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Learning Mathematics in Primary Schools is often mediated through the use of multiple 

representations. However, teachers may not pay enough attention to the way they use these 

representations. Given that the translations among representations may not always be 

smooth, it may be insightful to examine how teachers mediate learning through the use of 

multiple representations. In this paper, I will share key ideas in commognition before I 

present a case study of how Hannah, a teacher, mediate learning of percentages in her class. 

I will also introduce the idea of a ‘Mediation Flowchart’ and demonstrate how it can be 

used to describe and analyse a teacher’s use of multiple representations. 

Representation is one of the five process standards stated in the principles and standard 

of school mathematics (National Council of Teachers of Mathematics (NCTM), 2000). 

Representation is both a process and a product (NCTM, 2000). As a product, 

representation refer to external form of representation (Goldin, 1998) such as symbols, 

graphs and diagrams. As a process, it is seen as the internal thinking in the teachers and 

pupils’ mind when working with representations. Representation can then be viewed as a 

useful means for communicating mathematical ideas. More specifically, pupils 

demonstrate their ability to connect mathematical ideas when they are able to translate 

among different representations of the concepts fluently, resulting in deeper and 

meaningful mathematical understanding (NCTM, 2000). Mathematics communication and 

connection are important mathematical processes under Singapore’s Mathematics 

framework (Ministry of Education (MOE), 2012). Hence, a study on the use of 

mathematical representations would also improve mathematics communication and 

connection. 

Although the use of multiple representations is an integral part of mathematics teaching 

and learning and teachers are also encouraged to integrate a variety of multiple 

representations into their teaching (Goldin 1998; NCTM 2000), several studies have raised 

issues on the use of multiple representations in the teaching and learning of mathematics. 

One issue is that teachers often use representations in isolation (Dreher & Kuntze, 2015; 

Goldin & Shteingold, 2001; NCTM, 2000). When representations are not connected 

fluently, mathematics communication will be affected and the lack of representational 

fluency may hinder deep and meaningful mathematics learning (Goldin 1998; NCTM 

2000). In addition, the translation between representations is also often challanging (Pape 

& Tchoshanov, 2001), especially in topics such as fractions and percentages. 

 Percentages is an essential topic in the Singapore primary school mathematics syllabus 

(MOE, 2012). However, many pupils do not have a good understanding of percentages 

(Zambo, 2008). Moreover, teachers may not have a clear understanding of this topic. For 

instance, in a study done by Koay (1998), she found that many pre-service teachers in 

Singapore did not have a good understanding of the percentages topic. Her findings, and 

others like hers, suggest that the teaching and learning of percentages should be more 

closely examined. However, there are only a few studies (e.g., See Parker & Leinhardt, 
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1995) which focus on the teaching and learning of percentages as most studies focus on 

fractions and decimals instead. More importantly, there are not many studies which explore 

the use and interplay of representations in the teaching and learning of percentages, given 

that the use of representations may play a critical role in teaching the topic. In addition, 

there is also no recent study on the use of representations in the teaching and learning of 

percentages.  Therefore, this study aims to shed some light on the use and interplay of 

representations and contribute towards a better understanding of how multiple 

representations can be used in the teaching of percentages.  

A Commognitive Perspective of Learning and Teaching 

This paper positions the interaction between the teachers and the pupils when using 

multiple representations within a participationist view of learning. A participationist 

perspective of learning reflects a shift from the acquisitionist perspective. According to 

Sfard (2001), an acquisitionist perspective describes learning as a mental action such as 

learning new concepts and forming new schemas. Some researchers challenged the 

acquisitionist perspective which did not consider the social cultural context which learning 

takes place (Sfard, 2015).  On the other hand, participationist perspective views “learning 

is first and foremost about the development of ways in which an individual participates in 

well-established communal activities” (Sfard, 2001, p. 10). In other words, participationist 

perspective focuses on the interaction between the learner and the rest of his community. 

Participationism is able to complement the acquisitionist perspective in analysing pupils’ 

learning (Sfard, 2001). In addition, an important aspect of examining the use of multiple 

representations is to investigate how they are used within a social context (Pape & 

Tchoshanov, 2001). Hence, examining the use of multiple representations using the 

participationist perspective will provide new insight to current research on the use of 

multiple representations.  

