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In mathematics education, subject matter knowledge matters! This paper reports findings 
from a study of relationships between teachers’ understandings of content, the tasks they 
design and their interpretations of student thinking. A combined methods approach was used 
to gather multiple data sets from 64 upper primary teachers. The study found that differences 
in teachers’ understandings of area, perimeter and volume accounted for approximately half 
of the variance in two aspects of pedagogical knowledge, when the content remained constant 
and subject matter knowledge was probed through problem solving. 

There may be nothing more foundational to teaching than subject matter knowledge 
(Ball, Thames & Phelps, 2008). However, empirical evidence supporting the impact of 
teachers’ subject matter knowledge on student learning remains inconclusive. A consistent 
finding is that students learn more when teachers focus on understanding (Hattie & 
Anderman, 2012). The centrality of understanding, as a dimension of teacher knowledge that 
impacts student achievement, is reflected in research on conceptual understanding 
(Kilpatrick, Swafford & Findell, 2001), profound understanding (Baumert et al., 2010; Ma, 
1999) and relational understanding (Skemp, 1976). Excellence in mathematics education 
involves opportunities for students to solve complex problems, high expectations for 
communicating thinking and exposure to alternative solution approaches (Thomson, 
Hillman & Wernert, 2012). Equity necessitates access to quality mathematics teaching for 
all, rather than some, students (Gonski, 2011). Investigating how teachers’ understandings 
of mathematics influence their knowledge for teaching is thereby central to increasing equity 
and excellence in education.  

Designing mathematical tasks, and interpreting students’ responses to them, exemplify 
ways in which daily teaching draws upon teachers’ mathematical knowledge. The design of 
tasks matters. “It is through tasks, more than in any other way, that opportunities to learn are 
made available” (Anthony & Walshaw, 2010, p.96). To shift teaching beyond procedural 
exercises, teachers need a repertoire of tasks and problems through which students can 
explore and understand concepts (Shulman, 1986). Noticing refers to the ways that teachers 
attend to, interpret and respond to student thinking (Jacobs, Lamb & Phillips, 2010). 
Noticing is central to student achievement because it provides the connection between 
students, the task and the content (NCTM, 2014). To design tasks that stimulate learning, 
and “scrutinize, interpret, correct, and extend” thinking (Ball, Hill & Bass, 2005, p.17), 
teachers need to represent ideas in multiple ways and carry out and understand multi-step 
problems. Thus, effective mathematics teaching involves teachers in doing mathematics.  

The research investigated how teachers’ understandings of mathematics influence their 
knowledge for teaching it. Numerous studies have explored relationships between subject 
matter and pedagogical knowledge using attainment in coursework, generalised measures of 
subject matter knowledge, or measures emphasising Number and Algebra. In this study, 
area, perimeter and volume provided a specific analysis of relationships, using content that 
is problematic for students and teachers (Blume, Galindo & Walcott 2007; Steele, 2013). 
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Data Gathering Methodologies 
A combined methods approach (Gorrard & Taylor, 2004) was adopted to investigate a 

complex question, involving multiple aspects of teacher knowledge, and facilitate the 
selection of tools and methods for gathering data and testing relationships in the same study. 
Within this approach, correlational research offered the benefit of identifying and evaluating 
the strength of relationships between aspects of knowledge without the need to assign 
teachers to different learning conditions (Cresswell, 2003). 

 

 

 

Figure 1 provides a summary of the research, including the research questions, data 
gathering, analysis and relationships studied. A cross-sectional research design created a 
‘snapshot’ across three aspects of teacher knowledge. Multiple sets of data were gathered 
from 64 participants, from the same schooling system, teaching the final two years of 
primary school (students aged 10-12 years) in the same metropolitan area, at the same point 
in time, and in relation to the same content (Gorrard et al., 2004). Teachers engaged in three 

1. Design Task

Sub question

What are the levels of 
cognitive demand in the 

area, perimeter and volume 
tasks that teachers design 

for students?

Data
Design Task Category
1 (Pre-structural) to 

5 (Doing Mathematics)

2. Problem Solving Task

Sub Question

To what extent do teachers 
understandings of area, 
perimeter and volume 

support them in solving 
mathematical problems?

Data
Problem Solving Raw Score 

from 0 to 9 
Problem Solving Category 

1 (Low) to 5 (High) 
Item 9 response (Y/N) 

(discriminator variable)
Item ratings for familiarity 

(Y/N) routineness (Y/N) and 
complexity (1 to 3)

3. Noticing Task

Sub Question

What mathematical thinking 
do teachers identify as 

representing higher levels of 
reasoning and understanding 

in student work samples?

