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Preface

This is a record of the Proceedings of the 43™ annual conference of the Mathematics
Education Research Group of Australasia (MERGA). The conference was hosted by
colleagues at the National Institute of Education, Nanyang Technological University,
Singapore. It was an online conference as there remained restrictions in travel due to the
COVID-19 pandemic in 2021. The proceedings were published online at the MERGA
website www.merga.net.au

The theme of the conference was Excellence in Mathematics Education: Foundations and
Pathways. This theme was chosen by the conference organising committee to engage the
research community in deliberations on the foundations and pathways through which facets
of excellence in mathematics education may be actualised. Two plenary lectures were
delivered on the theme. The opening and first plenary lecture by Professor Anna Sfard
focussed on the invisible pitfalls when teaching-learning events are conceptualised as inter-
discursive encounters. Anna concluded with guidance of how teachers and their students can
benefit from such communicational gaps. The second lecture by Professor Tin Lam Toh
presented a snapshot of Singapore’s journey towards excellence in mathematics education
by examining the role of the traditional notion of mathematics competition and other
competitive activities. The Clements/Foyster lecture was delivered by Professor Vince
Geiger. The lecture was devoted to the theme of becoming a researcher in mathematics
education — a fundamental focus for MERGA. The theme of the conference was also
deliberated on by four panelists during a plenary session. They shared their perspectives on
excellence in mathematics education and described research they had been involved in
related to some aspect(s) of excellence in mathematics education.

In addition, the conference included presentations of symposia, research papers, short
communications, and a round table that covered a wide range of topics related to
mathematics education in Australasia and other countries. All symposia and research papers
were double-blind reviewed by panels of mathematics educators with expertise in the field
and accepted for publication and presentation or presentation only. All the short
communications were also reviewed by the organising committee and were either accepted
for presentation or rejected if they were not research oriented. The published proceedings
include the plenary papers, symposia papers, research papers, and abstracts of research
presentations, short communications, and a round table.

The Editorial Team would like to thank the Review Panel Chairs and all the reviewers for
their professionalism and effort in reviewing the papers and providing constructive feedback.
The review process ensured that the high academic standards of the MERGA community are
upheld. Delegates from Australia, Canada, Fiji, Ireland, Israel, Japan, New Zealand,
Singapore, South Africa, South Korea, Taiwan, and United Kingdom participated in the
online conference. This was the first MERGA virtual conference held in the new normal
brought about by the COVID-19 pandemic that hit the world in December 2019.

Berinderjeet Kaur (Conference Convenor & Editor)

Yew Hoong Leong, Ban Heng Choy, Joseph Boon Wooi Yeo, & Sze Looi Chin (Editors)
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The devil in details: Mathematics teaching and learning
as managing inter-discursive gaps

Anna Sfard
University of Haifa
<sfard@netvision.net.il>

Once teaching-learning events are conceptualised as inter-discursive encounters, it becomes
clear that mathematics classroom talk is rife with invisible pitfalls. There are many types of
unacknowledged discursive gaps, some of them necessary for learning, and some potentially
harmful. Such gaps may exist also between the teacher’s intentions and her own habitual
moves, most of which are too brief and automatic to be controlled. Unknown to the teacher,
her basic communicational routines may constitute invisible crevices through which the
prejudice enters the conversation on mathematical objects. In this talk, | argue that if the devil
is in the finest detail of classroom communication, it is the detail that must be considered in
the attempts to exorcise the devil. | begin with illustrations of these claims and conclude with
a reflection on how mathematics teachers may sensitise themselves to discursive pitfalls, how
they and their students can benefit from those communicational gaps that are likely to
generate learning, and how they can cope with those divides that hinder the process or infect
it with unwanted messages.

Humans, unlike most other species, can exist only as a part of a society. But while our
very survival may depend on effective interpersonal exchanges, our communication is only
too prone to failure. Some go so far as to claim that within this context, failure constitutes
the default option, whereas success should be regarded as almost a miracle (Reddy, 1979).

Perhaps the most challenging aspect of communicational breakdowns is that they often
go unnoticed. Paraphrasing Hamlet, one can say that there are more communicational pitfalls
in heaven and earth than are dreamt of by philosophers or suspected by ordinary people.
These pitfalls tend to hide in unnoticeable details of interlocutors’ actions. Obviously, people
trying to reach one another across a hidden communicational gap risk falling to the bottom.
As blind to the fall as they were to the pitfall, they are likely to leave the exchange with
unhelpful interpretations of each other’s intentions. At home, it may hurt their relationships;
in the classroom, it may stymie their learning. In the words of George Bertrand Shaw, “The
single biggest problem in communication is the illusion that it has taken place”. This paper
is about guarding ourselves against this illusion by becoming alert to communicational
pitfalls.

Some may claim that the existence of certain communicational gaps is inherent to
learning and thus little can be done against them. Yet, | wish to argue that even when a gap
is necessary for the further development of mathematical discourse, the importance of our
awareness to its existence cannot be overstated. Indeed, exposing the gaps is a critical step
in turning them from obstacles into opportunities for learning. Clearly, being constantly on
the watch for hidden communicational hurdles will also help in guarding ourselves against
the adverse impact of those gaps that could be avoided.

In what follows, I illustrate the claim about the omnipresence of communication gaps
with examples from mathematics classrooms. With the help of specially designed conceptual
apparatus, evolving around the vision of learning as a process of routinisation of our actions,
I zoom into the data and identify seemingly negligible details that may constitute, for better
or worse, powerful shapers of students’ learning.

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo & S. L Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 1-18. Singapore: MERGA.
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Communicational gaps

In the classrooms, the presence of invisible communication pitfall may signal itself by
puzzling occurrences, for which neither the teacher nor an external observer can provide an
immediate explanation. The danger of the illusion of communication, however, is at its worst
when nothing seems unusual and the communicational glitch, although quite real, does not
manifest itself in a palpable way.

Consider, for example, the exchange between a teacher and her student, presented in
Table 1. What happens in this brief episode is so familiar that the claim about the student’s
initial difficulty as due to any communicational issue is likely to be met with scepticism.
Indeed, nothing seems surprising that the child who is evidently quite new to the topic of
fractions has difficulty multiplying a fraction by a whole number. It is also not startling that
after the teacher’s additional probing (see turns [3] and [5]) and with some effort on the part
of the student, the proper answer is finally produced ([6]). The teacher summarised saying
that a bit of effort was all the boy needed to succeed ([7]). In making this statement, she
implied that the learner was already acquainted with the necessary procedure, but was not
yet quite proficient in its application and performance.

Table 1
Example I: Multiplying by Fraction
# Speaker What is said What is done
1 Teacher: So, what is? Writes %5 - 12
2 Student: ...
3 Teacher: Try again, one third times twelve
4  Student: I think.... Don’t know...
5 Teacher: Once again, one third of twelve
6 Student: Ahm..... It’s four
7  Teacher: Great. See, when you think about it, you know

how to do it!

As unproblematic as this simple account seems to be, at a closer look it leaves an
important question unanswered. Yes, the child did seem to make an effort. Yet, although he
clearly tried hard already the first time round, he was able to produce an answer only after
the teacher’s third attempt. What was it about this third question ([5]) that brought the sudden
insight? How was this query different from the previous ones ([1], [3])? Some scrutiny of
the three instances may suffice to realise that each of the three utterances referred to the
required operation in its own way:

1. with the help of the written expression ‘*/3- 12’ ([1])

2. orally, with the expression “one third times twelve” ([3])

3. orally, with “one third of twelve” ([5]).

The first two of these renditions that make use of distinctly mathematical symbol ‘-> and the
word “times”, that belong to the formal discourse on numbers. The last utterance, which
speaks about “one third of twelve”, may be a part of the child’s everyday talk and can belong
to the repertoire also of a person with no access to formal mathematics. The first two
utterances directed the child to as-yet unfamiliar numerical operation, whereas the third one
required the everyday action of identifying a familiar part of a whole.
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The difference between this account and the one offered by the teacher is subtle, may
even appear negligible, but it is highly consequential. With her vision of the current state of
the student’s learning, the teacher will likely emphasise the need for fostering the child’s
procedural proficiency. In contrast, the realisation that the student might had participated in
a discourse different from her own and that, in result, the task he tried to perform was not
the one she had in mind will turn her attention to the conceptual side of the story. Building
on the resulting conceptual interpretation, she may decide to focus on helping the learner to
see connections between his everyday talk and the mathematical discourse of multiplication.

In this analysis, | exemplified the way in which we can make ourselves aware of subtle
communicational issues that, if unrecognised, may lead the teacher to unhelpful pedagogical
decisions, but if noticed, are likely to give rise to opportunities for significant learning. The
terms such as ‘discourse’ or ‘task’ have been used in this analysis freely, without a proper
introduction. The next section provides what is missing. After defining the terms as they are
to be understood within a discursive theory of learning, 1 will be able to operationalise the
notion of communicational gap and instantiate ways in which the risks of such gap can be
significantly reduced and its potential as an opportunity for learning considerably increased.

Operationalising the construct of communicational gap

Mathematics as discourse

In this paper, the word discourse is used as referring to the special form of
communication, characteristic of a particular community. The community may be that of
scientists, chess players or of art theorists. Most relevantly for our present context, it may be
a community of mathematicians or of mathematics classrooms. Whereas each such
community is unified by its members common interest, activity or cultural practice, its
discourse is designed specifically to tell stories with which this activity or practice can be
usefully mediated.

Thus, the first characteristic of a discourse that sets this discourse apart from any other
is its collection of endorsed narratives about this discourse’s focal objects. The adjective
‘endorsed’ indicates that these narratives are considered by its participants as faithful
accounts of the state of affairs in the world and thus, as reliable guides for future actions. In
mathematics, endorsed narratives are about such abstract objects as numbers, sets, geometric
figures, functions, etc. The communicational tools with the help of which these stories are
forged and substantiated constitute additional set of characteristics that make the discourse
distinguishable from other ones. Thus, there is the set of special-purpose keywords pertaining
to the focal objects and actions of the discourse. In mathematics, these are words such as
‘number’, ‘function’, ‘triangle’, ‘adding’, ‘differentiating’, etc. Although many of these
words may be known also from everyday talk, in specialised discourse their use is different
and defined more strictly. Another special feature of a discourse is the set of special visual
mediators that help in ensuring the effectiveness of communication. Algebraic symbols and
graphs are among the most useful mediators of mathematical discourse. Finally, discourses
are made distinct by their routines, the recurrent ways of performing different kinds of tasks,
such as, in mathematics, calculating, proving or performing geometric constructions with
the help of ruler and compass. Some of the routines are algorithmic, some are more of a ‘rule
of a thumb’. This last characteristic, routine, being particularly relevant to the topic of
communicational gaps, requires some elaboration.
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More about routines

Routine, far from being just an optional way of acting (and a rather boring one, some
may say, because of its repetitive nature), is what makes us able to act in the first place.
Indeed, it is thanks to routines that we know how to act whenever we feel expected to do
something, which is most of the time. In such situation, to react to the prompt in an
immediate way, the best we can do is to turn to those familiar ways of acting that worked
for us in the past in a similar situation (or what we consider as such). This, indeed, was what
the student in Example 11 was able to do when he eventually found the way to answer the
interviewer’s question: he recalled what was done when somebody asked the question of the
form “What is one third of X?”, with X being a set of a certain size (12 items, in this case).

To operationalise the construct of routine, there is a need for some auxiliary notions.
Thus, the situation in which a person feel she is obliged to act will be called task-situation.
Such situation may arise of itself, as is the case when one feels cold or hungry. Task-situation
may also be created by asking questions. In Example I, this is what the teacher did three
times, in turns [1], [3] and [5]. Once a person finds herself in a task-situation, she needs to
decide about her task, that is, about what needs to be done, and about a procedure that suits
that task. Deliberately or instinctively, this person will probably try to do this by recalling
precedents. Precedent is any previous task-situations that appears to a person as sufficiently
similar to the present one to justify doing now what was done then. Given suitable
precedents, she will see it as her task to act in such a way as to ensure the reoccurrence of
specific aspects of the precedent task-situation. For instance, while feeling hungry, she will
probably see it as her task to make the sense of hunger disappear. Her procedure will be the
prescription for action that, according to her interpretation, guided the previous task
performer. In hunger instigated task-situation, the procedure may be a walk to a fridge and
helping herself to some food.

Once the search for task and procedure is successfully completed, the person is ready to
act. Note that in most daily task-situations, especially in those with which we are intimately
familiar, this initial step is intuitive rather than conscious and deliberate, and rarely makes
us slow down for reflection. We may say that the task-procedure pair resulting from one’s
search, being a prescription for an emerging pattern, is this person’s routine for dealing with
the given task-situation. Learning can now be seen as a process of routinisation of our action
(Lavie et al. 2019).

Discursive gaps and their sources

In the light of the above definition, routine is not a free-floating, context-free
phenomenon. | will now argue that routines depend on task-situations and on their
interpreters. To put it differently, different people may interpret the same task-situation in
different ways, ending up with different tasks, to be performed with the help of different
procedures. To show this, | need to take a closer look at how people decide about tasks and
procedures.

On the face of it, the search for routines that would fit particular task-situations appears
so demanding, it is more likely to fail than succeed. Indeed, we would have little chance to
succeed in interpreting task-situations if we were to search precedents among all past events,
from all times and all locations. Fortunately, search spaces tend to shrink considerably the
moment we enter a specific task-situation. Imperceptibly to ourselves, we react to such a
situation with a choice of a discourse in which to think about this situation. The subsequent
search for precedents will be restricted to past situations in which people had recourse to this
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discourse. With different discourses come different routines, that is, different ways of acting.
Thus, more often than not, a task-situation created by the mathematics teacher automatically
directs the students to the discourse of this teacher’s classroom, and to routines that were
employed there, preferably in the most recent past. And vice versa: task-situation created in
out-of-school context is likely to direct potential performers to everyday discourse, barring
them from any other. Indeed, we tend to close ourselves in discourses we associate with a
given situation and this tendency may account for the phenomenon known as situativity of
learning (Brown et al., 1989; Lave, 1988), that is, for the fact that most people do not usually
apply in one context routines they have learned in another. In particular, this maybe the
reason why mathematics learned in school is, in most cases, practically absent from our daily
lives.

It is this tendency for associating situations with discourses that may be responsible for
the event presented in Table 1, in which the student reacted in different ways to what seemed
to the teacher as mere repetitions of “the same” question. More generally, considering the
dependence of our discursive choices on our past experience, it is only understandable that
people participating in the same conversation would often turn to different discourses. In the
next section, we use the former example, as well as some other ones, to show that the
resulting communicational disparities carry both risk and promises, and that making them
visible may help the teacher to turn the gaps from pitfalls into learning opportunities for her
students.

Discursive gaps as opportunities for learning

The two examples to be presented in this section illustrate the thesis that discursive gaps,
while constituting a treat to the process of learning, may also be indispensable for the
development of mathematical discourse. In both these examples, a close analysis will show
that two people engaged in a conversation with one another may, in fact, be participating in
different discourses.

Example I: Opportunity for developing routines by bonding them with other ones

Back to the example presented in Table 1, I can now present the results of the former
analysis with the help of the conceptual tools introduced above. Here is the new description:
the three task-situations created by the teacher’s questions [1], [3], and [5], although
identical in the eyes of the teacher, were seen as different by the student. More specifically,
questions [1] and [3] probably sent the child searching for precedents among past classroom
situations in which a formal algorithm for multiplying fraction by a whole number was used.
Question [5], on the other hand, might have brought to his mind everyday situations in which
a conversation was about sharing a certain amount of cookies fairly between three friends.
The tasks envisioned by the child as a result of these differing choices of discourses and
precedents were also different: In the first case, he saw it as his job to perform the symbolic
manipulation he learned in school. In the second case, his task was to find out what would
be the share of one person if twelve items were distributed evenly between three people. This
interpretation is summarised in Table 2.

An important insight about development of routines can be gained from this example.
At a close look, these two tasks, as well as the resulting procedures, have little in common
with one another. Yet, those who are well versed in multiplying by fractions and perform
this operation almost automatically are usually oblivious to the difference between the
sequences of actions required in these two cases. The long experience with the respective



Sfard

procedures might have blinded them to an interesting phenomenon that transpired very
clearly from an ongoing PhD research on the development of the discourse on rational
numbers®. Indeed, oldtimers to that discourse typically do not remember that they were
probably well acquainted with words such as half, quarter, (one)-third or three-quarters well
before they knew anything about the formal discourse on fractions. If so, they have also
forgotten that once upon a time, these basic fraction words did not function for them as
names of numbers, but were rather labels for some special routines. At that time, “finding a
third of a pizza” meant not much more than a physical action of cutting the pizza into three
parts, whereas “giving each of three children a third of the twelve cookies” meant the circular
action of handing a single cookie to each of the children (usually while saying “one for you,
and one for you...”), and repeating the action until none of the twelve cookies was left. At
that time, the expression “Y/3* 12” was meaningless. In other words, different rational
numbers corresponded in the beginning to different procedures used in execution of different
tasks. It took time until the different tasks consolidated into one, and the different procedures
became alternative branches of a single algorithm.

Table 2
Discourses and routines in Example |

The teacher’s interpretation of the The student’s interpretation of task-

task-situations created by all her situation created by the teacher’s
utterances utterance [5]

discourse  numerical of parts and wholes

task perform the formal numerical find one third of a set of 12
calculation /3 -12

procedure Apply the algorithm for 1. Divide the whole into the
multiplication of rational numbers number of equal parts indicated

by the name of the part
2. Take one part

As argued by Lavie et al. (2019), such bonding? of several routines and turning them into
a single one constitutes one of the central mechanisms in the development of discourses. In
the present case, many other routines that in the eyes of the beginner have little to do with
the school discourse on fractions will yet be bonded with the formal operation /5 - 12”
before the full-fledged routine for multiplying rational numbers emerges. The process of
gradual bonding will lead to successive extensions in the applications of the resulting super-
routine known as multiplication of rational numbers. These developments will greatly
increase the usefulness of the multiplication routine, and with it, that of the whole discourse
of rational numbers.

! The research, titled “Development of the discourse on rational numbers” is being conducted these days at the
University of Haifa by Aya Steiner. Its partial results have been published in Steiner (2018).

2 This type of bonding, one that happens between different procedures, is sometimes qualified with the
adjectives horizontal or external so as to be distinguished from the bonding that occurs inside the procedure,
and is thus known as vertical or inner.
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Example 11: Opportunity for meta-level learning

In this example, taken from a study on a 7" grade class learning about negative numbers
(Sfard, 2007), a different type of discursive gap comes to the fore. Before explaining its
nature and source, let us take a look at classroom events that signalled its existence.

At the time the event took place, the class has already discussed the multiplication of
negative numbers by positive numbers, but some students were still questioning the claim
that the result should be negative. The relevant episode began when the teacher declared that
she was going to “explain” this fact in a new way. On this occasion, she would also show
how the product of two negative numbers should be defined. As can be seen in the episode
presented in Table 3, she decided to derive all this from the multiplication of natural
numbers, with which the children were already well acquainted.

Table 3
Example II: Teacher demonstrates derives multiplication of integers
# Speaker  What is said What is done
1556a Teacher: Well, I wishto Pointsto [2 - (-3) =-6]
explain this
now in a
different way.
1556b Writes on the blackboard the following column of
equalities:
2:3=6
2:2=4
2:1=2
2:0=0
2:-(-1)=-2
2:-(-2)=-+4
2 (-3) =

While writing, she stops at each line and asks the
children about the result before actually writing it
down and stressing that the decrease of 1 in the
multiplied number decreases the result by 2

1556¢ Teacher: Letus now As before, writes on the blackboard the following
compute (-2)  column of equalities, stopping at each line and
times (-3) ina asking the children about the result before actually
similar way. writing it down and noting that the decrease of 1 in
the multiplied number increases the result by 3; this
rule, she says, must be preserved all along:

3:(03) =-9
2:(3) =6
1-(-3) =-3
0:(3) =0
1) -(3)=3
(-2)-(3)=6
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Table 4 shows objections raised by some students in reaction to the teacher’s argument.

Table 4
Children’s reactions to teacher’s derivation of the laws of multiplication

# Speaker What is said
1557 Shai: I don’t understand why we need all this mess. Is there no simpler rule?

1559 Sophie: And if they ask you, for example, how much is (-25) - (-3), will you
start from zero, do 0 - (—3), and then keep going till you reach (-25) -
(-3)?

The students seem to have misinterpreted the teacher’s intentions. The teacher saw it as her
task to justify the definition of integer multiplication by deriving it from operations on
natural numbers®. In contrast, the children interpreted the teacher’s performance as a
presentation of a new algorithm for multiplication, which they then criticized as a rather
cumbersome method for producing simple endorsed narratives such as (-2) - (-3) = 6 or
(-25) - (=3) = 75. The nature of the resulting discursive gap is detailed in Table 5.

Table 5
Discourses and routines in Example Il

The teacher’s interpretation of Children’s interpretation of the
her own performance teacher’s performance
discourse  of unsigned numbers of integers
task define “plus times minus” calculate a product of a positive and

negative number

procedure build a list that leads form a known operation (multiplication of two natural
numbers) to the desired ones (“plus times minus” and “minus times
minus”)

Why this difference in the teacher’s and students’ interpretation of the task-situation? One
explanation is that the children were still captive of the discourse of unsigned numbers. In
that familiar discourse, numbers and numerical operations constituted a part of the external,
mind-independent world. Indeed, so far, it was the world that dictated the result of all
numerical operations, such as 2-3 or 5-%. In the discourse of signed numbers, in contrast,
the nature of numeric operations seems to be established in the act of defining, as if by fiat.
This change is tantamount to passing the power of deciding about what exists and what
happens in mathematical universe from the external, natural powers — or maybe from the
God — to humans. As such, it is difficult to accept, and even before that, to conceive.

Two discourses that differ in their routines for forging and endorsing narratives have
been called incommensurable (Sfard 2007).* The transition from the discourse of natural

3 Here, the set of natural numbers is regarded as including zero. The unspoken principle underlying the
teacher’s argument was that the definition of multiplication of integers would preserve some basic numerical
laws that held in the realm of numbers so far.

