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The array is a powerful tool that builds students’ understanding in multiplication. Students’ 

interactions with the array changes through the course of an instructional sequence, which 

can be viewed as a process of reification. In this paper, I report the findings of a research 

study conducted with 45 Year 5 students in Sydney. The study explored students’ changing 

use of the array through the course of an instructional sequence on multi-digit multiplication. 

Design Research methods were used to track students’ use of different forms of the array and 

the functions that these forms served. Three key stages were identified in the process of 

reifying the array in multi-digit multiplication.  

Mathematical representations play an important role in the development of 

understanding (Hiebert & Carpenter, 1992; Pirie & Kieren, 1994). Representations make 

visible that which is abstract, thus making more abstract concepts accessible to students 

(Gravemeijer, 2004). Students’ abilities to work with mathematical representations flexibly 

and their capacities to interpret and connect representations are key to the process of building 

mathematical understanding (Goldin & Shteingold, 2001; Gravemeijer, 1999). As students 

interact with formal, external representations they can more easily observe connections and 

relationships between mathematical concepts. Those observed connections and relationships 

form students’ own internal representations of concepts (Goldin & Shteingold, 2001). 

The array has been recognised as a powerful representation that allows access to the 

important theoretical constructs of multiplication (Barmby et al., 2009; Battista et al., 1998). 

This two-dimensional representation of multiplication highlights equal groupings and shows 

how the composite units build on each other to produce a whole (Steffe, 1994). Curriculum 

documentation presents the array in various forms as an important tool in the teaching of 

single- and multi-digit multiplication (ACARA, 2017). 

There has been substantial research on the array with single-digit multiplication but there 

exists limited research on its usage in multi-digit multiplication (Barmby et al., 2009; Young-

Loveridge & Mills, 2009). Despite this limitation, studies have shown that the array affords 

students access to important multi-digit multiplication understandings, including the 

distributive property (Barmby et al., 2009, Izsak, 2004; Young-Loveridge & Mills, 2009) 

and the associativity property (Ding et al., 2013). What is less evident in the literature is how 

students’ interaction with the array in multi-digit multiplication evolves over the course of 

an instructional sequence as their understanding of the multiplicative structure develops.  

In this study, I examined the power of the array as a representation of a contextual 

situation through to a representation for mathematical reasoning as enacted by the students 

through their mathematical activity over the course of an instructional sequence. 

Gravemeijer (1999) described this changing use of representations as a process of reification, 

where mathematical activity takes on object-like character as a result of student activity. 

According to Gravemeijer (1999), there are two stages to the process of reification. First, 

students’ activity is bound in the context of the problem, a stage Gravemeijer refers to as the 

referential level. The second stage is the general level, where students’ interpretations and 

solutions operate separately to the contextual imagery. 

To address the research gap, and to inform curriculum design and teaching practice, the 

following question focused the research: How does students’ use of the array develop from 
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a representation of a contextual situation to a representation that is used for more 

generalised mathematical reasoning in multi-digit multiplication? 

Theoretical Framework 

The theory of Realistic Mathematics Education (RME) was used to guide the design of 

this research. RME is founded on the belief that mathematics is not a closed body of 

knowledge to be transmitted. Rather, it is an exercise in which learners are active participants 

(Van den Heuvel-Panhuizen, 2003), whereby one ‘reinvents’ conventional mathematics for 

themselves (Gravemeijer, 2004). In the context of the classroom, students engage in tasks 

that require them to develop their own tools and strategies as they solve experientially real 

problems. This is the process of mathematisation. Students form and organise new 

knowledge and develop their own mathematical insights (Van den Heuvel-Panhuizen & 

Drijvers, 2014). The aim of RME is to support students’ progressive mathematisation, or 

level-raising (Gravemeijer et al., 2003). To achieve this, learning experiences are based on 

three important design heuristics: experientially real contexts, guided reinvention (a process 

where students reinvent conventional mathematics through active teacher guidance), and 

emergent modelling. Most relevant to this paper is the heuristic of emergent modelling, 

which describes how students’ interactions with models develop and change through the 

course of an instructional sequence. 

In RME, a model is a broad term that encompasses varied representations of 

mathematical concepts and structures (Van den Heuvel-Panhuizen, 2003). Models are not 

designed as ready-made representations trying to make mathematical concepts concrete. 