Data
Noticing Task Position 

Category
1 (Limited) to 5 (Extensive)

Noticing Task Student 
Category 

1 (Limited)  to 5 (Extensive)

Relationship A: How are teachers’ 
understandings of content related to the level of 

cognitive demand in the tasks they design? 

Relationship B: How are teachers’ 
understandings of content related to their 

noticing of students’ mathematical thinking? 
 
 

Major Research Question: How do teachers’ understandings of mathematical content influence 
their development of knowledge for teaching it? 

Relationship C: How are the levels of cognitive demand in the tasks 
teachers design and their noticing of students’ mathematical thinking 

related? 

Figure 1. Summary of methods. 
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tasks that were replicas of the types of challenges faced in their daily teaching, to provide 
valid information about aspects of teacher knowledge (Goe, Bell & Little, 2008). On a single 
day of participation, teachers engaged in a Design Task, Problem Solving Task and Noticing 
Task.  

The Design Task 
The Design Task was used to gather data regarding the level of cognitive demand in a 

task designed by each teacher. Teachers used the syllabus as a starting point for designing a 
task to assess students’ understandings of area, perimeter or volume. A framework, 
combining levels and characteristics of the Task Analysis Guide (TAG) developed by Stein 
& Smith (1998) with an adaptation of the Structure of Observed Learning Outcomes (SOLO) 
taxonomy (Biggs & Collis, 1982), was used to analyse and categorise all tasks. The 
frameworks were combined to include a Pre-structural category describing tasks that 
provided no relevant opportunity to learn the selected content, whilst utilising the levels of 
the TAG to discriminate lower and higher level tasks. Numerous steps were taken to 
establish reliable levels for all tasks, including the use of multiple expert raters and clearly 
stated guidelines to remove potential ambiguities or biases. 

The Problem Solving Task 
The Problem Solving Task was used to gather data regarding teachers’ understandings 

of area, perimeter and volume when solving mathematical problems that were applications 
of content they teach to students in the final two years of primary school. The task consisted 
of a set of nine items, adapted from the National Assessment Plan for Literacy and Numeracy 
(NAPLAN) Numeracy tests between 2008 and 2013. The items were selected through a trial 
in which 32 teachers solved and rated a larger set of 22 items assessing the same content. 
Data were gathered to provide information about participants’ understandings of the content 
as well information about the items. Participants’ raw scores were used to allocate responses 
to categories, while item analysis included the number of correct responses to each item, the 
content focus of each item and teachers’ ratings of the familiarity, routineness and 
complexity of each item (Hirstein, 1981; Mevarech & Kramarski, 2014). 

The Noticing Task 
The Noticing Task was designed to gather data regarding teachers’ interpretations of 

students’ understanding and reasoning in written work samples. Teachers were presented 
with a set of five work samples in response to an area problem, representing different levels 
of student thinking, ranging from incorrect solutions due to predictable misconceptions to 
correct solutions using sophisticated reasoning (Goe et al., 2008). The work samples were 
based on the final item from the Problem Solving Task, which involved calculating the area 
of a plane shape with numerical dimensions on all sides – a situation noted as problematic 
for students (Hirstein, 1981). Teachers ranked the work samples from Extensive (A) to 
Limited (E) and recorded feedback to students to confirm their rankings. Teachers’ responses 
were categorised according to where they ranked a work sample with sophisticated thinking 
(Noticing Task Position Category) and which work sample they ranked as Extensive 
(Noticing Task Student Category).  
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Analysis of Data 
Data were analysed for distribution and central tendency [M = 3.03 (SD = 1.23, N = 64)]. 

Figure 2 illustrates the distribution of Design Task responses across all levels of cognitive 
demand. More teachers designed tasks in the Procedures without Connections category than 
in any other category. Approximately one-third of the teachers designed the types of higher 
level tasks recommended for student learning: Procedures with Connections to Meaning or 
Doing Mathematics tasks. The eight tasks in the Pre-structural category did not reflect any 
relevant opportunity for students to learn the selected content. 

Problem Solving Task scores were used to allocate responses to Problem Solving 
Categories [M = 3.02 (SD = 1.32, N = 64)]. Figure 3 illustrates the distribution of responses 
across the full range of Problem Solving categories from Low (0 or 1 correct) to High (8 or 
9 correct). On average teachers answered half of the problems correctly. However, 37.5% of 
teacher responses demonstrated stronger subject matter knowledge by solving most or all 
problems. Notably, teachers were far more likely to solve problems rated as familiar, non-
routine and/or low in complexity. 