4 This difference means a change in meta-rules, that is, in the rules that govern the activity of mathematizing.
Such meta-level change can lead to seemingly contradicting endorsements. And, indeed, the narrative “There
is a number that is smaller than any other” that held in the discourse on natural numbers is one of the many
that will have to be abandoned once this discourse is extended to the one on integers.
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numbers to that of integers is one of several passages to an incommensurable discourse that
the student will have to make in the process of learning. The learning that takes place during
these passages has been described as meta-level, so as to signal that in this case, the learning
involves not just an addition of new narratives, but also a change in how such narratives are
created and endorsed. A successful meta-level learning closes the discursive gap that spurred
this learning. This closure does not mean the disappearance of the former discourse — of the
discourse of natural numbers in the present case. Rather, this old discourse is subsumed in
the new one and subjected to its differing meta-rules.

Summary and conclusions: Implications for teaching

The two cases of discursive gap shown in this section shed much light on processes of
discourse development. The first of them tells us something about the growth of routines:
such growth involves turning a number of hitherto unrelated procedures into special cases
of a single procedure for the execution of different variations of the same task. This means
that task-situations seen by discursive oldtimers as “the same” (equivalent), may be seen by
newcomers as different. The second example shows the inevitability of discursive gaps as
those that spur learning (meta-level learning, in this case) in the first place. Indeed, every so
often, further development of mathematical discourse will remain stymied until the students
confront and overcome a discursive gap: until they face, and reconcile themselves with a
discourse incommensurable with the one in which they participated so far. In sum, in both
cases, the gap, far from being just a nuisance, is what spurs the development in the first place.
As such, it is indispensable for learning.

Obviously, in cases such as those presented in this section, avoiding the gaps would
preclude the possibility of learning. As such, it is not an option. Instead, one should try to
minimize the risks of the gap and optimize its potential benefits. Yet, not only the students,
but also teachers are rarely aware of discursive gaps such as those described in the two
examples. It is by making them visible that the teacher may turn potential pitfalls into
opportunities for learning. The question of how to do this must be left for another article.

Discursive gaps as a danger to teaching

Unlike in the case of discursive gaps that are necessary for students’ learning and thus
cannot be prevented, the two examples in this section show avoidable gaps that, if left
unattended, are likely to distort teaching. In both cases, these gaps stem from the teacher’s
inadvertent participation in a discourse that clashes with her intentions.

Example I11: Involuntary engagement in constructing students’ identities

While in mathematics classroom, the students and the teachers are supposed to
mathematize, that is, to participate in a discourse on mathematical objects. Yet, mathematical
discourse, even when predominant, is rarely the only one. All along the mathematical
conversation, participants also make statements about themselves and others. Although the
subjectifying narratives (narratives about people, as opposed to those about mathematical
objects) produced in the process may not be getting a direct attention, in a longer run that
may have a considerable impact on the participants’ identities, that is, on the stories they
believe true about themselves and about others. When it comes to students’ identities,
particularly influential is the subjectifying activity of the teacher. Although in most cases the
teacher would probably readily admit that she bears a major responsibility for how her
students see themselves as learners, she may not be sufficiently alert to those aspects of her
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classroom performances that constitute the most powerful identity-builders. Indeed, as I will
now show with the help of an example, the devil may hide in tiniest details of the teacher’s
actions. The most powerful may be those brief moves that the teacher performs
automatically, without planning in advance, without explicitly monitoring them at the time
of performance and without remembering afterwards.

The example that follows comes from a study devoted to middle school students’
extracurricular mathematical activities organized and led by one of the researchers (Heyd-
Metzuyanim & Sfard, 2012). In the case under consideration, a group of four students
described by their regular mathematics teacher as “good” (having a history of above average
achievement) attempted to solve a non-standard mathematical problem. After a brief period
of individual grappling, the participant whom the researchers called Ziv declared that he had
answered the question, and that he did it in more than one way. Encouraged by the instructor,
the boy presented one of the solutions. Yet, although Ziv’s account appeared to the
researchers clear and helpful, it was rejected by his classmates as incomprehensible.
Explanations by another student, Dan, who also claimed to have a solution, appeared
confusing and inconclusive. In spite of this, the students who previously complained about
“not understanding Ziv”, listened to Dan carefully and later claimed to have benefitted from
his account. This event left the instructor perplexed. She was not able to figure out the reason
why the students refused to learn from a knowledgeable classmate, but were eager to seek
help of the one who clearly experienced difficulties not much different from their own. At
that day, she left the following note in her journal:

Although nobody seemed to doubt the correctness of Ziv’s solution, no visible effort was made to
find out what his proposal was all about. Nothing indicated an interest in Ziv’s explanation... On the
other hand, the students seemed eager to learn from Dan, who himself was struggling for
understanding, and who offered ideas that seemed too blurred to be truly helpful... Unimpressed by
[Ziv’s] solution .... the students let the obvious opportunity for learning slip away.”

It was only in later analyses that the researchers were able to account for what happened.
While scrutinizing the classroom talk, they noticed a feature of which they were previously
unaware: an undercurrent of intensive subjectifying was going on within what might appear
to be just a regular mathematical conversation. If we remained unaware of this fact, it was
because subjectifying utterances, when interjected into strenuous mathematical debates, tend
to be ignored. If we were able to do some work on them now, it was because prior to the
analysis, we systematically extracted them from their context and collected them together in
asingle table. Here, they were segregated according to their authors and to the persons about
whom they spoke.

The result was startling. The majority of subjectifying utterances turned out to be about
Ziv. Whether addressed to him or to another group member, whether made by himself or by
another participant, these utterances were evidently evoked by the teacher’s decisions and
moves. Indeed, acting as the conversation coordinator, she never missed an opportunity to
show her confidence in Ziv’s ability to enlighten his classmates. The teacher expressed this
belief in many different ways: by repeatedly urging Ziv to present his solutions (“Until now,
you haven’t told us what you have understood from this question” [266]), by exhorting others
students to listen (“Dan listen to Ziv now” [383]), and by explicitly assessing Ziv’s superior
ability to understand the problem (“[Y]ou're the only one who understood [the
question]’[99]). Through these and similar subjectifying actions the teacher, imperceptibly
to herself, was gradually building Ziv’s identity as mathematically versed and as the
discourse leader. In an indirect way, these subjectifying moves identified the rest of the group
as somehow inferior. Not surprisingly, Ziv’s classmate reacted hostilely, trying to deny the
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power evidently ceded to Ziv by the instructor. Beginning with angry claims about not
understanding what he was saying (“’You're never understood” [556]), through objections to
his alleged intention to show his advantage and act as their teacher (see Dan’s exclamation
“Ziv, you won't be a teacher” [678], and one girl’s complaint to the teacher/researcher: “He
just... he talks to me like I'm his [little] girl!” [704]). Ziv reciprocated with explicit
reinforcement for the story of his superiority (see his utterance directed at one of the girls:
“I’m smarter than you, Idit” [471]). With this mutually aggravated subjectifying ping-pong
going on and on, and with the identity-building activity high on everybody’s agenda, Ziv
evidently stood little chance to play the role of the leader.

The analysis opened the teacher’s eyes to these “identity struggles” and made her aware
of her own central role in the plot. In hindsight, she expressed her regret:

[T]he conundrum of the children’s tendency to learn from a less competent classmate ... seems to
have been solved: the student who could [deal with] the problem was denied the identity of discourse
leader... I am [now] able to see things of which, in real time, I was [unaware]. Above all, I realized
that my role in the students’ learning was more harmful than helpful. [I] took part in [constructing
Ziv’s identity] just like anybody else in this classroom. In fact, my role in this process was probably
most central .... It is therefore even more regrettable that I acted the way I did, constructing students’
identities unreflectively, rarely giving my [utterances] a second thought.

Were this insight gained in real time, the teacher would have probably curbed this
subjectifying discourse. If the latter did not happen, it was mainly because she clearly
remained oblivious to the fact that while trying to advance the mathematizing and repeatedly
encouraging Ziv to share his solutions with the classmates, she was also constructing the
boy’s first- and third-person identities. She saw herself as preoccupied exclusively with the
mathematizing discourse, whereas the students perceived her as performing the task of
telling them who they were, and thus as engaged in subjectifying discourse. These two
differing visions and the resulting discursive gap are summarized in Table 6.

Table 6
Discourses and routines in Example 111

Teacher (performer) Students (interpreters)

discourse  mathematizing subjectifying

task scaffolding students’ problem building Ziv’s (and other students”)
solving “by proxy” identity

procedure inviting Ziv to present his solutions, exhorting the class to listen to Ziv,
evaluating Ziv’s understanding

Example 1V: The danger of modelling a discourse other than intended

The last example has shown how a gap between the teacher’s own and her students’
perception of her discourse may result in the teacher’s involuntary participation in a harmful
subjectifying activity. In the next example, we will see how a similar discursive gap can lead
to the teacher’s unconscious support for a wrong type of mathematizing.

While saying “the wrong type of mathematizing” I mean mathematical discourse
different in its character from the one the teacher herself intended. Thus, for instance, the
teacher may believe she is trying to usher her students to explorative mathematizing while,
in fact, the way she teaches supports ritualistic participation. Indeed, most teachers are likely
to wish their students to see themselves as engaged in mathematical explorations, that is, in
the activity of telling potentially useful stories about mathematical objects. As it often
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happens, however, the teachers’ own way of acting may push their students toward rituals,
that is, can make the learners believe their task is merely to show a mastery of mathematical
procedures. In this later case, they feel exempted from worrying about the question of what
the outcomes of their performances may be good for.

These differing views of the purpose of mathematizing are rarely introduced to the
students in the direct manner. Rather, they are signaled by the teacher’s discursive moves,
especially those finest ones, which are also least noticeable. Among the most effective
shapers of the students’ interpretations is the teacher’s language. Let me illustrate this claim
with the example presented in Table 7, in which the teacher who participated in a recent
study on teaching algebra in high school (Adler & Sfard, 2018) introduces his class to the
process of solving the quadratic equation (x — 2)(x + 2) = 0.

Table 7
Example 1V: Solving (x — 2)(x+2) =0

# Speaker  What was said What was done

1 Teacher: We want to solve for x. What is Writes: (x —2)(x+2) =0
our x equal to?

2 Learners: ...... The learners remain silent

3 Teacher:  We are saying any of these
brackets is equal to 0.

4 Teacher: Sowe are saying x — 2 isequal to  While saying this, | would be
0...OR...x+ 2isequalto 0 writing on the board:
“x—2=0o0rx+2=0"

5 Teacher:  And then we transpose them. x is

equal to?
6 Learners: 2...orx isequal to -2 As the learners are saying this, the
teacher writes on the board:
“x=2o0rx =-=-2"

Let us scrutinize the teacher’s utterances for the objects he is talking about. Note, in
particular, that the sentences “We want to solve for x” ([1]), “We are saying any of these
brackets is equal to 0” ([3]), “And then we transpose them” ([5]) speak about people’s actions
(solve, transpose) with symbols (x, brackets). Within this context, it is justified to claim that
also numerals such as ‘2’ and propositions such as ‘x=2’ are considered as mere symbols,
standing for nothing but themselves. This way of speaking supports ritualization, if only
because of the fact that the result of symbolic manipulations seems to be of no further use
and thus the performance is the only thing that counts.

To create a proper opportunity for the kind of learning that the teacher believed himself
to be promoting, he should have exposed the students to explorative discourse. He would
have done better if he reduced talking in terms of symbolic operations and spoke as much as
possible in terms of mathematical objects, such as numbers or functions.® Thus, in utterance
[1], instead of talking about “solving for x”, he could have asked about the relevant relations
between numbers: “What are the numbers x that, if substituted for x will make the product

5 The difference between symbols and the mathematical objects is that the objects may remain the same while
symbols change. Thus, the number two remains the same whether we refer to it with the symbol ‘2” (Arabic
numeral) or Il (Roman numeral), or %6/g,
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of x+2 and x-2 equal to 0?” Alternatively, he could have inquired about a property of a
function: “For which numbers x the value of the function y=(x+2)(x-2) is equal to 0?”
Utterance [3] that speaks about brackets might have been replaced with a proposition on
numbers: “Any of the numbers x+2 and x-2 must be equal to 0”. Finally, rather than using
the cryptic verb “transpose”, implying a physical action, such as rearranging symbols, he
could have said, “We subtract 2 from [the numbers/functions on] both sides of the equation”.
The common feature of all these replacements is that they define the task by specifying the
required properties of the outcome. Clearly, this stress on the product signals the legitimacy
of any procedure that would lead to the required result and as such, ushers the problem solver
into explorative discourse.

Many other properties of teachers’ discursive actions are likely to encourage students’
ritualistic participation®, but in the present context, | chose to focus on those of them that
hide in moves so tiny as to being imperceptible either to the students or to the teacher himself.
The differences between the routines of the explorative discourse the teacher saw himself as
performing and those of the ritualized discourse his students were likely to perceive are
summarized in Table 8.

Table 8
Discourses and routines in Example IV

The teacher performs The students see
discourse  explorative mathematizing ritualized mathematizing
task demonstrate how to attain demonstrate how to perform
mathematical outcomes mathematical procedures
procedure discuss the required outcome and perform a single procedure
perform a number of procedures that repeatedly, giving tips for
lead to this outcome remembering how it should be done

Summary and conclusions: Why teachers should remain alert to the possibility of
communicational gaps

Both examples in this section make a strong case for the teacher’s awareness of the
possibility of a gap between what she thinks she is doing and what her students actually see.
This awareness is important because such gaps may mean that what her students learn is not
what she tried to teach them. More specifically, the teacher may find herself collaborating
in shaping unwanted, potentially harmful identities, while also introducing the students to
mathematical discourse she herself does not appreciate. While in the classroom, therefore,
the teacher must keep in mind that any of her moves may be read by the learners as saying
something about themselves, if only implicitly; and she has to remember that when it comes
to the question of what kind of mathematics the learner experiences, the answer is not so
much in general didactic principles or even in detailed lesson plans, as in the finest details
of the implementation (Sfard, 2018, p. 124).

® For instance, the learner’s ideas about the source of mathematical narratives depend, to considerable extent,
on what the teachers say, and to an even greater extent, on how they say it. Thus, the teacher who frequently
appeals to the students’ memory, who accepts his role as the ultimate judge of correctness and who rarely has
recourse to a careful deductive derivation is likely to give rise to the students’ conviction about an arbitrary
nature of mathematical discourse and of its products.
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Discursive gaps as the researcher’s opportunities for learning about learning

Whereas both teachers and students have good reasons to be apprehensive of discursive
gaps, researchers are more likely to see those gaps as gates to hidden treasures. As could
already been understood from the first two examples, valuable insights about learning can
be gained from close analyses of the nature of different discursive gaps and of the
circumstances that occasion their appearance. In this section, I look at yet another case, in
which the occurrence of a gap becomes an opportunity for learning about ways in which
people match task-situations with discourses.

Example V: Opportunity to learn about student’s ways to choose precedent

The example to be presented now may help researchers in identifying those aspects of
task-situations that can be held responsible for students’ choices of discourses in which to
react to given task-situations. Some relevant insights could already be gained from Example
I, where the learner was primed by the formulation of the problem, and more specifically,
by words and symbols such as ‘times’, ‘of” or multiplication sign. The new example will
show again that two task-situations considered by one person as defining the same task may
be seen by another as calling for different routines. This time, however, with the wording of
the task-generating question remaining constant, the role of precedent-indicators will be
played by contextual factors.

The data to be considered now come from a study conducted in two 7"-grade classes, of
36 students each. The students were presented with the mathematical problem: “Four
children shared 14 balloons. How many balloons did every child get?" The two classes could
be considered as indistinguishable in terms of the history of their mathematical learning and
their achievement, and the only difference between them was that one was asked to solve
the Balloons problem during mathematics lesson and the other — during a language lesson.
The results can be seen in Table 9.

Table 9
Example V: Students’ responses to the Balloons task

Response Frequency
Mathematics Language
lesson (N=36)  lesson (N=36)

“3.5” 46% 14%

“The chilfiren got 4 and two others got 3 balloons” 50% 80%

“Each child got 3 balloons and 2 were left”

NA 4% 6%

As can be seen, the results obtained in the two classes are quite different. During
mathematics lesson, almost half of the students responded with the non-integer number 3.5
that could not possibly constitute an answer to the question of the number of balloons. These
participants clearly identified the task as a “word problem”, the type of problem frequently
encountered by every mathematics learner. The procedure they used was the one they often
used in this context: finding and implementing the arithmetic operation that seemed to fit the
question. In the present case, the division was probably chosen because of the word “sharing”
appearing in the statement of the problem. In the other class, this improbable response was
given by the mere 14% of the students. The majority of answers seemed to indicate that here,
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just like in Example I, the children saw it as their task to perform the everyday routine of fair
sharing that they often had to perform in their everyday life. Thus, whereas in Example | the
difference in the choice of discourse and, in result, in the solution routine stemmed from
lexical differences, in this example the decisive factor was the context in which the question
was stated. For a summary of this analysis see Table 10.

Table 10
Discourses and routines in Example V

In mathematics lesson In language lesson

discourse everyday of school mathematics

task sharing the balloons fairly between  perform a learned operation that fits
children the situation

procedure 1. Give a balloon to each child 1. Find the most appropriate
2. Repeat as long as you can operation (“share” - division)

2. Perform the operation

To sum the insight that can be gained from this example, our ability to act in most situations
in which we find ourselves stems from our tendency to automatically associate each such
situation with a certain discourse and with its routines. What prompts these association are
such characteristics of the situation as the physical components of the given space (e.g., a
typical classroom arrangement) or the identity of the individuals who populate the scene
(e.g., mathematics teacher). The very exposure to these identifiers may suffice to push us
into the discourse we encountered under the same or similar circumstances in the past. In
Example V, the association with mathematical discourse learned at school was brought by
the students’ awareness of their being in mathematics lesson, maybe even by the very
presence of the mathematics teacher. If the language lesson did not lead to a similar choice,
it was simply because mathematical discourse had never been used in this context.

Example VI: Opportunity for replacing the “deficit model”’

The example that follows shows how the researcher’s unawareness of a discursive gap
between her and participants of her study may stymie her ability to tell a truly useful story
of the phenomena she tries to fathom.

Let us consider the conversation between 4-year old Roni, 4 years and 7 months old
Eynat, and Roni’s mother, as presented in Table 11. The excerpt is taken from a study on
children’s numerical thinking conducted years ago by Roni’s mother, who was also the
beginning researcher, and myself (Sfard & Lavie, 2005). The conversation was held in
Hebrew (in its English version, presented here, we tried to preserve idiosyncrasies of the
children’s language). At the time of our investigations, Roni and Eynat were already quite
proficient in counting and were routinely answering the “How many?” question without a
glitch. The episode began when the mother presented the girls with two identical opaque
boxes. Even though the girls they could not see the contents, they knew they boxes contained
marbles. On the face of it, nothing new can be learned from this example. After all, the first
thing one usually learns from books and articles about early numerical thinking is that
“children who know how to count may not use counting to compare sets with respect to
number” (Nunes & Bryant, 1996, p. 35). Yet, at a closer look, some of Roni’s and Eynat’s
actions did appear puzzling. If a person was listening to the conversation without seeing the
boxes, she would have been likely to conclude that the children implemented the task
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properly: they gave an agreed answer and knew how to justify it in a logical way (see
utterances [5], [7], [9]). But for those who could actually see what was happening, the girls’
decisive responses were difficult to account for. Indeed, why did the children choose a
particular box? Why did they experience no difficulty in making a joint decision? Why, in
the end, were they able to respond in a seeming reasonable way to the request for
substantiation, even though there was no basis for the claims they made about the size of the
collections?

Table 11
Example VI: Where are there more marbles?

#  Speaker What is said What is done

3a Mother: Right, there are marbles in the boxes. |
want you to tell me in which box there
are more marbles

3b  Eynat: Points to the box which is
closer to her
3c  Roni: Points to the same box.
4 Mother: In this one? How do you know?
5 Roni: Because this is the biggest than this one.
It is the most.

6  Mother: Eynat, how do you know?
7  Eynat:  Because... cause it is more huge than

that.
8  Mother: Yes? Roni, what do you say?
9 Roni: That this is also more huge than this.

After long deliberations and a scrutiny of children’s actions in this and similar episodes,
we concluded that it was the language used in the description of the case that produced our
puzzlement. Indeed, while stating that children do “not use counting to compare sets with
respect to number” (emphasis added), the researchers attribute to children their own
interpretation of the question “Where are there more marbles?” If so, there is little wonder
they view children’s actions as suffering from a certain deficit: the girls did have the
necessary skill but they were unable or unwilling to use it the way they, the researchers,
would have used it themselves in the same task-situation. The story of the deficit loses
grounds, however, when one realizes that Roni and Eynat did not necessarily interpret the
question “Where are there more?” as requiring quantitative comparison. Indeed, having freed
oneself from the assumption, one realizes that, perhaps, the children simply tried to choose
the box that they preferred. As implied by previous studies (see e.g., Walkerdine, 1988),
rather than interpreting the word ‘more’ as referring to quantitative advantage, they were
likely to understand it as referring to whatever could count as better, for one reason or
another. In sum, we understood that there was a gap between the children’s and grownups’
visons of the task, and thus between their respective discourses and routines. These
differences are summarized in Table 12,
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Table 12
Discourses and routines in Example VI
Interviewer 4 year old children
discourse  quantitative, numerical of choosing for oneself
task identify the box that has more choose (together?) the box you
marbles (both?) prefer
procedure 1. Count marbles in each box Point to, or take, the one you prefer
2. Compare the last number words ~ (Possibly: trying to agree with your
obtained in B friend)

The insight gained in this event had a lasting impact on our later work. From now on, we
have been avoiding telling stories on what children did not do and, instead, have been
documenting what they actually did. The sentence “children who know how to count may
not use counting to compare sets with respect to number” has now been reformulated in our
reports as “Children who know how to count, when asked ‘Where is there more?’, are likely
to make a choice without counting”.

The importance of the lesson that can be learned from this example by both teachers and
researchers cannot be overestimated. When students seem to err, we tend to assume that the
error is due to their insufficient mastery of procedures. It occurs to us only rarely, if ever,
that the apparent mistake may result from a difference between the task the learners try to
perform and the one intended by the task-setter. Yet, what we saw in this example alerts us
to the fact that when a routine develops, transformations in the students’ vision of the task
may be at least as significant as the gradual increase in these students’ mastery of procedures.
To do their job properly, those who teach and those who investigate learning must bracket
their own mathematical discourse. They should always try to present the one’s performance
as it was seen by the performer herself. This is the only way to disrupt the long tradition of
portraying the learning of mathematics as a process of overcoming lingering deficit. To
begin picturing learning as a series of creative advancements towards an ever greater
complexity, the researcher must always remember that the journey to full-fledged
participation in historically established mathematical discourse involves traversing multiple,
possibly invisible discursive gaps.

