
























The Process of Introducing New Tasks Using Dynamic Geometry Into the Teaching of Mathematics 

between non-ostensive and ostensive objects, seems to underpin this dichotomy. 
It is not without relation to another conception: the intrinsic link of geometry with 

paper and pencil that is presented below. 

Repetition of the Same Tasks in Cabri and in Paper and Pencil Environment 

One of the teachers who was novice in using technology did not rely on technology 
based activities for learning geometry and, in addition to technology based activities, 
proposed similar paper and pencil tasks seemingly unaware that a paper and pencil task 
may be less demanding in terms of knowledge, by allowing perceptive strategies instead of 
strategies based on theoretical properties. It seems that she had an epistemological view of 
geometry as intrinsically linked to paper and pencil. This belief of the canonical form of 
mathematics linked to paper and pencil environment is widely shared. Povey and Ransom 
(2000) report about an inquiry carried out among undergraduate students in mathematics in 
UK. Each of them seemed to refer to a single specific mode of understanding mathematics, -
the paper and pencil mode (pp.52-3). "Technology can help if you have a paper and pencil 
understanding" told one of the students and this formulation could be taken as 
summarizing the philosophy of the scenarios written by this teacher. As expressed by 
Povey and Ransom, the underlying learning assumption is that "doing maths by hand 
indicates that one understands it". This is exactly the type of claim made by the'teacher 
when she explained to us that, without the material action of drawing the image of a 
straight line through dilation with a straight edge, students would not appropriate this 
invariant of dilation. 

This point of view is often linked with the conception of a paper and pencil 
environment as 'not a context'. Knowing how to carry out a construction in paper and 
pencil environment would be the warrant of de-contextualised knowledge. Noss and 
Hoyles (1996,. p. 48) propose an alternative view of abstraction as not necessarily linked to 
de-contextualisation and "as a process of connection rather than ascension". They add that 
the "situated, the activity based, the experiential can contain within it the seeds for 
something more general" (ibid, p. 49). In the interaction with the computer, learners may 
construct what Noss and Hoyles call situated abstractions. Situated abstractions are 
invariants that are shaped by the specific situation in which they are forged by the learner. 
Although those invariants are situated, they simultaneously contain the seed of the general 
that could be valid in other contexts: 

"Within a computational environment, some at least of these objects and relationships 
become real for the learner (we are using 'real' here to mean something other than simply 
onto logically existent-perhaps meaningful or broadly connected are better descriptions): 
learners web their own knowledge and understandings by action within the microworld, 
and simultaneously articulate fragments of that knowledge encapsulated in computational 
objects and relationships-abstracting within, not away from, the situation. In computational 
environments, there can be an explicit appreciation of the form of generalized relations 
within them (the relational invariants) while the functionality and semantics of these 
invariants-their meanings- is preserved and extended by the learner" (p. 125). 

Such linkage between understanding and paper and pencil may also be explained by 
the institutional context. Even if all kinds of calculators are allowed in our French national 
examination, all examination tasks are given in a paper and pencil environment. The 
teacher thus prioritises this context to be sure that students are able to perform the tasks in 
the examination environment. 
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Complexification o/Tasks 

Experienced teachers involved in teacher education, such as the teachers we worked 
with, very often have a constructivist view of learning based on two assumptions: 

• Students learn when they are faced with tasks for which mathematics notions are 
efficient tools of solutions; 

• Feedback coming from the situation may favour an evolution of solving strategies 
more than a judgement coming from the teacher. 

Feedback coming from dynamic geometry software may from this point of view be 
very rich in that it allows an interaction between the visual and the theoretical aspects of 
geometry. If a constructed diagram in the drag mode does not keep the shape that was 
expected, it means that the construction process must be wrong. The drag mode can also 
invalidate a conjectured property and thus lead the students to abandon it. 

The teacher may rely too much on feedback from the calculator/computer and propose 
tasks of a greater complexity than corresponding paper and pencil tasks. The teacher 
underestimates the complexity of the task, and the time needed for the student to solve the 
task because he has little reference in his experience. He overestimates the possibility of 
interpretations by the student of feedback given by the software. 

We observed this in the first version of a scenario on vectors in which students were 
asked to construct all diagrams for the tasks in Cabri. Instead of teaching vectors for two 
weeks, it took two months! It is also a common phenomenon that any kind of teaching 
innovation provokes time inflation. Schneider (1999) rep6rted on teaching about 
logarithms and exponentials based on the use of the TI 92 which took 40 hours of teaching 
instead of the usual nine hours. 