Sfard (2008) introduces the commognitive perspective to analyse mathematical 

communication and thinking. Commognition, which is formed using the words 

‘communicating’ and ‘cognition’, stems from a participationist perspective that views 

thinking as a form of communication. In this section, I will first introduce the key terms 

from the commognitive framework used in the study, as summarised in Figure 1. 

According to Sfard (2008), mathematical discourses are categorised using four 

characteristics: keywords, visual mediation, narratives and routines. Keywords are 

important in mathematical discourses because they help to convey meaning to the 

participants. Visual mediators are visible objects used in the communication such as 

symbols or iconic representations. Next, narratives involve a set of spoken and written 

utterances which describes mathematical objects and the relationships among them. The 

narratives are subject to endorsement, or rejection based on their substantiation procedure. 

Endorsed narratives, for example, theorems and proofs, are labelled as true. Endorsed 

narratives are created when there are elaborated realizing procedures between the signifiers 

and their realisations. Signifiers are words, symbols or other form of representations used 

in utterances by the participants and its realisations are objects that are operated upon their 

signifiers to produce narratives. Realisation can be visual or vocal (Spoken Words). Visual 

realisations may be represented using symbols, concrete objects, icons, gestures or written 

words. The last characteristic is the use of routines. Routines are sets of metarules that 

describe repetitive discursive action. 

Routines can be further categorized into explorations, deeds and rituals (Sfard, 2008). 

The goal of the use of explorations is the production of endorsed narratives. Exploration 



 

 

can also be divided into three different types: construction, substantiation and recall (Sfard, 

2008). Construction of narratives will result in the construction of new endorsable 

narratives. Substantiation are actions which determine whether the narratives should be 

endorsed, and recalling act is the process of recalling previously endorsed narratives. 

Deeds are defined as a set of rules that produce or change the physical object involved in 

discourse. Ritual is a routine which primary goal is to create and sustain relationship with 

others. 

For example, in the teaching of addition of unlike fractions, 2/3 + 1/4, the class may be 

involved in the use of different types of routines. The pupils may need to recall previously 

endorsed narratives such as definition of like and unlike fractions (Recalling). Instead of 

only stating the algorithm to be performed, teachers may be involved in substantiation of 

narratives such as explaining the importance of converting unlike fraction to like fraction 

(Substantiation). Eventually, the use of recalling act and substantiation will lead to the 

creation of new endorsed narratives 2/3 + 1/4 = 11/12 (Construction). The use of deed may 

include the conversion of fractions to their equivalent forms (Deed). Inevitably, ritual such 

as the use of teachers’ questioning will be used during the interaction between the teacher 

and the pupils (Ritual). 

 

 

 

 

 

 

 

Figure 1. Summary of commognitive terms used in the study. 

Adapted with permission from Choy (2015, p. 28) 

Method 

This study explores how the commognition framework can be used to analyse the 

transitions among multiple representations in the teaching of Mathematics. The 

participants of the study included an experienced teacher, Mrs Hannah (pseudonym) and 

her class of seven pupils at Primary 5 level from a Singapore public primary school. At the 

time of this study, Mrs Hannah had 12 years of teaching experience in primary school. She 

received teacher training at the Institute of Education (Singapore) and graduated with a 

Postgraduate Diploma in Education. During her teaching years, she had taught different 

profiles of pupils. The seven students in this study were identified based on their results 

and their behavioural needs at the end of their Primary Four academic year.  These pupils 
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have outlier scores (lowest) across all subjects and were grouped to form a small class so 

that they would be able to receive more attention and assistance from the teacher. 

