The different components of a drawing not only 

represent the process of reasoning, but they are part of it together with other means of 

representation. All of these must be considered to fully understand the child’s mathematical 

ideas, and this could only be realised by taking into consideration both how the different means 

of representation evolve along time (diachronic analysis) and how they are related (synchronic 

analysis). We suggest Arzarello et al.’s (2009) semiotic bundle is suitable construct. A semiotic 

bundle is a system of signs produced by one or more interacting subjects while solving a 

problem and/or discussing a mathematical question. It is a bundle in the sense that different 

signs (speech, gestures, drawings) are produced and modified during time, but they are not 

separated: they are bundled and evolve together over time. Data taken from the study presented 

in (Downton & Maffia, 2023) supports us in showing that, in the case of children representing 

division word-problems, a multimodal semiotic approach allows to discern different strategies 

of problem solving, while the analysis of solely the final product would point to more 

similarities than differences. 
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In this short communication we will share our analysis of the use of tasks with young (6-to 

7-year-old children) as part of our larger Australian Research Council funded project on 

developing talk in mathematics classrooms. The project involved four teachers across one year 

through a participatory design (Hennessy, 2014) to engage low attaining students in key 

mathematical ideas through collaboration and talk. A key focus of discussion in the research 

workshops was how to develop effective tasks that would support collaboration with lower 

attaining students who often had limited language and confidence to share their thinking. 

Based on previous research (Murphy, 2011), we encouraged teachers to introduce tasks that 

would provide hands on experiences and limited recording. In the example presented here, two 

of the teachers explored multiplicative thinking based on the text The Doorbell Rang (Hutchins, 

1989). The teachers used models of cookies and plates and phased the students’ exploration in 

relation to the storyline. 

Our analysis focuses on both the mathematical thinking that arose and also on how the task 

enabled students to collaborate and share thinking. The concrete models allowed students to 

share their thinking without needing to rely on language. As such the concrete models became 

tools for dialogue and thinking was often shared through gestures and actions. 
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Defined as any “school-prescribed tasks undertaken by children and usually under the 

supervision of an adult”, homework, once the labour of older children, is now emerging as a 

regular and somewhat expected activity for younger children (Farrell and Danby, 2015, p. 250). 

Homework is a longstanding and widely used instructional practice (Murillo and Martinez-

Garrido, 2017) and is also one of the few visible and explicit overlaps between home and school 

practices. Yet, for some children and their families, homework experiences are, as discussed by 

O’Keeffe et al. (2023), sites of intergenerational negativity. 

In their study, O’Keeffe et al. (2023) shared examples of families struggling to help their 

children with mathematics homework, some of whom were already falling behind their peers. 

Issues for the families emerged when the adult helping with homework found they did not fully 

understand the mathematical concept or the particular strategies and approaches their child was 

working with. The parents/guardians in the study felt they were in the position of having to try 

and teach their children mathematical concepts that their child didn’t fully grasp from their 

classwork where they had the advantage of being guided by a teacher. This suggests that the 

homework may not have been well aligned with the children’s current capabilities. 

In this presentation, we focus on the importance of the purpose and pitch of mathematics 

homework. Drawing on a set of problem-solving activities, we raise questions about the 

potential for some homework to unfairly predispose children to negative experiences with 

mathematics. Our initial analysis of the problem-solving activities highlights a fundamental 

issue of inequity. Children with access to mathematical support and resources are more likely 

to benefit from engaging in mathematics homework that extends and enhances their 

mathematical learning experiences, thereby bolstering their confidence in their mathematical 

abilities. In contrast, children who lack appropriate support at home may struggle with 

mathematical tasks that are confusing and thus convey a sense that mathematics is too hard. 

When this occurs these children are prevented from accessing the ‘extra’ learning opportunities 

available to their peers. Such disparity underscores the crucial role of accessible and 

appropriately pitched mathematics homework in fostering positive mathematical learning 

experiences for all children. 
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Enrolment into advanced level mathematics in Australian high schools has been in steady 

decline (Wienk, 2022). Mathematics enrolment data from 2020 show a significant decline that 

takes mathematics participation in Year 12 in Australia to an unprecedented low. Jennings 

(2022,2023) suggests that contrary to the rest of the country, Queensland had an increase from 

2006-2018 due to the implementation of a two-point bonus scheme for students who finished 

Year 12 having studied higher level mathematics (Maths C) for two years. Since the departure 

of the bonus point scheme, and the implementation of a new senior syllabus in line with the 

Australian Senior Secondary Curriculum, Queensland’s data has seen significant decline on par 

with the remaining states and territories (Jennings, 2022). For this study, advanced level 

mathematics in a Queensland context groups together Queensland Curriculum and Assessment 

Authority (QCAA), (2018) subjects Mathematical Methods and Specialist Mathematics. 