Summary and conclusions: Wariness of communicational gaps as a protection
against deficit model of learning

The two latest examples as well as some of the previous ones make it abundantly clear
that researchers should embrace discursive gaps as opportunities for their own learning
rather than just problems to solve. The first of these examples has shown how a recognized
discursive gap becomes a window to inner workings of the process of learning. Through this
window we had a close-up at the way people choose precedents to task-situations, and what
we saw shed light on the phenomenon known as situativity of learning (Brown et al., 1989;
Greeno, 1997; Lave, 1988). The second example brought a message about some hitherto
unrecognized pitfalls, in which we often fall as researchers. Here, we saw how our own
mathematical discourse may blind us to critically important aspects of children’s activity,
making us oblivious to the mechanisms of discourse development. It warns the researchers
against relying on their own mathematical discourse while trying to make sense of what
children are doing.
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Coda

In this talk, | joined Wittgenstein in his "battle against the bewitchment of our
intelligence by means of our language” (Wittgenstein, 1953/1967, p. 47). Diverse ways in
which language may lead us astray have been illustrated with multiple examples. These
examples were also used to show how important it is that all the parties to processes of
teaching and learning, whether participants or observers, are always alert to the possibility
of discursive gaps. The examples illustrated the claim that some of these gaps are inevitable.
I argued that these ineluctable discursive discontinuities should be embraced as opportunities
for learning. Those gaps that do little more than jeopardize learning — and my examples
imply that these are not any less frequent than the useful ones — can and should be prevented.
In all the cases, however, the devil hides in the tiniest details of interpersonal communication
and our first task is to learn how to make the gaps visible. Unknown to the teacher, her basic
communicational routines may constitute invisible crevices through which the prejudice
enters the conversation on mathematical objects.

It would be naive to think that the uneasy task of detecting and preventing or utilizing
discursive pitfalls could be implemented without a deliberate effort. Echoing Michael
Reddy, successful exchange “cannot happen spontaneously or of its own accord” (Reddy,
1979, p. 296). Remembering that “[hJuman communication will almost always go astray
unless real energy is expended.” (p. 295), we need to invest as much energy as possible in
minding even those discursive gaps that at the moment remain invisible.
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This paper presents a snapshot of Singapore’s journey towards excellence in mathematics
education by examining the role of the traditional notion of mathematics competition and
other competitive activities. It could be seen using the context of mathematics competition
that the notion of “excellence” has evolved over time. Excellence as a high standard for
individuals to achieve or as a set of obstacles for individuals to pit against the norm has been
gradually broadened to include excellence as an internal goal for an individual to achieve,
and even excellence as a goal for the mathematics education landscape.

The Singapore Education System

Since the independence of Singapore in 1965, developing a robust education system has
been the focus of the nation. Recognising that Singapore had no hinterland or natural
resources, the young nation had since been striving towards building an efficient, universal
education system to fulfil the role of economic development and social cohesion in
Singapore beginning with the visionary leadership of the prime minister Mr Lee Kwan Yew
(NTU President, 2015). The importance of education to Singapore has continued to be
emphasised by the Singapore politicians. In 2001, the then prime minister, Mr Goh Chok
Tong, during a Teachers’ Day Rally on 31 August acknowledged that the “skills and
resourcefulness of our people” are pivotal for the nation’s survival.

The education system in Singapore has been recognized as of a high quality. A speech
in 1999 by the Education Minister, Teo Chee Hean, that Singapore has “no failing schools,
only good schools, and very good schools...” (a full speech is provided in Ang, 2006) is a
testimony to this. Further, the performance of Singapore students in the Trends in
International Mathematics and Science Study (TIMSS), the largest international comparative
study of student achievement in the two subjects, and the Programme for International
Student Assessment (PISA) is among the top of all the participating nations. The students’
performance in these two international comparative studies is usually taken among the
indicators of the quality of a nation’s education system.

With regard to the performance of the top elite students, Singapore has also performed
very well in the International Olympiads of the three sciences (Physics, Chemistry and
Biology) and Informatics (Lee, n.d.). Beginning from 2011, Singapore has also emerged in
the first ten positions in the International Mathematical Olympiad (IMO), according to the
information provided in the official website of the IMO.

The stellar performance of students’ in TIMSS and PISA, and the prestigious Olympiads,
are signs of the ongoing pursuit of excellence in the Singapore education landscape. The
term “excellence” is found in the Singapore education documents. For example, the term
“excellence” is found in the Singapore school management system, which is known as the
School Excellence Model. Schools are being empowered to develop themselves into
“excellent schools” based on the appraisal system of the School Excellence Model. Such a
school appraisal strategy has been shown to have a significant impact on student
performance (e.g., Huang et al., 2019). To achieve professional excellence among practicing
teachers, centres of Teaching and Learning Excellence were set up in 2015 to provide them

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
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with up-to-date professional development so that practicing teachers bring back to their
respective schools up-to-date teaching and learning strategies to impact the quality of
teaching and learning there (Academy of Singapore Teachers, n.d.). Prior to that, within each
zone in Singapore, a Centre of Excellence for mathematics had been set up as a platform for
promoting the professional growth of mathematics teachers in that zone (Chua, 2009).

Singapore’s pursuit of excellence can be understood by the social-cultural context of
Singapore. The Singapore society has been engineered to embrace “a pragmatic and
competitive national paradigm grounded in economic rationalism” (Ang, 2006, p. 1).
Lessons learnt along the road to the nation’s independence and the nation’s vulnerability as
a nation without resources are two factors that shaped the development of a competitive
mindset (Cooper, 2001; Lee, 1998 cited in Ang, 2006).

Much has been done in Singapore beyond the nation’s visible pursuit of “excellence” in
the Singapore education landscape discussed above. The nation has traversed a long journey
in shaping its own definition of excellence of education at the various levels of the society.
With reference to mathematics education in particular, how the notion of “excellence” has
evolved is discussed in this paper using the illustration of mathematics competition.

A two-pronged approach to excellence: Grounds up and top down approaches

The word “excellence” can be roughly understood as “exceptionally good and of superior
quality” (Lierse, 2018). Based on this notion of excellence, an excellent education system
refers to one that is exceptionally good and of superior quality. This vague notion of
excellence in education has been operationalised. According to the European Network of
Education Councils (EUNEC), excellence in education should transcend the “quality
control” or even the benchmarking of education systems to identifying, developing and
intensifying talents within the education system (EUNEC, 2012).

Two lines of effort in the pursuit of excellence in Singapore mathematics education can
be discerned: the approach to excellence from (1) the grounds up; and (2) the top down. The
grounds up approach towards excellence in mathematics includes the efforts by educational
institutions and professional bodies to identify and develop mathematical talents; the top
down approach refers to policies that impact the systemic level in achieving excellence. In
this paper, we focus the discussion primarily on the grounds up approach; and briefly discuss
the top down approach. A detailed discussion of the latter has been presented in Toh (in
press), hence will not be further elaborated in this paper.

The notion of “excellence” in the case of mathematics competitions

In discussing “excellence” in mathematics, the idea of competitive activities as
opportunities to pit against the norms (Franks, 1996) is readily forthcoming to the mind.
Mathematics competition is part of the grounds up approach initiated by the local
mathematics community. It is recorded that the first national level mathematics competition
in Singapore emerged prior to its independence in 1956 by the Singapore Mathematical
Society, which was founded at that time. Note that the first IMO was first launched three
years after that in 1959 in Romania. Following the launch of the first mathematics
competition in Singapore and the IMO, various other mathematics competitions at the
national and school levels have started in the decades that followed. The first mathematics
competitions were organised for upper secondary and high school students. This age group
was the target as it was the participating age group of students for the IMO. This
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corresponded to identifying and nurturing of mathematical talents, and started a systematic
process of identifying and developing talents for the IMO.

Subsequently, other competitions were organized for students of younger age groups at
the primary levels. Not only that, the mathematics competitive activities also scaled out from
the top elite group of students to the vast majority of the student population. A full
description of the emergence of various mathematics competitions and their evolution can
also be found in Toh (in press). Alongside identifying, developing and nurturing
mathematical talents, the pursuit of excellence in identifying and nurturing talents had also
broadened to include selecting potential students from other Singapore mainstream schools.
The evolution of the mathematics competitions in Singapore can be traced to at least three
phases: (1) identifying and nurturing mathematical talents; (2) popularizing mathematics
among a wider student population beyond potential competition contestants; and (3) aligning
to the Singapore mathematics education.

Phase 1: Identifying and nurturing mathematical talents

This phase began with the first mathematics competition organized by the Singapore
Mathematical Society in 1956, to around the early 1990s. In this phase, the key objective of
identifying and nurturing mathematical talents could be seen as aligning to the selection of
the best among the mathematical talents to represent the nation in the IMO and other
prestigious international mathematics competitions. This phase corresponded to the pursuit
of excellence as reaching the highest possible standard in mathematics.

Phase 2: Popularizing mathematics among a wider student population beyond
potential competition contestants

This phase approximately corresponded to the period from 1990 to 2010. Starting from
1990, mathematics competition of the primary school students was launched and in 1994,
the Singapore Mathematics Olympiad (SMO), the most prestigious mathematics competition
at the national level, launched the Junior Section for lower secondary students in addition to
the usual Senior Section (for upper secondary students) and Open Section (for the pre-
university students).

Phase 2 was characterised by the effort of the mathematics community to popularize
mathematics to a much wider student population, in addition to identifying and nurturing
mathematical talents. In 1994, in the collection of challenging mathematics problems
collated from the various interschool and national mathematics competitions published by
the Singapore Mathematical Society, it was stated that the objective of the collection of
problems was to “inspire in its readers the desire to learn more about mathematics”
(Singapore Mathematical Society, 1994, p. ii). Various compilation of competition questions
for different student levels were subsequently published with the objective to “stimulate
interest and develop prowess in mathematics among students in the primary schools of
Singapore” (The Chinese High School, 2003, p. ii), or to “instil a love for and to generate
interest in Mathematics amongst Primary school students” (National University of Singapore
High School of Math & Science, 2007, p. i). This phase showed a broadened notion of
excellence as individualised; reaching an individualised peak of excellence is a worthy goal.

Phase 3: aligning to the Singapore mathematics education

The third phase began in the early 2010s, and this phase was characterised by a conscious
effort of the mathematics communities in aligning the mathematics competition to the school

21



Toh

mathematics curriculum, in addition to the objectives of the previous two phases. In the
preface of the compilation of the past year SMO questions, the compilers commented that
“We align the SMO more closely to the school curriculum ... there will be a considerable
number of questions in Round 1 [the section that all contestants will attempt] of each section
which are based on the school curriculum...” (Ku et al., 2016, 2017, 2018, p. ii). The
mathematics competition questions no longer exclusively contained the extremely
challenging questions which are beyond the reach of the general student population. A
considerable number of the mathematics competition questions were based on the
contemporary school mathematics curriculum, although many of these questions require a
creative use of the mathematical techniques taught in school mathematics. The subtle
difference between Phases 2 and 3 is that while both phases saw a similar effort to reach out
to a wider range of students, there was a visible effort to align to the school mathematics
curriculum in Phase 3, thereby possibly impacting the classroom mathematics instruction.
The notion of excellence in this phase has expanded beyond individual peak of excellence,
to encompass excellence in the teaching and learning processes for all teachers and students.

Mathematics competition questions beyond competition

As discussed above, in Phase 3, the link between mathematics competitions and the
school mathematics curriculum has become explicit. The intention of the local mathematics
communities to align the prestigious mathematics competitions to the local school
mathematics syllabuses had enlarged the functions of the mathematics competition
questions. More competition questions were then made accessible and were being accessed
by the general student population. A larger student population had then the opportunity to
challenge themselves with the mathematics competition questions which were within their
capacity, and to reflect on the school mathematics content that they have learnt.

Mathematics competition questions have also been valued because of the affordances of
these items in the preservation of the “old” mathematical techniques within the
contemporary mathematics syllabuses. These techniques have been de-emphasised in the
curriculum due to an increased emphasis on technology in the school curriculum (Toh,
2015). Many of the problems that require these “old” mathematical techniques epitomise a
high degree of creativity in the use of more delicate mathematical techniques (without
resorting to technology). This is still relevant to the Singapore mathematics curriculum,
which emphasises mathematical problem solving. Illustrations 1 and 2 are exemplars of this
category of problems, which could serve to motivate more students to acquire creative
mathematical techniques for the mathematical content which is found in the current
syllabuses and appreciate the nature and beauty of mathematics.

ustration - Simplify 144 (v7 + 4v3 + V7 — 4V3).

(A modified item from a typical genre of the SMO questions on simplifying surds
without the use of calculating tools)

Illustration 2:  Which of the following numbers is largest?

(A) V10-+9
(B) V20-+v19
(©) +V30-+v29
(D) V40-+39
(E) V50-+49

(A modified item from a typical genre of questions on comparing the magnitude of
surds without the use of calculating tools)
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The solution of Illustration 1 can be obtained indirectly by considering the square of the
given expression. A careful application of the rules of surds will result in a perfect square,
for which the square root of the square number yields the answer. Illustration 2 can be solved
by considering the process of irrationalising each of the five surdic expressions, and
comparing the five fractions which have equal numerator. Such problem solving strategies
which lead to elegant solutions are not stressed in the mainstream curriculum, as the use of
calculating tools renders such strategies unnecessary. This is further hindered by the
provision of calculators for all high-stake national mathematics examinations.

Other competition questions engage the solvers to think more deeply and reflect on the
usual misconceptions that students have in applying algorithmic procedures (exemplified by
Ilustrations 3 and 4 below). Such items are atypical of high-stake national examinations.
Illustration 3 challenges the solver to re-think their usual understanding of solving an
algebraic equation in relation to the process of like-terms in both sides of an equation. This
makes them re-think of the equivalence of the two equations, and easily relates to the big
idea of Equivalence in mathematics. Illustration 4 invites the solver to examine the common

misconception that va? = a for all real values of a. The preservation of such items within
the existing mathematics competitions is an indicator of the effort to emphasise the
metacognitive aspect of problem solving, which is stressed in the syllabuses.

i : . . 2_x—6 2_x-6
ustration 3: o\ many real numbers x satisfy the equation s =9
x2-7x-1 2x2+4+x+15

(A) 4 (B) 3 (€ 2 (D) 1 (E) O

[llustration 4:  Leta<0. Find vaZ +./(1 — a)2.
A1 B) -1 (C) 2a-1 (D) 1-2a (E)None

Some mathematicians lament that the mathematics curriculum today is far from the level of

difficulty of that in the 1980s (e.g., France & Andzans, 2008). The various mathematics
competitions, with their unofficial “syllabuses” for the competition and the lack of provision
of allowing calculating devices, serve to preserve many of the elegant mathematical content
which were otherwise not emphasised in the contemporary syllabuses. With the trend of
increasing student participation in the various local mathematics competitions, many of these
mathematical questions with elegant solutions are kept alive but are downplayed in the
mainstream school curriculum.

A further step to popularize competition-type of mathematics problems is found in the
contemporary mathematics textbooks which have been approved by the Singapore Ministry
of Education (MoE) for schools. Under the paradigm of differentiated instruction, the
inclusion of tiered practice tasks in the textbooks has resulted in the inclusion of many of
such competition-type questions. The ready availability of such questions, usually classified
under the section “challenging questions” (or similar classification of tasks to the same
effect), is a further step to engage all students to challenge themselves in higher level
mathematical thinking. This is especially important for the students who might not
participate in mathematics competitions.

The notion of excellence in mathematics competition has also expanded to influence
professional development of mathematics teachers as well. From the author’s first-hand
experience in working directly with practicing teachers in the Singapore schools in several
of the teacher professional development activities, many of the challenging mathematics
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competition questions have provided opportunity for teachers to identify the “blind spots”
in their own knowledge of mathematics. It is common knowledge that mathematical content
knowledge which is not frequently tested in the high-stake national exams tends to be out of
a teacher’s attention. The occurrence of such items in the various mathematics competitions
could also bring a teacher to reflect on the content essential for classroom teaching. Some of
these items have been incorporated into professional development courses for teachers. We
consider one example in the Singapore Additional Mathematics syllabus using illustration 5
below, which is an item adapted from a past competition question (year unidentified). This
item brought out several interesting discussions among the author and some secondary
school teachers about logarithms.

Illustration 5:  Find the value of 921°895 without the use of calculator
(Adapted from a past year competition question in Singapore
Mathematical Olympiad)

Although the following rule of logarithm is common knowledge for most students and

teachers,

log, a* =x
this rule is usually understood by most teachers and students in the usual computational sense
as a procedural rule:

log, a* = xlog, a = x.

The following rule, which is a counterpart of the above rule of logarithm,

alogax = x
is less well-known among students and teachers. Although both rules involve the
composition of a function and its inverse (i.e., the exponential function and the logarithmic
function), the first rule can be easily algorithmised as “shifting the power of a logarithm
down” while it is recognisably more difficult to proceduralise the second rule. The
occurrence of items such as lllustration 5 reminds the teachers of the importance of the
notion of the composition of a function and its inverse, rather than a pure utility of logarithms
as a tool for conversion to exponential function (Kenny et al., 2013). This is an important
alert to teachers that the concept of function underpins most mathematical concepts in the
syllabuses, although explicit knowledge of functions and their composition are not required
for the national examinations in the secondary school mathematics syllabuses (MoE, 2018).

Mathematics competition questions and problem solving

A further stage in utilizing the mathematics competition questions is in adapting them
for teaching mathematical problem solving to all secondary mathematics students (that is,
problem solving is not only reserved for the elite few, but for the whole student population).
As it is well-known, mathematical problem solving is the heart of the Singapore mathematics
curriculum. In New Zealand, Holton (2010) introduced mathematical problem solving
processes to IMO students through imparting them the mathematical content knowledge on
discrete mathematics. Motivated by this approach, a similar effort in mathematics education
research in Singapore emerged in the late 2000s to the early 2010s.

The new interpretation of problem solving using the science practical paradigm (i.e.
problem solving to mathematics is in the same way as science practical to science) in an
effort to make problem solving accessible for all students, and to illustrate to teachers how
an authentic problem solving lesson can be enacted in the mathematics classroom. Broadly
speaking, problem solving lessons in mathematics should be treated as science practical
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lessons in science, and the role of teachers is to facilitate the students’ experience of the
entire problem solving process (Toh et al., 2008). This initiative was introduced in
recognition of the fact that most school mathematics teachers might not have taught students
problem solving to the true sense of its spirit as proposed by Polya (1945). This approach to
teaching problem solving is contrary to many teachers’ usual classroom practice in
“routinizing the problems” into exercises for the students.

A detailed discussion on the conceptualisation of the science practical paradigm,
proposal on how problem solving lessons could be enacted in the mathematics classrooms,
and the reports of the various experiment schools about their successes and challenges in
enacting a problem solving lesson have been discussed (Leong et al., 2013; Toh et al., 2008).
In the problem solving lessons, authentic problems that could highlight the various problem
solving stages must be selected as the vehicles for teaching problem solving. As such,
competition questions become suitable choice of questions for the teaching of problem
solving. lllustrations 6 and 7 appended below are two exemplars of competition-type
questions which have been used for teaching authentic problem solving.

Illustration 6: Find the last digit of 137",
Illustration 7: Find the last digit of 19622°%° + 20091%?2,

The content of the two exemplars above is on Elementary Number Theory, which is not
taught in the Singapore school mathematics curriculum. As such, these problems will be
“non-routine” to most students — one of the two criteria to qualify as a “problem” (Toh et
al., 2008). However, the content of these two questions are easily understandable even for a
primary school student. Hence, these problems can be used as authentic problems that can
serve to reinforce and illuminate the various problem solving heuristics, and can “force”
students to acquire problem solving processes (in this case, looking for patterns and making
conjectures for illustration 6, and, in addition, looking for sub-goals in illustration 7). In
short, this type of problems is realistic enough for students to experience authentic problem
solving by experiencing all the Polya stages of problem solving.

Mathematics Competitive Activities beyond the Traditional Competition

Mathematics competitive activities have transcended the confines of the common notion
of paper-and-pencil tests by the traditionalists. Some talents in mathematics and high-
achieving mathematics students may be more inclined towards other forms of competitive
mathematics activities, such as collaborative problem solving activities involving real world
problems, or engaging in authentic mathematics research with professional mathematicians,
are among the competitive activities that are designed to capture the various talents in
mathematics. The biennial event of the Singapore International Mathematical Challenge is
organised to provide opportunity for students to work collaboratively with their peers in
solving real-world problems by making use of available technological tools and information.
To develop young research mathematicians, opportunities are provided for students to work
on mathematics research projects with professional mathematicians beyond their schools.
The annual Singapore Mathematics Project Festival is a platform for students to showcase
the fruits of their research to their contemporaries and other mathematicians. More details of
alternative competitive mathematics activities are described in Toh (in press) and will not be
elaborated.
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In an effort to engage an even wider spectrum of students in mathematics competitive
activities, the Singapore Mathematical Society has initiated a new series of mathematics
essay competition, an annual event that aims to expose the participating individuals to an
identified mathematical topic and to encourage the participants to articulate mathematics
through the exposition on the topic (Singapore Mathematical Society, 2021). This further
widens the group of students who might not be inclined to the modes of competitive
mathematical activities described previously. In addition to sharpening an individual’s
thinking and reasoning, this activity encourages the participants to communicate
mathematics precisely, clearly and logically. It is aligned to the latest emphasis in the
Singapore mathematics curriculum on communication in mathematics (Kaur & Toh, 2012).

Achieving Excellence at the Systemic Level

At the systemic level, the pursuit for “excellence” has transcended the notion of a unique
peak of excellence understood by the traditionalists’ view. The notion of excellence has now
been interpreted as the existence of many peaks, and even a peak for each student, in order
to encompass excellence for every individual. The systemic effort in the pursuit of
excellence can be seen to be guided by the dual objectives of enabling students of different
capacities to define and reach their own peak of excellence (Shanmugaratnam, 2006) and,
“lifting the bottom but not capping achievements and limiting opportunities at the top...”
(Ong, 2018).

