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This paper provides an overview of the major results of a large-scale longitudinal study of 

students’ misconceptions of decimal notation, drawing them together and presenting

refined results. Best estimates of the prevalence of various misconceptions about decimal

numbers from both cross-sectional and longitudinal perspectives are provided, as well as 

some estimates of persistence.  Strengths, limitations and suggestions for improvements to 

the Decimal Comparison Test as well as major implications for teaching are discussed.

This paper aims to provide an overview and discussion of the results of a longitudinal 

study of students’ understanding of decimal notation, and to present some refinements to 

previously published results. As far as we know, this is the first study to track the 

misconceptions of a large number of students longitudinally and hence for the first time to 

describe the paths that students take through misconceptions on their way to expertise. 

The study revealed new misconceptions of decimals, found how common they are across 

the middle years of schooling, explored which misconceptions were “better” or “worse” to

have, and showed underlying links between them. A range of associated studies not 

reported here and using different samples of students, investigated effective teaching.

Twelve volunteer schools from high, medium and low socio-economic areas of 

Melbourne were involved over a 4-year period (mid-1995 to mid-1999). Over 3000 

students from Grades 4 to 10 completed nearly 10 000 tests. Classes were tested twice each

year; due to occasional late class testing and absences of individual students on the 

designated days, the average inter-test time was 8.3 months. The number of tests 

completed by individual students ranged from one to seven. The project did not suggest to 

the schools that any special teaching of decimal notation should be undertaken: some

teachers provided special teaching while others did not. Schools were selected as a 

representative, but not random, sample but a comparison with a TIMSS-R (1999) item

shows that the results may be a reasonably good indicator of the general Australian 

situation.

A one-page Decimal Comparison Test was used to collect data. The particular version 

used is called DCT2, which consists of 30 pairs of decimals with the instruction: For each 
pair of decimal numbers circle the one which is LARGER. This test diagnoses a student’s 

misconception about decimal numbers by the precise pattern of responses made by that 

student on the test items. Patterns of responses are first classified as exhibiting one of four 

behaviours (and allocated a coarse code A, L, S, U) and then more detailed analysis

identifies one of 12 fine codes, which each link to one or two ways of thinking (expert or a 

misconception). Full details of the allocation of a code to a student’s test are provided in

Steinle and Stacey (2003a), which also provides a full description of the ways of thinking

which gives rise to each code. Table 1 summarises the four coarse codes.

A discussion of the strengths, weaknesses and improvements to DCT2 is given in a 

later section. It is important to note, however, that the code A1, which indicates expertise

(i.e. very few errors on the test) does not necessarily imply that a student is truly an expert 

with respect to decimal understanding. Students who can accurately follow correct (or
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nearly correct) procedures for comparing decimals will score highly, whether or not they

understand why those procedures work. For these two reasons, all the estimates in this 

paper of the numbers of expert students are over-estimates.

Table 1 

Description of Four Behaviours Represented by Coarse Codes A, L, S, U.

Behaviour Description

A apparent-expert A collection of ways of thinking (A1, A2, A3) that generally lead to

students choosing the correct decimal. Some, but not all, of these 

students are true experts. 

L longer-is-larger A collection of ways of thinking (L1, L2, L4) that generally lead to 

students choosing the longer decimal (more digits) when asked to 

choose the larger number.

S shorter-is-larger A collection of ways of thinking (S1, S3, S5) that generally lead to 

students choosing the shorter decimal (fewer digits) when asked to 

choose the larger number.

U unclassified None of the above. (U1, U2)

How Prevalent are the Misconceptions and Expertise? 

There are two ways of describing the prevalence of the misconceptions. First we 

examine the cross-sectional prevalence by grade, which gives the proportion of students in 

a given grade who are expected to have the misconception. Second, we estimate the 

proportion of students who hold a misconception at some stage of their schooling. Both of

these measures are recommended for use in future research.

