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Opportunities to closely monitor and evaluate students’ mathematical thinking enables
accurate interpretations of their conceptual understanding. This methodological paper
reports on a novel and versatile analysis approach to extract student thinking during
mathematical games through the generation of Dynamic Learning Artefacts (DLAs).
[lustrative examples drawing upon lesson observation notes, interview transcripts and
photographs describe the process of generating DLAs to better understand student
thinking. The implications for adopting this method of analysis to support teachers’
knowledge for instruction are presented and discussed.

There is wide recognition that gaining accurate insights into the thinking processes students
adopt when engaged in mathematics is a key component to improving student learning
outcomes (Cohors-Fresenborg et al., 2010). The ways in which students are able to access,
combine and build upon their prior knowledge reflects their conceptual understanding and
comprises more interconnectedness and depth than the mastery of facts and procedures (Lester
& Cai, 2016). The multifaceted pathways students take in the space between delivered
instruction and their output production can be difficult for teachers to navigate yet becomes
critical in being able to plan instruction that will best meet learning requirements (Hiebert &
Stigler, 2023). Many studies have reported on the ways in which examining extracts of student
learning has supported teachers to become better attuned in noticing the mathematical thinking
that occurs throughout problem-solving lessons (e.g., Franke et al., 2001; Jacobs et al., 2010).
However, accurately capturing the fleeting, yet vivid mathematical thinking students exhibit
during other rich mathematical contexts, such as when playing games, into translatable extracts
for analysis beyond the classroom, is not straightforward (Goldsmith & Seago, 2010). The
purpose of this methodological paper is to present illustrative examples of a developing analysis
approach known as Dynamic Learning Artefacts (DLA) designed to document clear and
coherent examples of the thinking processes students demonstrate when playing mathematics
games.

Background Literature

Mathematical thinking is a broad term generally used to describe various cognitive
processes students undertake when constructing or applying mathematical knowledge. For
teachers, accurately monitoring student thinking is critical in being able to authentically respond
to and appropriately guide the next steps of learning (Thanheiser & Melhuish, 2023). When
teachers take genuine interest in what students say and do as part of the learning process, they
are instigating cycles of constructive feedback and signalling to students that the public sharing
of thinking will lead to more tailored support and guidance (Ryan et al., 2023). Moreover, these
interactions offer instant evaluative feedback to teachers in terms of how effectively their
instruction is being received (Matos et al., 2018). However, as Franke et al. (2001) recognised,
teachers often require professional learning support to initiate and establish these cycles of
noticing effectively as part of their instructional practice. Their longitudinal study showed that
when teachers are supported to notice and interpret student thinking for conceptual
understanding, their beliefs shifted from a perception that students are incapable of thinking
without direct instruction towards an orientation in which students’ thinking became the starting
point for instruction (Franke et al., 2001). Framing the benefits of interpreting and evaluating
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student thinking in this way is distinct from traditional practices that focus on output derived
from written assessments, narrowly reflecting learning experiences of students (Wiliam, 2007).

There is a myriad of methods reported within the literature that document and distil student
thinking for analysis that extend beyond simple output production to include: work samples
(Jacobs et al., 2010); video recording (van Es et al., 2014); transcripts of lesson dialogue (Sfard,
2001); and student interviews (Bobis et al., 2005). However, as Goldsmith and Seago (2010)
caution, the artefacts themselves do not inherently magnify student thinking processes and care
should be taken to consider what is being analysed and by whom (Hill, 2019). For example,
Jacobs and Empson (2016) identified that when evaluating the transcripts of mathematical
interviews conducted with early years students, experienced teachers were able to notice and
expand on students’ thinking more effectively than novice teachers who tended to accept
incomplete or procedural explanations. Other studies concur that experienced teachers often
have developed their noticing skills to engage with student thinking as a sense making process
rather than an evaluation of procedural application (Thanheiser & Melhuish, 2023). As Mason
et al. (2010) noted, it is prudent to consider how different levels of pedagogical content
knowledge may lead to varying interpretations of the same artefact.

Video extracts and work samples are two prominent methods used to evaluate student
thinking beyond the classroom, as they often simultaneously detail the mathematical content of
the task as well as offer insights as to how students may have solved the tasks (Santagata, 2010).
However, as Goldsmith and Seago (2010) noted “video has multiple channels of information
but also multiple channels of distraction” (p. 186). This was evident in one study utilising video
footage to discern effective ways to leverage student thinking throughout a lesson, reported by
Thanheiser and Melhuish (2023). In this particular instance, viewers inadvertently attended to
the procedure written on the board by the teacher rather than the audio detailing the student’s
explanation. The authors concluded that this misdirection was a result of the visual being more
readily perceived than the audio (Thanheiser & Melhuish, 2023). Similar challenges are
apparent in the evaluation of written work samples where what students say may differ from
what they actually do (Sfard, 2001). When this occurs, it is difficult to accurately discern the
thinking students actually applied during the task itself (Jacobs & Empson, 2016), and it is
common for teachers to then revert back towards expected performance standards rather than
try to discern nuanced solutions or unpack the evident misconceptions (Hill, 2019). Therefore,
it is necessary to ensure that the source and selection of artefact are closely aligned to the
intended focus of analysis from the outset (Santagata, 2010).