The notion of not capping achievements and limit opportunities at the top is best
epitomized by the education system in identifying and nurturing talents in various way, and
depicts a concerted effort by the MoE in stretching excellence to the fullest potential among
an individual. The holistically talented students are identified early at the upper primary level
and offered an opportunity to the Gifted Education Programme within the Singapore
education programme. This specialized programme for the gifted individuals (defined as
individuals who form the top 1% of the top performing students) continues to be supported
by school-based gifted education programme found in selected secondary schools.

Specialized schools have been set up for students who are specifically talented in a
specific discipline. In particular, the NUS High School of Science and Mathematics has been
specifically set up for students who are specifically inclined towards mathematics and
sciences. In this specialized school, students are not bound by the high-stake national
examinations at the end of the high school as the scope of the national exams capped the
learning of the students. In addition, students in this school are given the opportunity to read
a subject at the undergraduate level and to even do a research project at the higher secondary
levels. Under the supervision by their teachers or mathematics professors, the research work
carried out by the student approximates the research work of a professional mathematician.

Another movement in the Singapore education system to move towards stretching all
students’ potential to the fullest is the recent introduction of subject-based banding of
mathematics (and three other subjects), with the ultimate goal of pushing for subject-based
banding for all subjects at the primary and secondary school education. This movement can
be seen to be modelled after the pre-university education system in which the students can
read each academic subject at a level that is suitable for them. Under this opportunity, all
students will have the opportunity to be stretched in all disciplines according to their capacity
and inclination.
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Conclusion

The journey towards excellence in education is best summarized by the speech of the
then Minister of Education, Mr Heng Swee Keat, during his interview with the Straits Times
on 22 August 2015. Mr Heng commented that the pursuit of excellence should be “part of
Singapore’s DNA”, but stressed the need to “broaden the definition of excellence and to
recognise everyone for achieving his personal best” (The Straits Times, August 22, 2015).
Even within mathematics education, it is clearly evident that Singapore is moving towards
“a mountain range of excellence, not just one peak, to inspire all our young to ... climb as
far as they can.” (Shanmugaratnam, cited in Lee et al., 2008).
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“Becoming” a researcher in mathematics education
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As a contribution to the legacy of the Annual Clements/Foyster Lecture, this paper will focus
on the theme of becoming a researcher in mathematics education — a fundamental endeavour
for MERGA from its foundation. | use the term becoming in the socio-cultural sense, that is,
how a person develops in their role as an active member of a community. This participation
led to the development of an identity — in our circumstance, as mathematics education
researchers. Thus, the presentation will not be a research lecture in the traditional sense but,
rather, a personal reflection that maps the lived experience of defining my own research
program against important junctures of development and a growing sense of becoming within
the MERGA, and other, communities.

When invited to present the Clements/Foyster Lecture, my first thought was to talk about
my research program in the teaching and learning of applications of mathematics —
numeracy, mathematical modelling, STEM and the role of digital tools in these areas. This
was perhaps a go-to-first gut reaction, and really, | have already spoken about my research
in these areas during conferences reaching back to MERGA-16 in 1995. My second thought
was that the invitation was an incredible honour, as this lecture was initiated “to honour the
foresight of Ken Clements and John Foyster in founding MERGA” (Galbraith, 2014, p. 38).
So, the question became, “how could I contribute to this legacy?” Or, to quote David Byrne
of the Talking Heads:

And you may say to yourself, “My God! What have I done?”

And you may ask yourself, “well...how did I get here?”

The answers to these questions are far from simple. My background is not one that
predisposes an individual to an academic career and certainly not one that would lead me to
the position of being one of the few research-only academics in mathematics education. As
my beloved mother often remarks, “How does a boy from the working class become a
professor?”” My good friend, Tom Lowrie, has described me as an outlier in terms of career
pathway and academic success (even if moderate success). | am acutely aware, also, that |
have not done this on my own. There have been many hands holding me up and giants’
shoulders on which I have stood. Given this background and the outcome, it occurred to me
that in seeking to understand how indeed “I got here”, | might be able to provide insights
that point ways forward for others.

So, to answer these questions, I had to reflect on my own development as a researcher in
mathematics education, my own becoming in the Jean Lave sense of the word, in that
“mainly, people are becoming kinds of persons” (Lave, 1996, p. 157). This becoming spans
transformations from student to teacher to researcher, in my case, via a circuitous route. In
developing an analytical narrative of this transformation, | will draw on the approach of
others who have engaged in the self-study of their own development as mathematics
educators/researchers, by reflecting on my personal history through the lens of a theoretical
framework (e.g., Krainer, 2008; Tzur, 2001). Given that my formation has been influenced
and supported by different communities of teachers and scholars as | stepped into and out of

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 29-46. Singapore: MERGA.
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different practices, | will adopt a socio-cultural perspective in describing and analysing the
development of person-in-practice-in-person (Lerman, 2000).

Conceptual Framework

Studies on the origins of consciousness and knowledge acquisition have tended to focus
on individual cognition and intellectual development. The 1980s, however, saw the
emergence of theoretical frameworks that placed greater emphasis on the social origins of
meaning, thinking and reasoning, a movement Steve Lerman referred to as a “turn to the
social” (Lerman, 2000). The origin of such social theories is generally attributed to
Vygotsky’s (1978) work on child intellectual development. Central to Vygotsky’s
perspective on the process of intellectual development is the interaction between the learner
and a more experienced other working within zones of proximal development (ZPD). The
ZPD can be conceptualised as a set of possibilities for development that become actualised
when learners interact with more knowledgeable people, for example teachers, and their
learning environment. From this perspective, there can be no strict separation of an
individual from his or her social environment (Luria et al., 1979), with cognitive
development as an outcome of the process of acquiring culture. Thus, the individual and the
social must be regarded as complementary elements of a single interacting system (Leont'ev,
1981).

An iconic work in socially oriented theories of learning that emerged at this time was
Jean Lave's Cognition in Practice (1988). In this book, and later work (e.g., Lave, 1996),
she challenged cognitivism and transfer theory in mathematics learning by identifying
mathematical practices that were appropriated within professions, trades and everyday
activities — ways of working and modes of thinking that were far more than the mere
application of mathematics acquired from formal education. From her perspective, strategies
and decision making associated with the use of mathematics were situated in, and products
of, the social milieu in which they were employed.

Building on this work, Lave and Wenger (1991) describe learning as a form of
apprenticeship where novices are initiated into a learning community, or community of
practice, through a process termed legitimate peripheral participation. Experts or more
knowledgeable peers are responsible for the induction of individuals into the culture of a
community, including beliefs, values, modes of discourse, and means and methods of
knowledge creation. Judgments about learning are therefore based on the increased range of
participation of the learner within the community. Through this participation, an individual
moves from a novice towards mastery as part of who they are becoming within a community
of practice.

A community of practice is an intrinsic condition for the existence of knowledge, not least because it
provides the interpretive support necessary for making sense of its heritage. Thus, participation in the
cultural practice in which any knowledge exists is an epistemological principle of learning. The social
structure of this practice, its power relations, and its conditions for legitimacy define possibilities for
learning (i.e., for legitimate peripheral participation). (Lave & Wenger, 1991, p. 98)

From this perspective, knowledge must be understood relationally, between people,
activity, and social contexts. Becoming is consequently the degree to which a participant
adopts the values, modes of reasoning and discourse practices of a community of practice.
This position is, therefore, a direct challenge to the notion that knowledge construction takes
place by the transfer of decontextualised mental objects from one individual to another.

Building on his work with Lave, Wenger (1998) extended the notion of becoming to the
formation of an individual’s identity within a community of practice. As a conseguence, an
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individual’s identity within a community is strongly influenced by their personal affiliation
with its beliefs, values, modes reasoning and processes of knowledge production.

Because learning transforms who we are and what we can do, it is an experience of identity. It is not
just an accumulation of skills and information, but a process of becoming - to become a certain person
or, conversely, to avoid becoming a certain person. Even the learning that we do entirely by ourselves
contributes to making us into a specific kind of person. We accumulate skills and information, not in
the abstract as ends in themselves, but in the service of an identity. (Wenger, 1998, p. 215)

Thus, the identity an individual establishes within a community of practice is dependent
on how they act and interact with others — the role they play as part of a community. At the
same time, this identity is influenced by the community itself and the individual’s sense of
belonging to a community. The relationship between the individual and the community is
thus reflexive — one evolving with the other.

Lerman (2000), in offering a critique of these ideas as they relate to mathematics
education, raises individuality and agency as issues not fully accommodated in the thinking
of proponents of situated and social understandings of learning. How, for example, are they
able to realise their own goals within an existing community of practice? In response to this
dilemma, he makes the observation that a person’s goals are already aligned with a
community when they step into a practice because this is the reason they choose to become
part of a community of practice. This means that not only is the person becoming in the
practice but that the alignment of goals means that the practice is becoming in the person.
Consequently, he suggests that the unit of analysis for socially orientated studies in
mathematics education should be extended to person-in-practice-in-person.

Since this time, the ‘“social-turn” in mathematics education has been extended to
incorporate the role of cultural practices, institutional contexts, personal histories, beliefs
and values in attempting to understand and describe interactions central to teaching and
learning (Goos, 2014). Valsiner (1997), for instance, reconceptualised Vygotsky’s zone of
proximal development (ZPD), to include two additional zones that accommodate both the
influence of social settings and the goals and actions of individuals — the zones of free
movement (ZFM) and promoted action (ZPA). Within this new construct, the ZPD is a space
that defines an individual’s potential development, the ZFM was conceived as the ways in
which an individual is permitted to act within a context, and the ZPA identifies the conditions
within a situation that promote action.

While Valsiner’s zone theory was conceived as a theory of child intellectual
development, others have extended its use as a tool for understanding human development
in other areas. Goos (2013), for example, has interpreted the notion of development more
broadly:

...I take ‘“‘development’ to mean more than the formation of higher mental functions in children;
instead, it refers to the emergence of new domains of action and thinking and new cultural frameworks
that organise a person’s social and psychological functioning. (p. 523)

A broader perspective on Valsiner’s zone theory has underpinned research within
education including students as learners (e.g., Blanton et al., 2005), teachers as learners (e.qg.,
Goos, 2014; Goos & Bennison, 2019; Geiger et al., 2017) and teachers’ numeracy identities
(e.g., Bennison, 2015). Goos and Bennison (2019) applied the principles of Valsiner’s zone
theory to the development of teacher educators, attempting to understand how they learn
within contexts defined by opportunity and conditions. Through this work, insight was
developed into how teacher educator identities develop, and how teacher educators’
opportunities to learn can be improved. From this perspective, the ZPD represents the
possibilities for development of teacher educators’ knowledge and beliefs. This includes the
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knowledge of mathematics and pedagogy for teaching, how new teaching practices are
learned, and their beliefs about which teaching and learning practices are effective. Within
the context of teacher educators’ professional environment, the ZFM can be constructed as
both external constraints and an individual’s own interpretation of related limitations or
affordances. Such affordance and constraints include curriculum and assessment
requirements stipulated by professional accreditation authorities, access to teaching
resources, and the beliefs and expectations of prospective teachers. A teacher educators’
ZPD relates to how an individual’s goals and actions can be promoted or inhibited by
features of their environment or the actions of others, such as their peers or institutional
leaders. In the case of teacher educators, a ZPA might include academic structures,
recognised markers of career development and promotion, and access to accomplished
mentors.

The ZPD, ZFM and ZPA form a complex that represents the dynamic interaction
between possibilities and limitations. Teacher educators’ learning is thus the interaction of
their development potential and their interpretation of opportunities for, and constraints on,
progressing professional goals.

Canalisation

Figure 1. Canalisation of the ZPD

The influence of the intersection of the ZFM/ZPA (Figure 1), on what it is possible to
promote within what is permitted, is known as the canalisation of development within the
ZPD (Blanton et al., 2005; Oerter, 1992). Thus, canalization is how development is shaped
under the dynamic influence of the ZFM & ZPA. This means that even though there are
constraints individuals retain agency and are not just passive participants.

While Goos has referred to the development as teacher education researcher in her
discussion of how teacher educators learn (e.g., Goos, 2008), and others have described the
skills and attributes required by educational researchers (e.g., Boaler et al., 2003), there has
been limited discussion specific to the development of researchers in mathematics
educations across the span of a career. In the remaining part of this paper, | will attempt to
provide some insight into this theory/practice gap by drawing on noteworthy junctures of
my own development (or failure) as a researcher to speculate on how these contributed to
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my understanding of personal and collective history, enculturation, and identity development
as a researcher.

Origins

History precedes us. | was one of five children born into a working-class family in
Brisbane. My father went to work as a flower boy immediately after finishing primary
school, eventually finding an apprenticeship as a wood machinist, which he stuck with until
retirement. My mother left school before the end of Year 6 and worked in a string of jobs
until finding employment as a seamstress — something she still practices today for friends
and family.

For whatever reason, | was good at school mathematics and science. Although they
weren’t quite sure of the implications, my parents encouraged this interest. | was the only
child in the street who owned a microscope, a Christmas present during my primary school
years. I’m sure I took on the role of suburb odd bod, sitting on the footpath studying whatever
insects | could find to study. My parents’ support came out of an understanding that the
opportunities in life were afforded by education — my father was determined that all his
children would complete Year 10! And so we did. | won a Commonwealth Scholarship
which allowed me to go forward to Year 12, only one of five in my cohort. | was already
exceeding my fathers’ expectations! I remained good at mathematics, although I wasn’t
always the best student — there were too many other things to do, cricket, rugby and school
parties! Towards the end of Year 12, my father had set up a job for me in a bank. This
sounded fine to me, but a teacher contacted my parents to say | should consider going onto
university. They weren’t sure. No one in my extensive extended family (my maternal
grandmother had 13 children) had ever done so and it was about time | started earning my
keep. The teacher explained that there was a tertiary assistance scheme for those whose
parents’ combined income was below a particular threshold. We were well below. Always
supportive, my parents sat me down and asked if I’d like to go to university. “I suppose so”
I said. And so, | found myself enrolled in a Bachelor of Science in the second intake of the
newly minted Griffith University.

I majored in physics and physical chemistry, with widely varying levels of achievement
across the degree. I didn’t quite get the game of tertiary study at that stage. But university
provided me with the opportunity to take courses in the philosophy of science, something
quite exotic for a boy from the working class. | found it fascinating. Seminars revolved
around types of thinking I had never encountered before — especially discussions about how
knowledge was generated. In Conjectures and refutations: The growth of scientific
knowledge, Karl Poppers (1963) argued that knowledge is not simply discovered but
developed through a process of conjecture and refutation. This set me back on my heels!
This was followed by Thomas Kuhn’s (1962) Structure of Scientific Revolutions, in which
he outlined the paradigmatic nature of knowledge creation in science; an epiphany that set
me on the path of fallibilism for life.

I had initially entered the course thinking | would complete a dual qualification — a
Bachelor of Science and a Diploma of Teaching — but | had found the demands of tertiary
study demanding and did not believe | had the discipline to continue for another year beyond
the BSc. | completed the qualification and went looking for a job. | spent the next 18 months
working on the line gangs for Telecom until | was successful with an application for a
research assistant within the Department of Engineering at the University of Queensland — a
dream job!
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While it might be premature to think about the affordances and opportunities at this stage
of my life, especially in terms of ZPD, ZPA, and ZFM, there are traces of this prism | can
see from the distance of time. | had an interest in mathematics and scientific study from an
early age (ZPD), which was supported by my parents, despite their limited educational
opportunities (ZFM). They also provided me with resources to encourage my mathematical
and scientific interests (ZPA). My opportunities in education far exceeded those of my
parents as | was able to continue in school through to Year 12 and then to university
(ZFM/ZPA complex). From this point, however, my belief that I could not study beyond a
BSc was a self-imposed ZFM. My way forward was to create a ZPA that saw me on a
trajectory from my current ZFM, working as a linesman for Telecom, to a role in a university
that supported the research of others.

My identity, through this period of my life, was subject to constant change — but who
was | becoming? | had been successful at school, but the cohort to which | belonged went
their separate ways after graduation. My participation in academic life at university was not
to a depth where | felt engaged enough in the community that | wished to continue. Yet, it
would seem that my goals aligned with research work in universities sufficiently to step into
a new community within an engineering department. Would this take hold?

Changing Course — a Teaching Career

I enjoyed the work in the Department of Engineering, most of which was focused on the
building and testing of a wind tunnel. | was able to use a little of my mathematical and
scientific capabilities but after 18 months and many hours sitting in front of a small, heated
metal filament used to measure the characteristics of wind flow in the tunnel as part of the
process of calibration, | began to think that, perhaps, there were more exciting ways to make
a living. 1 had a number of friends who had completed their dual qualifications at Griffith
University and were now teachers. They were enjoying the challenges of the profession, so
| decided to join them — and enrolled in a Diploma of Education at the University of
Queensland. During the course I met two people who would be very strong influences on
my life, Marjorie Carss and Peter Galbraith, both of whom were teaching in the program.

I was introduced to the idea of pedagogy! | had entered the course believing that teaching
was only a matter of telling or showing others how to do something. There was apparently
much more to it! | was intrigued that there might be different approaches to teaching that
should be implemented depending on the context — there was no single right way, an echo
of fallibilism. During practicum | became aware of the complexity of the classroom and
learnt that my best lessons were those that were approached as a problem to solve. | also
came to understand that documenting what worked and what didn’t (as stipulated by
Marjorie and Peter), and reflecting on why, made a difference to the success of follow-up
lessons. Then, before | thought I was ready (but whoever is), | had finished the course and
been invited onto the staff at the school where | had completed my final practicum. It seems
that the principal thought I had some potential.

In those first years, | experienced all the ups and downs that most early career teachers
encounter. But I slowly established myself within the school as | worked on improving my
teaching in mathematics, junior science, and physics. | was never left to my own devices as
I could always depend on teaching colleagues for advice and there was also ongoing contact
from Marjorie and Peter. It was Marjorie who convinced me to enrol in a Bachelor of
Educational Studies (BEdSt). I didn’t really know why this was a good thing to do, but
Marjorie was so sure! After completing the BEdSt, there was a pincer movement from both
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Marjorie and Peter that resulted in my enrolment in a Master of Educational Studies
(MEdSt). It helped that all of these courses were free at the time.

After starting this course, however, | decided to spend some time in Europe — like many
young Australians. I resigned from my position and headed to England. To make ends meet,
I took up a supply teaching position at an inner-city London school at the turbulent time of
school amalgamations. Schools at this place and time could be described as cheerful but
violent. Students, in the main, came from low-income backgrounds, many with
dysfunctional families. Few of the parents I met had aspirations for their children’s education
beyond finishing O-levels. Things were tough, students were difficult to manage, and staff
were on occasion assaulted. Almost in contrast, the school was well-resourced with the
quality and range of available teaching materials better than those I had access to in my first
teaching post. These resources were aimed at developing mathematical competence alone,
with little attention to how this might be applied to problems in students’ own lives. Without
engagement, however, little learning was possible. This experience helped me understand
the outcome of disadvantage. It also convinced me of the need to teach mathematics and
science in a way that connected with students’ lived experience.

The European adventure concluded, and | returned to teaching in Australia. My MEdSt
awaited me. | had formulated the idea for my thesis.

It would appear my ZPA was oriented towards a life related to learning and a connection
to research was apparent through my employment as a research assistant in a Department of
Engineering. Despite working “out-of-field” for a period of time, I was drawn to education,
initially as a way of making a more interesting living, but | was open to changing the
direction of my life. My ZFM was fashioned by people who became mentors. They provided
advice and support that led to my development as a reflective practitioner and further study
in education. | was fortunate to have the opportunity for further study without the deterrent
of paying fees. My engagement with a preservice program in education, ongoing
encouragement from mentors, and experience in the classroom in two different countries
provided the impetus for ongoing professional learning — related to both my teaching practice
and further formal education (ZPA).

| was being drawn into a community that I did not yet fully understand, but my goals
seemed to be aligning. My identity had changed from that of research assistant to teacher.
At the same time, a new identity was developing, that of educational researcher, evident in
my enrolment in a Research Masters program. However, the identities of teacher and
researcher were separate — teaching was my career and focus, while research was something
I did out of interest. | was now participating, in a peripheral sense, in two communities of
practice. Although there were overlaps, there were different modes of meaning making,
reasoning, and knowledge generation to appropriate and reconcile. I can clearly remember
being surprised at the differences between discourses as | negotiated my role in these
different communities. What was my role as person-in-practice-in-person?

Teacher and Researcher

After returning to Australia, | was successful in an application for a teaching position in
a significant city just outside of Brisbane — Ipswich. The school was not unlike that in which
I had been worked in London, with many families suffering some form of disadvantage. A
significant number of families were from various trouble spots throughout the world, with
the students’ parents moving to Australia to give their children a better life. The experience
only confirmed my conviction that making mathematics relevant to students was key to their
engagement and success. This time coincided with work on my MEdSt thesis, A study of the
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mathematical problem-solving behaviours Year 11 students solving application problems,
with my principal supervisor, Peter Galbraith. In this work | was searching for a way to
provide students with the type of feedback they needed to improve the way they addressed
problems in the real world through mathematics — consistent with my belief that students
needed to find mathematics relevant to their lives. This was also a time of marriage and
children; the thesis took an age to finish. And | thought 1 was done with further study!

It was around this time that Marjorie convinced me to attend my first MERGA
conference, held in Brisbane in 1993. While | found some aspects of the conference
interesting, it appeared to be a combative environment where egos were put on display with
abandon. People argued about what | saw as minor points and few took the time to include
me in discussions. | decided | would not attend again. An upside of the experience, however,
was a presentation by a young researcher named Merrilyn Goos. | thought she made some
sense — and she won an Early Career award as an outcome of the presentation!

Three years after returning to Australia, 1 was successful in securing a Head of
Mathematics position at a new school. Marjorie Carss was also encouraging me to make a
contribution to the work of mathematics teacher professional associations — first, editor of
the Queensland Association of Mathematics Teachers (QAMT) journal and eventually
president. As president of QAMT, | found myself as chair of the steering committee for a
major national initiative — the National Professional Development Program (NPDP) aimed
at improving teaching and learning in Australian schools - a daunting experience for
someone with no experience in leading state-wide initiatives. | was also contributing to state-
wide committees related to curriculum development and assessment. Marjorie continued to
provide advice about how I should shape my career — and | found myself as president of the
Australian Association of Mathematics Teachers! There was enough to do. Life was busy
and I had a clear direction. I thought I had liberated myself from the demands of further
study...but then | was dragged back again!