Cross-Sectional Prevalence by Grade

The cross-sectional prevalences are provided in Figure 1; the fine codes being grouped 

into the coarse codes A, L and S. The prevalence of the coarse codes were provided in 

Steinle and Stacey (2003b), but the prevalence of the fine codes is now included. The 

cross-sectional prevalence by grade in Figure 1 is calculated only on the first test that each

student completed, as it was found that having been in the testing process resulted in an 

additional 10% of students being experts (i.e. code A1).  This may have been due to 

teachers giving the topic additional attention, or due to raising the awareness of individual 

students that there was something that they had to learn. The restriction to student’s first

tests resulted in a non-representative sample in Grades 8, 9 and 10 as there were no 

students from the “highest achieving” school. While the actual results are indicated by an 

arrow in Figure 1a, the prevalence of A1 in Grades 8, 9 and 10 have been adjusted upward

to compensate for this sampling issue, thereby providing a better estimate.

Figure 1a confirms that the prevalence of A1 (an expert on DCT2) increases with grade

as one might expect, although reaching only 70% at Grade 10 is a major cause for concern. 

A further 10% of students at each grade in the secondary school are in codes A2 and A3.

This means that they can only order straightforward decimals (e.g. those distinguishable 

from their first one or two decimal places and without zeros in key positions). These 

students may have very little understanding of the meaning of a decimal number, but their 

misunderstandings can be masked by ability to perform correctly in most circumstances.

Figure 1b indicates that the youngest students start with L behaviours, but that most

leave these ideas behind. In contrast, Figure 1c indicates that the prevalence of S behaviour 

is more constant at 10%-20% throughout the secondary school. Stacey, Helme, Steinle, 
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Baturo, Irwin and Bana (2001) found that between 3% and 8% of the pre-service teachers 

in their sample from four Australian universities exhibited S behaviour, indicating the 

importance of addressing these misconceptions at school and in teacher education. While

not shown in this figure, approximately 10% to 15% of students in each grade completed a 

test coded as U (i.e. it did not meet the strict criteria to be coded as A, L or S). 

A comparison of the Grade 8 results for the properly constituted random Australian 

sample on the TIMSS-R item B10 (TIMSS-R, 1999) indicates that the sample in this study 

is slightly above average in prevalence of expertise, but a comparison of the distribution of 

responses on each distractor (data held at ACER) indicates a very close match with the

prevalence of L and S behaviours in Figure 1b and 1c. Research in other countries (e.g. 

Brekke, 1996; Peled, 2003) can identify similar misconceptions although the prevalence 

varies from one country to another reflecting local curricula.
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Figure 1. Cross-sectional prevalence of the coarse and fine codes by grade (*A1 adjusted).

Longitudinal Prevalence by School Level 

An alternative view of prevalence of misconceptions is to find out how many students 

are affected during some stage of their schooling. Steinle and Stacey (2003b) proposed that 

the most useful measures supported by the data were for primary school and secondary 

school separately, and provided the results for the coarse codes. Here we give the results 

for the fine codes. The longitudinal prevalence of a code is the percentage of students who 

completed at least one test that was allocated the given code whilst they were in primary

school (for this sample Grades 4 – 6) and in secondary school (Grades 7 – 10). The 

calculations for Table 2 were therefore based on two restricted samples; 333 students who 

completed at least four tests while in Grades 4 to 6 and 682 students who completed at 

least four tests in Grades 7 to 10. Note that the values in this table cannot be combined as

most students contribute to more than one row. The restriction to students who completed 

at least four tests is necessary because “less-tested” students had less opportunity to show 

their thinking and changes in their thinking and so “dilute” the measures. More testing of 

each student causes these measures to increase, if they change their ways of thinking. 

There is one drawback of this procedure that requires a further refinement. Due to the

effect of repeated testing mentioned above, students who have completed at least four tests 

543



are considerably more likely to be experts than students completing their first test. Hence,

the best estimates for the longitudinal prevalence of A1 and A in Table 2 are based instead

on the percentages of experts in students’ first tests in Grade 6 and 10 given in Figure 1a. 