 Figure 4 captures the distribution of Noticing Task Position responses [M = 3.20 (SD = 
1.33, N = 64)] across all categories. Most teachers did not interpret the correct, sophisticated 
mathematical thinking in a work sample as evidence of Extensive achievement. Teachers 
were equally likely to rank this work sample as Thorough or Sound as they were to rank it 
as Extensive. Approximately one-third of responses ranked this work sample lower than at 
least one work sample with an incorrect solution. Notably, teachers who correctly solved the 
item that work samples were based on (indicated by darker shading) were far more likely to 
notice higher levels of student thinking. 

Figure 2. Design task. 

         Figure 3. Problem solving task. Figure 4. Noticing task. 
 

Data from the three teacher tasks were used to identify relationships between aspects of 
teacher knowledge. Figure 5 illustrates the relationship between Problem Solving and 
Design Task data. The Pearson correlation coefficient [r = 0.759, n = 64, p = 0.01] revealed 
teachers’ understandings of content as highly, significantly predictive of the level of 
cognitive demand in the tasks they designed using the same content. A significant regression 
(F(1,62) = 84.485, p<.001) was found, with an R² value of 0.577. 

Visual inspection of the scatterplot in Figure 6 shows the way in which Problem Solving 
was predictive of Noticing Task Position Categories [r = 0.674, n = 64, p = 0.01]. A 
significant regression equation (F(1,62) = 51.550, p<0.001) was found, with an R² value of 
0.454. Fisher’s exact test identified solving the problem that student work was based on as 
highly, significantly predictive of noticing student thinking [<0.00001, p<0.05]. 
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Relationships between aspects of teacher knowledge were then studied simultaneously. 
Figure 7 presents a three-dimensional view of teacher knowledge created to synthesise 
findings regarding how teachers’ understandings of content influence their knowledge for 
teaching. In this graphic, each circle represents one participant. Circle size indicates the 
strength of subject matter knowledge, while position conveys the strength of two aspects of 
pedagogical knowledge. The dotted lines indicate the median score for aspects of 
pedagogical knowledge and divide the graphic into four quadrants of teacher knowledge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Discussion 
The strength of relationships identified between aspects of teacher knowledge 

highlighted the important role that subject matter knowledge plays in supporting pedagogical 
knowledge. The results reflected the fundamental belief of pedagogical content knowledge: 
neither subject matter knowledge, nor knowledge of teaching alone, are sufficient for 
effective teaching (Shulman, 1986). However, in this study, evidence of pedagogical 
knowledge not supported by proficiency with the subject matter, was scarce. Subject matter 
knowledge matters. It impacts on  teachers’  interpretations of the  intended  curriculum, the  
  

Figure 5. Relationship A. 

 

Figure 7. Relationships between three variables of teacher knowledge. 

Figure 6. Relationship B.  
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learning opportunities they design to implement the curriculum, and their interpretations of 
how well students have attained the curriculum (Mullis & Martin, 2011). 

The variability of teacher knowledge and an emphasis on procedural thinking were 
prominent throughout the results. All levels of cognitive demand were evident in the tasks, 
teachers’ understandings of content supported them in solving anywhere from none to all of 
the problems presented, and teachers’ interpretations of the same work sample ranged across 
five reporting descriptors. In the correlational analysis, teachers’ problem solving scores 
explained 57.7% of the variation in the level of cognitive demand in tasks, and 45.4% of the 
variation in their noticing of higher levels of student thinking. An emphasis on procedural 
thinking was also evident throughout the results. More teachers designed tasks that focused 
on Procedures without Connections, most teachers solved only familiar, routine problems 
and almost half interpreted procedural thinking as evidence of Extensive achievement - even 
though the thinking was inefficient. Notably, teachers who solved only problems rated as 
familiar and routine designed lower level tasks and misinterpreted higher level reasoning in 
a work sample using a novel solution approach. The variability of subject matter knowledge, 
its association with variations in pedagogical knowledge, and a reliance on procedural 
thinking, present challenges for increasing the quality of mathematics education. 