Peter Galbraith rang. He said there was a young researcher he thought I would enjoy
talking to. At that time, | had developed a somewhat cynical attitude toward educational
researchers. There had been a number of visits to see what we were doing in our school’s
Mathematics Department — it had gained some notoriety in the state. They had typically
harvested data and left, never to be heard of again. This engagement felt like | was putting
in significant effort with no return. But because it was Peter, | agreed to take a call. Some
days later, the call came...“Hello, my name is Merrilyn Goos. Peter Galbraith said we should
talk”. So we did. Merrilyn had begun a PhD study in which she was recruiting secondary
school teachers for a project in mathematical problem solving and metacognition. Merrilyn
talked with such enthusiasm about her research that | was convinced (with some reluctance)
to participate in the study. This began a series of nearly weekly visits from Merrilyn over a
period of close to three years.

Merrilyn was different to other researchers | had encountered previously — she was
genuinely interested in what | had to say, regarding research as a joint venture with teachers
and not something that was done to them. After observation sessions, Merrilyn was never
critical, she merely wanted to know why | had taken particular approaches to instruction. 1
had been a reflective practitioner for some time, but this was an extra pair of eyes that helped
me go deeper into the reasons that underpinned my classroom decision-making. In these
circumstances, having a researcher in the room was not a burden — it was a serious
advantage! What I hadn’t realised when agreeing to participate, was that the research was
part of an ARC award that Peter Galbraith, Merrilyn, and others had secured. This meant
there were publications to be generated! Consistent with Merrilyn’s approach to
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researcher/teacher collaboration, | was invited to join the writing team in instances when
data had been collected from my classroom. Some of this early work (e.g., Goos et al., 2000;
Goos et al., 2003), related to the affordances and constraints of technology in promoting
collaborative problem solving, remains some of my most highly cited.

I have previously described a pincer movement that had saw me return to study and
research in education. This time Merrilyn had established a foundation on one flank by
drawing me into her research and co-authorship, while Peter made advances from the other.
He had been pleased with the quality of my MEdSt and encouraged me to develop a MERGA
paper and to nominate for the Practical Implications Award (P1A). Peter provided advice
through rounds of drafting and redrafting, and then off it went. It was successful! Merrilyn
meanwhile had insisted | co-present with her at the next MERGA conference. It seemed |
had no choice by this stage, and so | had to find a way there — MERGA 18 held in Darwin
in 1995. In the PIA paper (Geiger, 1995), | presented a framework for providing feedback
to students engaging with applications of mathematics to real world problems. The paper |
presented with Merrilyn (Goos & Geiger, 1995) reported on a case study of metacognitive
activity and collaborative interactions in a mathematics classroom — my classroom. | can’t
say | was hooked, but | could see no way out.

It would seem my ZPD was expanding, firstly though Marjorie’s encouragement to
become engaged with state-wide and national initiatives through participation in teacher
professional associations (peripheral participation). At the same time, Merrilyn and Peter
had opened up possibilities for involvement in educational research. My ZFM was defined
by access to established and promising researchers and my school was supportive of my
involvement in their project. | was increasingly becoming involved in communities that
engaged with national initiatives in teacher professional learning and those that conducted
research in the teaching and learning of mathematics (ZPA). Marjorie’s, Merrilyn’s and
Peter’s differing influence, as knowledgeable others, was impacting on my ZFM/ZPA
complex, guiding me into new ways of becoming. There was a flame and | was the moth.

Through this time, my identities as a teacher and researcher were being reinforced
through participation in two different communities of practice. However, other identities
were emerging through living life, husband and father, and by participation in a new teacher
professional association community. Marjorie was shaping my ZPA through her
introduction to the teacher professional development community, with Peter and Merrilyn
helping to induct me into research — a different ZPA. At this stage, both were within the
constraints of my ZFM. However, was | being pulled in too many different directions?

“Now It’s Your Turn”

Merrilyn finished her PhD. It was a wonderful piece of work and provided the basis for
articles in the best journals in mathematics education, Educational Studies in Mathematics
and the Journal for Research in Mathematics Education. She was on her way! Again, |
thought there was a moment when | could escape, but then Merrilyn asked me for coffee and
said, “now, it is your turn”. It took a little while to agree but | had very much enjoyed working
with Peter and Merrilyn, and they convinced me | had something to contribute. And so it
came to pass, with Peter and Merrilyn as supervisors. Merrilyn continued to come along to
my classes — the extra eyes were invaluable, and the study began well. After the two years,
however, things slowed down. The weight of all | had taken on, including the arrival of
additional offspring, took its toll. No one was ever able to identify the malady, but I had to
stop both work and study. Through this time, however, support was never far away. | was
encouraged to do what I could when I could. Slowly I could do more, and eventually, | made
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my way back to work and to research. | will be forever thankful for the unwavering support
| received at that time from friends and colleagues. They know who they are.

The episode lasted for close to 12 months in its severest stage and for close to five years
in all. I could have walked away at any stage but the connection to ideas and the community
had become strong. The need to be involved in research was now a part of my identity, and
so | was drawn back to the practice - person-in-practice-in person — despite the constraints
of poor health (ZFM). It wasn’t so easy to get away. After the worst, I began to pick up the
threads of my PhD and | received support to present tentative findings at my first MERGA
conference after a brief hiatus. | began to understand that involvement in research was now
a part of who | was and that needed to sit with my love of working with students. These
separate identities were about to reconcile. It was around this time that Peter retired (2003)
and Merrilyn took on the responsibility of principal supervisor for my PhD.

Merrilyn and | have written about our work together during this phase of our
collaboration (Geiger & Goos, 2006; Goos & Geiger, 2006). These publications took the
form of a conversation between two different types of researchers where power and authority
were shared in recognition of different types of expertise. But by now I had fully committed
to completing my PhD, a very hard thing to do while working in a school — my goals had
changed as had my way of thinking about mathematics education. Thus, there was a
developing mismatch between my identity and that of the role of a mathematics coordinator
within a school.

A friend sent me an advertisement for a Lecturer B position at Australian Catholic
University — a relatively new institution that emerged during the transformation of
institutions of higher education during the Dawkin’s reforms of the early 1990s. | applied
for the job and was interviewed by Elizabeth Warren and Tom Cooper. To my surprise, |
was successful.

The decision to pursue a PhD meant that my ZPD was about to be extended. In time, my
opportunity to complete was facilitated by a change in working circumstances (ZFM) and
my own determination to do so (ZPA). Research was about to be part of my responsibilities,
not just a “hobby”, an essential component of my ZFM, although illness limited my progress
for a time. Merrilyn’s and Peter’s support were a key influence on my ZFM/ZPA complex
and identity formation, as this was guided towards further involvement in research, as was
the formal requirement to conduct research within my new academic position. Co-authorship
was a particularly influential factor in promoting my progress as a researcher.

There were further incremental shifts in identity. My more active participation in the
educational research community was disrupting my singular engagement with my role as a
teacher. 1 was now seeking alignment with goals that had changed over time and a new
community of practice — this had implications for the person-in-practice-in-person — who
was | and to which practice did | belong? Merrilyn and Peter were helping me bridge into
the mathematics education community. But at this time, it was still a leap of faith.

Choosing Something Else — A Mathematics Teacher Educator/Researcher

Life had changed again. | was now responsible for the preparation of teachers,
principally in mathematics but also in curriculum and assessment — nine courses as lecturer-
in-charge in a year. The level of regulation was considerably higher than in a school — course
outlines, advanced and detailed notice of assessments, and accreditation considerations.
There was a lot to learn, and there was that PhD to finish! Life as a teacher
educator/researcher was complex.
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I did find a way to complete my PhD (Geiger, 2009) and to write. At first, it was mainly
conference papers and book chapters — typically collaborations with more experienced
researchers — but slowly | began to take the lead. It was not always smooth sailing, however,
with as many rejections as successes in my attempts to publish in high quality outlets. I
remember being shattered when it took nearly two years for one manuscript to be rejected!
It has never been published as there were other events that overtook me.

A period of study-leave in Giessen, Germany, working with Professor Rudolf Straesser
in 2010, provided the space | needed to focus on academic writing and begin to think about
funding applications. This was a productive period for publication (4 journal articles and a
book chapter). The visit to Giessen also established an ongoing research collaboration with
Rudolf that continues to this day (e.g., Geiger & Straesser, 2015; Geiger, Delzoppo, et al.
2021).

Upon returning to Australia, | started attracting additional administrative responsibilities,
secondary program coordinator and then, deputy Head of School (Research). This
heightened the challenge of maintaining a research identity as teaching loads, administration
and research all had to be kept in balance. | made sure that there was at least one writing day
a week. This did not mean | put less effort into teaching. This was still central, but I had
started to think about how these two different aspects of my identity could be better
reconciled. I had begun to think more deeply about the nexus between research and teaching
and worked with others on a project related to providing technology based support and
resources to students while on practicum. This project, WebCT as a pedagogical resource
and communicative tool for use in the professional experience program, was recognised
nationally via an ALTC Citation in 2009.

About this time, my Head of School asked me to think more about how to take others
forward — | think she was suggesting that | should do more than just think about myself! |
took the advice to heart and applied for a number of internal grant opportunities, including
others in the applications. One related to the potential of computer algebra systems with
Merrilyn and Rhonda Faragher (Geiger et al., 2010) and another related to the collaborative
use by teachers of video stimulated recall techniques to improve numeracy teaching practice
(e.g., Geiger, Muir, et al., 2016). The first was supported by the Mathematics and Literacy
Flagship at ACU, which was led by Doug Clark and the second was supported by an
Education Faculty grant. | was also asked to lead a research support team for members of
the school of Education in Queensland which provided funding for the engagement of a
senior researcher in a consultancy role — I asked Robyn Jorgensen. Each of these small grants
provided an opportunity to gather data, and the mentorship provided by Robyn promoted our
publication capabilities.

| also decided to contribute in a more substantial way to the mathematics education
community via MERGA, and successfully nominated for the role of Secretary on the
executive (2009-2012). | served under two Presidents — Judy Mousley and Merrilyn Goos.
My learning during this opportunity was about the scope of activity in which researchers
could be involved, publication, conferences, development and, of course, leadership in the
field.

Further leadership opportunities were also emerging. After a selection process, Doug
invited me to take up the role of Deputy Director of the Mathematics and Literacy Flagship.

Through this period, I continued to work with Merrilyn on a series of projects related to
improving numeracy teaching practice within schools based on a model for numeracy for
the 21 Century. The model brought together the dimensions of context, mathematical
knowledge, dispositions, tools, and an evaluative element, a critical orientation, for the first
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time (e.g., Goos et al., 2014). Shelley Dole and Anne Bennison worked with us on these
initial projects which led into a successful ARC Discovery application with Helen Forgasz
(2012-2015). I learnt much during this time from established researchers in the field about
managing large projects — how to approach schools for recruiting purposes; how to work
with education systems as well as teachers in schools, effective practices in data collection
and achieving as well as analysis. And there were more opportunities to write. Not many
academics from ACU had been involved in ARC funded research at that time and | was
determined to take every opportunity to support the project, taking the position that if I
couldn’t contribute as fully to the study as others on the intellectual plane at that stage, |
could make up for it with sheer hard work. This program of research has led to significant
publications as different perspectives on numeracy practice emerged, including the use of
the numeracy model as a scaffold for planning numeracy lessons across the curriculum
(Goos et al., 2014); auditing curriculum for numeracy opportunity (Goos et al., 2012), the
nature of numeracy (Geiger, Goos, & Forgasz, 2015), the design of numeracy tasks (Geiger
et al., 2014), numeracy readiness of pre-service teachers (Forgasz et al., 2015), role of
technology in effective numeracy practice (Geiger, Goos, & Dole, 2015; Goos et al., 2013),
and development of numeracy identity (Bennison, 2015). The model that underpins all of
this work has received international recognition as a holistic approach to enacting numeracy.
For example, it has been included as a framework that informed the development of the
PIAAC Cycle 2 assessment framework: Numeracy (Tout, et al., 2021). It also received a
MERGA Research Award in 2017. This work is ongoing (e.g., Bennison et al., 2020), with
further opportunities to explore in this space with good friends and colleagues.

My ZPD had now changed to accommodate the demands of a mathematics teacher
educator — teaching, research, and service. The challenges associated with balancing these
demands provided constraints within my ZFM. Further constraints included the standard
required for publication in high quality international journals. Involvement with the
Numeracy Across the Curriculum program, however, as well as mentoring by established
colleagues and a period of study leave, had canalised my development in research and
strengthened my connection to relevant communities of practice — strong positive influences
on my ZPD. The ZFM/ZPA complex, at this time, was enabled by my development as a
researcher even while meeting the many demands of a teaching/research academic — two
separate but interrelated communities of practice and associated ZFM/ZPA complexes. The
deeper enculturation into educational research was transforming my role as novice into fuller
participation in a national community of practice in mathematics education, and | was taking
my first steps into the international community. | had also taken steps towards the mentoring
of others in a research community of practice, shifting my identity from that of complete
novice towards mastery. Each of these developments were contributing to further
transformations of my identity — becoming more fully immersed in the research community
and while maintaining focus on other aspects of who | was professionally. | had now
developed the belief and confidence that | could be a successful researcher but doing
everything well was becoming harder, there were only so many hours in a day!

A Broadening Role in the Mathematics Education Community

I had another opportunity for study leave at the beginning of 2014. This time | chose to
visit Gabriele Kaiser from Hamburg University in Germany, Katja Maass in Freiburg, and
Peter Freid and Jonas Arleback in Linkoping, Sweden. All were part of the mathematical
modelling community and connected with my research interest in the teaching and learning
of mathematical applications. These visits resulted in further publications, in the short term
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or over a longer period of time (e.g., Geiger, Arlebéack, et al., 2016; Maass et al., 2019; Cai
etal., 2014).

During this time, I also wrote drafts for ARC DECRA (for early career researchers) and
Discovery Awards. The former was successful and the later, while receiving encouraging
reviews, was not supported by the ARC. The focus of the DECRA was an extension of work
I had been doing with colleagues, this time looking at the processes teachers engaged when
designing numeracy tasks for implementation across the curriculum. Through this study |
developed a framework that outlines how numeracy task design takes place through the
processes of identification or archiving ideas (looking, seeing, noticing), the shaping of a
task to fit the classroom circumstances in which it was to be implemented, and the
actualisation of a task in a classroom through a well-considered pedagogical architecture
(e.g., Geiger, 2016; Goos et al., 2019). This work provoked further thinking about the role
of the critical aspects of numeracy and how these could be actualised by teachers in the
classroom through the structure of tasks, measured responsiveness, and forms of questioning
(e.g., Geiger, 2019).

Because of the DECRA, | was now being noticed within the university, no one at ACU
had been successful previously. | was invited to become a member of the newly formed
Institute for Learning Science and Teacher Education, an initiative aimed squarely at
establishing research at ACU as world class. | was now a research-only academic. While this
provided time to think and write, it corresponded with an increasing number of invitations
to collaborate with others on national projects — the Opening Real Science (2013-2016)
project led by Joanne Mulligan and supported by a range of colleagues from very different
backgrounds in mathematics, science, and education (e.g., Geiger et al., 2018), the Building
an evidence base for national best practice in mathematics education (2015-2016) project,
sponsored by the Office of the Chief Scientist and led by Rosemary Callingham, in which 1
worked with many good colleagues in mathematics education nationally (Geiger et al.,
2017). There was further success with an international funding application to the Australian
Universities-German DAAD Joint Research Cooperation Scheme (2017-2018), which
provided opportunity to work with Jodie Miller and Jill Fielding-Wells as Early Career
Researchers on a collaborative project with German colleagues from Darmstadt University
led by Regina Bruder. And then, a revision of a previously unsuccessful ARC Discovery
application with Gloria Stillman, Jill Brown, Peter Galbraith and Mogens Niss (e.g., Geiger,
Galbriath, et al., 2021) was awarded funding for 2017-2019. This focus of this project was
on identifying enablers of mathematical modelling from both the perspectives of instruction
and learning. Each of these projects provided opportunity to extend ideas within research
themes | had been working on for some time — quality teaching and learning through a focus
on task design and implementation, applications of mathematics, and the role of digital tools
in enhancing instruction. But there was a lot to do! | had learned, through these times that
the contributions of support staff make a project work. The contributions are sometimes
downplayed by researchers — at their peril! | had learned that leading research was about
more than grant capture and publications (although these aspects are important) — it is also
about leading people — another identity.

More recently, a collaboration with Sharon Fraser (UTas), Kim Beswick (UNSW) and
members of the mathematics education community, led to a successful tender for the
Principals as STEM Leaders project (2018-2020) sponsored by the Department of
Education, Skills and Employment. An important aspect of the project to date has been a
framework of capabilities required by principals, teachers, students, the community, and
researchers to promote positive STEM learning cultures within schools. The development of
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this framework drew on the dimensions of the model for 215 Century numeracy, instigated
by Merrilyn and further developed through collaboration with other colleagues over 15
years. Ideas build on themselves over time.

Robyn Jorgensen continued as an informal mentor beyond her role as a consultant on the
research support group in my school, inviting me to put my name forward for a role as
Associate Editor of the Mathematics Education Research Journal (MERJ). Robyn was the
Editor-in-Chief. | was flattered but was | good enough?! It was a steep learning curve
between 2013 and 2018, with a period as Acting Editor-in-Chief. There was much more to
publication when looking from the other side of the process — managing reviews and
reviewers, developing consistent feedback across submissions and working on my own
understanding of what is required in a quality publication. This experience and a maturing
publication record led to an invitation to act on the Editorial Board of the International
Journal of Science and Mathematics Education as well as three Guest Editorships of ZDM -
Mathematics Education.

Other opportunities for international collaborations were now opening up. | was awarded
the Giovani Prodi Guest Professorship at Wurzburg University, Germany (2018-2019) from
an international field of 50 scholars. This experience has been the foundation of an ongoing
collaboration with Hans-Stephan Siller and his team. My ongoing role is to collaborate with
Stefan’s team on the internationalisation of their research, in the first instance through
publication (e.g. Siller et al., under review), leading to funding applications.

I am currently working with an international team on the Cycle 2 of the Programme for
the International Assessment of Adult Competencies (e.g., Tout et al., 2021). This work has
drawn on our numeracy research, and that of others, especially the critical aspects of what it
means to be an informed and active citizen. | am also working on another international
project with Iddo Gal (Haifa University, Israel) and an international team including Jill
Fielding-Wells on the impact of the COVID-19 pandemic on pedagogy in mathematics. And
then there is the current ARC submission that focuses on critical aspects of mathematical
thinking, including the role of social justice in mathematics-based decision-making. There
remain opportunities to research and learn!

My current ZPD is now one of a mature researcher. | am now a Director of a research
program within ILSTE, with a focus on STEM Education, and must accommodate all of the
demands required of leadership. I have a team to mentor and lead, as well as PhD students.
These create demands on my time that constitute constraints within my ZFM, as well as
institutional demands that require publications be submitted to only the best journals.
Increasing involvement in national and international collaborations are now an important
element of my ZPA. These collaborations include both formal and informal mentoring from
highly esteemed colleagues (I have been published in ESM, at last, with their support). |
hope that these collaborations are also having a positive impact on the ZPA of others. My
ZFM/ZPA complex is now fully directed towards research, with aspirations to excellence.
This complex also overlaps with those of others in my roles of leader and mentor. | hope |
am viewed more as an affordance than a constraint!

I am now fully involved in two research communities of practice: one, a national and
international related to mathematics education, and the other, related to my Institution. Many
of the goals are the same, but there are important differences. Each has both affordances and
constraints to how | participate. I think I have now moved a little beyond novice, but it is up
to others to decide if | have achieved any sort of mastery. | hope 1 am now achieving some
aspect of my goals related to generation of new knowledge and research excellence. At the
same time, facilitating the fuller participation of others into the mathematics education
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community is a goal of increasing focus. That is, providing guidance than canalises the
ZFM/ZPA of others — another change in identity.

Conclusion

In their research, Goos and Bennison (2019) have traced the identity trajectory of
teachers in mathematics education in a manner consistent with Wenger’s (1998) notion of
identity-as-becoming. In this paper, | have attempted to connect this thinking to that of
researcher development in mathematics education. Through this narrative, | have described
a transformation of identity over time as an outcome of my participation in a range of
communities — student, public servant, teacher, member of teacher professional associations,
and researcher. Each participation has fostered multiple identities consistent with the
practices of each community (Wenger, 1998). Entering each new community required
realignment and an ongoing evaluation of whether my goals remained consistent with those
of the community. Eventually | have come to participate more in some communities and less
and others. Crow et al. (2017) have argued that “Key to successfully negotiating our stable
selves is the reconciliation of the multiple identities which are constructed in these multiple
communities of practice” (p. 268). This rings true for me as | believe | have retained the
essence of each of the identities | have assumed through my career in some form, although
each has come to the fore at different times — a different emphasis for person-in-practice-in-
person.

So what messages do | have for researchers in mathematics education having
experienced these different identities? | believe there are six, which | hope are evident in the
preceding narrative:

1. Contribute to your research community — they will challenge you to do your best
work and support you when times are tough.

2. Work with the best in the field — they will stretch you, bringing you forward into
fuller participation in the community of mathematics educators. They will also
let you know when you have more work to do before the next big step. On this
point | have been lucky.

3. Lead - don’t stand back waiting to be asked, initiate conversations about potential
research ventures. Do not be afraid to bring others with you.

4. Be wary of low hanging fruit — test yourself, aim high in terms of international
publications, keep applying for funding despite the risk of rejection. Focus on
quality rather than quantity.

5. Collaborate — be generous with your time, there will be a point when you need
to depend on others.

6. Think nationally and internationally and not just about local demands — there are
many opportunities out there.

Through this lecture, | hope | have stimulated some thinking about the notion of a
“reflective” researcher. | have two additional questions:
1. We readily place the expectation of being “reflective” on teachers. Do we do the
same when considering the development of researcher identity?
2. What will be my/your next transformation of identity?

| finish with another quote drawn from culture, this time Andy Warhol.
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When people are ready to, they change. They never do it before then, and sometimes they die before
they get around to it. You can't make them change if they don't want to, just like when they do want
to, you can't stop them.