Table 2 

Longitudinal Prevalence of the Coarse and Fine Codes over Two School Levels 

School LevelsCoarse

Codes

Fine

Codes Primary (n=333) Secondary (n=682)

A 40* 80*

A1 30* 70*

A2/A3 17 26

L 71 21

L1 62 12

L2 19 7

L4 17 5

S 35 28

S1 17 10

S3 16 17

S5 9 10

U 44 28

U1 44 28

U2 1 4

* adjustments down have been made to compensate for effect of repeat testing 

Table 2 provides a different perspective on the importance of these codes to teachers

and researchers. For example, while Figure 1b suggests that L behaviours are really only a 

concern for primary school teachers, Table 2 indicates that 21% of the secondary students 

tested as L at some time, so this remains an issue for the secondary school.  Likewise, over 

a quarter of secondary students demonstrate between Grades 7 and 10 ways of thinking 

associated with non-expert A (A2/A3, 26%) and with S (28%). An example is that 17% of 

secondary students were involved in the code S3, where students chose incorrectly on 

equal length decimals (e.g. they say that 0.3 is larger than 0.4). This is a surprise to many

people; early researchers (such as Resnick, Nesher, Leonard, Magone, Omanson, & Peled, 

1989, and Sackur-Grisvard & Leonard, 1985) did not include such comparison items in 

their test, as it is hard to imagine any student who could answer this incorrectly. Stacey and 

Steinle (1998) provided interview evidence of two ways of thinking that result in these 

errors. Students using reciprocal thinking have made their choice by a loose analogy with 

the fact that 1/3 is greater than 1/4, while students using negative thinking have made their

choice recalling -3 is greater than -4. While confusing decimals with negative numbers 

may seem unlikely, we believe that learning about negative numbers and index notation 

(e.g. 0.000003 = 3 x 10-6 which clearly links decimals with negative numbers) is a likely 

cause of the increased prevalence of S3 in Grade 8 (see Figure 1c). Stacey, Helme and

Steinle (2001) explored underlying reasons, using the theory of embodied cognition. New 

learning therefore “attracts” students to S thinking, so they need an opportunity to clarify,

contrast and sort out their ideas.  Explicit discussion of the location of positive and

negative decimals and fractions on the number line is a good start. 

Other analyses (see Steinle & Stacey, submitted) show that students exhibiting S 

behaviour exhibit unexpected tendencies. As they get older, these students become more

likely to persist with this behaviour; for example, 40% of S3 students in Grade 8 who 

complete a subsequent test, retest as S3. This is the most persistent code in secondary

schools. Not only do the S3 students tend to persist in this code, even when they do move 
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from S3, they are less likely to move to expertise than other students. S behaviour has 

therefore emerged as a major difficulty requiring attention in secondary schools. 

The Paths in Student Learning 

The longitudinal study has provided a unique data set on how individual students

change and retain their ideas about decimals for up to three years.  This information has 

supplemented interview evidence on the nature of the misconceptions and the reasons for

the behaviours exhibited.

Above we commented on the high persistence of S3, especially around Year 8. In 

general, the misconceptions that are associated with interpreting the decimal portion as a 

whole number, referred to as whole number thinking (L1), and reciprocal thinking and

negative thinking, (both coded as S3) are the most persistent (i.e. have the highest 

probability that a student will retest in the same code on their next test). Of the students

who completed tests that indicated S3 or L1 thinking, about one in six responded to the test 

in the same way more than two years later.

The students who completed tests coded as U (unclassified) were more likely to 

become experts by their next test, compared with students who were exhibiting L or S 

behaviours. Such students are possibly using a combination of different ideas, and may feel 

confused as they complete the 30-item test; appreciating that they have something to learn 

is the best state of mind for a non-expert. Such students may be more receptive to teaching 

than those with strongly held beliefs.

