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This paper is a brief description of a larger study conducted to 
examine mathematical responses from 90 ftrst year university 
students. The main part of the study was concerned with 
identifying and describing the quality of existing mathematical 
knowledge that these students brought with them to university. 
The SOW taxonomy (Biggs & Collis, 1982) technique was use d 
initially as the evaluation tool. However, certain limitations of the 
SOW technique were identified which led to the development of 
a knowledge element coding technique. The focus of this paper is 
a brief description of this coding technique, its use and value in 
evaluating mathematical knowledge elements. 

Several researchers, including Ball (1990, 1991), Eisenhart et al. (1993), Even 
(1993), Leinhardt (1988), Hiebert and Leferve (1988) and Gagne (1985) have generally 
agreed that mathematical knowledge has two components. The procedural component is 
that .which consists of knowledge of algorithms, mathematical rules and procedures. The 
conceptual component is mathematical understanding. Other researchers, however, do 
not distinguish between the two components but define the growth of understanding 
mathematics as a continuing process of organising one's knowledge structures (pirie & 
Kieren, 1994). Mathematical understanding from this perspective is defmed as a whole 
dynamic process and not as a single or multi-valued acquisition, nor as a linear 
combination of knowledge categories. Regardless of whether mathematical knowledge is 
the acquisition of components or a growth process, a significant problem is its evaluation 
in order to determine whether or not the person has acquired it. Such an evaluation is 
particularly important in identifying potential secondary teachers of mathematics, since 
competency to teach mathematics requires proficiency in both mathematical knowledge 
and pedagogical knowledge (Ball, 1990, 1991; Eisenhart et aI., 1993; Berliner et aI., 
1988). 

Methodology 

The sample consisted of 90 first -year university mathematics students. Fifty 
percent of the sample had received pre-tertiary education in Tasmania, forty percent from 
other Australian states and ten percent from overseas. These 90 students were enrolled in 
the pre-requisite mathematics unit for the Engineering, Science and Technology, and 
Mathematics and Science Education programmes. The students were classified into three 
groups according to their pre-tertiary mathematical background. Group A completed high 
level mathematics, group B the middle level and group C· the low level mathematics. It 
was hypothesised that the quality of the students existing mathematical knowledge would 
be related to the differences in their pre-tertiary backgrounds. The data collection 
instrument was a questionnaire consisting of four mathematical items (see Appendix B). 
The instrument identifted misconceptions relating to the product of two negative numbers, 
trigonometric and logarithmic functions and statistical variance. All the items required 
responses concerning processes in order to explain the procedures provided as cues. . 

To determine the types of mathematical knowledge elements that would facilitate 
and promote mathematical competence, a modifted form of the SOW taxonomy (Collis & 
Watson, 1991) task analysis technique was used for qualitative analysis. Several 
difficulties were encountered during. the mapping of the students' responses using the 
SOW technique (Collis & Watson, 1991). One of the main difficulties was categorising 
the responses into SOW levels under the characteristics being specified for each level. 
For example, a uni-structural level was to be characterised by the presence of a single 
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correct aspect of the specified mode. However, more than one type of 'single correct 
aspect' was observed during evaluation of the responses. This created classification and 
analysis problems. Therefore, the Knowledge Elements (KnE) task analysis technique 
was developed primarily to strengthen the validity of these SOW level measures. The 
KnE is specifically for mathematical learned outcomes. It is a coding system to facilitate 
the categorisation of responses into complexity levels and to provide codes for descriptive 
measures. KnE takes into account procedural and conceptual mathematical knowledge. 
The codes are in the form of six broad bands of knowledge elements. Five bands of 
'procedural' knowledge and the sixth band is for 'conceptual' knowledge elements. 
These bands are described in Table 1. 

