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We examine the educational possibilities afforded by new connections 
between physical and simulation-based data to build intimacy with 
function representations. Historically, technology was first used to 
facilitate actions within notations, then to link them, eventually bi
directionally. Yet recent data strongly indicate that students' difficulties 
with interpreting and productively using mathematical notations 
continue. We suggest that students need phenomena expressive linked to 
the notations, and secondly, that students themselves should be immersed 
in generating such phenomena. 

General Introduction 

Simulations and computer-based models are proving to be the most powerful 
resources for the advancement and application of mathematics and science since the 
origins of mathematical modeling in the Renaissance which led to the development of 
algebra, calculus, and the historical explosion of knowledge and technology that 
followed. The move from static models built in inert media using traditional notations to 
dynamic models and associated visualization and analytic tools built in interactive media 
are changing profoundly not only the nature of mathematics and science but the nature of 
inquiry in these disciplines (Glass & Mackey, 1988; Haken, 1981). These changes in 
inquiry involve both a change in the kinds of phenomena that must be considered, and a 
change in the nature of argumentation and acceptable evidence (Holland, 1995). 
Furthermore, these cybernetic tools are finally beginning to appear in education. While 
their appearance is recent, their educational presence will accelerate into the next century 
as cybernetic experience begins to infiltrate all aspects of human activity, and as the move 
from static, inert models to dynamic, interactive ones is followed by moves to ever more 
immersive simulations and eventually to virtual reality (Heim, 1993). This evolution in 
modes of experience will be accompanied by an evolution from classical mathematics and 
science to nonlinear science and mathematics, where iterative, dynamical models will 
extend the range of phenomena subject to systematic modeling and investigation (Pagels, 
1988). 

However, to introduce these powerful tools and methods, fully formed in the ways 
that they are used by mature scientists, mathematicians, engineers, or other professionals 
who apply them is akin to introducing the classical tools of mathematics and science full
blown, to novices (AAAS, 1989; Richards, Barowy, & Levin, 1991). We know that this 
does not work, and the history of mathematics and science education is, in part, the story 
of dealing with this fundamental fact. We must now come to terms with the new 
complications associated with these new tools, especially for younger students, for whom 
non-cybernetic experience is simultaneously critically important yet under exploited in 
school learning. At this point, we need basic principles that would help structure 
productive interactions between physical experience and cybernetic experience in 
mathematics and science across all age levels (White, 1993). 

A Look Back Over Recent Uses of Multiple Representation Computer 
Systems 

Over the past ten years, computer technology has made possible and popular the 
physical linking of mathematical representations, most especially, graphs, tables and 
formulas, usually in the context of teaching and learning algebra and calculus. In recent 
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years, the linking has become bi-directional, and much student activity and exploration 
becomes possible exploiting the interactive nature of the technology. 'Figure r has 
become a commonplace in descriptions of curricula, texts and learning objectives 
(Confrey, 1992; Kaput, 1986, Kaput, 1989; Lesh, et al., 1987). YoU will 'note that in 
Figure 1 the "symbolic formulas" vertex is exaggerated, to reflect its dOuVnance in 
practice. Indeed, character string notations are "more equal" than any of the otijers, as is 
evident, for example, if one looks at how functions are input on most dev~ces'. and how 
functions are named or identified in activities - as algebraic formulas. " ' , ." 

coordinate 
graphs 

formulas 

numerical 
tables 

Figure 1: The "Big Three" 
However, it is becoming increasingly apparent that student difficulties in learning and 
using functions have not disappeared (Eisenberg & Dreyfus, 1994; Goldenberg, 1988; 
Sfard, 1995; Teles, 1989; Thompson, 1994b; Vinner & Dreyfus, 1989; Yerushalmy, 
1991). Indeed, the detailed analysis by Schoenfeld, Smith & Arcavi (1994) exhibits the 
extraordinarily fragile nature of understandings of linear functions when those functions 
are studied strictly in terms of graphs, formulas and tables apart from referential anchors 
in students' experience. Whether or not the physical (computational) links become 
conceptual links, understandings seem inadequate and incomplete. One may ask why this 
is the case. Our reply heeds the words of Anna Sfard (PME-NA 1994 Plenary Address): 