Queensland is a large state with many varied educational regions. These regions vary from inner 

city/metropolitan to regional/remote areas. In Australia, the Index of Community Socio-

Educational Advantage (ICSEA) is used as a scale to allow fair and reasonable comparisons 

amongst schools (Australian Curriculum, Assessment and Reporting Authority [ACARA], 

2024). In this study, school’s ICSEA scores were correlated against their Mathematical 

Methods and Specialist Mathematics enrolment numbers in Unit 1 (Year 11) from 2019–2024. 

A bivariate analysis was completed with a sample size of n=156 using variables: ICSEA score 

and subject enrolment (as a percentage of the school’s cohort size). Analysis of retention rates 

from Unit 1 (start of Year 11) to Unit 4 (end of Year 12) was also calculated using percentage 

enrolment in Unit 1 and Unit 4. This was also compared with ICSEA score and across different 

Queensland Department of Education regions. The study aimed to consider the research 

question: ‘What impact of socio-educational advantage and education region can be seen in 

enrolment numbers of advanced mathematics courses in Queensland Schools?’ 

Variance in socio-educational schools, based on their ICSEA scores has an impact on 

student enrolment into advanced level Mathematics in Queensland. For Mathematical Methods 

and Specialist Mathematics, a weak positive correlation exists. Enrolment and retention also 

vary between educational regions. Findings of this study will be shared and discussed.  
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Recent studies in Australia and Germany have shown that block-play activities and 

especially play with the so-called “Froebel’s Gifts” offer profound opportunities to develop 

spatial sense in preschool and in primary school (Livy et al., 2018; Reinhold et al., 2017). These 

Froebel’s Gifts, specific education toys introduced by the German pedagogue Friedrich Froebel 

in the late 18th century, were also used as a tool to investigate Australian children’s geometrical 

concept knowledge (Downton et al., 2019). Based on these and related research experiences, 

the study we introduce in our presentation questions how pre-service teachers identify and 

address part-whole relationships within symmetrical arrangements made of cubes from 

Froebel’s Gift 3 (called “forms of beauty” by Froebel), when they are asked to give instructions 

for primary students. We were also interested to find out if these notes differ from pre-service 

teachers’ handling of instructions in tasks using a digital tool for the design of the same “forms 

of beauty”. Therefore, data collection included the use of Open Spatial Computer Aided Design 

(OpenSCAD, https://www.openscad.org/), an open program for 3 D constructions. 

First analyses show that pre-service teachers’ handwritten notes not only differ in terms of 

the length of the descriptions, but also vary since some pre-service teachers stay very close to 

the (mental) construction process, guiding a fictive grade 2 recipient of the description “step by 

step” through the anticipated process of reconstruction. Others invite the fictive recipient to 

think backwards, or at least to use an underlying structure for reconstructing details, later on. 

In a wide range of structuring strategies, which we identified in the handwritten free texts, some 

of the instructions reveal a clearly holistic view on the form of beauty—starting with a general 

statement concerning the gestalt, which is then described step by step with a focus on different 

subsets of the whole, always referring back to the entire array. We suggest to call this a global 

approach with analysis of units, and contrast it to a local approach, where the cube arrangement 

appears to “break apart”, isolating merely single cubes during the description of a reconstruction 

process in a “piece by piece” manner. In comparison, the digital tool OpenSCAD challenges 

and somehow seems to urge the pre-service teachers to always keep in mind the final product. 