The phenomenon of regression affected one in five students. In other words, of the 

students who completed one test as an expert (A1) and who completed additional tests, one 

in five students were unable to complete a later test as an expert. The over-representation

of certain codes in regression (in particular A2 and A3) confirms that there are 

considerable numbers of students who are using incomplete algorithms to compare decimal

numbers. Items such as the comparison of 0.45 and 0.453 (where one number is a 

truncation of the other) are the most likely to detect students who are using an incomplete 

algorithm. For example, students trying to use the left-to-right digit comparison algorithm

will run out of digits to compare and do not know that the space at the end of the shorter

number can be replaced by a zero for continuation of the algorithm. Similarly, students 

who compare by just looking at the initial digits to the right of the decimal point, or by 

rounding to two decimal places (as one would with dollars and cents) will not be able to

order these numbers. When an algorithm fails to provide a definite solution, students might

guess or they might resort to a latent misconception (i.e. L or S behaviours). This confirms

that rather than students moving away from these misconceptions, they are often retained 

but hidden behind algorithms and procedures (which, to a casual observer, indicate

understanding). In other words, some students are receiving teaching that is covering over
rather than overcoming misconceptions. In fact, uncovering the extent of this problem has 

been a major contribution of this study to the decimal misconceptions literature.

Evaluating and Improving the Decimal Comparison Test 

The longitudinal study has been based on data collected using DCT2, a 30-item version 

of a Decimal Comparison Test.  This is a test with great strengths and some clear 

weaknesses. One strength is the ease of administration: about 10 minutes to administer to a 

whole class, with minimal reading demand and one page of paper per student. Coding at 

the coarse level (A, L, S and U) is easy and can provide a classroom teacher with adequate

information to undertake remedial work.  Another strength of the test is that it is soundly 
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based on research, as there is a long history of the use of comparison items as being 

particularly revealing (e.g. Swan, 1983).

Research has enabled close definition of the actual items in each group, so that the 12

fine codes can be allocated to students’ tests with confidence. For example, the test

contains 5 Type 1 and 5 Type 2 items. Students with L behaviour are expected to choose 

incorrectly on the Type 1 items (4.8/4.63, 0.5/0.36, 0.8/0.75, 3.92/3.4813 and 0.37/0.216) 

and correctly on the Type 2 items (0.75/0.5, 7.942/7.63, 2.8325/2.516, 5.736/5.62 and 

0.426/0.3). Students with S behaviour exhibit the opposite behaviour (correct on Type 1, 

incorrect on Type 2) and A students get both groups correct. Steinle and Stacey (2003b) 

analysed 3531 tests completed during 1997. The most common score on the Type 1 and 

Type 2 items was (5,5) and the next two most common scores were (0,5) and (5,0). The

other 33 pairs of scores attracted only 28% of the tests. This striking clustering is one 

demonstration of the validity of the diagnoses that can be made.

There are clear limitations to DCT2. Firstly, the structure of the test; it is composed

only of comparison items, and does not test the wider domain such as the ability to perform

operations, solve contextualised problems or other probing tasks, such as insert a number

between two given numbers. We know that it is possible to complete the test without an 

understanding of decimal place value, just by accurately following a rule; so all measures

of expertise are over-estimates of “true understanding”. The strength of the DCT is in 

identifying erroneous thinking and it is surprising that such a simple test can do this so

effectively and identify so many misconceptions. Intriguingly, it does not identify them all 

well. For example, students with reverse thinking, a misconception where numbers are 

effectively read backwards (so that 0.123 is read as something like 321 thousandths) seem

to be frequently found in interviews but were found rarely with this test. We explain this 

by proposing that the format of the test is not conducive to making this error; there are 

features of any context that lead students to make certain errors and to avoid others. DCT2 

shares these limitations with most other tests to varying degrees: its simple structure

simply makes the limitations more evident. 

Secondly, the items within DCT2 could be expanded to enable diagnosis of further 

misconceptions and to separate the several ways of thinking that lie behind some of the 12 

codes. Another Decimal Comparison Test (DCT0) has included items such as comparison

of 0.6 with 0, which generated quite unexpected responses. Stacey, Helme, Steinle, Baturo, 

Irwin and Bana (2001) found that 13% of a sample of over 500 pre-service teachers from

four Australian universities chose 0 as larger than 0.6. Many of these students only made

errors on the three items involving a comparison with zero; in other words, they would 

have been classified as experts (A1) using DCT2. Hence, students who believe that 0.6 is 

less than 0 inflate the prevalence of expertise reported above.

