
RESEARCH PAPERS  

(2025). In S. M. Patahuddin, L. Gaunt, D. Harris & K. Tripet (Eds.), Unlocking minds in mathematics 

education. Proceedings of the 47th annual conference of the Mathematics Education Research Group of 

Australasia (pp. 213–220). Canberra: MERGA. 

Dynamic Learning Artefacts: A Methodological Approach for 

Analysing and Interpreting Student Thinking in Mathematics 

Jane Hubbard 
Deakin University 

jane.hubbard@deakin.edu.au 
Jane Hubbard 

Opportunities to closely monitor and evaluate students’ mathematical thinking enables 

accurate interpretations of their conceptual understanding. This methodological paper 

reports on a novel and versatile analysis approach to extract student thinking during 

mathematical games through the generation of Dynamic Learning Artefacts (DLAs). 

Illustrative examples drawing upon lesson observation notes, interview transcripts and 

photographs describe the process of generating DLAs to better understand student 

thinking. The implications for adopting this method of analysis to support teachers’ 

knowledge for instruction are presented and discussed. 

There is wide recognition that gaining accurate insights into the thinking processes students 

adopt when engaged in mathematics is a key component to improving student learning 

outcomes (Cohors-Fresenborg et al., 2010). The ways in which students are able to access, 

combine and build upon their prior knowledge reflects their conceptual understanding and 

comprises more interconnectedness and depth than the mastery of facts and procedures (Lester 

& Cai, 2016). The multifaceted pathways students take in the space between delivered 

instruction and their output production can be difficult for teachers to navigate yet becomes 

critical in being able to plan instruction that will best meet learning requirements (Hiebert & 

Stigler, 2023). Many studies have reported on the ways in which examining extracts of student 

learning has supported teachers to become better attuned in noticing the mathematical thinking 

that occurs throughout problem-solving lessons (e.g., Franke et al., 2001; Jacobs et al., 2010). 

However, accurately capturing the fleeting, yet vivid mathematical thinking students exhibit 

during other rich mathematical contexts, such as when playing games, into translatable extracts 

for analysis beyond the classroom, is not straightforward (Goldsmith & Seago, 2010). The 

purpose of this methodological paper is to present illustrative examples of a developing analysis 

approach known as Dynamic Learning Artefacts (DLA) designed to document clear and 

coherent examples of the thinking processes students demonstrate when playing mathematics 

games. 

Background Literature 

Mathematical thinking is a broad term generally used to describe various cognitive 

processes students undertake when constructing or applying mathematical knowledge. For 

teachers, accurately monitoring student thinking is critical in being able to authentically respond 

to and appropriately guide the next steps of learning (Thanheiser & Melhuish, 2023). When 

teachers take genuine interest in what students say and do as part of the learning process, they 

are instigating cycles of constructive feedback and signalling to students that the public sharing 

of thinking will lead to more tailored support and guidance (Ryan et al., 2023). Moreover, these 

interactions offer instant evaluative feedback to teachers in terms of how effectively their 

instruction is being received (Matos et al., 2018). However, as Franke et al. (2001) recognised, 

teachers often require professional learning support to initiate and establish these cycles of 

noticing effectively as part of their instructional practice. Their longitudinal study showed that 

when teachers are supported to notice and interpret student thinking for conceptual 

understanding, their beliefs shifted from a perception that students are incapable of thinking 

without direct instruction towards an orientation in which students’ thinking became the starting 

point for instruction (Franke et al., 2001). Framing the benefits of interpreting and evaluating 
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student thinking in this way is distinct from traditional practices that focus on output derived 

from written assessments, narrowly reflecting learning experiences of students (Wiliam, 2007).  