KnE Procedural Knowledge 

The KnE procedural knowledge is based on Gagne's (1985) description of 
procedural knowledge as pattern-recognition and action-sequence. Pattern-recognition 
refers to the process of classifying information so that the person is able to recognise 
specific examples of concepts by relating them to general patterns. Action-sequence 
refers to the persons ability to carry out sequences of symbolic operations, that is, 
recognising patterns specified by the conditions whilst carrying out a sequence of actions. 
These actions are either covert, mental, actions or both covert and overt, physical, actions 
consisting ofa 'series of steps in their correct sequence' (Gagne, 1985, p.103). Gagne 
suggested that these two forms of procedural knowledge are linked in performance. For 
example, consider the Trigonometric item: solve for x in Cos(2x+ 1)=0. Here, the 
pattern-recognition is knowing that this' given cue' is not in the same form as similar cues 
such as y(2x+ 1) that can be expanded to 2xy + y. The action-sequence type knowledge 
for the 'given cue' follows on from pattern-recognition. That is, after recognising, 
covertly, that Cos(2x+ l)is a trigonometric function, the person could proceed to the next 
action of giving meaning to the symbols '(2x+1)'. Knowing that (2x+1) represents an 
angle measurement corresponding to the Cosine value of zero, would lead to the next 
action of recalling what the angle size is. Once this is retrieved, the computation 
procedures would follow resulting in a solution for x. Note, however, that pattern
recognition can occur simultaneously during the process of action-sequence. For 
instance, knowing what angle size to recall requires the ability to recognise, compare and 
to eliminate angle sizes of other related trigonometric functions, e.g. sine and tangent. 
Anderson (1981) and Gagne (1985) have maintained that pattern-recognition and action
sequence procedures are closely connected and that the relationship between them is 
similar to that between concepts and rules. In addition, mastery of pattern-recognition is 
through generalisation and discrimination processes. Generalisation explains how a 
person can classify concepts they have never seen before. Therefore, generalisation 
increases the range of situations to which a procedure applies. For example, an individual 
who learned that km + 2m is the same as m(k+2) could generalise this pattern incorrectly 
to others of similar form as in Cos(2x+ 1) and log(x-1), seeing them, respectively, as 
Cos2x + Cos 1 and logx - log 1. . 

Discrimination, on the other hand, restricts the range of conditions to which a 
procedure can be applied. The statistic, trigonometric and logarithmic items are examples 
of situations with restricted conditions, see Appendix B. For instance, the evaluation of 
log(2x+ 1)=0 is restricted to procedures that meet the conditions for this situation only. 
Other procedures would be required for the evaluation of, say, log 2x= 1. 

Computation is a function or a dependent process of procedural knowledge. 
Computation involves speed and accuracy. These two components are dependent on the 
pattern-recognition processes of generalisation and discrimination. Computation is also 
part of the action-sequence procedures and in some cases it is the link between pattern
recognition and action-sequence. For example, if a person was asked; find the area of the 
largest circle inside a square of 2cm length, then the procedure that connects pattern
recognition or discriminating between shapes and area, to action-sequence, is computation 
of the required area. Accuracy and the rate in which the computation is carried out are 
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essential features of this element of procedural knowledge. According to Collis (1990, 
p.5), computation in mathematics illustrates mastery of 'the link between the symbol 
systems themselves and the world'. . 

Procedural knowledge, therefore, involves more than knowing and recognising 
symbols, patterns, rules and algorithms. It also involves processes of generalisation, 
discrimination and computation, all of which are based on understanding and prior 
knowledge. Eisenhart et al. (1993, p.9) have defined procedural knowledge as 'mastery 
of computational skills and knowledge procedures for identifying mathematical 
components, algorithms, and definitions'. These authors have further described 
procedural knowledge of mathematics as consisting of two parts: (a) knowledge of 
format and syntax of the symbol representation system and (b) knowledge of rules and 
algorithms. 