Much of the literature reporting on student thinking processes is contextualised through
problem-solving approaches to mathematics (e.g., Franke et al., 2001; Mason et al., 2010;
Lester and Cai, 2016; Schoenfeld, 2016). One justification for this co-occurrence is that
problem-solving tasks offer ample scope for students to adapt their existing knowledge to new
situations and to think creatively rather than procedurally (Schoenfeld, 2016). However, an
alternative context in which students are also encouraged to think flexibly and demonstrate
mental agility is through engagement with mathematical games (Russo & Russo, 2023). Often
requiring no written output at all, mathematical games are considered rich and engaging
contexts for students to readily apply critical and creative thinking skills (Applebaum, 2025).
In an analysis of questionnaire data from 248 Australian teachers, Russo et al. (2021) reported
that the majority of participants readily identify the value of mathematical games to support the
development of mathematical proficiency, recognising the value of games to develop reasoning,
problem solving and conceptual understanding in addition to fluency. Yet, there is limited
literature reporting on the thinking processes students undertake when playing mathematical
games, with no evident studies analysing student thinking through artefacts extracted from the
learning itself. Therefore, exploring the potential of suitable analysis processes to support the

214



Dynamic learning artefacts

noticing of student thinking when engaged in mathematical games is warranted, and forms the
basis of this methodological paper.

Dynamic Learning Artefacts (DLAs)

DLAs, originally developed for capturing student behaviours when working on challenging
tasks (Hubbard, 2023; 2025), offer a novel approach for extracting and analysing student
thinking in mathematics as they combine multiple data sources into a single and coherent
graphical representation of learning. DLAs are generated by taking a work sample and
overlaying it with time-related annotations to provide greater detail of what occurred, and when,
over a selected lesson excerpt. In addition to the observational data, where relevant, the
student’s reasoning—derived from interview transcripts—is also weaved into the annotations to
portray the experience from a holistic perspective. Essentially, the core aim of documenting
accounts of student thinking in this way is to simultaneously communicate what is seen and
heard from both the student and observer’s perspective into a single unit for analysis.

The notion of triangulating multiple sources of learning to generate the DLAs was informed
by Schoenfeld’s (2016) study that used video data to document when and how effective
problem-solvers used various types of thinking when completing tasks. In his study, over 100
college students were video recorded, with changes in behaviour tracked according to time
points throughout the lesson. The findings reported that students who readily and efficiently
solved the tasks demonstrated more frequent shifts in strategy selection over the timeframe than
those students who persisted, unsuccessfully, in the application of a single rehearsed strategy
(Schoenfeld, 2016).

The impetus for the current iteration of DLA design reported next was in response to the
limitations associated with relying on either video data or written work samples reported
throughout the literature (e.g., Goldsmith & Seago, 2010; Jacobs & Empson, 2016; Thanheiser
& Melhuish, 2023). Hence, the intention was to draw upon the strengths of video data by
underpinning the DLA with a visual image, whilst also ensuring that student explanations were
contextualised through time-bound annotations. As the thinking in mathematical games is often
not visible, determining how this could clearly be communicated through a visual graphic to
underpin the DLA posed further challenges that had not been addressed elsewhere. Critical to
the design was being able to maximise focus on student thinking and minimise unnecessary
information that could divert attention away from the strategies students used in each turn. This
malleable construction process offers a versatility to the DLA method that is not afforded
through video extracts or work samples.

An Illustrative Example

The illustrative examples of DLAs reported in this paper were generated as part of a larger
research project focused on how Year 2 students utilised and applied their number sense
knowledge when playing mathematical games supported by a manipulative known as The
Keyboard (see Hopkins et al., 2025). This project consisted of teaching a series of lessons over
a two-week period, where students were introduced to The Keyboard representation and used
it in various ways to play of a range of mathematical games to focus on their mental computation
strategies for addition and subtraction. Given this context, The Keyboard formed the basis of
the visual prompt in which the DLAs were generated. Further information from the lesson such
as time bound observation notes, photographs and student explanations were layered onto this
image to convey the subsequent game moves students performed throughout a series of game
turns. To make explicit the strategies students demonstrated with each turn, a template of The
Keyboard underpinned each observation. From there, grey dotted arrows were used to depict
the sequential moves observed for each game turn, and these were labelled A, B, and C to
correspond to the respective verbal explanations offered by students as they played the game,
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or retrospectively, once prompted in the post-lesson interview. Two exemplar DLAs,
representing the game plays of two different students (i.e., Student 1 and Student 2) are
described next, demonstrating potential affordances of adopting this methodology for analysing
student thinking when playing mathematical games.