There is a myriad of methods reported within the literature that document and distil student 

thinking for analysis that extend beyond simple output production to include: work samples 

(Jacobs et al., 2010); video recording (van Es et al., 2014); transcripts of lesson dialogue (Sfard, 

2001); and student interviews (Bobis et al., 2005). However, as Goldsmith and Seago (2010) 

caution, the artefacts themselves do not inherently magnify student thinking processes and care 

should be taken to consider what is being analysed and by whom (Hill, 2019). For example, 

Jacobs and Empson (2016) identified that when evaluating the transcripts of mathematical 

interviews conducted with early years students, experienced teachers were able to notice and 

expand on students’ thinking more effectively than novice teachers who tended to accept 

incomplete or procedural explanations. Other studies concur that experienced teachers often 

have developed their noticing skills to engage with student thinking as a sense making process 

rather than an evaluation of procedural application (Thanheiser & Melhuish, 2023). As Mason 

et al. (2010) noted, it is prudent to consider how different levels of pedagogical content 

knowledge may lead to varying interpretations of the same artefact.  

Video extracts and work samples are two prominent methods used to evaluate student 

thinking beyond the classroom, as they often simultaneously detail the mathematical content of 

the task as well as offer insights as to how students may have solved the tasks (Santagata, 2010). 

However, as Goldsmith and Seago (2010) noted “video has multiple channels of information 

but also multiple channels of distraction” (p. 186). This was evident in one study utilising video 

footage to discern effective ways to leverage student thinking throughout a lesson, reported by 

Thanheiser and Melhuish (2023). In this particular instance, viewers inadvertently attended to 

the procedure written on the board by the teacher rather than the audio detailing the student’s 

explanation. The authors concluded that this misdirection was a result of the visual being more 

readily perceived than the audio (Thanheiser & Melhuish, 2023). Similar challenges are 

apparent in the evaluation of written work samples where what students say may differ from 

what they actually do (Sfard, 2001). When this occurs, it is difficult to accurately discern the 

thinking students actually applied during the task itself (Jacobs & Empson, 2016), and it is 

common for teachers to then revert back towards expected performance standards rather than 

try to discern nuanced solutions or unpack the evident misconceptions (Hill, 2019). Therefore, 

it is necessary to ensure that the source and selection of artefact are closely aligned to the 

intended focus of analysis from the outset (Santagata, 2010). 

Much of the literature reporting on student thinking processes is contextualised through 

problem-solving approaches to mathematics (e.g., Franke et al., 2001; Mason et al., 2010; 

Lester and Cai, 2016; Schoenfeld, 2016). One justification for this co-occurrence is that 

problem-solving tasks offer ample scope for students to adapt their existing knowledge to new 

situations and to think creatively rather than procedurally (Schoenfeld, 2016). However, an 

alternative context in which students are also encouraged to think flexibly and demonstrate 

mental agility is through engagement with mathematical games (Russo & Russo, 2023). Often 

requiring no written output at all, mathematical games are considered rich and engaging 

contexts for students to readily apply critical and creative thinking skills (Applebaum, 2025). 

In an analysis of questionnaire data from 248 Australian teachers, Russo et al. (2021) reported 

that the majority of participants readily identify the value of mathematical games to support the 

development of mathematical proficiency, recognising the value of games to develop reasoning, 

problem solving and conceptual understanding in addition to fluency. Yet, there is limited 

literature reporting on the thinking processes students undertake when playing mathematical 

games, with no evident studies analysing student thinking through artefacts extracted from the 

learning itself. Therefore, exploring the potential of suitable analysis processes to support the 
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noticing of student thinking when engaged in mathematical games is warranted, and forms the 

basis of this methodological paper.  

Dynamic Learning Artefacts (DLAs) 

DLAs, originally developed for capturing student behaviours when working on challenging 

tasks (Hubbard, 2023; 2025), offer a novel approach for extracting and analysing student 

thinking in mathematics as they combine multiple data sources into a single and coherent 

graphical representation of learning. DLAs are generated by taking a work sample and 

overlaying it with time-related annotations to provide greater detail of what occurred, and when, 

over a selected lesson excerpt. In addition to the observational data, where relevant, the 

student’s reasoning–derived from interview transcripts–is also weaved into the annotations to 

portray the experience from a holistic perspective. Essentially, the core aim of documenting 

accounts of student thinking in this way is to simultaneously communicate what is seen and 

heard from both the student and observer’s perspective into a single unit for analysis.  