KnE Conceptual Knowledge 

Knowledge comprising facts has been described by Anderson (1980, p. 222) as 
'declarative knowledge'. According to Collis (1990), learning in the concrete symbolic 
mode leads to declarative knowledge which is demonstrated by 'an ability to make 
symbolic descriptions of the experienced world' (p.5). Declarative knowledge' is 
knowledge that is expressed through 'the medium of a symbol system in a way that is 
publicly understandable' (Biggs & Collis, 1991, p.59). From these perspectives it seems 
that mathematics, a symbol system, is 'purely' declarative knowledge. Such perspectives 
also imply a necessity for understanding the mathematical concepts represented by the 
symbols. in other words, the link or relationship between a mathematical concept and its 
symbolic representation is understanding. It follows that one way to determine an 
individual's mathematical understanding is to obtain a measure of the individual's 
declarative knowledge. Declarative knowledge in this sense encapsulates both procedural 
and conceptual knowledge. 

Conceptual knowledge in mathematics is defined as fundamental knowledge 
which underlies the structures for mathematical competence (Gagne, 1985). These 
structures are the relationships and interconnections of ideas that explain and give 
meaning to mathematical procedures represented by symbols (Eisenhart et al. 1993). 
From Gagne's (1985) perspective, conceptual knowledge is. understanding in the form of 
knowledge organisation or sets of propositions, sets of recognised patterns, or sonie 
mixture of these. In the KnE framework, conceptual knowledge is demonstrated by a 
person's ability to make the relationships between declarative knowledge, symbols and 
concepts (Anderson, 1980; ColIis, 1990; Biggs & ColIis, 1991), and knowledge 
organisation or sets of pattern-recognition (Gagne, 1985). Thus, the sixth broad band of 
knowledge elements is called 'relationships'. 

Table 1: K 1 to K5 are the broad bands for procedural knowledge elements and K6 is. the 
band for conceptual knowledge 
Knowledge Band Knowledge description 

Code 

Kt Recognition & 
Knowledge pf what the situation is or the ability to classify the situation into 
categories of known or familiar knowledge. 

Classification - [Generalisation & Discriminationl 

Knowledge of the problem in the most routine sense. For example, substitution 
of values into an equation; knowing the 'operation' for the terms such as a 

K2 Routine product, to increase, and knowing when to expand an expression or to factorise. 
(Generalisation] 

K3 Rules & Algorithms 
Knowledge of rules and algorithms to compute the task. 
[Discrimination] 

K4 Format & Syntax 
Knowledge of format and syntax of symbol representation. 
[Discrimination] 

KS Computation 
Knowledge of how to solve or compute correctly. 
[Computation] 

K6 Relationships 
Knowledge of relationships and interconnections of ideas that explain and give 
meaninl! to mathematical procedures. .' 



224 

The processes stated in the 'brackets' are the main processes involved in generating the 
particular knowledge element. 

Scale Values For The KnE Descriptors 

Since the KnE method was essentially to provide codes for elements of procedural 
and conceptual knowledge. These codes, assumed to be associated with the SOLO levels: 
pre-structural, uni-structural, multi-structural, relational, and extended abstract, provided 
new descriptions for the SOLO. For example, instead of perceiving a uni-structural as 
representing a single aspect of a mode, the new description is represented by several KnE 
codes. Thus, each SOLO level can be perceived as having quantifiable elements. A 
justification of this approach is provided by Cryer and Miller (1991, p.l08) who 
suggested that for categorical measurement, classification of elements according to a 
common attribute, new variables can be created through arithmetic or functional 
operations on existing variables and such creations would constitute a change in the 
measure of the magnitude of the new variable. Since the KnE descriptors are essentially 
new variables being created from existing SOLO classifications, a set of arbitrary 
numerical values was employed to indicate the change in the magnitude of the new 
variables. That is, pre-structural=l (PRE), uni-structural=2 (UNI), multi-structural=3 
(MULT), relational=4 (REL), and extended abstract=5. In addition, because the SOLO 
levels were assumed to have no clearly defmed boundaries between the upper and lower 
levels, the values of +0.5 and -0.5 were also introduced. A value of +0.5 was added to 
represent response structures that were border-line towards an upper category and -0.5 to 
represent structures border-line towards a lower category. This addition of border-line 
values was also to reflect the continuous or 'growth' nature of knowledge. Thus, the 
numerical values associated with the KnE codes were; No-Attempt = 0, PRE- = 0.5, PRE 
= 1.0, UNI- = 1.5, UNI = 2.0, UNI+ or MULT- = 2.5, MULT = 3, MULT+ = 3.5, 
REL = 4.0, REL+ = 4.5, and Extended Abstract = 5.0. 