The two DLAS presented next make visible the thinking strategies that would otherwise be
indiscernible as students took turns in playing a mathematics game involving single-digit
addition. Figure 1 shows a DLA from focus Student 1, comprising three consecutive game turns
observed over a 5-minute period of the lesson. Between each turn, the other student pair was
completing their turn of the game, which is not documented in the DLA shown here. The grey
arrows and letters represent the active moves made by the student, which were documented
through the lesson observation notes. The quotations reflect relevant excerpts of the audio
recording transcripts that aligned to the respective turn being observed.

Figure 1
Student 1: Consecutive Turns Using Multiple and Flexible Strategies

Turn 1
7+8 gy ! know this is 5 and @ (70 2dd 8 count3 thenjump 5 to
two more is 7" the next black key”
A S o
o
! know the third
black key is 15”
Turn 2 A ‘' go to 5, then | know there is
5+7 another5in 7"
----- o A "I need 2 more to make 77
. d et =
o
B “Here is 12”
Turn 3
548 (A “To find 8 | would to go a “Then | add 5 and it is going to be
to 10 and take off 2” three after a black key”

el

0o

Stops at 13

The DLA presented in Figure 1 shows the various thinking strategies Student 1
demonstrated over multiple turns when solving single-digit addition sums in relatively quick
succession. To accurately interpret Student 1’s thinking strategies for each turn, it is necessary
to integrate both the visual tracking on The Keyboard (grey arrows) with the associated student
explanations. Attending solely to the arrows makes it difficult to directly link the moves on The
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Keyboard with the associated sums being solved. For instance, Turn 2 could be misinterpreted
as 10 + 2 instead of 5 + 7, as the arrows show Student 1 skip counts in 5s to 10 and then adds
on 2 more. However, following the arrows in conjunction with the explanations enables clear
and informative interpretations of student strategies to be identified. For example, in Turn 1, by
focusing solely on the arrows, it is unclear why Student 1 starts on 5, moves 2, counts 3, and
moves 5 when the sum they needed to solve was 7 + 8. When reading this turn with the
accompanying explanations, it becomes clearer that this student had decomposed 7 and 8 (into
5, 2 and 3, 5 respectively) and used this decomposition strategy to flexibly work with The
Keyboard benchmarks (i.e., the black keys). Deconstructing each of Student 1’s turns to this
extent shows that over the three turns, a range of processes are used such as skip counting,
benchmarking, and decomposition. Furthermore, it provides clear evidence to support the
assertion that Student 1 has established a level of conceptual understanding whereby they can
flexibly and efficiently manipulate single-digit numbers with proficiency. The ability to not
only notice, but also understand and follow Student 1’s mental computation knowledge to this
extent is a strength of the DLA design.

The second DLA, presented in Figure 2, is focused on Student 2 and was constructed to
extract and visually replicate just a single turn lasting less than 2 minutes. In this instance,
repeated Keyboard images have been used (i.e., part A and B) to highlight the two separate
thinking processes this student demonstrated to solve 7 + 6 in one turn.

Figure 2
Student 2: Single Turn Requiring Two Different and Disconnected Strategies

Turn 1 (part A)

7+6 [ “Here is 7" B4 counts aloud “1,2,3,4,5,6"

LC)

Stops here and pauses
without naming key value

Turn 1 (part B) » "
“What key did you stop on?” Y Countsaloud”5, 10, 15

I} moves back 2

“The solution is 13"

Figure 2 presents the deconstruction of a single game turn which offers critical insights into
how Student 2 had to use two different and disconnected strategies to first solve the single digit
addition sum and second to show the key to representing the sum solution. Had this same game
turn been observed using a conventional method, it is unlikely that these subtle yet important
aspects of Student 2’s learning would have been identified. For example, even though this
student does demonstrate a correct process for adding 7 + 6 in Turn 1, Part A (i.e., starting on
7 and counting up 6 more), the annotated comments provide evidence that this has been done
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procedurally rather than conceptually, as there are no connections made between how the parts
of 7 and 6 comprise the whole of 13. Further evidence of procedural application can be
identified in Turn 1, Part B, when Student 2 demonstrates a process disconnected from 7 + 6
by applying skip counting by 5s to work out the value of the 13 key. Again, this reinforces the
interpretation that Student 2 is not identifying important connections between the problem
strategy and the answer. Being able to discern this level of detail about students’ understanding
and proficiency offers potential to more accurately plan the necessary targeted instruction for
future learning.