"The emperor is only clothes! ", 
Representations need to represent something (other than each other). They need 

anchoring in student's physical, 'imagistic, emotional experience. But this, too, is a 
widely held maxim. "Connections" play a central role in the NCTM Curriculum and 
Evaluation Standards (NCTM, 1989) and in most reform rhetoric. The connections to the 
wider world are depicted in Figure 2, where the text descriptions of situations are 
typically offered in text, as "word problems," and where the connections are in the minds 
of the problem writers and, presumably at some point, in the mind of the student. Hence 
the lighter arrows. 

As is indicated in Figure 2, the historical approach attempts to link the mathematical 
notations to the wider world of phenomena and situations in a weak and abstract manner 
that depends on a target student ability to interpret textual descriptions of phenomena and 
situations that are not themselves experienced in any direct form. Further, student ability 
to link conceptually the textual descriptions of phenomena and situations is typically ill
formed and far from robust. The mathematical side of the., curriculum seeks to 'use, the 
phenomena and situations to help learn mathematics, while the science side, of . the 
curriculum seeks to use the mathematics to deepen understanding, of the phenomena and 
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situations. Indeed, science instruction, much more frequently than mathematics 
instruction, attempts to provide some 

coordinate 
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formulas 

numerical 
tables 

Phenomena & 
Situations 

(Usually as 'Word 
Problems") 

Figure 2: Linking the Big Three to Phenomena & Situations - Weakly 

experiential version of the phenomena as part of the instructional context. Nontheless, we 
suggest that the mutual constitution of meaning for not only the notations and links among 
them, but for the phenomena and situations that they may be used to model, is 
insufficiently rooted in authentic student experience. Put simply, from the perspective of 
the students, the phenomena and situations either are missing altogether or are 
inadequately linked to the mathematics that is to be involved. The instructional strategy 
offered in this paper is to offer stronger and more direct connections to phenomena and 
situations, as reflected in Figure 3. 

coordinate 
graphs 

symbolic 
formulas 

numerical 
tables 

Figure 3: Stronger Links to Directly Experienced Phenomena 

The kinds of phenomena that may be. appropriate vary widely depending on the learning 
and teaching objectives. Ideally, experience of these phenomena and situations should 
both embody a measure of generality as well as deliberately tap into the expressive, 
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'" imagistic, kinesthetic, linguistic, personal, social and other resources that students bring 
to the learning situation. Since our instructional target is the Mathematics of Change, as 
described below we begin with motion phenomena, which include many of the desired 
characteristics, including a readily transferable descriptive vocabulary: words and phrases 
such as "speeding up," "slower," "catching up," "stopping," "turning around," "back and 
forth," "going at a constant rate," etc., are widely applicable to describe change 
phenomena whether or not they involve physical motion. That is, this language applies to 
many different kinds of quantities other than velocity, position or acceleration. 
Furthermore, they engage kinesthetic resources based in the first person experience of 
motion as well as imagistic thinking based in the varieties of graphical representations of 
motion. Finally, through an appropriate choice of activities, students can become 
engaged in expressive activities and even aesthetic concerns usually associated with dance 
and collective motion. 