KnE Descriptors 

The KnE descriptors described here refer to the categories obtained from the re
classification of the study data using the KnE task analysis method. To distinguish 
between the SOLO levels and those described by the KnE technique, the term 'descriptor' 
rather than 'level' was adopted. The KnE descriptors or categories are the same as the 
SOLO taxonomy, these being pre-structural (PRE), uni-structural (UNI), multi-structural 
(MULT), and relational (REL). However, the criterion for classification was different. 
That was, the KnE descriptors were classified in terms of knowledge elements rather than 
'relevant aspects' of the mode of intellectual functioning as assumed in the SOLO 
taxonomy (Biggs & Collis, 1982). The responses to the four items: NEG, TRIG, LOG, . 
and ST AT, were recoded as Kl - Recognition & Classification, K2 - Routine, K3 - Rules 
& algorithms, K4 - Format & Syntax, K5 - Computation, and K6 - Relationships. To 
differentiate between correct and incorrect use of the particular knowledge element, a 
subscript x was used. For example, K2x would mean that incorrect routine knowledge 
was demonstrated. Descriptions of each KnE descriptor are as follows as well as a 
sample coding of a multi-structural SOLO task analysis map. 

A pre-structural response (PRE) was characterised by. failure to make correct 
generalisation and to carry out appropriate sequence of actions for the task. In other 
words, such a response reflected a lack of mastery of generalisation and discrimination 
processes which are required processes of pattern-recognition procedures. 

A uni-structural response (UNI) was characterised by a sequence of Kl, K2, K3, 
and K4 type knowledge elements. That is, Kl is an indication that the correct pattem
recognition was made for classifying the 'given cues' into known categories; followed by 
a covert or overt routine action (K2) while simultaneously recalling correct rules and/or 
algorithms (K3) and applying correct format and meaning to symbols (K4). A UNI+ 
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response, on the other hand, would require an additional recognition of elements of the 
'given cues' that could lead to K5 or computation. 

A multi-structural response (MUL T) was characteri~ed by the presence of K5 or 
computation being correctly carried out. .A ·MULT+ response was seen in attempts to 
utilise as much of the 'given cues' as appropriate to provide a 'justification' for the 
sequence of actions rather than for conceptual reasons. A sample coding of a multi
structural response is given below in Figure 1. The second column of Figure 1 is a task 
analysis using the SOLO mapping technique (Collis & Watson, 1991). 

Figure 1: Sample coding of a multi-structural response using the KnE method 

SOLO EG Item response structure 
level Main llcstion: What is the roducL of -4 and -30 

MULT 

FOCUS 

120 equals 
4 times 30 

PROCESS RESPONSES 

----". __ -+-__ 120 

This response is 
correct only for 

...... --~. -A x -8 = +AB 
or -A/-B = +A/B 

.---+-1_ Two negatives 
make a plus' could 
mean: -(-B) = +B 

MAIN QUESTION: 
'product of -4 and -30' 

KnE 

Kl and K3: 
Recognised that the given 
'rule' was [or specific cascs. 

K3 and K4: 
Acknowledged lhedifferenccs 
or can discriminate between 
the diffcrent 'format & syntax 
of symbols'. 