How much you wish to change very much depends on you.
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Aspects of excellence in mathematics education
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The theme of the plenary panel is Excellence in Mathematics Education. Taking excellence
to mean a commitment to bring out the best leads us to view excellence in mathematics
education as a goal such that teachers, students and curriculum, the three corners of the
didactical triangle, and their interactions result in the best possible outcomes. Each of the
four panellists share with us a unique aspect of Excellence in Mathematics Education.

The theme of this plenary panel is Excellence in Mathematics Education. In the context
of this panel discussion, excellence in mathematics education is viewed as a commitment
through means to bring out the best amongst the interactions between teachers, students and
curriculum, the vertices of the didactic triangle shown in Figure 1.

e .

Learner «—» Teacher

Mathematics

Figure 1. Didactic triangle (Straesser, 2007, p. 165)

As noted by Schoenfeld (2012), it is clear that each of the entities in the figure, each of
the arrows, and the triad denote something of importance. As such excellence is mathematics
education is multi-faceted. In some ways mathematically powerful classrooms encompass
all the interactions between mathematics, teachers and students. This is evident in the
Teaching for Robust Understanding (TRU) framework (Schoenfeld, 2016, p.10) shown in
Figure 2.

The Five Dimensions of Mathematically Powerful Classrooms
The The extent to which the mathematics discussed is focussed and coherent, and to which
Mathematics | connections between procedures, concepts and contexts (where appropriate) are addressed
and explained.
Cognitive The extent to which classroom interactions create and maintain an environment of
Demand productive intellectual challenge conducive to students’ mathematical development.
Access to The extent to which classroom activity structures invite and support the active engagement
Mathematical | of all of the students in the classroom with the core mathematics being addressed by the
Content class.
Agency, The extent to which students have opportunities to conjecture, explain, make mathematical
Authority, arguments, and build on one another’s ideas, in ways that contribute to their development
and Identity | of agency and authority resulting in positive identities as doers of mathematics.
Formative The extent to which the teacher solicits student thinking and subsequent instruction
Assessment responds to those ideas, by building on productive beginnings or addressing emerging
misunderstandings.

Figure 2. The five dimensions of mathematically powerful classrooms

The four panelists were asked to present their perspective on excellence in mathematics
education and describe research and developmental project (s) that they have been involved
in related to any aspects of excellence in mathematics education. It is apparent that each of
them has approached the theme in a unique way.

2021. In Y. H. Leong, B. Kaur, B. H. Choay, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 47-48. Singapore: MERGA.


mailto:berinderjeet.kaur@nie.edu.sg

Kaur

Choy notes that having high expectations and providing strong support to all students, a
notion of equity, is a necessary constituent for achieving excellence in mathematics
education (NCTM, 2000). He uses the metaphor of confluences to characterize excellence
and illuminates how confluences of “Big Things’ such as societal expectations, policy
formulation and implementation, and ‘Small Things’ such as classroom practices — teachers
juggling the balance between developing procedural fluency and conceptual understanding
in their instructional practice whilst ensuring that students have adequate practice for
examinations orchestrate in tandem in Singapore thereby resulting in excellence in
mathematics education at the systemic level.

Kwon whilst unpacking the complexity of the term excellence draws on all the three
vertices of the didactic triangle and opines that excellence in mathematics education is best
described in terms of research-based curriculum development, research-based teaching
practices, and professional development of mathematics educators. She draws on her
research projects: Inquiry Oriented Differential Equations (10-DE) curriculum development
project; Inquiry-Oriented teacher Actions (IOTA) research-based teaching practices project;
and Community-Based Teacher Professional Development Model a professional
development project to illuminate the three aspects of excellence in mathematics education.

Attard notes that while we continually strive for excellence in mathematics education
this strive comes with challenges. She illuminates how the current COVID-19 pandemic has
highlighted the many variances in technology-infused mathematics teaching due to
influences such as school context, community support, school commitment to technology
use and school culture. Adopting a holistic model of technology integration she notes that
clarity regarding contextual affordances and constraints may assist teachers in their planning
of mathematics teaching and learning thereby facilitating pursuit of excellence in
mathematics education.

Tan proposes a framework for teaching excellence in mathematics. In the context of
undergraduate mathematics, the framework encompasses four aspects namely module
learning outcomes, lesson plan, teaching nodes and motivational strategies. Tan notes that
although the learning component rests on students’ initiatives, there are several aspects of
the learning process that teachers can facilitate.

It is apparent from the four panelists presentations that a framework like that of TRU by
Schoenfeld could provide a more holistic lens when considering excellence in mathematics
education from both the perspectives of educators and researchers. This would allow for
deeper understandings of the inter-relationships of the vertices of the didactic triangle.
Following the presentations by the four panelists, it is hoped that the questions posed by the
conference participants will illuminate other facets of excellence in mathematics too. Lastly,
we hope the panel discussion will ignite conversations that would continue beyond the
session during the conference.
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The current COVID-19 pandemic has highlighted the many variances in technology-infused
mathematics teaching due to influences such as school context, community support, school
commitment to technology use, and school culture. These elements have a significant impact
on how teachers plan to use technology in mathematics classrooms. In this brief paper |
provide a snapshot of findings from a larger study to highlight some of the variances found
in four case studies across three different primary schools.

While we continually strive for excellence in mathematics education, we also continue
to face challenges. The forced school shutdowns experienced by many countries during 2020
caused by the COVID-19 pandemic forced many teachers to shift to more technology-
infused practices. This highlighted the critical role that technology plays in contemporary
mathematics education and the need to understand more about the influence of school
context, culture, community, and commitment on technology use in classroom practice. In
this brief paper I share some insights from four case studies conducted in primary classrooms
within three Australian schools to illustrate the abovementioned influences on technology
integration in mathematics classrooms. | do this through the lens of a holistic model of
technology integration, the Technology Integration Pyramid (Mathematics) (TIP(M)). The
TIP(M) emerged from a larger study conducted across 10 Australian classrooms ranging
from early childhood through to senior secondary (Attard & Holmes, 2020a, 2020b). The
TIP(M) considers the influences on technology integration at a school level, along with the
critical considerations for effective technology use within mathematics classrooms. In this
paper | provide a snapshot of the complex influences across four case studies in relation to
the teachers’ effective implementation of technology-infused mathematics lessons.

A Model for Technology Use in Primary Mathematics Classrooms

There are several frameworks that attempt to describe the types of knowledge required
to integrate technology into teaching and learning. For example, the widely cited TPACK
framework (Koehler & Mishra, 2009) provides a model of a professional knowledge
construct, and according to Krauskopf et al. (2018), potentially provides a richness to
teaching conversations, providing a theoretical vocabulary to help understand the required
pedagogical considerations of technology integration (Koh, 2018). However, there are
limitations to the TPACK framework. Although it is helpful in identifying specific
knowledge domains for technology integration, TPACK is regarded as a pedagogically
neutral model (Bower, 2017). The framework makes no suggestions about specific
technologies and pedagogies that would be appropriate for mathematics, nor does it consider
the importance of student engagement, which is a particular concern within the discipline of
mathematics education. While TPACK provides an acknowledgement of school contexts, it
does not provide insight into the complex contextual elements that may influence task
design, teacher practice and student learning, and does not consider the variety of barriers
and dilemmas that are typical to technology integration, such as a lack of technical support
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or issues of access. Arguably, these issues influence how technology-infused teaching plays
out in individual classrooms.

The Technology Integration Pyramid (Mathematics) (TIP(M)) (Figure 1) (Attard &
Holmes, 2020b) emerged from existing frameworks and the findings of the broader study
from which this paper is drawn. TIP(M) is conceptualised as a three-dimensional model to
illustrate the connections and inter-related elements within it that teachers should consider
when planning for the use of any technology, regardless of device, software, access and
school context. The purpose of TIP(M) is to assist in future-proofing technology-infused
teaching and learning as new technologies continue to emerge. It presents a holistic means
of understanding the parameters within which teachers operate and a recognition that student
engagement with mathematics is a critical element for learning to occur in contemporary
classrooms. In this paper, a sample of findings from four case studies of teachers considered
to be effective users of technology in mathematics education is used to illustrate the
variances and complexities that influence technology-infused mathematics teaching across
different schools.
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Figure 1. Technology Integration Pyramid (Mathematics) (Attard & Holmes, 2020b)

Methodology

To assist in understanding how the influences described on the base of the TIP(M)
evolved, a brief overview of the methodology employed in the larger study is provided. A
qualitative multiple case study approach was utilised. Each case consisted of a classroom
teacher, one member of the school leadership team, and a focus group of five or six students.
Cases were identified through a process of purposive sampling. The case studies were
conducted in a mixture of public and private schools and represented a range of socio-
economic and geographic areas.

Participants

Case study teachers were identified through professional networks as teachers who are
considered by their peers as effective and innovative users of technology. While the three
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schools (two case study teachers taught at the same school) were located in metropolitan
areas, they differed significantly in terms of size, socio-economic status, access to
technology, and school support for technology integration. School leaders were identified as
those who had a formal leadership role. Students participating in focus groups were selected
by their teachers as a representative sample of the case study teachers’ students. Where
possible, students were chosen to represent a mixture of gender, ability, and attitudes towards
mathematics. Students below Grade 3 did not participate in focus groups.

Data Collection and Analysis

Data collected from the case study teacher included classroom observations, lesson
plans, and interviews. Students participated in a focus group discussion and the nominated
school leader participated in an interview. Data drawn from interviews and focus group
discussions were audio recorded and transcribed verbatim. Observations were video
recorded. Data analysis was conducted in alignment with the components of the TIP(M). To
do this, all relevant data from interviews and focus group discussions from each of the case
studies were collated to provide collective responses to the research question. Field notes
and observations were used to support further analysis. For a more detailed description of
the larger study, its methodology and findings, see Attard and Holmes (2020a, 2020b).

The Influences on Effective Technology Use

The three school settings examined in this paper varied in context with two being
government schools and the other a very well-resourced independent school. The
independent school (Case A) utilised a whole-school approach to technology integration,
ensuring a one-to-one iPad ratio and providing professional development for teachers,
largely in-situ, allowing for a highly contextualised approach. The teachers were expected
to consistently reflect on the proposed purpose when thinking about using a new
technological tool or app. Teachers in this school were actively encouraged to limit the
number of apps used during teaching, only adding new ones when there was a clear
pedagogical purpose for doing so.

In contrast, the government school in two cases (B and C) had a different approach for
the early years (K-2) and the primary years (3-6). All students in Years 3 to 6 were required
to have their own iPad which the school facilitated through an Apple purchase plan. Students
in the lower years had a small number of iPads to share in the classroom, but the teachers of
these years were perceived as being more sceptical about the value of technology for
learning. Rather than taking a whole-school approach, the technology divide in this school
between older and younger students was quite embedded and unlikely to change with current
teaching staff. In Case D, a whole school approach was not yet in place due to the school
being new, yet there was still an ethos of encouragement of technology use, albeit through a
"trial and error” method, rather than through an agreed systematic approach.When the Bring
Your Own Device (BYOD) iPad plan was introduced for Years 3 to 6, the school in Cases
B and C faced considerable backlash from parents, concerned about how the technology
might change the teaching and learning practices. The school then increased communication
with parents to ensure that support for the technology was present at home as well as at
school. Interestingly such concerns were not raised at the independent school where even
very young learners were expected to have their own devices.

Despite significant differences in levels of support and access, the teachers at all schools
saw the benefit of using technology in the mathematics classroom to shift the focus from
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learning content to developing conceptual understanding and mathematical reasoning. They
recognised increased opportunities for students to explore mathematics content and to
communicate their mathematical understanding in a variety of modes using digital cameras,
audio and video recording, and screen capture. In Cases A, B, and C, Google Sheets was
used for learning about data and Beebots and/or Spheros were used to enhance spatial
reasoning through basic programming. Cases A, B and C used a learning management
system (OneNote, SeeSaw) as a means of tracking student progress and to share student work
with parents. Kahoot was employed in all schools to check on student progress both from
the teachers’ perspectives and as a means for students to gain immediate feedback on their
understanding.

In all observed lessons there was evidence of high levels of student engagement because
of how teachers utilised the tools at hand. The technology was used seamlessly with few
technical difficulties, regardless of constraints posed by some school contexts and
communities. While the influences at each school varied, each teacher was able to find ways
of using the available technologies in effective and meaningful ways.

Arguably, some of the influences such as system policies, school funding, and provision
of professional development are beyond the individual teachers’ control. Others, such as
individual teacher beliefs about technology, their willingness to innovate and the depth of
their pedagogical content knowledge can be somewhat controlled and influenced by the
teacher. An understanding the four categories of influence (context, culture, community and
commitment) within a teacher’s school will help to understand the possibilities for effective
technology-infused mathematics education within each unique and individual context.
Further, clarity regarding contextual affordances and constraints will assist teachers in the
planning of mathematics teaching and learning and contribute to the pursuit of excellence in
mathematics education.
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Excellence in mathematics education: Multiple confluences
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Excellence in mathematics education is often linked with high performance in international
achievement tests such as TIMSS. In this short paper, | broaden the notion of excellence by
considering how the different aspects of mathematics education come together instead of
only focusing on what these aspects are. Using confluence as a metaphor to describe
excellence, | examine Singapore’s excellence in mathematics education by showing how the
“big things” of education such as societal expectations, policy formulation and
implementation, and how the “small things” of classroom practices—scheme of work, tasks
(especially typical problems), and examinations—flow together towards the same vision of
ambitious teaching articulated by the Singapore Mathematics Curriculum Framework.

Excellence—from the Latin word excellere, meaning surpass—is multi-faceted. In
mathematics education, excellence is often associated with high performance in international
achievement tests such as TIMSS and PISA. Achieving top performance in these tests has
been likened to obtaining medals in the “Olympics” of education (Leung, 2014) and
declining performance over the years in these achievement tests has triggered calls in various
countries to reform mathematics education (Gerritsen, 2021). However, | believe most
mathematics educators would see performance in these international benchmark tests as a
very narrow interpretation of excellence. Examining the notion of excellence in mathematics
education may require us to investigate a myriad of educational components operating
together in diverse contexts. In this paper, I use the metaphor of confluences—where two or
more rivers, each with their own flow and paths, meet to form a bigger river—to characterise
excellence. I view the notion of excellence in mathematics education as the coming together
or flowing together of different educational aspects at a single purpose: to provide all our
students with quality mathematical learning experiences so that they are supported to
achieve the desired learning outcomes.

Having high expectations and providing strong support to all students relates to the
notion of equity, a necessary ingredient for achieving excellence in mathematics education
(NCTM, 2000). There are two aspects of confluences here. First, there is a directed flow of
policies, initiatives, and practices towards the same goal of providing high quality learning
experiences for all. Second, there is a coming together of different understandings about the
main elements of an excellent mathematics education, namely curriculum, teaching,
learning, assessment, and technology. The idea is not to have a single understanding about
what or how to teach. Rather, the aim is to achieve a balance point in which our different
understandings about mathematics teaching and learning are compatible. In practical terms,
this means that the educational policies, initiatives, and practices are in sync with the purpose
of providing high quality learning experiences for all. Hence, finding the balance point and
getting the policies, initiatives, and practices to “flow” in sync are the key levers to
excellence. Seeing excellence in mathematics education as confluences therefore positions
excellence as a journey and not merely a destination. In the rest of the paper, I will illustrate
this idea of seeing excellence as confluences through the Singapore experience in
mathematics education.
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Confluences of ‘Big Things’

| begin by looking at the confluences of key elements of an excellent mathematics
education. To that end, the principles for school mathematics, as proposed by the National
Council of Teachers of Mathematics (NCTM), serves as a good reference point. According
to NCTM (2000), the following six principles are fundamental to achieving excellence in
mathematics education: equity, curriculum, teaching, learning, assessment, and technology
(NCTM, 2000, pp. 12-24). On the surface, it is hard to imagine why anyone would have
issues with these principles but the “math wars” in the US suggests otherwise. On one side,
traditional mathematics advocates emphasise the importance of mastering procedures (back
to basics) and use of more teacher-directed teaching approaches such as direct instruction;
on the other side, reform mathematics advocates emphasise the importance of developing
conceptual understanding via the use of more student-centric approaches such as inquiry-
based teaching. These “wars” are not unique to the US and different versions of these wars
are still “fought” in various countries (Chernoff, 2019; Yoon et al., 2021). | find these wars
unproductive because the polarising language used in these discourses promotes a “winner
takes all” notion of what excellence in mathematics education means.

Avoiding these extreme positions, excellence in mathematics education can be
characterised by the confluences of societal expectations, policy formulation, and
implementation. In other words, the actions of the policy makers, school leaders, teachers,
students, parents, and mathematics educators should flow together towards a clearly
articulated vision of mathematics education. Flowing together towards a common vision
does not necessarily mean having a one-size-fits-all approach to teaching and learning.
Rather, the idea is that different policies, initiatives, and practices, which may differ in their
epistemological foundations, are directed at achieving the same vision. Such a notion allows
for a balancing of different pedagogical and curricular positions. Singapore, widely
acknowledged for its excellence in mathematics education, is an example of this confluence.

In Singapore, we place a high premium on education and there is a high expectation for
every child to do their best in education. All schools are well-funded and there is a high
expectation for the professionalism of teachers and their quality of teaching. The Ministry
of Education in Singapore, the governing body responsible for policy formulation and
implementation, are largely made up of teachers. There is one teacher training institute
responsible for pre-service teacher education to ensure consistently high-quality teacher
education. All these environmental factors come together to lay the groundwork for
Singapore’s excellence in mathematics education.

Singapore’s mathematics education and assessment, from primary school to pre-
university, is guided by the Singapore Mathematics Curriculum Framework (SMCF) since
1990. This framework focuses on developing students’ competencies in mathematical
problem solving, supported by five-interrelated components (Ministry of Education-
Singapore, 2018): understanding concepts, proficiency in skills, competencies in processes,
positive attitudes for mathematics, and metacognition (p. 10). It is interesting to note that
most, if not all, of Singapore’s curricular policies and initiatives, including the SMCEF, take
ideas from all over the world to be adapted to the Singapore’s context. Perhaps, it is
Singapore’s pragmatic approach that has enabled these different ideas to come together as a
coherent curricular intent (Tay et al., 2019).

As detailed by Lee et al. (2019), the SMCF guides how different national policies such
as National Education, ICT Masterplan, and more recently, 215 Century Competencies are
implemented through the intended mathematics curriculum. Changes in policies are
appropriately integrated within the mathematics curriculum while keeping an eye on the
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goals articulated by the framework. Hence, changes to the national curriculum, pedagogical
approaches, assessment emphases, textbooks, curricular materials, and even school-based
curricular innovations are all introduced in reference to this framework. In addition,
communication on these changes is carefully orchestrated to ensure consistent and coherent
messaging and schools have some autonomy to implement these ideas in different ways.
This ensures that the curriculum goes beyond a collection of activities and initiatives to a
more connected and coherent focus on mathematics and its implementation, which may be
uneven at times, is moving in the same direction. These confluences of different policies,
initiatives, and practices at the ambitious goals of mathematics teaching have improved the
state of Singapore’s mathematics education over the years.

Confluences of ‘Small Things’

Despite the seemingly eclectic mesh of ideas for our intended curriculum, one of the
keys to Singapore’s excellence in mathematics education lies in the recognition that effective
teaching can take a variety of forms (Kilpatrick et al., 2001). This is evident from how
mathematics teachers comprehend and transform the intended curriculum into instruction
(Shulman, 1987). Each school interprets the curriculum documents and translates the
intended curriculum into implementable schemes of work, detailing the selection and
sequencing of content as well as the pedagogical approaches tailored to their students.

Singapore teachers use a variety of teacher-centric and student-centric approaches in
their teaching while juggling the balance between developing procedural fluency and
conceptual understanding (Leong & Kaur, 2019). For example, the prevalent use of typical
problems or textbook-type questions in mathematics classroom in Singapore, particularly
how these problems are selected, adapted, and implemented deserves more attention (Cheng
etal., 2021; Choy & Dindyal, 2018, 2021). In particular, Choy and Dindyal (2021) described
how a competent secondary school teacher in Singapore noticed the affordances of typical
problems and orchestrated a productive discussion around them, similar to the five practices
proposed by Smith and Stein (2011). While Smith and Stein (2011) highlights the
importance of using a rich task to orchestrate such discussions, Choy and Dindyal highlights
the possibility of using typical problems for mathematically productive discussions.

Similarly, Choy (2020) described how a beginning primary mathematics teacher
orchestrated a discussion around the seemingly simple question: 0.8 x 4. These examples
amongst others (see Cheng et al., 2021) suggest there is something interesting going on at
the classroom level. These teachers’ practices cannot be simply classified as traditional
teaching or reform-based teaching because these labels do not capture the complexity of their
practices (Leong & Kaur, 2019). Instead, what these teachers have done is to create high-
quality mathematical learning experiences for their students in ways that honour both
conceptual and procedural fluency (Choy & Dindyal, 2021). More importantly, these
practices are not unusual in Singapore. Based on a large-scale study on the enactment of the
Singapore mathematics curriculum (Kaur et al., 2019), the researchers highlight that there is
a prevalent and skilful use of such problems both for mastery and concept development, with
many of these classrooms said to be mathematically productive.

This is despite the commonly held perception that our mathematics education is
predominantly focused on high-stake examinations. What is often neglected is that these
examinations do not simply test students on their procedural fluency, but they are designed
to assess whether students understand and apply mathematical concepts to different
problems in different contexts. Hence, teachers tend to maintain a strategic approach to
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teaching mathematics, balancing the need for conceptual and procedural fluency as
stipulated by the SMCF.