Another improvement is to include the option of choosing equality. This allows

additional types of items such as comparison of 0.8 with 0.80 and 3 with 3.0 (which are 

equal) as well as 0.7 with 0.07 (which some students consider to be equal), which in turn 

allows better diagnosis of thinking.  Steinle and Stacey (2001) demonstrated that this is 

simple and effective and diagnoses other difficulties. The results of the study has 

emphasised that zero is both a very difficult number and a very difficult digit, so these

items can be a valuable addition.

Finally, Steinle and Stacey (2003a) identified two factors in the comparison items

(number of decimal places exceeding two, and whole number portion being zero) that had 

a secondary but measurable effect on students’ choices.  A better Decimal Comparison

Test would be obtained by splitting the Type 1 items listed above into two groups, based 
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on whether the pairs of decimals were greater or less than one, and ensuring that at least

one number in every pair contains more than 2 places. The resulting increased

homogeneity of items would be expected to decrease the number of unclassified students. 

All of these improvements relate to a fundamental observation about diagnosis. To 

discover how students think, one needs to ask the right, probing questions, but to find out

what questions these are, one needs to know how students think. Good research in 

mathematics education breaks into this cycle.

Not only do most students answer consistently on the items in the types within the 

tests, this study has extensive evidence that (unfortunately!) they tend to answer 

consistently from one test to another. This confirms the reliability of this test. Future

research should used improved versions of the test, but the use of DCT2 in the longitudinal

study has provided valuable results. The simplicity of this test and its power to diagnose 

misconceptions has produced a very positive reaction from teachers who have used this

test in their classroom. In summary, provided its limitations are understood, the Decimal

Comparison Test is a very powerful instrument for researchers and teachers.

Implications for Teaching 

Space does not permit a thorough discussion of the implications of this study for 

teaching practice. However, a few central points can be made. Of major concern are the 

low rates of expertise (especially as we note that they are inflated) at every grade up to

Grade 10 in this study and probably also beyond it. Students who do not know that 0.453 is 

near 0.45 but a little bigger, or students who think that 0.2 is near 0.3 but a long way from

0.21345, cannot make sense of the mathematics they are being taught. Moreover, the study 

has demonstrated that many students persist with misconceptions as they move through 

school; see for example, Steinle and Stacey (2003b). Hence, it is clear that the normal

teaching that most students receive is inadequate to remove such misconceptions. This is

particularly disturbing when evidence seems to show that, for a reasonably sized group of 

students, just a little targeted teaching can make a big difference. This is seen in the 

longitudinal data, where having been tested before resulted in 10% more students testing as 

experts, as well as in our teaching studies (e.g. Helme & Stacey, 2000, and Stacey & 

Flynn, 2003). Peled (2003) demonstrated the increased effectiveness of teaching that takes 

students’ misconceptions into account.

We commented above that much teaching seems to cover over misconceptions, rather

than overcome them. There are many examples. One is the “careful” approach adopted in

many textbook series of considering only tenths one year, hundredths the next and maybe 

thousandths the next, and never drawing them together. Another example is the use of rules 

to cover over misconceptions, and it is the unusual items that reveal when there is a lack of 

solid conceptions supporting them.  For example, students who learn to compare 4.3 with 

4.37 by “adding zeros and then comparing 30 with 37” might not be receiving any lasting 

teaching if they do not integrate this with the fact that 3 tenths is equal to 30 hundredths.

Indeed, discussions of 30 and 37 may reinforce the misconceptions that involve students 

treating the decimal portion of a number as a whole number. This study found that these 

misconceptions are the hardest for students to leave. Teachers need to be aware that always

rounding the result of a calculation to two decimal places can reinforce the belief that 

decimals form a discrete system and that there are no numbers between 4.31 and 4.32, for

example.

The decimal misconceptions have a wide range of causes including inadequate 

instruction, deep interactions between the way the mind works and mathematical content, 
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misremembering taught rules and drawing false analogies. The remedy for all of these 

misconceptions is basically the same: to expose the underlying place value structure of the 

number system and to make explicit connections between its many different facets. The 

benefit for the teacher of knowing about misconceptions in general and a given student’s

misconception in particular, however, is to be able to select items that will demonstrate to

the student(s) that there is something they need to learn, and to identify the connections 

(and non-connections) between ideas that need to be made explicit to them.
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