[Kl,K3-K3,K4} 
K5 was a 'covert' knowledge 
element in this response. 

A relational response (REL) was characterised by ~vidence of 'justifications' for 
conceptual reasons. This process was classified as a K6 element, because it indicated an 
interconnection of the 'given cues' with the individual's conceptual understanding of the 
situation. It also provided an indication of mastery of the pattern-recognition and action
sequence processes. This process also appears to govern the action-sequence and the 
closure of the response. The REL+ response was characterised by references being made 
to a geneml or abstract form of the concept not represented in the 'given cues'. 

A REL is distinguished from a MULT by the inclusion of K6. K6 could occur 
twice in REL responses, once in the beginning and once at the conclusion, usually as a 
statement to link the action-sequence as a whole unit of response. K6 acted to elaborate 
and organise knowledge. According to Gagne (1985, p.l00), elaboration 'is the process 
of adding related knowledge to the new... [ or given cues] ... knowledge' and 
organisation 'is the process of putting declarative knowledge into subsets and indicating 
the relationships among subsets'. She added that organisation enhances management of 
the 'limited-capacity of the working memory during retrieval' (p. 101). 

To summarise the above descriptions, three distinct qualities of knowledge were 
found. These were: pre-mastery of pattern-recognition, concrete symbolisation and 
conceptual symbolisation. The pre-mastery of pattern-recognition type knowledge 
included responses classified as PRE-, PRE, and UNI-. The concrete symbolisation type 
knowledge comprised responses classified as UNI, UNI+, and MULT. The conceptual 
symbolisation type knowledge included responses classified as MULT + , REL, and 
REL+. There is a summary of the knowledge descriptors and their descriptions ID 

Appendix A. 



226 
Results and Conclusion 

The use of the KnE method in conjunction with the SOW levels provided a 
clearer description of the quality of mathematical knowledge that constitute mathematical 
competence in the response structures. The SOW technique alone was not sufficient in 
determining mathematical competence since SOW is essentially for evaluating shifts in 
the cycle of learning within a developmental stage or mode (Biggs & ColIis, 1991). 
Although mathematical competence has been described in SOW terms as 'understanding 
in the concrete symbolic mode' (ColIis & Romberg, 1991, p.96), it still begs the question 
of what exactly this understanding consists of. The KnE technique described above has 
been effectively used in describing mathematical competence for non-research 
mathematical items (Gates et aI., 1995) as well as providing a mechanism for quantifying 
qualitative data. 

It was hypothesised that the quality of the students' existing mathematical 
knowledge would be related to the differences in their pre-tertiary backgrounds. 
However, a Chi-square goodness-of-fit test was not significant (p<O.OI) and it was 
concluded that there was no significant difference in the quality structure of responses 
from the three groups. Further analysis using a model to describe the interconnection of 
procedural and conceptual knowledge showed most of the responses from the three 
groups to be within the pre-mastery of pattern-recognition and concrete symbols, see 
Appendix A. The results strongly suggest that these first year university students enter 
university studies with mainly procedural knowledge of mathematics. Such findings 
could not have been achieved with the use of the SOW taxonomy technique alone. The 
KnE technique has potential for evaluation and assessment of mathematical cognitive 
processes. Particularly evaluations and assessments of cognitive structures, knowledge 
elements, pertaining to mathematical competence in both the pre-tertiary and tertiary 
levels. This paper only provides a brief description of the KnE technique and a small part 
of a larger study. For a detail description of the research and methodology, the reader is 
encouraged to read the whole thesis which will be made available in the library at the 
University of Tasmania. 
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Ai~PENDlX A: 

A summary of KnE descriptions 

""'--KnE Mathematical knowledge element description KnE codes Knowledge 
11''''""'1'1.,.." description '---. 

PRE- Predominanlly incorrect pallern-recognition procedures 
presumably because of lack of knowledge - Kl x• K2x. K3x 
IX)Nrl' KNOW. or inability to reealllearning - CANT 
RE~ IEMBER or CAN'T RECALL. 