Returning to the project, after the first year, the teachers attempted to find an optimal 
balance 

• between what is prepared and demonstrated by the teacher on the LCD display and 
what is done by students, 

• between what is ready made and given on the calculators to students and what has 
to be done by the students with the software. 

For example, after one year the teachers preferred to give the macro-construction of the 
multiplication of a vector by a number for students to explore and interpret rather than for 
the students to construct themselves. Even apparently minor aspects may slow down the 
construction of a diagram. In the scenario "Vectors", the first task was about polygons that 
students had to draw. To this end, they had to designate the successive vertices of the 
polygon and, at the end of the sequence, again the first vertex. Actually it turned out that 
students tried to do polygons with a large number of sides, and sometimes had difficulties 
in designating at the end exactly the first vertex and not a close point. If they had used a 
double click on the last vertex of the polygon, it would have avoided difficulties. But the 
teacher did not anticipate the long time spent on drawing the polygons and mentioned this 
shortcut only orally during the activity. This meant that only some students paid attention 
to his remark. 

Evaluating the complexity of a task with technology requires taking into account not 
only the conceptual difficulties but also the use of the technology by the students. This is 
not easy and the wrong a priori evaluation by the teacher of the complexity of the task 
came from an absence of reference about students' behaviour in the tasks. The 
complexification of tasks may also come from the uncertainty of the teacher about what 
students would learn from the tasks. They tended to presuppose that technology would 
facilitate the solving process, so that in order to be sure that students learned something 
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from the new kind of tasks, the teachers increased the level of complexity. In all cases,. it is 
clear that a deep and precise knowledge of students' behaviour and strategies in the Cabri 
environment is essential for evaluating a priori the degree of difficulty of a task. 

IlL3 The Design of Tasks by Prospective Teachers1 

In order to evaluate the effect of teacher education to the use of Cabri-geometry in the 
teaching, we asked prospective teachers to design tasks allowing students of grade 8 or 9 to 
overcome difficulties in proof2 tasks. 

The prospective teachers were in their last year of professional education. They were in 
charge of a class (4 to 6 hours teaching per week) and followed two days of professional 
development sessions per week at the university institute for teacher education. They 
receive education in pedagogy of mathematics and "didactique" as well as help for 
practical problems in teaching. They also have to carry out a small research project about a 
teaching problem they define themselves. 

They followed general sessions about the use of Cabri during six hours introducing 
them to the features of Cabri and helping them to solve mathematics problems with Cabri. 
These sessions were purely devoted to the learning of how to use Cabri. After these 
sessions, four prospective teachers were given fictive proofs to problems supposed to be 
written by students of grade 8-9. They were asked 

to analyse the errors occurring in the solutions 
and to design tasks based on Cabri and meant for helping students overcome the 
difficulties they encounter when writing proofs. 
Then these four students attended sessions (altogether 12 hours) on the way to 

integrate Cabri into the mathematics teaching in which they had to reflect on the changes 
brought by Cabri on the notion of figure as well as on new tasks made possIble by Cabri. 

Two months after the sessions, they were given the same type of tasks as in the first 
experiment with the only change that after they proposed some tasks, they were requested 
by the experimenter to design tasks 

using the ambiguity, or the replay of the Cabri construction 
and tasks of reproduction of a dynamic Cabri-diagram. 

Examples of tasks and of their fictive solutions given to the prospective teachers 

Task 1: 
The midsegment theorem says: "In a triangle, if a line is passing by the midpoint of a side and is parallel to 
the third side, then it cuts the second side in its midpoint." 
Its reciprocal says: "In a triangle, if a line is passing by the midpoints of two sides, then it is parallel to the 
third one." 
Explain all differences that you see between the two statements. 

Solution 1 
For both statements, there is a triangle and there is a straight line which cuts the two sides in their midpoint. 
For the first statement, this line cuts the second side in its midpoint and for the second statement, this line is 
parallel to the third side. 