Rather, models are developed out of contexts (Gravemeijer, 2004) and support students in 

the process of progressive mathematisation. The model, as Van den Heuvel-Panhuizen 

(2003) explains, serves as a bridge. On one side of the bridge are the informal understandings 

bound within the context of the problem, and on the other side are the formalised 

mathematical concepts. It is students’ interactions with the model that allow them to cross 

this bridge. 

The nature of the model changes through students’ activity. It moves from a model of a 

situation to a model for mathematical reasoning (Gravemeijer, 2004; Van den Heuvel-

Panhuizen, 2003) with different forms of a model serving different functions (Saxe, 2002, 

2004). Initially the model is closely connected to the context of the problem: it is a model of 

a particular situation and students use it to make sense of the problem at hand. As students 

work with the model over multiple experiences, they build an appreciation for the 

mathematical concept or structure that the model embodies. Their understanding of the 

model becomes more generalised, and it becomes a model for mathematical reasoning. The 

model is reified. As Gravemeijer (2004) explains,  

the model first comes to the fore as a model of the students’ situated informal strategies. Then, over 

time, the model gradually takes on a life of its own. The model becomes an entity in its own right and 

starts to serve as a model for more formal, yet personally meaningful, mathematical reasoning (p. 

117). 

Methods 

The methodological approach for this research needed to allow the researcher to observe 

first-hand students’ reasoning and interaction with the array. To meet this aim, Design 

Research methods were employed (as described by Cobb & Gravemeijer, 2008). Three 
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research phases were enacted: preparatory thought experiments, teaching experiments and a 

retrospective analysis.  

The preparatory phase formed the foundation of the project. A detailed analysis of 

relevant literature was the basis for anticipatory thought experiments (Gravemeijer, 2004). 

This phase clarified the learning goals, documented the starting points for instruction and 

then, from this, delineated a predicted learning pathway. 

The teaching experiment phase of the project was conducted in two different Year 5 

classes. Both classes were from non-government schools in Sydney; 23 students in the first 

class and 22 in the second class, comprised a sample size of 45 students. The researcher 

adopted the role of the teacher in each teaching experiment. This approach allowed the 

learning environment and teaching across both experiments to be controlled and enabled the 

researcher to experience first-hand the events of the classroom, thus enriching the ongoing 

cycles of data analysis and experimentation. The students’ regular teacher was also present 

in the classroom and helped facilitate student activity. The same instructional sequence was 

taught in both classes. The sequence was implemented over a two-week period and 

comprised of four teaching episodes. Each teaching episode spanned two or three one-hour 

lessons and was characterised by a focus on a distinct mathematical concept, presented 

through the context of a problem. Each teaching episode is described later in the results 

section of this paper.  

 The retrospective analysis situated the classroom learning process into the “broader 

theoretical context as a paradigmatic case of a more encompassing phenomenon” (Cobb & 

Gravemeijer, 2008, p. 83). It was in this phase that a grounded theory (Glaser & Strauss, 

1968) on the reification process of the array was formed. 

Data collection and analysis 

The data collected needed to elicit evidence of students’ reasoning with the array, shifts 

in their reasoning, and how these shifts were supported and organised. Based on this, three 

key forms of data were collected: student work samples from the teaching episodes, 

transcribed video recordings of classroom activity, and field notes compiled by the 

researcher and class teacher during classroom lessons. 

The analysis of data occurred over two phases of the research. The Constant Comparative 

method (Glaser & Strauss, 1968), adapted to the needs of Design Research as illustrated by 

Cobb and Whitenack (1996), was used during the teaching experiments. Students’ use of the 

array was tracked across the teaching episodes and descriptions of students’ usage were 

grouped in two ways: according to the individual students and then according to the solution 

method used. This enabled observation of whether the model held power for individual 

students, which would be evident through the moving from a model of the contextualised 

situation to a model for more generalised mathematical reasoning.  

The second round of data analysis was conducted as part of the retrospective analysis, 

which mapped the process of the array moving from a model of a contextualised situation to 

a model for more generalised mathematical reasoning. Saxe’s (2004) form-function 

framework was used to explore the different forms of the array used by students and what 

function each form of the array served. The framework helped explain how students’ use of 

the array shifted over the course of the instructional sequence, to serve differing functions. 