We suggest to discuss these differences and potential obstacles for children which should be 

addressed when introducing these tasks in pre- and in-service teacher education. 
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When implementing challenging tasks through structured inquiry pedagogies, concerns are 

sometimes raised by teachers about the level of support provided to students during task 

exploration (Sullivan et al., 2010). Enabling prompts can be employed to augment tasks and 

scaffold the learning experience (Sullivan et al., 2009), however such prompts may not always 

be sufficiently utilised and appropriately interpreted by students to be effective (Russo & 

Hopkins, 2019). In fact, the issue of sufficiently scaffolding mathematical thinking when 

students are exploring a challenging task is one of the reasons why some teachers are hesitant 

to utilise task-first lesson structures when teaching with such tasks, preferring instead to use 

more teacher-directed approaches (Calleja et al., 2023). Although structured-inquiry 

pedagogies do emphasise experience before instruction, this should not be taken to imply that 

the teacher’s role is passive. However, a teacher’s lack of clarity about their role during key 

stages of the explore phase, particularly just after a problem-solving task has been launched, 

could be a further reason why a teacher may resort to premature ‘telling’ beyond concerns about 

struggling students. One potentially useful practice for providing more structure, support, and 

clarity to this phase of the lesson, for both teachers and students, is that of spotlighting. 

A spotlight can be described as the practice of “calling students to a momentary pause in 

order to share and briefly discuss an example of student thinking that will be of benefit to the 

rest of the class” (Hubbard et al., 2023, p. 32). Spotlighting generally involves the teacher 

facilitating the sharing of the spotlighted student(s)’ mathematical work with a particular 

purpose in mind. These purposes include but are not limited to: how the student has chosen to 

represent the problem mathematically, a partial solution or first step in the problem; 

highlighting a misinterpretation or misconception; or contrasting two different student 

approaches. In this short communication, we share some of the preliminary findings of our 

recent research into spotlighting such as how frequently teachers use the practice in a given 

lesson, how many students are the focus of a typical spotlight, and the reported affordances and 

constraints of this pedagogical move for supporting the learning of mathematics through 

structured inquiry. We conclude by discussing potential future research directions, as well as 

considering implications for teacher professional learning and classroom practice. 
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The Mathematics Education Research Group of Australasia (MERGA) has contributed a 

wealth of information about the teaching and learning of mathematics over the years. However, 

little research has included data collection from this particular community. This study provided 

an opportunity for the MERGA community to share their perspectives on what they believed 

were the most important implications for mathematics education in primary schools that have 

arisen from both their own research and mathematics education research more generally. 

Specifically, 86 members of the MERGA community responded to an online questionnaire 

probing their views about how mathematics education research translates into practice. 

Although the principle motivation for undertaking this research was to share our findings 

with those directly involved in providing primary mathematics education to students (teachers 

and mathematics leaders), we believe that there is value in presenting preliminary results back 

to the MERGA community who provided the data in the first instance. This will help offer 

clarity to the community as to what its members view as the most seminal contributions their 

research has made (and could potentially make) to mathematics teaching practice at the primary 

school level, as well as provide insights around how the community believes research should 

be disseminated to, and created/ consumed by, school-based teachers and leaders. 

Related to this latter point, one notable finding was that approximately 90% of respondents 

thought that it was important or very important that primary school teachers and leaders engage 

directly with research through undertaking their own action research projects in their schools 

and/ or through being collaborators on university-based academic research projects. By 

contrast, only around half of respondents thought that it was important or very important that 

these school-based professionals engage directly with research through other means, such as 

attending research conferences or reading research journals. Together these results imply that 

the MERGA community believes that teachers should strive to be active participants in the 

research process, rather than merely passive consumers of research findings. Moreover, 

whereas approximately 90% of respondents thought that it was important or very important that 

teachers and leaders engaged indirectly with research through reading practitioner journals 

(e.g., Australian Primary Mathematics Classroom) and/ or attending practitioner conferences 

where academics are sharing research findings, indirect engagement with research through 

books that synthesised research (59%) or following social media accounts of prominent 

academics (39%) were both less likely to be viewed as important. This implies that the MERGA 

community may be inclined to value ‘gatekeepers’ (e.g., journal editors, mathematics 

associations responsible for organising and coordinating conferences) when it came to 

considering how teachers accessed research indirectly. 