In this short paper, | have tried to paint a landscape of Singapore mathematics education
by showing how the “big things” of education, such as societal expectations, policy
formulation and implementation, and how the “small things” of classroom practices—
scheme of work, tasks (especially typical problems), and examinations—flow together
towards the same vision of ambitious teaching articulated by the SMCF. The picture is one
of many different rivers, both big and small, coming together at different points to flow
towards the sea, which forms part of the larger water cycle. It is not so much the features of
mathematics education that makes it excellent. Rather, it is the confluences of these big and
small pieces of mathematics education that generate the supportive environment to empower
teachers in their work to enhance students’ learning experiences and achievements.
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This paper provides an overview of my research projects that are part of collaborative
research program seeking to illustrate the complexity of excellence in mathematics
education. The aim of the first two projects were to the theoretical and empirical grounding
for an innovative approach in differential equations called the Inquiry Oriented Differential
Equations (IO-DE) project. The aim of the third project was to provide a model of
professional development of mathematics teachers in South Korea.

The concept of excellence in mathematics education is one of the most elusive in the
educational literature. Writers often use the term excellence and assume their readers know
what it means. Dictionaries give such definitions as “the quality of being excellent”, “an
excellent or valuable quality”, and the “quality of being outstanding or extremely good”.
Thus, arriving at a simple definition is a challenging matter. However, excellence in
mathematics education can be described in terms of research-based curriculum development,
research-based teaching practices, and professional development. | would like to describe
my research project in related to three aspects of excellence in mathematics education.

Inquiry Oriented Differential Equations (10-DE) project

The Inquiry-Orientated Differential Equations (I0-DE) project is an example of a
collaborative effort between mathematics educators and mathematicians that seeks to
explore the prospects and possibilities for improving undergraduate mathematics education,
using differential equations as a case example (Kwon, 2002). In this section, | highlight the
theoretical background for the 10-DE project and a summary of quantitative and qualitative
studies of the 10-DE project on student learning and how teachers create and sustain an
inquiry-oriented learning environment.

While there are clear calls for inquiry in both science and mathematics classrooms, what
exactly characterizes an inquiry-oriented classroom is less clear. To clarify the nature of
inquiry-oriented classrooms and to provide a more comprehensive perspective on the
complexity of teaching and learning, Rasmussen and Kwon (2007) characterize inquiry in
terms of both student activity and teacher activity. In particular, students learn new
mathematics by inquiry, which involves solving novel problems, debating mathematical
solutions, posing and following up on conjectures, and explaining and justifying one’s
thinking. The first function that student inquiry serves is to learn new mathematics by
engaging in genuine argumentation. The second function that student inquiry serves is to
empower learners to see themselves as capable of re-inventing mathematics and to see
mathematics itself as a human activity. On the other hand, teachers also engage in inquiry.
Teacher inquiry centres on inquiring into their students’ mathematical thinking and
reasoning. Teacher inquiry into student thinking serves three functions. First, it enables
teachers to interpret how their students build mathematical ideas. Second, it provides an
opportunity for teachers to learn something new about particular mathematical ideas in light
of student thinking. Third, it better positions teachers to follow up on students’ thinking by
posing new questions and tasks.
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Accomplishing these three goals was facilitated by conducting research in three related
strands: (1) adaptation of an innovative instructional design approach at the undergraduate
level; (2) systematic study of student thinking as they build ideas and teacher knowledge to
support students’ re-invention; and (3) careful attention to the social production of meaning
and student identity. These three strands do not represent a linear progression in our research.
We conducted research in these three strands concurrently and view the strands as
complementary.

The implications of the 10-DE project are threefold. First, based on the results of the
pre-test and the delayed post-test (Kwon, 2005; Rasmussen et al., 2006), the 10-DE students
from each of the four institutions outperformed traditionally taught comparison students on
the post-test. This result was true for both males and females and for high and low achieving
students. This result demonstrates that this instructional approach can be applicable to
university mathematics. Secondly and more importantly, the instructional methods and
curriculum design approach guided by Realistic Mathematics Education (RME) framework
are applicable to promoting student learning in all mathematics classrooms (Kwon, 2002).
Thirdly, the 10-DE project can provide a model for how it is that teachers create and sustain
inquiry-oriented learning environments in which students gain mathematical power and
sophistication.

Since Rasmussen and Kwon (2007) reported their work on Inquiry-Oriented Differential
Equations (I0-DE) class, Inquiry-Oriented Instruction(1O1) has been widely used in the field
in which researchers applied 101 in other content areas such as linear algebra (Wawro et al.,
2012), scaled up curricular materials for 101 in abstract algebra courses (Larsen et al., 2013),
and theorized principles for enacting 101 in practice (Kuster et al., 2018). 10-DE project
exemplify a research-driven reform in instructional practices of excellence in mathematics
education that have been led by the field of research in university mathematics education

Inquiry-Oriented Teacher Actions (IOTA) Project

In the past decades the K-16 mathematics education community has strived to improve
the teaching and learning of mathematics via a concerted effort to develop innovative
curriculum, to train more effective and knowledgeable teachers, to better understand how
students build mathematical ideas, and to better understand how teachers create and sustain
mathematics classrooms in which students learn mathematics in powerful and deep ways.
Much progress has been made in terms of curriculum development and building models of
students’ mathematical learning. Much less progress has been made, however, in
understanding how it is that teachers create and sustain classroom learning environments in
which students build robust relational understandings of mathematics and develop desirable
dispositions and attitudes towards knowing and doing mathematics. Indeed, past research as
well as our experiences with undergraduate mathematics teachers demonstrates that it is
quite difficult for teachers to develop and sustain such classroom learning environments.
Models of how teachers accomplish this task would contribute both theoretically to the
literature on teaching and practically to professional development efforts.

The goal of the Inquiry-Oriented Teacher Actions (IOTA) Project is to develop a model
for how it is that teachers create and sustain inquiry-oriented learning environments in which
students gain mathematical power and sophistication. In particular, we focus on
characterizing teachers’ discursive moves in inquiry-oriented classrooms. We use an
innovative approach to differential equations, referred to as the 10-DE project as a case
example.
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We define inquiry-oriented learning environments as those classrooms that have two
distinguishing features. First, regarding student activity, students routinely explain and
justify their thinking and listen to and attempt to make sense of others’ ideas. That is, students
engage in genuine argumentation as they build mathematical ideas. Regarding teacher
activity, teachers routinely inquire into how it is that students are thinking about the
mathematics. In other words, teachers are continually attempting to understand their
students’ mathematical reasoning. Such understanding contributes to their decisions about
how to proceed to advance their mathematical agenda.

As a start to define discursive moves, we operationalize discursive moves in terms of the
following three types of teacher actions: Teacher Questioning, Teacher Revoicing, and
Teacher Telling. We leave open the possibility that our analysis will reveal other types of
discursive moves. In addition, these discursive moves are intended to include verbal
utterances as well as their kinaesthetic actions, such as gestures.

Kwon et al. (2008) detail four different functions of the teacher’s revoicing in an inquiry-
oriented classroom, because it is one of the discursive strategies that often occurs in the
teaching of mathematics, but which has received limited attention in mathematics education
research at the undergraduate level. Our analysis shows that a teacher’s revoicing can
constitute a major repertoire of his or her discursive moves and carries out critical functions
in the context of mathematics practice in class. For example, one function of revoicing
identified was that of a binder — in which the teacher’s revoicing created a context for
students to bring up and align themselves with diverse mathematical positions — which
supported the discursive, social process of negotiating meaning. Theoretically, these
pedagogical moves were related to the instructional design theory of RME (Rasmussen &
Kwon, 2007) and Vygotsky’s notion of culture tool. Pragmatically, these moves provide
strategies for others who wish to create mathematical discursive communities to support
students’ evolving mathematical reasoning.

A Community-Based Teacher Professional Development Model

Kwon et al. (2014) introduced a conceptual framework and practices, yield by research,
into a teacher professional development program focusing on teacher community for
mathematics teachers to increase professionalism. Conceptually, it was distinguished from
the other training programs in terms of the participants, curriculum and methods. The teacher
communities consisting of three or four teachers from the same school, as well as a mentor
and sub-mentor, master, or professional teachers with professional expertise and executive
capability. The curriculum of our program includes some process practicing and reflecting
of teachers’ communities on their own classes. The program’s structure required active
participation. Through our program, the teachers improved their teaching competency. Also,
the operational ability of the teacher learning communities was improved. A teaching and
learning community culture had been formed in each school, which showed that the
community could continue even though the PD was no longer being conducted at the school
operated even after our program was over. In the past, teachers avoided opening up their
classrooms for others to observe, as this was previously regarded as a form of teacher
evaluation in Korean classroom culture. However, the teachers who participated in the
program now offered to open up their classrooms for other teaching community members,
and saw this as an opportunity to contribute to improving the teaching competency of the
community.

The ultimate purpose of the community-based mathematics teachers PD program that
was developed by this research is to support continuous development of teachers’
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professionalism through training, where professionalism of mathematics teachers is regarded
as a factor enhancing their ability to improve their lessons and help students’ learning. To
this end, rather than transferring all responsibilities to individual teachers, their
professionalism was enhanced by growth through collaboration and reflection within the
teachers’ community.

The concept and procedural model of the training program developed by this research
may be modified to suit the needs of course subjects other than mathematics, so that the
model can be applied to the operation of PD programs for these other subjects. This
systematic PD program will facilitate sustainable development of teachers’ professionalism
as teacher-researcher, the spread of community among teachers, and the enhancement of
teachers’ capability to implement the learning material, thereby creating positive change in
mathematics education. In fact, inspired by these positive effects, the Korea Foundation for
the Advancement of Science and Creativity (KOFAC) is implementing our PD program
model in its PD program for elementary school teachers to foster mathematics classes based
on storytelling.

Final Words

How can we inspire leaners to excel? To achieve excellent learning outcomes, we need
excellent teachers. These projects discussed in this paper provide models towards excellence
in teacher education. It is clear that these models need to be investigated in more depth, both
as research topics and innovative practices.
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In this paper, | propose a framework for teaching excellence in mathematics, particularly in
the context of universities. The framework encompasses four aspects: module learning
outcomes, lesson plan, teaching modes, and motivational strategies. Through this framework,
I will share with readers my view on various aspects that a math teacher should pay attention
in order to excel in his or her teaching.

Regardless of subjects and levels, education is made up of three components: curriculum,
teaching and learning. In the university context, the curriculum of a program is typically
developed at the departmental level; the teaching is delivered by the lecturers, instructors or
teaching assistants; and the learning comes from the students. Although the three
components are acted upon by three distinct groups of people, they are clearly inter-related
(Figure 1). This three-way structure is similar at the school level. In the Singapore local
school context, the curriculum is developed by the Ministry of Education.

Mathematics

Learning

Figure 1. Three components of mathematics education

Generally speaking, as long as it aligns with the university’s educational direction, the
department has the liberty to develop the curriculum for its program independently. This
includes the program requirement, structure and study plan. The department also looks at the
syllabus and prerequisites of individual modules. The component that | will be focusing on
is Teaching, in particular at the module level.

A Framework for Teaching Excellence

The lecturer, who is usually also the module coordinator, needs to define the module
learning outcomes (MLO) based on the syllabus. Guided by the learning outcomes, the
lecturer will proceed to design the module. This entails coming up with the lesson plan and
deciding on the teaching and assessment modes. At a micro level, the lecturer and the TA
can also do the same for every single class he or she conducts.

Although the learning component mainly comes from the students’ own initiative, there
are various aspects that the teachers can facilitate the learning process. Other than
transmitting the knowledge and assessing the students, teachers can engage the students by
asking questions and providing feedback to them. Another important aspect that I will
elaborate is to come up with strategies to motivate student learning.
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I would like to propose a Framework for Teaching Excellence (Figure 2) at the module
level. The framework takes the form of a pyramid. At the tip of the pyramid is the module
learning outcomes (MLO), which is the ultimate goal that every module should thrive to
achieve. The other three layers of the pyramid which contribute to reaching the MLOs are
having a sound lesson plan, adopting teaching mode that will engage the students, and
coming up with effective strategies that motivate student learning.

MLO

Motivational strategies

Engaging teaching modes

Sound lesson plan

Figure 2. Framework for Teaching Excellence

Module Learning Outcomes (MLO)

All good teaching should come with a set of learning outcomes that are clearly articulated
and communicated to the students. Good MLO should not just narrowly focus on the
concepts within the syllabus that students are expected to learn. It should also include other
higher order learning, such as applying the concepts within and outside the module,
integrating the concepts within the module, and seeing connection of the concepts beyond
the module. The teacher should then develop and design the module with the MLO in mind.

Lesson planning

The bottom line in the module design is to have a lesson plan. Lesson planning is
generally quite straightforward — as long as it is aligned with the MLO. A sound lesson plan
is comprehensive and has more than just a list of the topics to be covered for each lesson. It
should be supplemented with in-class and outside classroom activities that enhance student
learning. For example, a good teacher will pay attention to the difficulties that students have
and address them adequately by allocating more time to illustrate with additional examples
or the use of analogies to illuminate the concepts. On the other hand, easier concepts or
topics can be left as assignment for students to read on their own. Teachers should also
surface common mistakes, misconceptions, and other pitfalls among the students. Though it
is more direct for the teachers to highlight them to the students, it is more effective to design
some examples or problems for students to self-discover their own mistakes. Furthermore,
assessments should be an integrated part of the lesson plan. Other than the traditional
summative assessments, like tests and examinations, formative assessments in the form of
quizzes, assignment, and group work can also be introduced to gauge students’
understanding of the concepts and to make the lesson more interactive.

Teaching modes

There are several modes of teaching that teachers may choose to adopt, ranging from the
traditional face-to-face (F2F) “lecture + tutorial” format, to blended-learning, to flipped-
classrooms —which teaching mode to adopt depends on the nature of the classroom activities.
Due to Covid-19 restrictions, many F2F classes have been converted to online classes,
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typically delivered through video-conferencing platforms (e.g., Zoom, Microsoft Teams).
The module coordinator should also take into consideration the students’ level of
understanding of mathematics, class size, and nature of the modules, together with other
constraints, when choosing the appropriate mode of teaching. The question is not about
whether flipped classroom is better than traditional lecture — it is about whether a teaching
mode can effectively engage the students with the intended lesson plan.

The key word is “engaging”. If most students in a class are highly motivated or high-
ability students, the teacher may consider replacing live lectures with fully flipped classes.
The students can be challenged to read the notes or textbook independently. This should be
complemented with some interactive activities such as discussion or seminar-styled sessions.
On the other hand, if a class mainly consists of students with weak mathematical foundation,
for example a bridging course, then an interactive F2F class may be more suitable to gauge
the students’ understanding and to provide instant clarification. More commonly, there are
students with diverse aptitude and backgrounds in the class, typically found in foundational
courses like calculus or linear algebra. The lecturer can consider a hybrid mode in this case.
One approach is to prepare lecture materials (can be in the form of pre-recorded videos) for
the students to read or view in advance. This is then followed by F2F sessions for the lecturer
to further elaborate on the more difficult concepts. Such sessions can be made optional just
for the weaker students. Nevertheless, if a teacher can find the right balance to engage all
the students in class regardless of their backgrounds, such sessions can also be made
compulsory if they help to meet the MLO. A lecturer should also take into consideration the
short attention span of the new generation of students when choosing their teaching modes.

Motivational strategies

To complete the puzzle of excellent teaching, learning must take place among the
students. As much as we hope that all students will be self-motivated with their learning, the
reality suggests otherwise. No matter how hard a teacher tries to explain the concepts, if the
students are not motivated to take the learning seriously, the MLO will not be met. It is
therefore essential for good teachers to develop some strategies to motivate student learning.

We are mainly concerned about two groups of students: the first group are those that are
not motivated and typically only study near the exam date; and the second group are
motivated solely by the exam grades. For the first group of students, it is definitely
undesirable for them to cramp the learning of mathematics within a few days. There are
diverse reasons for their behaviour. For some, this may be caused by not being able to follow
the class or not seeing the relevance of the module. For others, they may be simply
unimpressed with the teaching, while some are simply not interested. The teacher should
identify the more common reasons and come up with appropriate strategies to address them.
Giving support, encouragement, and feedback to the students will definitely help. Rewarding
with points for constant work can also be an effective strategy.

The second group of students can be very hardworking. Some may even approach the
teachers for more exercise problems or past year papers to practice. The concern here is
superficial and rote learning. The lecturers could guide the students to see the big idea and
provide them with the insights. They could also advise students to slow down and do some
reflections and analysis of their own works instead of rushing through as many problems as
they can. Once the students are enlightened, they will become genuine learners and will be
motivated to go deeper to explore the subject.
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The Framework for Teaching Excellence in Action

I shall now illustrate the Framework for Teaching Excellence in action with an example
from the NUS mathematics program (Figure 3). In the university program, most modules are
inter-related by prerequisite trees:

< MA3201 |

MA2101

| MA1101R MA3218 |
MA2214 |—| MA3233 |

Figure 3. An example of a prerequisite tree

The module MA1101R (Linear Algebra) is the prerequisite for the two level 2000 modules
MAZ2101 and MA2214, which in turn are prerequisites of some other level 3000 modules. In
other words, the lecturer teaching MA3201 may assume his students already know the
concepts taught in MA1101R and MA2101. However, it is rather common to hear colleagues
lamenting about their students being clueless about concepts that they were supposed to learn
in the prerequisites. We are quick to blame the students. They learned the module and they
passed the exam, but they are not able to apply or connect what they have learned beyond
the module. The lecturers who teach those prerequisite modules could also reflect on how to
address such issues.

Using the Framework for Teaching Excellence, a lecturer can make it explicit to include
in the MLO that require students to “apply the concepts beyond the module”. This serves as
a message for the students to see the larger objective of the module. But more importantly,
by making this learning outcome visible, it also reminds the lecturer to design the module
with this end goal in mind. Conscious effort can be made to build in some class activities or
assessments in the lesson plan. For example, a mini group project with the task to look for
some applications of the concepts that are not found in the module. Through appropriate
teaching mode, the lecturer can convey the message in his or her instructions. In particular,
to serve as a motivation, the lecturer may give a preview of how some of the concepts will
be relevant in future courses.

The above example illustrates the importance of MLO in the framework to guide the
module design. The example also suggest how to formulate higher order learning outcomes
beyond the topics to be covered.

Concluding Remarks

I have briefly discussed some aspects of good practices in teaching excellence, mainly
for mathematics education. An excellent math teacher needs not be someone who is
charismatic and eloquent. He or she must be one who is sincere in the teaching and willing
to put in time and effort in crafting the MLO, designing the module, as well as motivating
and supporting student learning.
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The Enactment Project is a Programmatic Research Project funded by the Ministry of
Education, Singapore, and administered through the Office of Educational Research,
National Institute of Education, Nanyang Technological University. The project began in
2016 and its aim is to study the enactment of the Singapore mathematics curriculum across
the whole spectrum of secondary schools within the jurisdiction. There were two phases in
the project: the first involved in-depth examination of 30 experienced and competent
mathematics to draw out characteristics of their practices; in the second phase, we study the
extent of these characteristics through a survey of 677 mathematics teachers. A symposium
was organised in MERGA 42 in 2019 where the foundational elements of this project were
presented; we would like to share more findings of this project in this year’s conference.

Paper 1: Berinderjeet Kaur Models of mathematics teaching practice in Singapore
secondary schools

This paper revisits the models of mathematics teaching practice that were proposed by
earlier researchers of the Singapore mathematics classrooms: Traditional Instruction (T1),
Direct Instruction (DI), and Teaching for Understanding (TfU). The data from the survey in
this project point to hybridisation of these models.

Paper 2: Tin Lam Toh An experienced and competent teacher’s instructional practice for
normal technical students: A case study

This paper presents a case of how an experienced and competent teacher engaged
mathematics “low-attainers” in the learning of mathematics in a way that was responsive to
their learning needs while upholding the ambitious goal of helping them acquire relational
understanding of mathematical concepts.

Paper 3: Joseph Boon Wooi Yeo Imbuement of desired attitudes by experienced and
competent Singapore secondary mathematics teachers

One of the components of the Singapore Pentagonal curricular framework is “Attitude”.
This paper presents findings of a survey that point to specific strategies used by Singapore
mathematics teacher to imbue positive attitude towards mathematics in their students.
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Paper 4: Yew Hoong Leong & Lu Pien Cheng Singapore mathematics teachers’ design of
instructional materials

Case studies based on the data in Phase 1 of the project revealed that the teachers crafted
their own instructional materials based on modifications of reference materials. This paper
summarises some of the moves teachers adopted when designing instructional materials for
their lessons.
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Berinderjeet Kaur
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A model of instruction is a set of strategies that guide teachers in their instructional practice.
The purpose of this paper is to dispel the myth that mathematics teaching in Singapore
schools is all about drill and practice, as perceived of many Asian systems. This paper draws
on data of a large project that examined the enactment of school mathematics curriculum in
Singapore secondary schools. Based on the teaching practices of 30 experienced and
competent teachers, a survey was constructed and administered to 677 teachers. The data
from the survey showed that teachers go well beyond traditional forms of instruction in their
teaching practices in Singapore secondary schools.

Leung (2001) noted that in East Asian mathematics classrooms

Instruction is very much teacher dominated and student involvement minimal. ... [Teaching is]
usually conducted in whole group settings, with relatively large class sizes. ... [There is] virtually no
group work or activities, and memorization of mathematics is stressed ... [and] students are required
to learn by rote. ... [Students are] required to engage in ample practice of mathematical skills, mostly
without thorough understanding. (Leung, 2001, pp. 35-36).

Hogan et al. (2013) examined the instructional practices of Grade 9 mathematics teachers
and found that several models of instruction were prevalent in the practices. All of which
had the goal of mastery and examination preparation. In a synthesis of past mathematics
classroom studies done in Singapore, Kaur (2017) conjectured that instructional practices
for mathematics in Singapore classrooms, based on the data of the study by Hogan et al.
(2013) and the Learners Perspective Study carried out in Singapore (Kaur, 2009), cannot be
considered either Eastern or Western but a coherent combination of both. Basis of the claim
iIs that: 1) Traditional Instruction (TI) provides the foundation of the instructional order, and
ii) Direct Instruction (DI) builds on TI practices and extends and refines the instructional
repertoire. While Teaching for Understanding/ Co-regulated Learning Strategies
(TfU/CRLS) practices build on TI and DI practices and extend the instructional repertoire
even further in ways that focus on developing student understanding and student-directed
learning. The study reported in this paper further illuminates models of teaching practices of
mathematics teachers in Singapore secondary schools.