The notion of triangulating multiple sources of learning to generate the DLAs was informed 

by Schoenfeld’s (2016) study that used video data to document when and how effective 

problem-solvers used various types of thinking when completing tasks. In his study, over 100 

college students were video recorded, with changes in behaviour tracked according to time 

points throughout the lesson. The findings reported that students who readily and efficiently 

solved the tasks demonstrated more frequent shifts in strategy selection over the timeframe than 

those students who persisted, unsuccessfully, in the application of a single rehearsed strategy 

(Schoenfeld, 2016).  

The impetus for the current iteration of DLA design reported next was in response to the 

limitations associated with relying on either video data or written work samples reported 

throughout the literature (e.g., Goldsmith & Seago, 2010; Jacobs & Empson, 2016; Thanheiser 

& Melhuish, 2023). Hence, the intention was to draw upon the strengths of video data by 

underpinning the DLA with a visual image, whilst also ensuring that student explanations were 

contextualised through time-bound annotations. As the thinking in mathematical games is often 

not visible, determining how this could clearly be communicated through a visual graphic to 

underpin the DLA posed further challenges that had not been addressed elsewhere. Critical to 

the design was being able to maximise focus on student thinking and minimise unnecessary 

information that could divert attention away from the strategies students used in each turn. This 

malleable construction process offers a versatility to the DLA method that is not afforded 

through video extracts or work samples.  

An Illustrative Example 

The illustrative examples of DLAs reported in this paper were generated as part of a larger 

research project focused on how Year 2 students utilised and applied their number sense 

knowledge when playing mathematical games supported by a manipulative known as The 

Keyboard (see Hopkins et al., 2025). This project consisted of teaching a series of lessons over 

a two-week period, where students were introduced to The Keyboard representation and used 

it in various ways to play of a range of mathematical games to focus on their mental computation 

strategies for addition and subtraction. Given this context, The Keyboard formed the basis of 

the visual prompt in which the DLAs were generated. Further information from the lesson such 

as time bound observation notes, photographs and student explanations were layered onto this 

image to convey the subsequent game moves students performed throughout a series of game 

turns. To make explicit the strategies students demonstrated with each turn, a template of The 

Keyboard underpinned each observation. From there, grey dotted arrows were used to depict 

the sequential moves observed for each game turn, and these were labelled A, B, and C to 

correspond to the respective verbal explanations offered by students as they played the game, 
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or retrospectively, once prompted in the post-lesson interview. Two exemplar DLAs, 

representing the game plays of two different students (i.e., Student 1 and Student 2) are 

described next, demonstrating potential affordances of adopting this methodology for analysing 

student thinking when playing mathematical games. 

The two DLAs presented next make visible the thinking strategies that would otherwise be 

indiscernible as students took turns in playing a mathematics game involving single-digit 

addition. Figure 1 shows a DLA from focus Student 1, comprising three consecutive game turns 

observed over a 5-minute period of the lesson. Between each turn, the other student pair was 

completing their turn of the game, which is not documented in the DLA shown here. The grey 

arrows and letters represent the active moves made by the student, which were documented 

through the lesson observation notes. The quotations reflect relevant excerpts of the audio 

recording transcripts that aligned to the respective turn being observed.  