Solution 2 

1 This work is a master thesis (called in French DEA) of Seden Tapan supervised by H. Chaachoua and 
myself that will be defended in June 2002 (Tapan 2002) 
2 Proof is introduced in the curriculum in France at the beginning of secondary school (grade 6) and becomes 
an usual task at grade 8. 
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A 

These both statements say almost the same thing but they only turn the sentence the other way. Because in 
the two statements, there is a triangle ABC and there is a line (DE) that is passing through the midpoints of 
segments AB and AC and which is parallel to line (BC). 
Hence I can say that if the one is true then the other one is also true. 

Solution 2 does not distinguish statements in function of their status in a proof, hypothesis 
or conclusion of a step and considers only the content of each statement. Solution 1 
distinguishes statements trough their position in the statement (in the first part or in the 
second part after "then") but no more than that. As solution 2, solution 1 does not express 
the status of each part of a deductive step. 

Task 2: 

c 

In the above diagram, BD = DC and (AD) .l.. (BC.) 
Prove that ABC is an isoceles triangle. 

Solution 1 
In an isosceles triangle, the height is also the perpendicular bisector. As line (AD) is height and perpendicular 
bisector, ABC is isosceles. 
Solution 2 
As ABC is an isosceles triangle, line (AD) is height and perpendicular bisector. Thus ABC is isosceles since 
its height is also perpendicular bisector. 

Solution 1 seems to express the status of a statement in a deductive step but mentions 
the reciprocal theorem instead of the adequate one. Solution 2 may be interpreted in that 
the student is unable to recognize the status of a statement and to distinguish between 
hypothesis and conclusion, he/she just formulates statements by using external signs of 
deduction. 

To students who do not consider the status of statements but only their content, Cabri 
offers several ways of externalising this difference: 

30 

• Students who do not see the difference between hypotheses and conclusions may 
infer that properties are true just because they seem true on the diagram (confusion 
between spatial and theoretical relations, cf. §I). The drag mode allows to eliminate 
properties purely taken from the diagram that seem to be true on the particular case 
of the diagram 

• The drag mode can also be used to show by relaxing a property P that as soon as P 
is satisfied, property Q is also satisfied. When dragging the point on the first side, 
as soon as it is the midpoint, the line parallel to the third side cuts the second side 
in its midpoint (task 1). The tool Redefmition can also be used in this way. 
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• In the construction process are used only the given of the problem whilst the 
conclusions appear as staying true in the drag mode although not used for the 
construction of the diagram. 

• The tool ambiguity shows that two geometrical objects have the same spatial 
position. This is exactly what a theorem expresses. In task 1, in the statement "In a 
triangle, if a line is passing by the midpoint of a side and is parallel to the third side, then it cuts the 
second side in its midpoint", the intersecting point of the side and the parallel line 
(hypotheses) is also the midpoint of the second side (conclusion). It results that in 
some cases, ambiguity reveals the difference between the given used in a 
construction and the conclusion. 

• The replay of a ready made construction allows the user to see the objects used in 
the construction, in particular the objects that have been hidden by the designer of 
the construction. It also may be a means of externalising the difference between 
hypotheses and conclusions. 

• Finally when trying to reproduce Cabri diagrams, the student must be able to 
identify those which characterize the construction and then imply the other 
properties he could observe. 

From the observations the two pairs of prospective teachers designing tasks, it appears 
that before the specific teaching on the pedagogical use of Cabri, they were only able to 
use the construction process and the drag mode to show the difference between properties 
just been taken as granted from the diagram and proved properties. Only one pair could 
also use construction to show the difference between hypotheses and conclusion. After this 
teaching, both pairs could use construction and drag mode to make visible the difference 
between hypothesis and conclusion. They could use ambiguity only when requested to do 
this and about a specific task which was formulated to favour this use (The task consisted 
of proving that two points were coinciding). The drag mode was not used by them to make 
students aware of the sufficiency of a property with respect to another one. It was difficult 
for these teachers to use successfully the replay of a construction and situations of 
reproduction of a Cabri-diagram. This shows clearly the gap between the use of a tool for 
solving tasks and the use for designing tasks. The possible uses of Cabri described above 
for overcoming difficulties in proving were not taught in an explicit manner and had to be 
constructed by the teachers. 

IV. Conclusion 

In our introduction we claimed that the process of integrating technology into 
mathematics teaching is a long and complex process. In analysing the types of tasks 
developed by teachers over the three years of the project and their evolution, we can 
formulate tentative explanations for the length of this process. 

