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Students' ability to understand calculus has been of concern for some time. 
Students are often locked into a process-oriented style of thinking which is an 
obstacle to their understanding of important concepts. In this paper we 
describe the results of an integral calculus questionnaire given to senior 
secondary school students and designed to measure their understanding of 
concepts associated with the Riemann integral. We describe some 
misconceptions in their understanding and the instrumental, process-oriented· 
thinking underlying them. 

Introduction 

Calculus reform programmes are now well underway in some parts of the world in 
an attempt to address the difficulties which many students have had with understanding 
calculus. Much of the research into these difficulties has uncovered students' conceptual 
difficulties with limits, differentiation and integration (see e.g. Tall, 1985, 1986a, b; 
Steen, 1988; Barnes, 1988; Li & Tall, 1993; Thompson, 1994) and considerable effort 
has also been put into finding ways to improve such understanding, often using computer 
software such as symbolic manipulators (e.g. Small & Horsack, 1986; Palmiter, 1991; 
Barnes, 1994; Hubbard, 1995). Heid (1988), for example, suggested giving meaning to 
basic concepts, by using graphical software and symbolic manipulators to build 
conceptual insights based on mathematical and cognitive principles. She found that, using 
these methods, the learning of fundamental concepts was greatly improved in her 
experimental class. These students made use of a large variety of concept representations 
and learned how to reason with them. They learned to think for themselves and to 
construct their own ways of handling the concepts. It became apparent that they had 
integrated the ideas into their own knowledge structures. 

One recurring theme from the research is that students have a tendency to be 
process-oriented rather than concept-oriented in their approach to calculus. They are much 
happier following an algorithm or manipulating symbols than they are with dealing with 
concepts such as limit or rate of change. This is not too surprising when one considers 
that, until recently, calculus teaching in school and university has often concentrated on 
process skills rather than conceptual understanding, or, in the words of Skemp (1976), it 
has been instrumental not relational. A key distinction between relational understanding 
and instrumental understanding is that the former can be described as learning 'why to', 
while in contrast, the latter is learning 'how to' and involves learning by rote, memorising 
facts and rules. 

Background 

In the research on the calculus there has been a tendency to concentrate on 
differentiation and its concepts rather than integration. Although this situation is now 
changing, the purpose of our research is to investigate student thinking and 
misconceptions when dealing with the Riemann integral. Here, a definition of definite 
integral can considered whereby a set of n rectangles, which can be freely constructed, is 
used to approximate the area. This requires that, for a given set of well-defined 
rectangles, the tops of the rectangles intersect with the graph of the function, the widths 
of the rectangles partition the horizontal distance involved, and as n:j:oo, the width of the 
rectangles approaches zero. But a definition of the definite integral based on these 
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concepts is often quickly forgotten once the fundamental theorem of the calculus linking 
areas and antiderivatives is introduced. This is not unnatural, because the Riemann sums 
used in the definition are tedious to calculate by. hand and require the taking, and 
understanding, of a limit, whereas the antiderivatives involve clear algorithmic proGesses. 

Processes and Concepts 

Much has been written in recent years about the relationship between processes and 
concepts in mathematics. Piaget (1985, p.49) described how "actions or operations 
become thematised objects of thought or assimilation" and this idea has been further 
clarified by researchers such as Dubinsky & Lewin (1986) who describe the 
encapsulation of a process as an object. Sfard (1991) too has emphasised that there is a 
conceptual change when this occurs, involving the conversion of a dynamic process into 
a static object. Encapsulating both the differentiation and integration processes seems to 
be an essential prerequisite for understanding the fundamental theorem of calculus. Gray 
& Tall (1993) have introduced symbolism and define the notion of procept as an amalgam 
of three things - process, symbol and concept. Thus a symbol, such as: 

rx smx dt 
J1 1 + logt 

evokes both the process of integration and the concept of integral, with the cognitive 
combination of all three being a procept. Procepts are first met through a process, then a 
symbolism is introduced for the product of that process, and this symbolism eventually 
takes on the dual meaning of the process and the object created by the processes. The 
limit is an important example of a procept in the calculus. For example, b9th of the 
symbols: limf(x) and liman 