The form of the array was defined as specific visual features, and its function was defined as 

the way the students chose to interact with the array in their work. Three forms of the array 

were observed across the instructional sequence: arrays with all individual parts visible, a 

pre-partitioned array, and an open array. The dataset was grouped according to the three 
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forms of the array so that commonalities could be identified, and so that shifts in students’ 

form-function use over the course of the instructional sequence could be noted. The dataset 

was then re-grouped, this time based on the array’s function. Grouping in this way served to 

confirm the commonalities that were identified, students’ evolving use of the array, and to 

highlight any anomalies. The final step in the analysis was to explore the form and function 

of the array based on students’ diverse conceptions and strategies. To do this, data were 

grouped based on the form and function of the array that the students chose to use as they 

developed solutions to the problems. 

Results 

The results section describes the visual form of the array used and the student-chosen 

function that each array served. The students’ use of context is also recorded as the process 

of reification is mapped. Examples of students’ work is used to illustrate each teaching 

episode. The work of these students was typical of what was observed across both classes. 

Teaching Episode 1 – Zoe and Lucille 

The first teaching episode introduced the students to the context of a bakery that sold 

cupcakes. Students were presented with the following narrative: A baker makes and sells 

eight different flavours of cupcakes. The cakes are baked in a tray that has four rows with 

six cakes in each row. He bakes one tray of each flavour. How many cupcakes does he bake 

each day?  

 

Figure 1. Zoe and Lucille’s work sample from Teaching Episode 1 

Zoe and Lucille’s solution and justification were bound within the context of the 

problem. They represented their strategy using arrays which were presented as actual cakes. 

The function of the array in this form was to support calculation. Each tray was considered 

individually and was partitioned into groups of 20 and 4 (Figure 1). Lucille’s verbal 

explanation of their strategy highlighted that the context was relevant to their thinking as 

they solved the problem: But it is not like you are really cutting a row off, like, you can’t. 

They are in a tray, so, yeah, you can’t actually do it. But it is just how we worked it out. 
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Teaching Episode 2 – Ryan and Dylan 

The class was shown a picture of 16 filled cupcake boxes sitting on a bench in a 4 × 4 

array, and students were told that each box held 12 cakes. The array was somewhat 

abstracted as the individual cakes were not visible. However, a further diagram shown to 

students revealed that the cakes in each box were configured in three rows of 4.  

 

Figure 2. Ryan and Dylan’s work sample in Teaching Episode 2 

Ryan and Dylan partitioned the array based on place value and noted that the result for 

this collection of cakes, 16 × 12, was the same as the total number of cakes in the first 

teaching episode, an array of 24 × 8. This led into investigating a second mathematical 

goal—why did 16 × 12 = 24 × 8? Recognising that 16 could be halved to make 8 and that 

12 could be doubled to give 24, the pair divided the array in half and rearranged it to 

transform 16 × 12 into 24 × 8 (Figure 2). Through their mathematical activity, they 

established a new function for the array: the array could be manipulated. The array moved 

from a static tool to a dynamic one. Through their working, the boys reasoning remained 

connected to the context, as illustrated in the following comment from Ryan: You could join 

two of the boxes together to make 24 then… wait, that’s 8 groups…yeah…that’s 8 groups 

because 8 twos are 16.  

Teaching Episode 3 - Amelie 

 

Figure 3. Comparing the area of two trays in Teaching Episode 3 

In the third teaching episode, the students were shown the trays inside different cupcake 

boxes, and they discussed why one array was skewed and the other was not (see Figure 3). 

Students hypothesised that the skewed array was smaller in area and therefore would be 

cheaper to make. This hypothesis was the focus of the teaching episode.  

Amelie, a student from Class 2, reasoned that 28 × 24 would be bigger, arguing that 2 

could be taken from 28 and added to 24 resulting in the “equivalent” equation 26 × 26 (which 

is larger than 25 × 25). While 28 × 24 was indeed bigger, Amelie came to see that her 

reasoning was incorrect, and a new mathematical goal emerged: why was 28 × 24 not 

equivalent to 26 × 26? To achieve this goal, Amelie worked independently from the context 

of the problem. She regressed from an open array to a more familiar form of the array, a grid 
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array with all parts visible. The function of the array in this form was a sense making tool 

for the multiplicative structure. Amelie created a 28 × 24 array from grid paper, then cut off 

two columns from the 28 and taped them to the bottom of the array (Figure 4). She noticed 

that a 2 × 2 corner was missing, which left her puzzled. To understand what was happening, 

Amelie explored some other calculations, including 12 × 8. She recognised that, when 

attempting to form a square, a square corner with the dimensions of the number removed 

would be missing. This process helped Amelie realise that additive compensation could not 

be used in a multiplicative context.  