As the didactic system as a complex system, technology is not just an additional 
element in the system since it interacts with all the components of the system, which are 
subject to change. This point of view is based on two theoretical approaches, the notion of 
instrument as developed by Rabardel and Verillon and the mediating function of a 
computational learning environment (Noss & Hoyles, 1996). Verillon and Rabardel (1995) 
stressed how an artefact is not taken as such by the learner but reconstructed by himlher. 
The learner constructs both a representation of the artefact (the instrument) and the 
structures that allow himlher to perform activities with the artefact (schemes of utilisation 
of the artefact). Both types of constructs depend on prevIous knowledge of the learner and 
affect this knowledge. According to.a Vygotskian perspective, Rabardel claims that the 
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"instruments" constructed by the learner constitute forms which structure the relationships 
with situations and knowledge and thus may have a considerable influence on the 
construction of knowledge. Noss and Hoyles (1996) investigated many years how learners 
construct situated abstractions dependent on the means of action and expression offered by 
the environment. Students construct an instrument in function of the tasks they have to 
solve, i.e. mathematical tasks. We assume that the tasks of the teachers differ from those of 
students. The teachers must be able to use Cabri for creating tasks to be solved by students. 
They must be able not only to consider the Cabri tools as tools for solving problems but 
also to consider them as mediating mathematical knowledge: construction combined with 
drag mode may mediate the status of a statement with respect to deduction; the locus or 
trace may mediate the notion of a geometrical object as a set of points. 

We interpret the behaviour of novice teachers in the design of scenarios as resulting 
from their perspective that technology is an additional component of the teaching system 
but external to the learning processes. Technology was facilitating material aspects of the 
actions of the students (teacher novice in teaching), technology was used in observation 
and construction tasks but activities in paper and pencil environment were given in 
addition by the teacher who was a novice in the use of technology. It is interesting to note 
that this latter teacher planned what might be interpreted as a more verifying or test way of 
using the drag mode than search way (in Holzl's terms). In the observation tasks that she 
gave, all steps of the conjectures were given explicitly. 

A second interesting feature of the design process of the scenarios by the experienced 
teachers can also be interpreted in terms of instrumentation and mediating function of the 
environment. These teachers offered more open exploration activities involving more a 
search use of the drag mode; they did it in two kinds of circumstances: at the beginning of 
sessions in observation tasks to introduce new properties and at the end of sessions in open 
problems to be solved. But the comments they added, expressed clearly that the drag mode 
was for them more facilitating visualisation than acting in the solving process, even for the 
open-ended problem. It took one or two years for them to accept that investigating the 
invariants of an unknown transformation under the form of a black box situation through 
the drag mode and the tool "Redefinition" could be part of a scenario. The difference 
between a reproduction of a Cabri diagram and an observation situation for conjecturing 
must be stressed here. A situation of reproducing a Cabri diagram is a problem situation 
and the invariants are the tools of solution of this problem. In an observation situation, in 
which students are asked to conjecture properties, the question is more to satisfy a contract 
of finding properties relevant from the perspective of the teacher. 

We assume that really integrating technology into teaching takes time for teachers 
because it takes time for them to accept that learning might occur in computer-based 
situations without reference to paper and pencil environment and to be able to create 
appropriate learning situations. But it also takes time for them to accept that they might 
lose part of their control over what students do. Povey and Ransom (op.cit.) concluded 
from their inquiry among undergraduate students (already cited above) that the plea for 
learning by doing 'by hand' could be related to a "desire to feel in control"(p.56). As they 
mentioned, speaking about technology as "taking over" and depriving the human of control 
is usual in a wider social context. The situation is far more complex for a teacher who must 
not only understand what the computer does but also what the students do with the 
computer. 

Cabri covers a broad domain of knowledge and action. It is a microworld allowing 
multiple ways of exploring, experimenting and solving a problem. If the basic use of Cabri 
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can be learned rapidly because of its friendly interface, constructing a global and structured 
representation of all of its possibilities requires time. It requires even more time to analyse 
the possible uses of Cabri in terms of mediation of knowledge, and to construct 
correspondings tasks. 

In the same way as teachers do not have to reconstruct all exercises and problems that 
they give to students, it is not expected that teachers should on their own find the adequate 
situations to use technology. Research and investigation should be carried out in order to 
have a better knowledge of students learning with technology. The results and data of these 
investigations could then be transferred to teacher education. This is why we consider that 
research on the integration of technology into maths teaching is important. 
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