X~~ n~~ 

may represent either the process of getting close to specific value; or the value of the limit 
itself. It seems that much of the symbolism used ip mathematics carries for the 
mathematician the dual role of process and concept. This distinction between the usage of 
symbolisation to stand for a process or a concept or conceptual structure depending on 
one's point of focus is clearly an important one mathematically. In addition, Gray & Tall 
(1993) define proceptual thinking as the ability to be able to switch one's focus between 
these dual roles of the symbols as necessary. Someone who has the ability.to think.in this 
way may be described as a versatile mathematician (Tall & Thomas, 1991). One major 
difference between the versatile mathematician and the learner is that the mathematician 
already has a global picture of the concept, so that when shelhe breaks it down, into a 
number of stages, shelhe can see each stage as part of the whole concept. The learner, on 
the other hand sees only the part in the context of limited understanding. 

Method 

In the light of the above discussion, our aim is to use computer-based work to 
improve students' relational understanding of, and proceptual thinking about, Riemann 
integration. In this aim we agree with Tall (1993), who suggests that the computer 
relieves the learner of the tyranny of having to encapsulate the process before obtaining a 
sens"'e of the properties of the object. By using software which carries out the process 
internally, it may become possible for the learner to explore the properties of the object 
produced by the process before, at the same time, or after studying the process itself. 
This new flexibility in curriculum development he has called the principle of selective 
construction. 

The first stage of the research, documented here, was to discover what type of 
thinking and understanding students are developing with current styles of teaching. To 
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this end we developed a questionnaire containing fifteen questions, each of which sought 
to probe understanding of one aspect of integration, but doing so in a way which often 
would not enable students to carry out processes or algorithms in order to obtain 
answers. 

This questionnaire on the concepts of the Riemann integr31 in calculus was given to 
47 Form 7 (age 18 years) high school students early in 1996. These students had been 
studying calculus for about one year and were from 3 schools, one for boys only, one for 
girls only and one co-educational. Due to advanced promotion through school, the actual 
ages of the students ranged from 16 to 19 years and there were 16 male and 31 female 
students. 

Questionnaire and Results 

The questions we gave to the students produced answers which highlight qualitative 
differences in thinking. We shall now describe these questions and the responses to them. 

Conservation of Integral 

The question here was: 

J.16 . 74 19 
Given that -{Xdx = -, what is .. .{idt? 

9 3 16 

This was intended to determine whether students understood the concept of conservation 
of integral under change of variable and could apply this concept in a situation where the 
limits were reversed. 34.0% of the students were able to correctly answer this question. 
We gave the students an actual function, {X ,to see whether some process-oriented 
students would calculate the integral(s) in order toanswer the question, but in the event, 
only two students attempted to do this. However, 17.2% of the students invented an 
algorithm to deal with their lack of understanding of the reversed limits. Since the values 

of the limits appeared inverted they inverted the answer too and obtained J4. T his 

provides evidence of the way in which a substantial number of students, who are 
instrumental in their thinking and understanding rather than versatile, conceptual thinkers, 
attempt to deal with problems which have concepts they do not understand. 

The Riemann Integral 

A question, dealing with Riemann sums, which also revealed conceptual gaps in 
understanding was: 

If f(x) is an integrable, strictly decreasing function on [1, 5], what is the value of 
n n 

lim Lf(x;+I)Llx - lim Lf(x)Llx, where x; defines the start of the i-th subinterval, 
dx~O ;=1 dx~O ;=1 

and Llx is its width? 
(a) very small and positive (b)'O 
(c) very small and negative (d) not possible to say 
(e) very large and positive (f) very large and negative 
This was designed to test understanding of the concept of the equivalence of the 

limit of the upper and lower sums. Since no function is explicitly stated it was not 
possible for a process-oriented student to calculate the sums or limits in order to answer 
the question. A summary of the responses to this question is given in table 1. 
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Table 1: Summary of question responses for equivalence of the limit of upper and lower sums (N=47) 

a b c d e 

Number of students 14 5 5 3 1 o 

We see that 40.0% o,f the students were unable to, answer the questio,n (which is 
admittedly difficult) and o,nly 10.6% answered co,rrectly. The 40.4% ,of the students who, 
gave a) o,r c) as the answer do, no,t have the co,nceptual understanding that the limits o,f the 
rightsum and leftsum will be the same, if f(x) is an integrable function. Aseco,nd 
questio,n o,n Riemann sums Was: 