Figure 1 

Student 1: Consecutive Turns Using Multiple and Flexible Strategies 

 

The DLA presented in Figure 1 shows the various thinking strategies Student 1 

demonstrated over multiple turns when solving single-digit addition sums in relatively quick 

succession. To accurately interpret Student 1’s thinking strategies for each turn, it is necessary 

to integrate both the visual tracking on The Keyboard (grey arrows) with the associated student 

explanations. Attending solely to the arrows makes it difficult to directly link the moves on The 
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Keyboard with the associated sums being solved. For instance, Turn 2 could be misinterpreted 

as 10 + 2 instead of 5 + 7, as the arrows show Student 1 skip counts in 5s to 10 and then adds 

on 2 more. However, following the arrows in conjunction with the explanations enables clear 

and informative interpretations of student strategies to be identified. For example, in Turn 1, by 

focusing solely on the arrows, it is unclear why Student 1 starts on 5, moves 2, counts 3, and 

moves 5 when the sum they needed to solve was 7 + 8. When reading this turn with the 

accompanying explanations, it becomes clearer that this student had decomposed 7 and 8 (into 

5, 2 and 3, 5 respectively) and used this decomposition strategy to flexibly work with The 

Keyboard benchmarks (i.e., the black keys). Deconstructing each of Student 1’s turns to this 

extent shows that over the three turns, a range of processes are used such as skip counting, 

benchmarking, and decomposition. Furthermore, it provides clear evidence to support the 

assertion that Student 1 has established a level of conceptual understanding whereby they can 

flexibly and efficiently manipulate single-digit numbers with proficiency. The ability to not 

only notice, but also understand and follow Student 1’s mental computation knowledge to this 

extent is a strength of the DLA design.  

The second DLA, presented in Figure 2, is focused on Student 2 and was constructed to 

extract and visually replicate just a single turn lasting less than 2 minutes. In this instance, 

repeated Keyboard images have been used (i.e., part A and B) to highlight the two separate 

thinking processes this student demonstrated to solve 7 + 6 in one turn. 

Figure 2 

Student 2: Single Turn Requiring Two Different and Disconnected Strategies 

 

 Figure 2 presents the deconstruction of a single game turn which offers critical insights into 

how Student 2 had to use two different and disconnected strategies to first solve the single digit 

addition sum and second to show the key to representing the sum solution. Had this same game 

turn been observed using a conventional method, it is unlikely that these subtle yet important 

aspects of Student 2’s learning would have been identified. For example, even though this 

student does demonstrate a correct process for adding 7 + 6 in Turn 1, Part A (i.e., starting on 

7 and counting up 6 more), the annotated comments provide evidence that this has been done 
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procedurally rather than conceptually, as there are no connections made between how the parts 

of 7 and 6 comprise the whole of 13. Further evidence of procedural application can be 

identified in Turn 1, Part B, when Student 2 demonstrates a process disconnected from 7 + 6 

by applying skip counting by 5s to work out the value of the 13 key. Again, this reinforces the 

interpretation that Student 2 is not identifying important connections between the problem 

strategy and the answer. Being able to discern this level of detail about students’ understanding 

and proficiency offers potential to more accurately plan the necessary targeted instruction for 

future learning.    

These two exemplar DLAs show how multiple sources of qualitative data can be compiled 

to create simple yet cohesive and comprehensive accounts of individual student thinking. In 

addition, there are affordances in using these data collectively to evaluate the diversity across 

cohorts and consider how this will influence teachers’ future instruction. For example, being 

able to compare and evaluate the different strategies utilised by Student 1 and Student 2 

highlights that, even though both students were able to correctly answer the addition sum, there 

was a considerable distinction in how each outcome had been reached. Student 1 demonstrated 

productive and agile computation strategies, whereas Student 2 had to rely on more superficial 

and procedural application of knowledge. As the class teacher, having the means to recognise 

such discrepancies beyond the correct solution is critical in planning for instruction that caters 

to the diverse needs of the class. Moreover, developing an acute awareness of how some 

students may appear to be thinking, but are actually replicating procedures without 

understanding, will better prepare teachers to anticipate and respond to students authentically 

in the actual lesson. Such levels of evaluation have previously been associated with experienced 

teachers who have been supported to develop their pedagogical knowledge for in-lesson 

noticing. Therefore, an affordance of using the DLA methodology in the ways described here 

is that it creates greater accessibility for teachers of all levels of ability to engage with student 

thinking in meaningful and productive ways.  