Teachers’ understandings of content are central to student learning. The ratio of higher 
to lower level tasks, proportion of teachers solving only familiar, routine problems, and 
valuing of procedural thinking over reasoning, indicate that conceptual (Kilpatrick et al., 
2001), profound (Baumert et al., 2010; Ma, 1999) and relational (Skemp, 1976) 
understandings of mathematics are not prevalent. If Australian students need increased 
opportunities to solve more complex problems, high expectations for reasoning and exposure 
to alternative solution approaches (Thomson et al., 2012), improving the quality of tasks, 
and teachers’ noticing of student thinking in response to them, are fundamental to achieving 
standards of excellence. As equity necessitates access to quality mathematics teaching for 
all students (Gonski, 2011), the variability of teachers’ subject matter knowledge, and its 
influence on aspects of their pedagogical knowledge, requires further investigation and 
investment. Ball and colleagues (2008) observed that the learning gains of students in the 
classes of teachers with higher levels of mathematical knowledge for teaching were equal to 
the effects of an additional two to three weeks of instruction per year. Hence, deepening 
teachers’ understandings of the mathematics they teach may provide a means for overcoming 
educational inequity.  

An underlying issue in improving student achievement is the need for opportunities that 
stimulate thinking beyond what students can already do (Thomson et al., 2012). Given the 
extent to which subject matter knowledge influenced the design of tasks and teachers’ 
noticing of student thinking, increasing subject matter knowledge provides a powerful means 
for activating and increasing pedagogical knowledge. Teachers’ understandings of content 
influenced the clarity of learning goals, expectations for student learning, opportunities to 
develop deeper conceptual understandings of content and noticing higher levels of student 
thinking. As no significant differences were observed between the Problem Solving scores 
of teachers in the two higher categories for the Design Task or the Noticing Task, increases 
in subject matter knowledge beyond a certain threshold might not be associated with higher 
levels of teacher effectiveness (Ball et al., 2005).  

The findings support the notion that it is not how much, but how, teachers know 
mathematics that matters (Ma, 1999). Teachers with responses in lower Problem Solving 
categories may not need to learn more mathematics, but rather, to develop the Profound 
Understandings of Fundamental Mathematics (PUFM) described by Ma. Teachers with 
PUFM are more able to highlight and connect mathematical ideas and display multiple 
solution approaches. They place greater emphasis on justifying mathematical arguments, are 
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more likely to approach topics in multiple ways and offer a greater variety of examples to 
students. By comparison, teachers without PUFM tend to focus on knowledge of how to 
complete procedures, rather than how procedures are connected to important principles of 
mathematics. Differences between teachers with and without PUFM may explain differences 
between teachers in the High-High and Low-Low quadrants of teacher knowledge depicted 
in Figure 7. As noted by Ma (1999), differences in teachers’ understandings of basic 
mathematical principles influence their development of networks of conceptual ideas that 
play an important role in supporting effective teaching.  

Correlations between teachers’ understandings of content and their knowledge for 
teaching it may be due to an inextricable link between teaching and problem solving. Both 
problem solving and teaching require teachers to solve problems “for which the solutions 
may not be readily apparent” (Chick & Stacey, 2013, p.2). Teachers who were proficient 
with the content to the extent that they solved unfamiliar, non-routine, complex problems, 
were far more likely to design higher level tasks and notice higher levels of student thinking. 
Higher levels of subject matter knowledge did not guarantee high levels of pedagogical 
knowledge, but they predicted and explained variations in it. All teachers with responses in 
the High category for Problem Solving gave responses at or above the median score for both 
aspects of pedagogical knowledge. Considered simultaneously, the aspects of teacher 
knowledge suggest that mathematical proficiency is a critical component of teacher 
knowledge (Kilpatrick et al., 2001). While subject matter knowledge alone is insufficient for 
proficient teaching, teachers with low levels of proficiency with the content did not design 
higher level tasks and notice higher levels of thinking (Baumert et al., 2010; Hill et al., 2008).  

Variations in, and relationships among, teachers’ subject matter knowledge and two 
aspects of pedagogical knowledge, have implications for educational policy and the 
allocation of resources to support teacher education (Hill et al., 2008). Almost two-thirds of 
the 24 teachers demonstrating stronger subject matter knowledge also designed a higher 
level task and noticed higher levels of student thinking. The findings reinforce the 
importance of teachers possessing connected, coherent, structured understandings of 
mathematics (Ma, 1999) as a foundation for pedagogical knowledge. By contrast, just over 
two-thirds of the 40 teachers exhibiting weaker subject matter knowledge also designed tasks 
with lower levels of cognitive demand and misinterpreted higher levels of student thinking. 
However, the results also highlight that teacher knowledge is finely grained. Further 
research, involving larger numbers of teachers, and applying different content to the study 
of these relationships, is needed. To provide an excellent mathematics education for every 
student, we need to identify the mathematics that teachers need to know, how they need to 
know it and what this means for the opportunities we provide for teachers to learn and 
understand the mathematics they teach (Kilpatrick et al., 2001).  
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