If f(x) is a strictly decreasing functio,n, an appro,ximatio,n to, f)'(x)dx using a 

Riemann sum (i.e. o,f rectangles under the curve) with left endpoints and number o,f 
strips n=10 wo,rks o,ut to, be 7.615. Will an appro,ximatio,n with left endpo,ints and 
number o,f strips n=50 be: 

(a)mo,re than 7.615 
(c) equal to, 7.615 
(e) no,t Po,ssible to, say 

Explain yo,ur answer, 

(b) less than 7.615 
(d) less than o,requal to, 7.615 
(f)mo,re than or equal to, 7.615? 

Unfo,rtunately nnly 20 nf the students w~re given this questio,n which'lo,o,ked at the 
pro,cess invo,lved in the area apprnaching the Riemann limit .. Of these 10% gave the 
co,rrect answer whilst 50% gave no, respnnse, Of the nthers, 30% npted fnr a) nr f) and 
10% fo,r d). In spite nf being asked to, explain, nnly two, students attempted any fnrm nf 
reaso,n fo,r their answer, stating "it was because the curve is Io,werand wider'~ and "with 
left endpo,ints so,me might nnt get included with mo,re strips. So, > 10 this Wo,uld have the 
strips taking up mo,re o,f the graph." There seems to, be a distinCt -lack' o,f understanding of 
these types o,f sums amnng these students with many students no,t having encapsulated 
the pro,cess o,f taking the limit o,f the sums o,f the rectangles as an o,bject,. namely the 
definite integral o,f the functio,n. . 

Integration and Transformations 

We wanted to, see if the students had grasped cnnceptually the relatinnship between 
the area under the graph o,f a functio,n and transfnrmatio,ns o,f the graph. Once again we 
tho,ught it impnrtant to, try and mo,ve students away fro,m the prncesses which we tho,ught 
they Wo,uld want to, use, and so, we gave them general integrals in terms o,f a functinn f(x) 
rather than an explicit functinn which they Co,uld integrate directly. The fo,llo,wing two, 
questio,ns were given in this area: 

If ff(t)dt = 8.6, then write down the value of t4f(t -l)dl and 

If ff(x)dx = 10, then write do,wn the value o,f fICf(X) + 2)dJr.. 

Students were asked to, sho,W their wo,rking. ResPo,nses to, these two, questio,ns are 
summarised in table 2. 

Table 2: Summary of resRonses for transformation questions (N=47) 

Females Males 
(N=31) (N=16) 

Transformation No Wrong No Wrong 
Direction Response Correct Answer Response Correct Answer 

Parallel to the t-axis 21 3 7 7 5 4 
Parallel to the y-axis 13 2 16 6 4 6 
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Whilst 17.0% of the students were able to answer the first of these questions 
correctly, 59.6% were unable to make any response. This could be because they did not 
recognise the f(t-l) as representing a transformation and there was evidence that this 
concept was lacking. For example, one student gave 7.6 as the answer, thinking that f(t-
1) implied the value of the integral minus 1, and 5 students (10.6%) attempted to 

integrate the t - 1 and obtained t2 - tor (t 2 1 )2 leading to a wrong numeric answer, such 

as 4. Another 2 students (4.3%) who, like those above, were locked into a process
oriented view of the integrals rather than a conceptual one, found another way of 
introducing a function they could work with. Their idea went as follows: 

Let f(t) = ax + b (interestingly, but not surprisingly, a function in x not t) 

then flht)dt =3a + b - a - b = 8.6 so 2a = 8.6 and a = 4.3. 

Thus f24f(t -l)dt =4a + b - 1 - 2a - b - 1= 2a - 2 = 8.6 - 2 = 6.6 
The errors in this last line, including miscalculating f(t-l), apart, this demonstrates 

the lengths students will go to to introduce a known algorithm into a question where they 
lack the conceptual understanding necessary. In the second of these questions, although 
12.8% answered correctly, their preferred method was still to perform an integration, 
rather than visualise the transformation as creating an extra rectangle of area 4x2 = 8. 
They usually wrote a version of: 

r5 5 5 
ll(/(x) + 2)cb = f/(x)dx + J2dx = 10 + [2xJi = 10 + 10 - 2 = 18. 
There were no significant differences on the basis of gender in the results. 