These two exemplar DLAs show how multiple sources of qualitative data can be compiled
to create simple yet cohesive and comprehensive accounts of individual student thinking. In
addition, there are affordances in using these data collectively to evaluate the diversity across
cohorts and consider how this will influence teachers’ future instruction. For example, being
able to compare and evaluate the different strategies utilised by Student 1 and Student 2
highlights that, even though both students were able to correctly answer the addition sum, there
was a considerable distinction in how each outcome had been reached. Student 1 demonstrated
productive and agile computation strategies, whereas Student 2 had to rely on more superficial
and procedural application of knowledge. As the class teacher, having the means to recognise
such discrepancies beyond the correct solution is critical in planning for instruction that caters
to the diverse needs of the class. Moreover, developing an acute awareness of how some
students may appear to be thinking, but are actually replicating procedures without
understanding, will better prepare teachers to anticipate and respond to students authentically
in the actual lesson. Such levels of evaluation have previously been associated with experienced
teachers who have been supported to develop their pedagogical knowledge for in-lesson
noticing. Therefore, an affordance of using the DLA methodology in the ways described here
is that it creates greater accessibility for teachers of all levels of ability to engage with student
thinking in meaningful and productive ways.

Concluding Thoughts

Presented here was a novel and alternative method for evaluating student thinking in
mathematical games through the generation of Dynamic Learning Artefacts (DLAs).
Capitalising on the strengths of existing data collection processes—such as visual perception
enabled through video footage (Thanheiser & Melhuish, 2023) and reasoning from student
interviews (Jacobs et al., 2010)—this approach allowed for the salient aspects of the learning
experience to be leveraged in a ‘fit for purpose’ unit of analysis (Santagata, 2010). Constructed
from a pictorial base and overlayed with observational annotations, DLAs reflected students’
active thinking trajectories across a static image, offering accurate insights into a moment of
learning through combining what was said with what was done (Sfard, 2001).The careful
selection and alignment of lesson observations, photographs and student descriptions offered
vivid accounts of the mental computation strategies students accessed and applied when solving
single addition sums, enabling distinctions between procedural and conceptual understandings
to be identified (Schoenfeld, 2016). Previously, the ability to make such specific evaluations
about student thinking processes has been challenging, as classroom observations are generally
less definitive, requiring inferential conclusions to be made beyond output production.

This work extends on the research reported by Hubbard (2023; 2025) in narrowing the focal
point of the DLA to a granular level (i.e., 3 to 5 minutes), as opposed analysing student learning
over the duration of a lesson. Modifying the unit of analysis in this way enabled the focal point
to be conveyed more clearly than would be possible in attempting to replicate all of the game
turns throughout the entire lesson. Pre-determining the focal point and constructing the DLA
around the specific moves made on The Keyboard provided a consistent interpretation of
student thinking, not only across each student’s turns, but also between different students.
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Attending to these moves, rather than the sum being solved, addresses concerns raised by
Mason et al. (2010) that too often when evaluations of student thinking are made, priority is
given to the mathematical content instead of the strategies students use that demonstrates their
conceptual understanding. The simplicity and precision with which such thinking can be
communicated makes DLAs an ideal mode to introduce less experienced teachers to the
importance of developing their practices of noticing to underpin their mathematical instruction
(Hill 2019; Jacobs & Empson, 2016).

Several limitations exist regarding the generation of DLAs and their broader applicability
that are important to consider. For instance, the initial development process may be perceived
as resource intensive, requiring time commitment to conduct the observations, synthetise the
data then generate the DLAs. In addition, it is critical to recognise that without a specific pre-
determined learning focus, making sense of the copious information sources readily available
within classrooms may be overwhelming for an untrained observer. This reiterates Santagata’s
(2010) concerns— that without accounting for a specific focus, the analysis of the DLA may
be compromised.

In conclusion, the use of DL As has also been shown to be highly effective in conveying the
various thinking strategies students demonstrated during mathematical games, and how these
strategies extend beyond fluency recall to emulate the proficiencies of reasoning,
understanding, and problem solving (Russo et al., 2021). Given the frequency with which
teachers readily use games as part of their mathematics programs, there is merit in considering
how DLASs can further support the identification and analysis of students’ mental computational
strategies within such contexts. Just as developing teachers’ noticing skills has improved their
pedagogical content knowledge for problem solving (Franke et al., 2001), closely attending to
the thinking of students within a mathematical game context may enable teachers to readily
recognise the potential for meaningful interactions that are supportive in building conceptual
understanding. As the DLAs reported here were based on a game that used a specific
manipulative (i.e., The Keyboard), there is scope for further exploration and research into the
ways in which this approach can be adapted within broader game contexts that draw upon
different visual representations and models when supporting student thinking processes in
mathematics.
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