The intention of presenting preliminary findings arising from this study as a short 

communication at the current MERGA conference is to provoke critical discussion and 

reflection, as well as to seek the community’s input into how this data might be most 

meaningfully disseminated within the practitioner and researcher communities. 
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Problem-solving serves as a central focus of Singapore’s Mathematics curriculum, and one 

common mathematics instructional practice is the use of worked examples. This practice not 

only promotes mastery of learning, but also reduces unproductivity and cognitive overload in 

learning (Kaur et.al, 2021). To further enhance problem-solving competency, an alternative 

strategy is to teach mathematics through problem-solving, which involves presenting problems 

for students to solve before introducing related mathematical concepts (Takahashi, 2021). 

However, tension arises between students’ inclination toward instrumental understanding and 

teachers’ aim to cultivate relational understanding of mathematics. This tension complicates 

the cultivation of problem-solving skills, particularly for low-progress students who may face 

obstacles due to mathematics self-efficacy issues (Leong, 2023). Another challenge lies in the 

designing of problem-solving tasks such that it effectively emphasises the critical aspects 

students need to grasp while solving problems. Variation theory provides a way for teachers to 

think about how these critical aspects can be incorporated into problem-solving tasks. By 

discussing these crucial aspects during problem-solving sessions, teachers can help students 

build a bridge between their instrumental understanding and relational understanding of 

mathematics. 

A baseline study, conducted at a local secondary school, analysed the dynamics of teaching 

mathematics through problem-solving for low-progress students. Data collected included video 

and voice recordings of a lesson, teacher post-lesson interviews, and lesson materials. I will 

explore the challenges and the complexities involved when teachers try to teach mathematics 

through problem-solving for low-progress students. Greater attention will be given to dissecting 

the task design and classroom dynamics between students and teachers in upcoming 

discussions. These insights will inform recommendations to improve future mathematics 

lessons, particularly when teaching through problem-solving for low-progress students. 

Following this, participants will be encouraged to offer their perspectives to further refine such 

lessons to maximise learning outcomes for low-progress students. These discoveries will aid in 

crafting an inventive pedagogical framework designed to enhance problem-solving skills 

among low-progress students among low-progress students in forthcoming research 

endeavours. 
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Tuohilampi and Attard (2024) identified an interesting void in the realm of teaching 

mathematics: while there are several millions of teaching resources available on the Internet 

presented as ‘fun maths’, peer-reviewed research literature rarely addresses this key term. Fun 

maths is mentioned in peer-reviewed studies that address games or gamified learning (Darragh, 

2021). Fun as easing the learning of mathematical content (Fouryza et al., 2019), versatile 

learning activities, such as playful, physical learning (Bustamante et al., 2022) and mathematics 

being embedded in real life phenomena (Eubanks-Turner & Haji, 2015). Fun maths seems to 

have a place in the lexicon of teachers of mathematics; in this short communication, we will 

discuss how to take a systematic look at fun maths in research literature. 

Fun Maths is a Practical Term 

Amazon gives over 50,000 results for ‘fun maths’ (tested 24th of August 2023); using web-

based search engines, such as Google, one can find several million hits (952,000,000 results, 

tested 31st of January 2023 using Google). Interestingly, using the same search term in research 

databases does not reflect this abundance of teaching resources. ERIC lists just 97 peer 

reviewed journal articles with the same keyword from the last 20 years. 

To start unravelling this misalignment, Tuohilampi and Attard (2024) conducted an initial 

review of four peer reviewed research articles published after 2019, all using the key term fun 

maths. This initial review identified that: (1) fun maths can be used to describe the nature of an 

activity, learning experience or teaching approach; (2) it is not always clear how fun maths can 

contribute to learning ; and (3) the term can be used non-purposefully, e.g., having it in the title 

but never using the it in the body text. The first overview suggests a practical, all-encompassing 

definition: fun maths could feature almost any positive aspect of mathematics learning. 

Multiple questions remain unanswered: Who is the intended audience for fun maths 

activities or approaches? Is there any theoretical framework or pedagogical principles behind 

fun maths? When fun maths is connected to any outcomes, is there any evidence or data 

regarding the effectiveness? What specific activities or approaches are proposed to connect with 

fun maths? Without a clearly defined concept it is difficult to review the needs for ‘fun maths’. 

In this short communication, I will discuss the challenges related to the ubiquitous, yet vaguely 

defined concept of fun maths. What are we talking about, when we talk about fun maths? 
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