Relating Cybernetic Vs Kinesthetic Experience: Illustrations Involving the 
Mathematics of Motion 

The forms of interaction between computer-based and non-computer~based 
experience can take many forms depending on the domain and the sophistication or age of 
the learner. We have been concentrating on the mathematization of motion, an intellectual 
effort that began with the Scholastics (Clagget, 1968; Kaput, 1994), continued through' 
Galileo and Newton (Edwards, 1979), and is re-emerging as an item of interest in the 
context of nonlinear phenomena model able via dynamical systems (Nemirovsky,. 1995; 
Prigogine, & Stengers, 1984; Sandefur, 1990, 1993). Of considerable importance is the 
fact that our efforts to include this activity in the earlier grades requires us to engage 
students in characterizing their motion via graphical, narrative, and kinesthetic methods 
rather than using algebra - as was the case historically well before the time of Newton, 
because algebraic tools were unavailable (Kaput, 1994). While a large body of research 
exists regarding student mathematization of motion, it mainly focuses on high school and 
college age students, and generally deals with "regular" motion that is describable 
algebraically (McDermott, 1984; Thornton, 1992). Indeed, student modeling of constant
acceleration and harmonic motion is usually a goal of this work. However, we are 
interested in modeling motion (1) beginning in the early grades, and (2) beginning with 
the "irregular" motion of children's own bodies and objects controlled by them. 

The move to younger children heightens the importance of concepts of rate, another 
well-studied area (Piaget, 1970, 1976; Piaget & Inhelder, 1974; Thompson, 1994). 
Indeed, work with speed and velocity provides an excellent arena for the learning of rate 
ideas, and we are especially interested in tracking the growth of concepts of rate where, 
unlike the standard approach, students are confronted with variable rates early and 
develop a sense of constant rates as a means of handling the complexity of these variable 
rates - via the development of a sense of average speed, or mean value. It may be worth 
pointing out that mean value is, mathematically, an important concept upon which much 
theoretical structure depends as is evident from an examination of the proofs of most any 
university calculus text (e.g., Fleming & Kaput, 1979). 

Relating Kinesthetic and Cybernetic Motion: The SimCalc. Project 
Approach 

While we often use the phrase "motion simulation" to refer to our computer-based 
motions, it is important to realize that screen motion of objects amounts to visually real 
motion to which all the basic perceptual and analytic resources can be applied. They yield 
visually experienced motion, whether they are subject to first person or third person 
control (as for example, the difference between a simulated car that is being "driven" in 
real simulation time from within with a windshield view, etc., and a car observed from 
the outside whose motion is specified by giving its velocity graph, for example). 
Nonetheless, they do not yield kinesthetically experienced motion, although it is also 
possible to create a motion by dragging an object via mouse-control on the Screen, which 
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involves a quite direct connection between hand-motion and simulation-motion (Stroup, 
1993, 1996). . 

The physical world provides kinesthetically rich experiences of motion, but 
quantitatively poor experiences - where time and position are difficult to measure and use 
to quantify velocity. This presents an especially difficult challenge for young students 
who have only the vaguest idea of what one might measure and why. (One need only 
recall the highly stylized and tightly choreographed "experiments" in college physics 
laboratories aimed at enabling students to measure acceleration due to gravity.) As a 
contrast, an appropriate computer simulation can provide quantitatively rich experiences, 
but, obviously, kinesthetically impoverished ones. For example, one can engage students 
in graphically controlling and observing motion of a computer-based elevator in a 
building, where each floor of the building is clearly numbered, where hot-linked position 
and velocity graphs are labeled, time is visually marked by a sweeping time cursor, and 
all relevant quantities are directly and easily adjustable. Indeed, one can enable the 
students to control multiple elevators and compare motions one against the other as they 
are repeated and/or changed. 

The SimCalc Project (Kaput, 1995) has produced a whole series of motion 
simulations involving objects or characters moving in various simulated "worlds" that 
students can control in various ways - swimmers inmultilane pools, dancers on a 
ballroom floor, people and animals moving across various scenes (e. g., duckies on a 
pond, people walking along a path), cars and trains that can be "driven," and even a 
schematic "dots world," where the student controls the movement of dots across a simple 
scrollable, zoomable, numerically labeled grid. However, unless the screen-object 
motions produced by the students can be linked to their personal experience of motion in 
more than an abstract way, their motion experience is only visual and disconnected, much 
as in a video game (Kaput, 1994). It does not support connections with knowledge about 
their movement in space, or the movement of other physical objects. We are studying 
two ways of building such connections, varying in their level of student interactive 
intimacy with the motion data: 

(1) Connections based on alternating between physical and cybernetic motion, 
where students engage in activity structures in one realm designed to support 
learning in the other; and 

(2) Connections based on integrating simulation-based and physically-based data 
collected in real time within the same computer system. 