Concluding Thoughts 

Presented here was a novel and alternative method for evaluating student thinking in 

mathematical games through the generation of Dynamic Learning Artefacts (DLAs). 

Capitalising on the strengths of existing data collection processes—such as visual perception 

enabled through video footage (Thanheiser & Melhuish, 2023) and reasoning from student 

interviews (Jacobs et al., 2010)—this approach allowed for the salient aspects of the learning 

experience to be leveraged in a ‘fit for purpose’ unit of analysis (Santagata, 2010). Constructed 

from a pictorial base and overlayed with observational annotations, DLAs reflected students’ 

active thinking trajectories across a static image, offering accurate insights into a moment of 

learning through combining what was said with what was done (Sfard, 2001).The careful 

selection and alignment of lesson observations, photographs and student descriptions offered 

vivid accounts of the mental computation strategies students accessed and applied when solving 

single addition sums, enabling distinctions between procedural and conceptual understandings 

to be identified (Schoenfeld, 2016). Previously, the ability to make such specific evaluations 

about student thinking processes has been challenging, as classroom observations are generally 

less definitive, requiring inferential conclusions to be made beyond output production.  

This work extends on the research reported by Hubbard (2023; 2025) in narrowing the focal 

point of the DLA to a granular level (i.e., 3 to 5 minutes), as opposed analysing student learning 

over the duration of a lesson. Modifying the unit of analysis in this way enabled the focal point 

to be conveyed more clearly than would be possible in attempting to replicate all of the game 

turns throughout the entire lesson. Pre-determining the focal point and constructing the DLA 

around the specific moves made on The Keyboard provided a consistent interpretation of 

student thinking, not only across each student’s turns, but also between different students. 
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Attending to these moves, rather than the sum being solved, addresses concerns raised by 

Mason et al. (2010) that too often when evaluations of student thinking are made, priority is 

given to the mathematical content instead of the strategies students use that demonstrates their 

conceptual understanding. The simplicity and precision with which such thinking can be 

communicated makes DLAs an ideal mode to introduce less experienced teachers to the 

importance of developing their practices of noticing to underpin their mathematical instruction 

(Hill 2019; Jacobs & Empson, 2016).  

Several limitations exist regarding the generation of DLAs and their broader applicability 

that are important to consider. For instance, the initial development process may be perceived 

as resource intensive, requiring time commitment to conduct the observations, synthetise the 

data then generate the DLAs. In addition, it is critical to recognise that without a specific pre-

determined learning focus, making sense of the copious information sources readily available 

within classrooms may be overwhelming for an untrained observer. This reiterates Santagata’s 

(2010) concerns— that without accounting for a specific focus, the analysis of the DLA may 

be compromised.  

In conclusion, the use of DLAs has also been shown to be highly effective in conveying the 

various thinking strategies students demonstrated during mathematical games, and how these 

strategies extend beyond fluency recall to emulate the proficiencies of reasoning, 

understanding, and problem solving (Russo et al., 2021). Given the frequency with which 

teachers readily use games as part of their mathematics programs, there is merit in considering 

how DLAs can further support the identification and analysis of students’ mental computational 

strategies within such contexts. Just as developing teachers’ noticing skills has improved their 

pedagogical content knowledge for problem solving (Franke et al., 2001), closely attending to 

the thinking of students within a mathematical game context may enable teachers to readily 

recognise the potential for meaningful interactions that are supportive in building conceptual 

understanding. As the DLAs reported here were based on a game that used a specific 

manipulative (i.e., The Keyboard), there is scope for further exploration and research into the 

ways in which this approach can be adapted within broader game contexts that draw upon 

different visual representations and models when supporting student thinking processes in 

mathematics.  
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