This study consists of four main phases: Pre-data collection, data collection, data 

condensation and data analysis. During pre-data collection, the necessary ethics clearance 

were made. Next, for data collection, six consecutive lessons on Mrs Hannah’s teaching of 

percentages were recorded. The average duration of each lesson is 40 minutes. Due to the 

huge amount of data collected, I went through a process of data condensation. I watched 

the six videos and identified the relevant teaching moments which may be relevant to the 

study. I wrote brief comments about the teaching moments (Example: Mrs Hannah connect 

1% to 1 building block to 1 base ten cube.) More examples of brief comments can be found 

in Appendix E in Chia (2017). I categorised the brief comments into five categories. The 

five categories are connecting different representations, focus on percentage symbols and 

the use of base 100, choice of example, using pupils’ common mistake and using pupils’ 

existing knowledge of decimals and fractions. The recordings of the selected teaching 

moments for the first two categories were transcribed. I analysed the transcripts from a 

commognitive perspective and selected an episode from Mrs Hannah’s fourth lesson which 

reflects a rich use of representations to illustrate how Mrs Hannah’s use of multiple 

representation can be analysed with the use of a mediation flowchart. The mediation 

flowchart is my extension of a figure displaying the different types of signifiers’ realisation 

in mathematical discourse (Sfard, 2008, p. 155). In the next section, I describe a 

pedagogically significant moment, which happened in the fourth lesson, and illustrate how 

the mediation flowchart can highlight the interplay between the different representations 

used by Mrs Hannah. 

Results and Discussion 

The episode described in this paper is selected from Mrs Hannah’s fourth lesson. Prior 

to the fourth lesson, Mrs Hannah had introduced pupils to associate percentages with 100 

squares. Pupils had experience learning using unit blocks and 10 × 10 square grids. She 

taught pupils the procedure for converting percentages to fractions and vice versa by 

converting the denominator to 100. For example, 25% = 25/100 =1/4.  In the episode, Mrs 

Hannah began the discourse by revising the conversion from fraction to percentage by 

changing the denominator of the fraction to 100. 

 
1.  Mrs Hannah: Question 1, you have 1/25. Remember, let’s recall what we have learnt about 

percentage. What do you know about percentage? Percentage is how many 

squares? 

2.  Josh: Hundred square 

3.  Mrs Hannah: Thank you. Josh. We learnt that percentage is equal to 100 squares. In your mind, 

you should picture these 100 squares. Out of 100, how many squares must you 

colour? So that is percentage. So 1 out of 25, can I make it into 100? 

4.  Josh: Yes, times 4 

5.  Mrs Hannah: Woah, Josh is so fast. Very good. Do you just multiply by 4 this way?  

[Mrs Hannah wrote 1/25 × 4.] 

6.  Kate: No 

7.  Mrs Hannah: What should I do?  Thank you Kate. She says you must multiply the factor 4 to 

both the numerator and denominator.  So that’s one method going about doing it. 

You get 4/100.  

[Mrs Hannah completes the working 1/25 = 4/100 as she talks.] 

Ruth do you think you can help us along to change this to percentage, or perhaps 

you change it to decimal first? This is something which we do last week. If you can 

remember. Or anyone? Ruth looks so nervous. Is there anyone else who can help 



 

 

her? 

8.  Mitch: 4%  

[Mrs Hannah completes the working 1/25 = 4/100 = 4% as she talks.] 

9.  Mrs Hannah: How do you get 4%? In your mind, how do you read this? 

10.  Mitch: 4 out of 100 

11.  Mrs Hannah: [Mrs Hannah circled 4/100 and extended an arrow out of the circle and wrote 4 out 

of 100.]  

That’s right. You must be able to read this as 4 out of 100. 4 squares out of 100 

squares. 4 squares out of 100 squares will be 4 percent.  Remember what I say 

about percentage. Percentage is about 100 squares.  So it is 4 out of 100 which is 

4%. Very good, Mitch. 

 

As can be seen from the transcript, Mrs Hannah first elicited responses from the pupils 

that percentage is associated with 100 squares. Next, Mrs Hannah explained that 100 

squares can be represented by the denominator 100, which the pupils had learnt previously. 

She highlighted to the pupils that they should convert the denominator to 100 when 

converting fractions to percentages. As seen from the above example of 1/25, the class first 

converted 1/25 to 4/100. Next, by replacing the denominator ‘/100’ with the ‘%’ sign, the 

class converted  4/100 to 4%. I will now provide a fine-grained analysis of how Mrs 

Hannah mediated the use of different representations through the lens of commognition—

keywords, visual realisations, endorsed narratives, and routines. 