Examples of 1: Connections of the first type can take the following form, beginning with 
physical motion, partially inspired by the pioneering work of Mary Barnes (Barnes, 
1993). Versions of these activities have been piloted with 9 and 10 year-olds (Kaput, 
1995) and a larger scale study involving more than 50 students in grades 3-5 is underway 
as of this writing. Children walk and run along a numerically labeled straight path with 
speeds characterized qualitatively as "slow," "medium," and "fast" where measurements 
take the form of timing "trips" along pre-specified distances, noting distances traveled 
over given time intervals, comparing different students' versions of slow, medium and 
fast, etc. This limited 3-valued version of velocity matches children's limited ability to 
discern and discuss velocity differences. The next activities are on-line with, say, an 
Elevator (vertical) or "Walking World" (horizontal) simulation, that are likewise initially 
restricted to 3 speed values, but where the values are explicitly given as quantities, say 1 
floor/sec for "slow," 2 floors/ sec as "medium," and 4 floors/sec as "fast." These values 
are represented graphically on a velocity graph as horizontal straight line segments whose 
student-adjustable length determines the duration of the motion as depicted in Figure 4. 
In this situation, the student drags a choice of S, M, or F segment onto the velocity graph 
and stretches it to the desired width (duration). This can be done for two or more. 
elevators to compare motions associated with different graphs. 
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Figure 4: Elevator World 

Students examine how far elevators travel over different time intervals at these 
different speeds. In the simulation, the experience is strongly quantitative, with much 
computation associated with testing conjectures. ("Snap-to-grid" is turned on so that all 
time and velocity values are whole numbers, reducing computational complexity.) 
Gradually, they are introduced to variable speed elevators, mixing slow, medium and fast 
speeds, and confront such questions as whether one could get to a given floor with a 
constant medium speed at the same time as an elevator that first goes slow, then fast. 
This exercise in determining mean values amounts to adjusting the height of the velocity 
graph (which some students begin to relate to the area under the horizontal velocity 
graph), but it is devoid of physical meaning until the students return to the physical 
activity with the same activity-structure - where they nQw move in pairs. Here their 
kinesthetic sense of "catching up," for instance, on a slow-then-fast trip simultaneous 
(side-by-side) with a partner's medium speed trip, often confronts their tendency to race. 
This type of situation, where maintaining a constant speed. is problematic, raises questions 
of what constant speed means and yields a deeper, more connected meaning for average 
and constant rates. Later, students return to the computers to deal with more complex 
versions of the mean-value activity than could be handled physically, where the visually 
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editable graphs make this possible. To introduce negative velocities, students again return 
to the physical realm, where they act out and measure times for various types of "round
trips," for example, trips that go slow in one direction and fast in the other. When they 
return to the computer, where restrictions to positive velocity values are removed, they 
confront the question of what kind of velocity graph will make the elevator go downward. 
Once again, the physical experience takes more precise quantitative form as they compute 
positive and negative areas (either by multiplying length dimensions of the rectangles 
involved, or by counting grid-squares). 

Examples of 2: PhysicaVcybernetic connections of the 2nd type are based on newly 
available functionality that builds on the traditional computer-based laboratory ability to 
import and graph quantitative data from measuring instruments on a real-time basis . 