 

Figure 4. Amelie’s strategy for comparing 28 × 4 and 26 × 26 

Teaching Episode 4 – Hannah and Ava 

The final teaching episode continued the narrative of the bakery and presented students 

with a multi-step problem: the total cost of 24 trays of cakes packed into boxes of 12 and 

sold at $28 per box. This context could not be easily represented as an array, as the problem 

presented a rate-based context. The intention was to see if students’ strategies were limited 

by the context, or if they moved beyond the context to use the array as a calculation tool. 

The majority of students from both classes used the array, partitioning it into place value 

parts to form simpler calculations. This is illustrated by Hannah and Ava’s work. The girls 

reasoned that partitioning into place value parts created calculations that were easy to 

perform. Hannah and Ava were working abstractly with the array and made no reference to 

the context of the problem in their recording or justifications. 

Abstract thinking, disconnected from the context, was evident in most students’ work. 

While in earlier teaching episodes students referred to calculating with ‘boxes’, in this 

episode a shift was made to calculating with numbers: We timesed [sic] 64 by 20 which is 

really just like doing 64 times 2 and then adding a zero. And then we just timesed [sic] 64 

by 2, and then doubled again to get 64 times 4. Abstract thinking was realised through 

students’ mental calculations, as illustrated by one student’s solution to 32 × 25: 25 is a 

friendly number because you just multiply it by 4 to get 100, so you divide the 32 by 4 to get 

8, so it is just the same as 8 × 100. 

Discussion 

The process of the array’s reification can be understood by examining the forms of the 

array that students selected to use and the function that each form served. Students chose to 

use different forms of the array within a single problem and oscillated between multiple 

forms across the instructional sequence. At the start of the instructional sequence and when 

a problem was first posed, students used a form of the array that was closely connected to 

the context of the problem. In the same way, their interactions with the array were 
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contextually bound. The function of the array in this form was to support calculations. This 

is indicative of the referential level in the process of reification (Gravemeijer, 2004). By the 

end of the sequence, students’ reasoning with the array was more abstract and generalised 

and removed from the context of the problem; they had progressed to the general level in 

the reification process (Gravemeijer, 2004). 

An interim level was observed in this process which I have termed structuring. In the 

process of making sense of the multiplicative structure, students worked independently of 

the context with a previously understood form of the array. They were no longer working at 

the referential level, nor were they generalising. The array had not yet become a tool for 

more formal mathematical reasoning as students were not engaged in reflection, explanation 

and justification. Student activity was focused on sense-making through an exploration of 

the multiplicative structure, removed from the context of the problem.  

Central to this process of structuring was the flexibility for students to move between 

different forms of the array. On several occasions when using a form of the array connected 

to the context of the problem, students were faced with their own insufficient or incomplete 

internal representations (Goldin & Shteingold, 2001). In these instances, students would 

‘fold back’ (Pirie & Kieren, 1994) to the simpler form of the external representation: the 

array with all parts visible, as illustrated by Amelie’s working. Students would use this form 

of the array to explore the multiplicative structure and to make sense of what was happening 

mathematically. The evidence suggested that students were creating new connections and 

strengthening existing connections between their internal representations and, in so doing, 

building a deeper, or ‘thicker’, mathematical understanding (Pirie & Kieren, 1994). This 

process of thickening understanding was removed from the context of the problem.  

At this structuring level, students also needed to work independently of the context of 

the problem in order to make sense of the mathematical properties of the array. As powerful 

as a context can be in enabling students’ access to mathematical ideas, it can also be a 

hindrance. Students’ strategies can be bound within the context of a problem (Ambrose et 

al., 2003) and the array may not be recognised as a multiplicative representation. This does 

not mean that contextual situations should not be used to introduce mathematical content. 

However, students must have the opportunity to work independently of the context in order 

to connect the array representation with the mathematical concept being explored. It is the 

array representation, not the context, that highlights important theoretical properties of 

multiplication.  

Conclusion 

The process of reification of the array in multi-digit multiplication highlights how 

students progress from using the representation as a model of a particular situation to using 

the array for more generalised mathematical reasoning. Mapping this process contributes to 

the growing body of knowledge on how the array supports the development of understanding 

and provides guidance to curriculum designers and practitioners. Students need the 

opportunity to use the array to explore the multiplicative structure. In their explorations, 

students should not be restricted to one form of the array. Rather, flexibility is needed. 

Students should be afforded the opportunity to select and use different forms of the array, 

recognising that different forms will serve different functions.  
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