Sketching the Integral Function 

We gave the students several questions which tested their understanding of 
concepts associated with drawing graphs of integral functions from a consideration of 
area .. These were: 

The graph of a function f is shown. Which graph can represent an antiderivative of r. 
Give your reasons. 

"": I : / I 
I'" i\ " . .' .. " I 
I .... ; '-...<1 , 

I ... ~ I I . I 

I"" I' .~/ , ... i 
..... "'-. I 

I ·" ,'.' '''~'' I \.,." ." "" 
I · .. oo· "-l L-"'='-": _-,'I 
I \, I1 I . ". .---" . . // \.! 

The graph of a function is shown in the figure. Make a rough sketch of an antiderivative 
F, given that F(O) = O. 

t." ) ".N 
("'O'-L.O. > ... 0 1.00 .... 1.00 

It° -31.20 

4.00 .... 0. 

Explain why the graph below cannot be the graph of g(x) = fo!f(t)dt for any f(t)· 

, ... 

O.S.O I.ClO I.M 2.00 I 



577 
. For the first of the questi?ns,23.4% were successful with several giving data 

whIch showed that they had consIdered a process approach rather thai1100king at the sign 
and magnitude of the area under the curve. The results are summarised in table 3. One of 
the successful students wrote down the function as x(x - 1.5) in order, no doubt, to 
integrate it. Typical of th,e thinking used were other successful students who wrote "it 
must be a positive cubic"; "the antiderivative off must be a cubic"; and "the antiderivative 
of f is a - shape", again working from a quadratic function with a positi~ex2 term and 
integrating. 

Table 3: Summary of question res onses for the ra h of the antitlerivative N=47 
No Response a 'b c d e 

Number of student . 10 2 12 11 5 5 
responses 

In addition 2 students gave other answers 
The second question proved rather more testing and, as table 4 shows, only 2 

students (4.2%) answered correctly. 
. .' 

Table 4: Summary of responses for the antiderivative sketchguestion (N=47) 

Females 
(N=31) 

Males 
(N=16) 

No Wrong. No. Wrong 
Response Correct. Sketch ,Response Correct Sketch 

18 2 11 4 0 12 
It was again noticeable that a number of thestugents felt that the only way to 

answer this question was to find a function which matched the graph, integrate it with 
respect to x and then sketch that. The concepts of the calculus associating area with 
integration appear to be little known or applied. Three students, all unsuccessful, wrote 
down the function (x - 1)2 (x - 2) (one differentiating it) and arwther wrote 
(y + 4)(x - 1)(x - 2), confirming that a sizeable number of students rely on the process of 
integration rather than any conceptual understanding they have built up. 

'In the third question, 8.5% of the students arrived at the correct solution, but 
74.5% were unable to make any attempt at an answer. It may be that they are not used to 
seeing the concept of the areafunction written in the form given. We recognise that a 
written solution gives insufficient insight for this type of investigation and will be 
interviewing students in the future to ascertain exactly what their difficulties with these 
types of questions are. 

The process-oriented response here was' "the function should be with respect to x . 
. . the graph should be parabola" compared with one student who wrote, very concisely: 

"S: f(t) dt = 0 not 1", thus demonstrating the power of conceptual thinking. 

Conclusions' 

The evidence we have presented shows that students often lack certain conceptual 
understanding from current mathematics learning. The high numbers of students who 
were unable to make any attempt at solving these problems where there is no obvious 
process to carry out shows that their experiences to date have left important gaps in their 
conceptual understanding. They have a tendency to see integral calculus as a series of 
processes with associated algorithms and do not develop the grasp of concepts which 
would give them the necessary versatility of thought. Thus, instead of having a 
proceptual view of the symbols in integration they have only a process-oriented view. 
However, it is not surprising that many students find concepts such as limits and area 
functions difficult when they are unable to experience these processes directly in many 
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classrooms. It should be possible to design curriculum materials which give an improved 
cognitive base for a flexible proceptual understanding of limit and other concepts. Thus it 
may be possible for the student to develop a more balanced view of, say, limits and areas, 
dually as process and concept by using a computer software. Although the fundamental 
theorem of calculus doesn't require taking a limit, symbolic manipulation, for example, 
can allow students to see what is done at each stage, giving them understanding of the 
concepts as well as the ability to calculate integrals. We hope that the appropriate use of 
such computer software will improve the students' conceptual understanding of calculus. 