PRE Failure to make corrcct generalisation and discrimination Kl x• K2x. K3x• PRE-MASTERY 
as well as providing inappropriate sequence of actions K4x. K5x OF 
for the task. (any combination PA'lTERN-

of tlIesel RECOGNrrlON -. 
UN.- Showed the ability to make a correct pattern-recognition. 

This may be followed by a routine action or a statement KI. K2 or KI. K2. 

~'UN' 
of an incorrect rule or algorithm. K3x.KI. K3. K4x 
Showed the ability to make correct pallern - recognition 
(KI): followed by routine action (K2). Demonstrated tlIe 
ability to discriminate rules and algorithms(K3) and KI. K2. K3. K4 
simultaneously apply correct format and meaning to L"ONCREfE 

1-..... symbols (K4). 
\!NI+ Showed all the elements as in UN1 wilh an additional SYMBOUSAll0N 

indication of procedures that could lead to correct KI. K2. K..1. K4 --> 
computation -->K5 K5 - ,m;r Showed all the elements as in UNI+ with the additional ~ 

-."- computation (K..') clement. KI. K2, K3, K4, 1<.5 

~,jUL -r+ Showed all the elements as in MULT plus a juslificnlion 
for the preceding sequence of actions. A positive sign of KI, K2, K3, K4. , 
a K6 element. KS-->K6 

REL Provided evidence of conceptual links between the aJNCEPTUAL 
i procedural knowledge elements. Showed mastery of the (K6), KI, K2. K3, SYMBOUSATlON 

processes involved in pattern-recognition and action- K4,KS,K6 
sequence. 

ltEL+ In addition to the elements as in REL. evidence of (K6), Kt, K2, K3, 
rererence being made to a general form,abstract concept. K4. KS, K6+ 

'--- of the conceplnot represented in the. given cues. 

Ak"PENDlX B: 

The Questionnaire Items 

1 • Statistics 
Te.l Items were measured and foor results were produced: 
A tillS! of year Itll2 studf'nt'l was given the Information below 
to find the requeskd measures: 

10 

~x;=40 
i-I 

( 10 2 

\ >:X;) = 1600 
.-1 

9 2 

~(Xi -x) =24 
.• -1 I_I 

, - 2 
Use these resuUs to nod the nleon , X ,and I'orionc#!, S X • for 

-. these J 0 Item~. 
\ .... 

. The clDss respon.fes: 
." 2 
Students produced j different values for the lIarionce, S X : 
I) 2.4 (11) 3.4 (Ill) 2.7 

2 
Q. WhIch .-orionce, S X :-15 the correct one? Please explain. 

3. Ne,atlve Number 

A hlg" school student was asked the following question: 
What Is the product of -4 and -30? 

A shldent reqJonded: 

" 120 equals 4 tbnes 30 
Two negatives make a plus" 

QI. Would you say this student uodersfllnds how to 
ellplaln the products of n«<gatlve numbers? 
Q2. How would you explain the result of 120? 

4. 

2. Logarithmic function 
Simplify and evaluate for x, 
IogIO (2x+1) = IogIO (x-I) 

A shldent Tr!sponded: 

log (2x+I) = log (lI-l) 

log 2x + log I = log x - log 1 (log 1=0). 
Jog 2x -log x = 0, • (1og10 II = 0) 

.. x= I 

QI. Is the student's response correet? 

Q2. Please explain and sllow why you answered 
yes/no to QI • 

Tr!&onomelrk Function 

Evaluate for x, Cos (2x+l) = 0 
A Shldent responded: 

C08 (2,. + 1) '" 0 
Cn.:,.+Co.l=O 
Cos:" =·Cos 1 

:" .. ·1 
:. ,. =.1/: 

QI. Is the studut response cOffed? 
Q2. Please explaIn and show why you answered 

yes/no to Ql. 