Mediation using keywords. Keywords used in this segment can be categorised into 

three different categories: ‘mathematical terms (percentage)’, ‘everyday words’ and ‘other 

mathematical terms’ (Shuard & Rothery, 1984). Examples of ‘mathematical terms 

(percentage)’ are ‘percentage’ and ‘out of 25’. ‘Everyday words’ are example such as 

‘equal to’ and ‘other mathematical terms’ refers to words like ‘numerator’ and 

‘denominator’. In this segment, keywords, in both spoken and written forms are used to 

mediate between symbolic representations and algebraic representations. In turn 3, the use 

of mathematical terms such as percentage, 100 squares and out of 100, are used to mediate 

between symbolic representations, ‘1/25’ and its iconic representation which is 10 × 10 

square grids. In the case of 1/25, pupils may not be able to visualise the fraction as 100 

squares directly. Using everyday words, pupils would realise that they need to ‘make it’ 

into 100 squares. After converting 1/25 to 4/100, similarly, the use of spoken and written 

forms of ‘4 out of 100’ would be used to mediate between the two symbolic 

representations of 1/25, 4/100 and 4%. Figure 2. on the next page provides a visual flow 

chart of the direction of mediation in the episode.  

Visual realisations of 1/25. The flowchart shows the different realisations of 1/25 in the 

form of concrete objects, iconic representations, spoken and written words and algebraic 

symbols. Base 10 blocks and 10 × 10 square grids were used in the previous lessons. 

Hence, pupils may make reference to these representations to make meaningful 

connections to the new representations used in this lesson. In this segment, the use of the 

phrase ‘____ out of ____’ is frequently used by Mrs Hannah both in written and spoken 

form. Algebraic symbols includes 4/100, an equivalent fraction of 1/25, and 4%. The 

sequence of the appearance of the different realisations is presented from top to bottom 

with the full arrows showing the direction of mediation. These arrows also connect the 

signifier-realisation pairs through the mediation process which was mainly through the use 

of written and spoken words. The numbers and directions of the arrows reflect that the 

realising procedure is a non-straightforward, complicated one. There are mainly four 

signifier-realisation pairs as summarised in the Figure 3 below. 
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Figure 2. Mediation of algebraic-symbolic and iconic representations  

using written and spoken words in the episode. 

 

Figure 3. Signifier-realisation pairs in this episode. 

Endorsed narratives. The realising procedures which translate the signifiers to their 

realisations lead to the creation of endorsed narratives. The first two signifier-realisation 

pairs lead to the endorsed narratives, 1/25 = 4/100. Using the third signifier-realisation 

pair, the class was able to conclude that 4/100 can be expressed using the iconic 

representation of 100 squares with only four squares being shaded. Lastly, in the fourth 

signifier-realisation pairs, we can equate 4 squares out of 100 squares to 4%. Combining 

the endorsed narratives found in this segment, we can express the realisation as 1/25 = 

4/100 = 4%. Mathematical communication is fluent when there is coherence between the 

use of the keywords and narratives by the participants. In this segment, the interplay of 

keywords and narrative suggests that the realisation of the signifiers in the four signifiers-

realisation pairs are examples of fluent communication which lead to the production of 

endorsed narratives. However, in turn 7, teacher asked the pupils to convert 4/100 into 

decimal. There is an absent of realisation of 4/100 in its decimal form in the lesson as 

reflected in Figure 2. This is a non-example of fluent mathematical communication.  

Types of routines. The endorsed narratives, 1/25 = 4/100 = 4% is the product of the 

interchange among the act of different routines – explorations, deeds and rituals. Although 

explorations are the only types of routines which lead to endorsed narrative, the use of 

deeds and rituals are also important in developing act of explorations (Sfard, 2008). In this 

segment, Mrs Hannah had used different types of routines to improve the fluency when 



 

 

connecting the different signifiers and realisations of 1/25 (Goldin & Shteingold, 2001; 

NCTM 2000). Table 1 provides a summary of the sequence and explanation of the type of 

routines used by Mrs Hannah in Segment 1. 