One advantage of this method should be that it will engage the student in 
appropriate activities which require them to think through the process involved. With 
respect to the graphical aspects of calculus, spreadsheets and symbolic manipulators can 
be used to develop an understanding of the fundamental concept of calculus, avoiding a 
passive classroom environment. One of the principal aims of the mathematics educator 
should be to provide a range of experiences that develop the mathematical ideas in a 
cognitive manner so that the learner both knows and understands. The computer may 
focus students on the concepts and ideas of calculus rather than routine computations in a 
way which may help them to gain understanding which our survey has shown to be 
lacking. 

References 

Barnes, M. (1988). Understanding the function concept: Some results of interviews with 
secondary and tertiary students. Research in Mathematics Education in Australia, 
May, 24-33. 

Barnes, M. (1994) Investigating change: A gender-inclusive course in calculus. 
ZentralblattJiir Didaktik der Mathematik, 26(2), 49-56. 

Dubinsky, E., & Lewin, P. (1986) Reflective abstraction and mathematics education: The 
genetic decomposition of induction and compactness. Journal of Mathematical 
Behavior, 5(1), 55-92. 

Gray, E., & Tall, D. O. (1993). Success and failure in mathematics: The flexible meaning 
of symbols as process and concept. Mathematics Teaching, 142,6-10. 

Hubbard, R. (1995). Evaluation of a computer-based calculus course, Proceedings of the 
First Asian Technology Conference in Mathematics (pp.135-143). 

Li, L., & Tall, D.O. (1993). Constructing different concept images of sequences and 
limits by programming, Proceedings of the 11th Conference of the International 
Group for the Psychology of Mathematics Education (Vo1.2, pp.41-48). Tsukuba, 
Japan: International Group for the Psychology of Mathematics Education. 

Monaghan, J. (1993). Procepts, readiness & semantics: cognitive factors in the use of 
computer algebra systems in mathematics teaching. Nottingham, UK: University of 
Nottingham, School of Education. 

Palmiter, J. R.(1991). Effects of computer algebra systems on concept and skill 
acquisition in calculus. Journalfor Research in Mathematics Education, 22(2),151-
156. 

Piaget, J. (1985). The equilibration of cognitive structures (Trans. T.Brown & 
K.Thampy). Cambridge MA: Harvard University Press. 

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on 
processes and objects as different sides of the same coin. Educational Studies in 
Mathematics, 22(1), 1-36. 

Skemp,R. R. (1976). Relational understanding and instrumental understanding. 
Mathematics Teaching, 77, 20-26. 



579 
Small, D., & .Horsa~k, J. (1986). Computer algebra systems: Tools for reforming 

calculus InstructIOn. In R. Douglas (Ed.), Toward a lean and lively calculus: Report 
of the conference/workshop to develop curriculum and teaching methods for 
calculus at the college level (MAAnotes No. 6, pp. 237-249). Washington DC: 
Mathematical Association of America. . 

Steen, L. (1988). Calculus for a new century: A pump not a filter (MAAnotes No. 8). 
Washington DC: Mathematical Association of America. 

Tall, D. O. (1985b). Understanding the calculus. Mathematics Teaching, 110,49-53. 
Tall, D. O. (1986a). A graphical approach to integration and the fundamental theorem. 

Mathematics Teaching, 113,48-51. 
Tall, D.O. (1986b). Building and testing a cognitive approach to the calculus using 

interactive computer graphics. Ph.D. Thesis, The University Of Warwick. 
Tall, D. O. (1993). Computer environments for the learning of mathematics. In R. 

Biehler, R. Scholtz, R. Straber & B. Winkelmann (Eds.), Didactics of mathematics 
as ascientific discipline-the state of the art (pp. 189-199). Dordrecht: Kluwer. 

Tall, D. 0., & Thomas, M. O. J. (1991). Encouraging versatile thinking in algebra using 
the computer, Mathematics education research centre (pp. 125-147). Warwick: 
University of Warwick. 

Thompson, P. W. (1994). Images of rate and operational understandirig of the 
fundamental theorem of calculus. Educational Studies in Mathematics, 26, 275-
298. 