. Figure 5: Leading Your Own Clown Parade 

Traditional Micro Computer Based Laboratory (MBL) tools enable one to input 
physically based data into the computer and display it in various ways (Thomton, 1992; 
Tinker & Thornton, 1994), including and especially motion-based data. We can now not 
only graph the data describing, say, a student's physical motion, but we can attach that 
data to a character or object in a simulation and replay the motion so that it can be studied 
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for subtlety that may not be evident in its initial transient enactment. ,But more 
importantly, this imported data can be mathematically transformed and compared with the 
original, and students can interact with either the original or transformed data in a variety 
of ways. For example, they may try to create physically the motion of the transformed 
data (and then compare their attempts with the "original" transformed data), they might try 
to approximate the original data with that generated by an algebraic formula, they might 
try to create physically a motion that matches the algebraic data, they might compare their 
motion with some particularly interesting aspect of motion of a classmate, they might try, 
graphically to find a mean-value for a physically generated motion, and so on. In all these 
cases, they can examine all attempts both from multiple perspectives: coordinate 
graphical, algebraic, numerical, and via actual screen motions. This kind of intimate 
interaction between the student's physical experience and mathematical experience, while 
sharing some aspects of what Papert (1993) refers to as "syntonic" experience, is both 
new and a harbinger of a whole new style of instruction that mixes "first person action" 
and "third person" observation and adjustment of mathematical objects. One can regard it 
as yet another step in the broad evolution of integrating cybernetic experience into human 
activity (Heim, 1993). For example, in Figure 5, the "froggie" could enact your imported 
physical motion, which is used as the template for a collection of clowns whose motion is 
graphically edited so that they follow you in a parade (or, alternatively, move in some", 
interesting counterpoint to your motion). 

Our aims are broader than simply understanding motion. Ultimately, we want 
students to exploit their understandings in other settings, with quantities other than 
velocity, position, etc. In the terms of Figure 2, we want students to make the wider 
connections to their world that were among the traditional objectives of mathematics 
instruction. Accounts of students achieving these connections are in preparation. ' , 

References 

American Association for the Advancement in Science. (1989). Science for' all 
Americans: A Project 2061 report on literacy goals in science, mathematics, and 
'technology. Washington, DC. ' 

Ainley, J. (1995) Re-viewing graphing: Traditional and intuitive approaches. For the 
Learning of Mathematics, 15(2) June, 10-16. 

Barnes, M. (1993) Investigating change: An introduction to calculus for Australian 
schools. Carlton, Victoria: Curriculum Corporation. 

Clagget, M. (1968). Nicole Oresme and the medieval geometry of qualities and motions. 
Madison, WI: University of Wisconsin Press. 

Confrey, Jere (1992). Using computers to promote students' inventions on the function 
concept. In S. Malcom, L. Roberts & K. Sheingold (Eds.), This year in school 
science 1991: Technology for teaching and learning (pp.141-174). Washington, 
DC: American Association for the Advancement of Science. 

Edwards, C. (1979). The historical development of the calculus. ' New York, NY: 
Springer-Vedag Inc. 

Eisenberg, T., & Dreyfus, T. (1994). On understanding how students learn to visualize 
function transformation. In E. Dubinsky, A. Schoenfeld & J. Kaput (Eds.), 
Research in collegiate mathematics education. I, (Vo!. 4, pp. 45,,68). Providence, 
RI: AMS. 

Fleming, D., & Kaput, J. (1979). Calculus & analytic geometry. New York: Harper & 
Row. 

Goldenberg, E. P. (1988). Mathematics, metaphors and human factors: Mathematical, 
technical, and pedagogical challenges in the educational use of graphical 
representation of functions. Journal of Mathematical Behavior, 7(2), 135-173.: 

Glass, L., & Mackey, M. (1988). From clocks to chaos. Princetori: Princeton 
University Press. 

Grant, W., & Borovoy, R. (1991). Apple classroom of tomorrow program: Apple 
Computer, Inc. Cupertino, CA. 



28 

Haken, H. (1981). Chaos and order in nature: "Proceeding of the International 
Symposium on Synergetics. New York: Springer-Verlag. 

Heim, M. (1993) The metaphisics of virtual reality. New York: Oxford University 
Press. 

Holland, J. H. (1995). Hidden order: How adaptation builds complexity. New York: 
Addison-Wesley. 

Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to 
adolescence. New York: Basic Books. 

Kaput, J. (1986). Information technology and mathematics: Opening new 
representational windows. Journal of Mathematical Behavior, 5, 187-207. 

Kaput. J. (1994). Democratizing access to calculus: New routes to old roots. In A. 
Schoenfeld (Ed.), Mathematical thinking and problem solving. Hillsdale, NJ: 
Erlbaum. 

Kaput, J. (1995) SimCalc YR 2 Annual Report to the National Science Foundation. 
Available from the author and on the WWW SimCalc site. 

Kellert, J. (1993). In the wake of chaos. Chicago, IL: University of Chicago Press. 
Lakoff, G., & Johnson, M. (1980). The metaphors we live by. Chicago, IL: The 

University of Chicago Press. 
Lesh. R., Behr, M., & Post, T. (1987). The role of representational translations in 

proportional reasoning and rational number concepts. In C. Janvier (Ed.), Problems 
of representation in mathematics learning and problem solving. Hillsdale, NJ: 
Erlbaum. 

Nemirovsky, R. (1994). On ways of symbolizing: The case of Laura and the velocity 
sign. Journal of Mathematical Behavior, 13, 389-422. 

Pagels, H. (1988) The dreams of reason: The rise of the sciences of complexity. 
[publisher] 

Papert, S. (1993). The children's machine. New York: Basic Books. 
Prigogine, I., & Stengers, I. (1984). Order out of chaos. New York: Bantam. 
Richards, J., Barowy, W., & Levin, D. (1991). Computer simulations in the science 

classroom. Journal of Science Education, 1, 67-79. 
Sandefur, J. (1990). Discrete dynamical systems: Theory and applications. Oxford: 

Clarendon. 
Sandefur, J. (1993). Discrete dynamical modeling. Oxford: Oxford University Press. 
Schoenfeld, A., Smith, J., & Arcavi, A. (1994). Learning: The microgenetic analysis of 

one student's evolving understanding of a complex subject matter domain. In R. 
Glaser (Ed.), Advances in instructional psychology (Vol. 4, ). Hillsdale, NJ: 
Erlbaum. 

Sfard, A. (1995). The development of algebra: Confronting historical and psychological 
perspectives. Journal of Mathematical Behavior, 14, 15-39. 

Stroup, W. (1993) Kinemouse. Software. Educational Technology Center, Harvard 
Graduate School of Education. Cambridge, Massachusetts. 

Stroup, W. (1996) Learning the mathematics of motion. [Dissertation] Harvard 
Graduate School of Education. 

Teles, E. J. (1989). Numerical and graphical presentation of functions in precalculus. 
Dissertation Abstracts International, 51, 777 A. 

Thompson, P. (1994). The development of the concept of speed and its relationship to 
concepts of rate. In G. Harel & J. Confey (Eds.), The development of 
multiplicative reasoning in the learning of mathematics. Albany, NY: SUNY Press. 

Thompson, P. (1994b). Students, functions, and the undergraduate curriculum. In E. 
Dubinsky, J. Kaput & A. Schoenfeld (Eds.), Research in collegiate mathematics 
education (Vol. 1,). Providence, RI: American Mathematical Society. 

Thornton, R. (1992). Enhancing and evaluating students' learning of motion concepts. 
In A. Tiberghien & H. Mandl (Eds.), Physics and learning environments [NATO 
Science Series]. New York: Springer-Verlag. 



29 

Tinker, R., & Thornton, R. (1994). Constructing student knowledge in science. TnE. 
Scanlon & T. O'Shea (Eds.), New directions in educational technology [NATO 
Science Series]. New York: Springer-Verlag. 

Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. 
Journalfor Research in Mathematics Education, 20(5),356-366. 

Yerushalmy, M. (1991). Student perceptions of aspects of algebraic function using 
multiple representation software. Journal of Computer Assisted Learning, 7, 42-
57. 