Table 1 

Summary of Types of Routines Used in Segment 1 

Turn Types of routines Task 

1-3 Exploring through 

Recalling  

Pupils recalled that percentage is associated with 100 

squares. 

3 Deed Act of colouring squares in 10 × 10 square grids to 

represent 1/25.  

3-4 Ritual Pupils responded to Mrs Hannah by explaining how 

they converted 1/25 to 4/100.  

7 Deed Mrs Hannah explained the conversion of 1/25 to 4/100.  

7 Exploration 

through 

construction 

Mrs Hannah explained the endorsed narratives 1/25 

=4/100. 

9 Ritual Mrs Hannah provided scaffolding by asking them to 

read 4% as 4 out of 100.  

11 Exploration 

through 

substantiation  

Mrs Hannah explained the endorsed narratives 4/100 = 

4%. 

 

Mrs Hannah began the lesson using endorsed narratives from the previous lessons that 

associate percentages with 100 squares. The pupils were involved in exploration through 

recalling that percentages is associated with 100 squares. After that, the pupils carried out 

the deed of picturing the number of coloured squares to represent 1/25. Through the use of 

ritual, Mrs Hannah also prompted the pupils to convert 1/25 into denominator 100 and 

carried out the deed of multiplying both the numerator and denominator by 4 to convert 

1/25 into denominator 100. The use of deeds and rituals had led to the extension of the 

previous endorsed narratives that percentage is associated with 100 squares and led to 

exploration through construction that 1/25= 4/100. Using the new endorsed narrative, 

1/25=4/100, Mrs Hannah continued to teach her pupils to convert 1/25 into percentages. As 

Mitch had answered 4% in turn 8, Mrs Hannah substantiated Mitch’s constructed 

narratives through the use of ritual. She questioned Mitch how he had read 4/100. After 

Mitch replied ‘4 out of 100’, she substantiated his constructed narratives by explaining that 

4 out of 100 is the same as 4 squares out of 100 squares which is 4%. From Segment 1, 

Mrs Hannah had used rituals and deeds to lead to exploration which produces endorsed 

narratives. The various modes of routines used is also an evident of Mrs Hannah’s 

numeracy fluency (Sfard, 2008; Thomas, 2008). 

There are several key findings from the analysis of Mrs Hannah’s discourse in this 

episode. First, key words can be used to mediate between different representations. In turn 

3, Mrs Hannah used mathematical terms and everyday words to connect different 

representations of 1/25. When the realising procedure that translates a signifier to its 

realisation is elaborated, the translation between the representations will be fluent. This can 

be seen in the creation of the four signifier-realisation pairs in the episode (See Figure 2). 

In turn 7, the absence of an elaborated realising procedure between 4/100 and its decimal 
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form provides an example of a non-fluent transition between representations. As 

demonstrated in this episode, the use of different types of routines in a mathematical 

discourse helps to improve the fluency in the translation of different representations. 

Lastly, the use of a mediation flowchart serves as a tool to make the representations visible 

for analysis to take place. In particular, the use of arrows in the flowchart helps to identify 

and connect signifier-realisation pairs. Any missing or incomplete realising procedures are 

represented using bolded arrows. Two more episodes of analysis can be found in Chia 

(2017).  

Concluding Remarks  

Notwithstanding the limitations of a single case study, this study has demonstrated how 

classroom discourse can be analysed from a commognitive perspective. The use of a 

commognitive perspective increases teachers’ awareness when using multiple 

representations. The coherence among the different characteristics of mathematics 

discourse affects the fluent use of representations. With the aim of improving teaching and 

learning, both researchers and teachers can better reflect on their use of representations and 

language during teaching by making their use of multiple representations more visible 

using the mediation flowchart. Through visual representations of teachers’ thinking, 

teachers can identify gaps in their use of multiple representations and suggest alternative 

teaching strategies.  Although it remains to be seen whether such commognitive analysis 

can lead to teaching and learning, this study has shed some important insights into the 

complexity of mathematical communication through multiple representation. 
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