The Study

The study reported in this paper is part of a larger project, details of which are available
elsewhere (Kaur et al., 2018; Toh et al., 2019). A study of mathematics lessons enacted by
30 experienced and competent mathematics teachers in Singapore secondary schools
revealed that teacher and student actions from three main models of instruction were guiding
teachers in their instructional practice. We elaborate the models and provide examples of
teacher and student actions that were observed in the lessons of the experienced and
competent teachers (which are marked *) as well as those that were not but were included in
the survey. For actions that are marked * we also indicate the respective courses of study
which are Integrated Programme (IP), Express Course (EX), Normal (Academic) Course
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(NA) and Normal (Technical) Course (NT) where the actions were observed. The IP is for
the mathematically able students and the NT is for the least able ones.

Traditional Instruction (TI)

A method of instruction that is teacher-centred, rather than learner-centred, in which the
focus is on rote-learning and memorisation. In the context of Asian classrooms it is often
associated with drill and practice (Biggs & Watkins, 2001; Hogan et al., 2013; Leung, 2006).
There were altogether 13 TI teacher actions, and examples of two such actions are as follows:

Teacher —
e “*agking students direct questions to stimulate students’ recall of past knowledge /
check for understanding of concepts being developed in the lesson (EX, NA)
e *providing students with sufficient questions from textbooks / workbooks / other
sources to practise so as to develop procedural fluency (EX, NA, NT)

Direct Instruction (DI)

A method of instruction that involves an explicit step-by-step strategy, often teacher-
centred, with checks for mastery of procedural or conceptual knowledge (Hattie, 2003;
Hogan et al., 2013; Good & Brophy, 2003). There were altogether nine teacher actions and
two student actions and examples of two each are as follows:

Teacher —
e “*using the “I do, We do, You do” strategy, i.e.
o Demonstrating how to apply a concept / carry out a skill on the board [I do]
o Demonstrating again the same using another similar example but with inputs from
students [We do]
o Asking the students to do a similar question by themselves [You do] (EX, NA,
NT)

e *explaining what exemplary solutions of mathematics problems must contain (logical
steps and clear statements and / or how marks are given for such work during
examinations) (IP, EX, NA)

Students —

e *asking questions when they do not understand (IP, EX, NA, NT)

e “*practising a similar problem after the teacher has shown them how to do a similar one
on the board (IP, EX, NA, NT)

Teaching for Understanding (TfU)

A method of instruction that places student learning at the core. Teacher facilitates,
monitors and regulates student learning through student-centred approaches (Hogan et al.,
2013; Good & Brophy, 2003; Perkins, 1993). There were 13 teacher actions and 15 student
actions, and examples of two each are as follows:

Teacher —
o *focusing on mathematical vocabulary (such as equations, expressions) to help
students build mathematical concepts (IP, EX, NA, NT)
e *providing collective feedback to whole class for common mistakes and
misconceptions related to in-class work and homework (1P, EX, NA, NT)
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Students —
e *explaining how their solutions or how their answers are obtained (IP, EX, NA, NT)
e *discussing and helping each other while doing individual seatwork (IP, EX, NA, NT)

The Survey

The survey had three parts. The first part had 60 items (36 describing teacher actions and
another 24 describing student actions). Amongst these items were the seven items on Tl, 11
items on DI and 28 items on TfU. In the survey, teachers were asked to reflect on their
lessons for a course (IP, EX, NA or NT) they were teaching, and respond to the items
indicating the frequency of their actions on a Likert Scale of 1 (Never/Rarely) to 4
(Mostly/Always). 691 teachers completed the survey. In the preliminary screening of the
data, some responses were removed as they did not meet the requirements of the survey. The
data of 677 teachers were used for subsequent analyses. Forty percent of the teachers were
male while 60 % were female and this was representative of the demographic of the teacher
population in secondary schools which were 36 % males and 64 % females (MOE, 2018).
In addition, the representation by course of study, almost 65% for the IP and EX, and 35%
for the NA and NT courses was also coherent with the demographic of the student population
in secondary schools which was 64% and 36% respectively for the IP and EX and NA and
NT courses (MOE, 2018). Forty-five percent of the teachers had more than three but less
than 10 years of mathematics teaching experience while the rest 55% had more than 10 years
of the same experience.

What models of instruction guide mathematics teaching in the classrooms of
mathematics teachers in Singapore secondary schools, in general?

Table 1
Means of the three models of instruction

Mean+
Course of Study Model of Instruction
TI DI TfU
All (n=677) 2.78 3.11 2.86
Integrated Programme (IP) (n=58) 2.42 3.07 3.00
Express (EX) (n=380) 2.78 3.10 2.88
Normal (Academic) (NA) (n=151) 2.81 3.10 2.77
Normal (Technical) (NT) (n=88) 2.94 3.17 2.85

*maximum = 4; minimum = 1.

Table 1 shows that teachers appear to draw on teaching moves from all the three models of
instruction, though with differing emphasis to enact their lessons. Direct Instruction appears
to be the dominant model that teachers draw on in all the four courses of study. In the NA
and NT classes, Direct Instruction and Traditional Instruction are apparently more prevalent
whilst in the IP and EX classes Direct Instruction and Teaching for Understanding are
apparently more prevalent. We next examined the survey items for each course of study that
had a mean greater than 3 and a standard deviation of less than or equal to 0.7. The following
teaching/learning actions were found to be common across all the four courses of study.
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e Teacher providing students with sufficient questions from textbooks / workbooks /
other sources to practise so as to develop procedural fluency
e Students asking questions when they do not understand
e Teacher walking around the class and providing students with between-desk
instruction (i.e. help them with their difficulties) when they are doing their work at
their desks
e Teacher walking around the class noting student work that teacher would draw on to
provide the class feedback during whole class review
e Teacher only progressing to the next objective of the lesson when he/she is confident
that students have grasped the one before
e Teacher providing feedback to individuals for in-class work and homework to serve
as information and diagnosis so that students can correct their errors and improve
e Teacher providing collective feedback to whole class for common mistakes and
misconceptions related to in-class work and homework
e Teacher focusing on mathematical vocabulary (such as factorise, solve) to help
students adopt the correct skills needed to work on mathematical tasks
e Students explaining how their solutions or their answers are obtained
We conclude that the model of instruction that mathematics teachers in Singapore secondary
schools adopt is a hybrid one comprising T1, DI and TfU. This finding lends to strengthen
our earlier conjecture that mathematics instruction in Singapore secondary schools is neither
Eastern nor Western but a coherent combination of both, i.e. a hybridisation of TI, DI and
TfU.
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This paper presents a case study of an experienced and competent mathematics teacher’s
classroom instructional practice in a Normal Technical Mathematics course. The topic that
was observed was Volume and Surface Area of a Pyramid, a subtopic within the mensuration
topic in Secondary Two syllabus. The teacher used a video clip on the Egyptian Pyramids to
integrate students’ prior knowledge on pyramids, which raised their attention on the topic.
This was followed by engaging the students in hands-on activity to understand the formulae.

The case study is part of the larger research project on enactment of the curriculum in
the mathematics classroom as reported by this symposium.

Low Attaining Students

Studies have shown that low attaining students are generally visual and kinaesthetic
learners (e.g. Amir & Subramaniam, 2007; Rayneri & Gerber, 2003). The mainstream
education programmes worldwide are usually more theory-based than skill-based with
ample hands-on opportunity for individual learners (Glass, 2003). Therefore, it is not at all
surprising that this dissonance puts the low attaining students, who usually learn best through
visual and physical engagement, at a disadvantage in the education system.

Low attaining students generally have little interest in academic subjects. They lack
focus during lessons, have short attention span and hence tend to be restless in classes (Lui
et al., 2009). Thus, typical teacher-centric teaching approaches might not be most
appropriate for them. Myron and Keith (2007) stressed that in order for teachers to be more
successful in working with the low attaining students, they must be more cognizant of the
various learning styles of their students and attempt different teaching approaches for
different groups of students.

Normal Technical Students in Mathematics

Singapore mathematics teachers are genuinely concerned about the performance in
mathematics among the Normal Technical students (Toh & Lui, 2014). This concern is not
unfounded as many of the Normal Technical mathematics students exhibit many of the
characteristics of low attainers (Toh & Kaur, 2019).

Studies have also shown that Singapore teachers are not passively using traditional
instructional materials and resource for teaching Normal Technical students. As the students’
difficulties with mathematics and reasons for their lack of interest in the subject are various,
teachers’ effort to reach out to this group of students is also diverse. In addition to honing
their pedagogical skills in the classrooms, teachers are also actively adapting less
conventional instructional approaches and developing unconventional instructional material
to address the learning needs of this group of students (Toh & Lui, 2014).

To have a first-hand glimpse into how mathematics lessons are conducted by a
experienced and competent teacher in a typical Normal Technical class, the author
(hereafter, first person pronoun) followed through one such identified teacher’s lessons for
two weeks on teaching a subtopic of mensuration in a Secondary Two Normal Technical
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mathematics class in a Singapore mainstream school. A few striking observations that were
made will be reported in this paper.

Method

All the lessons that were observed in this study, the teacher interview, and the student
interviews were video-recorded and transcribed. The video-recording, adapting the
Complementary Accounts Methodology of Clarke (1998, 2001), used three video cameras
to focus on: (1) the classroom as seen from the teacher’s perspective; (2) the activity of two
particular students in each lesson; and (3) the classroom from the perspective of an observer
at the back of the classroom.

The teacher, Lucy-Marianne (pseudonym), was identified as an experienced and
competent mathematics teacher by the mathematics education community. She was a Senior
Teacher in her school, in her mid-forties at the time of our study, had more than ten years of
experience teaching in the school and had been teaching mathematics in Express, Normal
Academic and Normal Technical stream for more than fifteen years at the time when this
study was conducted. In a discussion with her during the teacher interview, she expressed
her passion in teaching the group of low attaining students. According to Lucy-Marianne,
this group of students “deserved our attention more”. She was trained to teach both
Mathematics and Computer Applications.

Observation and Discussion

In unpacking teacher Lucy-Marianne’s pedagogical practices from the entire set of
video-recordings of her lessons, a very skilful scaffolding sequence to facilitate her students
in understanding a complex concept was visible:

1. she first elicited her students’ prior knowledge related to the concept;

2. she aroused her students’ interest about the concept;

3. she built on their induced interest to further develop the mathematics concept;

4. she engaged her students in hands-on activities to “derive” the formula; and

5. she gave students ample opportunity to practise the application of the formulae.
During the teacher interview, she revealed that this was the constant sequence in teaching
the other mathematical topics as well as to her Normal Technical students.

Eliciting students’ prior knowledge

Her teaching of the subtopic on surface area and volume of a pyramid is the focus here.
She built on her students’ prior knowledge selectively for her lesson development, as
illustrated by a portion of the dialogue below. Letters T and S denote the teacher and student
participant.

Dialogue Commentary

(after housekeeping matter)

T: Now let’s move on to volume of pyramid — uh no, Teacher elicited her students’ prior knowledge on
surface of pyramid [first]. OK by the way, let me pyramid.
introduce the word “pyramid”. What is [a] pyramid?

S: A3D.

T  OKIt’s a3-dimensional object... A pyramid isno longer  Teacher responded to a student’s use of the term 3D
flat [tapped the table],it’s no longer flat [tapped (3 dimensional) by distinguishing between 3D and 2D
whiteboard], but it’s a 3-dimensional object. But what  objects (prior to this lesson, the students learnt
does it look like and how does it look like...? mensuration of circle —a 2D object).

S: Cone.
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It looks something like a cone. Oh, OK... “Looks
something like” doesn’t mean it’s exactly the same. So
later we are going to learn cone, today let’s talk about
pyramid. Anyone can describe pyramid?

Huh? Oh triangle.

Thank you ... they (two students) are right... There are
triangles on pyramids. So this is a pyramid like what you
see in Egypt. Now, if | were to look from top down,
what do you think is on the ground? What shape?

S: I know, a square.

Toh

Teacher was careful to acknowledge the response that
a pyramid looks something like a cone, but did not
want to elaborate the concept of cone to avoid
confusing the students (mensuration of a cone would
be the next subtopic).

Teacher elicited the responses of “triangle” and
“square” from the students about their knowledge of
pyramid. However, teacher did not further elaborate
that the bases of pyramids can be made of other
shapes at this juncture.

Arousing students’ interest and curiosity in the concept.

Teacher Lucy-Marianne skilfully related the geometrical figure of a pyramid to the
Egyptian Pyramids at Giza. She discussed the historical function of the Egyptian Pyramids
after showing a short video clip selected from YouTube about the Egyptian Pyramids. The
content of the video clip raised students’ awareness of mathematics in the real world; this is
aligned to the Ministry of Education (MOE)’s desire to “prepare its citizens for a productive
life in the 21st century” (MOE, 2012, p. 2). The selected video covered the students’
responses: the sides of the pyramids (consisting of triangles), the plan view of the pyramids
(squares), the dimensions and the historical functions of the pyramids. The use of videos in
education is particularly useful for low attaining students, as it has the ability to reduce their
cognitive load and facilitate their understanding of abstract concepts (Han & Toh, 2019)

Reinforcing the concept of the lateral side faces of a pyramid.

Teacher Lucy-Marianne emphasized the sides and base of a pyramid from different
angles and by decomposing a three-dimensional pyramid into two-dimensional parts.
Teacher Lucy-Marianne next used a worksheet (Figure 1) to reinforce the identification of
the sides. Here, she unravelled the next part of the “truth” that the base of a pyramid is not
necessarily a square or rectangle. She introduced pyramids with various polygonal bases.
This was also the first time she insisted on the precise mathematics terminologies (lateral
sides and base of a pyramid) illustrated in the dialogue below Figure 1.

vh ¢
é\

Examples of Pyramids

AN

Figure 1. A portion of the worksheet used by Lucy-Marianne in introducing the faces of a pyramid

pentagonal hexagonal octagonal

pyramid pyramid pyramid
Rectangular
Pyramid

The lateral (side) faces are all

The flat base (bottom) is a

T: I want you to look at the word, the lateral side faces are? The word ‘lateral’ means side. Side means
lateral. So the side faces are what kind of shape? ... I will like to introduce a word, the flat base
water missile, I call it ‘polygon’. Polygon means it can be 3 sides, 4 sides, 5 sides, 6 sides, 7, 8, etc.

Deriving the procedure for calculating the total surface area of a pyramid.

The video clip and the identification the various parts of the pyramid led to the
calculation of the surface area of a pyramid by considering the nets of a pyramid. She
engaged her students in deriving the formulae using a hands-on approach by engaging them
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to cut up a pyramid into its nets to identify the total surface area of a pyramid as the sum of
the areas of the polygons in its corresponding net. This “experimental derivation” was
observed in her lessons throughout this subtopic. In determining the volume of a pyramid in
the succeeding subtopic, Lucy-Marianne conducted a “laboratory lesson” to demonstrate the
relation between the volume of a pyramid and its related prism. The topic mensuration at the
secondary level can be taught either in a very procedural manner, or one that engages the
students with hands-on activities as proposed by Lim-Teo and Ng (2008). Teacher Lucy-
Marianne had chosen the latter to better match the needs of her students.

Ample opportunity to practice. As in other observation of the Singapore classrooms,
teacher Lucy-Marianne designed her worksheets to give sufficient structured and guided
practice for her students. This will not be elaborated in this paper.

Conclusion

This is an episode of teaching mathematics to Normal Technical students by an
experienced and competent teacher. While the teacher was cognizant of the importance of
maintaining the rigor of the mathematics curriculum even for the low attaining students, the
teacher was also skilful in engaging her students in activating their prior knowledge, exciting
them with the mathematics in the real-world, and chunking up big group of mathematical
content into manageable bites for her students. The teacher strove to develop in her students
a relational understanding of the mathematical concepts through appropriate student
engagement, while using video clip and storytelling to excite her students in the
mathematical concepts. The lesson was evidence of her attempt at striking a balance between
developing her students’ cognitive and affective aspects of learning.
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This paper reports how 30 experienced and competent Singapore secondary mathematics
teachers attempted to imbue desired attitudes in their students and some possible factors that
might have influenced the teachers’ choice of instructional approaches. It was found from
the analysis of lesson observations of these teachers that most of those teaching lower-ability
students tended to build their students’ confidence and perseverance, while those teaching
higher-ability students were more inclined to help their students appreciate the relevance of
mathematics. Only a minority of the teachers tried to make lessons fun by using mathematics-
related resources or telling non-mathematics-related jokes. It was also discovered from the
teacher interviews that two factors appeared to influence the teachers’ choice of the types of
positive attitudes to develop in their students: the abilities of their students and the beliefs of
the teachers on what mathematics is.

Most research on the affective domain in mathematics education focuses on finding out
students’ existing attitudes and their effect on other variables such as test performance
(Aiken, 1970; Leder & Forgasz, 2006; McLeod, 1992), and students’ and teachers’ beliefs
(Leder et al., 2002; Maap & Schléglmann, 2009; Pepin & Roesken-Winter, 2015). In
Singapore, research studies on affective variables also follow the international trend (e.g.
Kay, 2003; Ng-Gan, 1987; Tan, 2011) and there are few intervention studies on changing
students’ attitudes (Yeo, 2018; Yeo et al., 2019).

This paper reports how some mathematics teachers attempted to imbue desired attitudes
among their students as part of a programmatic research study on how 30 experienced and
competent Singapore teachers enacted the secondary school mathematics curriculum. In the
Mathematics Framework for the Singapore school curriculum (Ministry of Education, 1990;
2012), attitudes is one of the main components, consisting of beliefs, interest, appreciation,
confidence and perseverance. It is beyond the scope of the research to study whether or how
the teachers tried to affirm or change their students’ beliefs about mathematics. Instead, this
paper will report how most of these 30 teachers attempted to instil confidence in their
students, encourage them to persevere, help them to appreciate mathematics and make
lessons fun to interest them.

Methodology

In the programmatic research, 30 experienced and competent teachers were videoed
teaching a topic for two to three weeks to find out how they implemented the curriculum.
For the purpose of this project, an experienced and competent teacher was one who had
taught the same course of study for a minimum of five years, and was recognized by the
school or school cluster as a competent teacher who had developed an effective approach of
teaching mathematics. There are four courses of study in Singapore secondary schools:
Integrated Programme (IP), Express, Normal (Academic) (NA) and Normal (Technical)
(NT). In general, the abilities of the students decrease from IP to Express to NA and then to
NT. For each lesson, two different focus students were also videoed to observe how they
responded during the lesson and how they did the mathematics tasks.

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 75-78. Singapore: MERGA.
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Each teacher was also interviewed four times: once before the first lesson, twice at
appropriate junctures during the series of lessons and the last time after the last lesson. The
purpose of the teacher interviews was to find out more about how and why the teachers had
chosen to enact the curriculum in the ways observed during their lessons. At the end of each
lesson, the two focus students were also interviewed separately to find out their reactions to
the lesson and how much they had learnt. For more details on the data collection, the reader
can refer to Toh et al. (2019).

This paper only reports on one aspect of the curriculum enactment: the imbuement of
desired attitudes in the students. To analyse the data, the 211 lessons of the 30 teachers were
examined to pick up episodes of the teachers trying to cultivate positive attitudes in the
classroom. These episodes were then classified according to the sub-components of attitudes
in the Mathematics Framework described earlier. The transcripts of the teacher and student
interviews were also analysed to triangulate the data obtained from the lesson observations.

Findings and Discussion

Table 1 on the following page shows the number (and percentage) of the 30 teachers in
the four courses of study who attempted to imbue desired attitudes in their students using
the respective instructional strategies. For each of the first three sub-categories of
confidence, perseverance and appreciation, the teachers mainly utilised one instructional
approach as shown in the table; while for the last sub-category of interest, the teachers
generally employed two pedagogical strategies: using mathematics-related resources and/or
telling non-mathematics-related stories or jokes. Some teachers also tried to develop more
than one type of desired attitude.

From Table 1, we observed that most of the teachers (26 out of 30, or 86.7%) had tried
to imbue desired attitudes in their students. Their foci were mainly in the areas of building
students’ confidence in doing mathematics by starting with tasks that students could do
before progressing to more difficult tasks (20 out of 30, or 66.7%), followed by encouraging
the class to persevere and to do well in mathematics (15 out of 30, or 50%). Of lower
priorities were helping students appreciate the relevance of mathematics by showing real-
life examples and/or applications (11 out of 30, or 36.7%) and making lessons fun to arouse
the interest of their students (6 out of 30, or 20%). What was not shown in the table was that
slightly more teachers (4 teachers) made lessons interesting by telling non-mathematics-
related stories or jokes than those (3 teachers) who did this by using mathematics-related
resources, including a teacher who did both.

On closer inspection, across the four courses of study, it is observed that all the teachers
teaching the NT and NA courses (which are for lower-ability students) and 8 out of the 10
Express teachers (i.e. 80%) had attempted to develop desired attitudes in their students, but
only two of the four IP teachers (i.e. 50%) had done the same. For the NT, NA and Express
classes, most of the teachers focused on building students’ confidence and encouraging the
class to persevere, followed by helping students appreciate the relevance of mathematics and
making lessons interesting. But for the IP course of study (which is for higher-ability
students), the focus of the teachers was more on helping students appreciate the relevance of
mathematics. In fact, only one of the four IP teachers had tried to encourage her class to
persevere on only one occasion in all her seven one-hour lessons that were observed over
more than two weeks, i.e. encouraging their students did not seem to be a high priority among
IP teachers.
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Table 1
Instructional Strategies for Imbuing Desired Attitudes in Students

Number (and Percentage) of Teachers
Instructional Approach IP EX NA NT Total
(n=4) (n=10) (n=28) (n=18) (N =130)

Building students’ confidence in

doing mathematics by starting with 0 6 8 6 20
tasks that students can do before (0%) (60%) (100%) (75%) (66.7%)
progressing to more difficult tasks

Encouraging the class to persevere 1 5 5 4 15
and to do well in mathematics. (25%) (50%) (62.5%) (50%) (50%)
Helping students appreciate the

relevance of mathematics by 2 2 4 3 11

showing real-life examples and/or (50%) (20%) (50%) (37.5%)  (36.7%)
applications

Making lessons interesting by using

mathematics-related resources and/or 0 2 2 2 6
telling non-mathematics-related (0%) (20%) (25%) (25%) (20%)
stories

Attempting to imbue any desired 2 8 8 8 26
attitudes in students (50%)  (80%)  (100%)  (100%)  (86.7%)

From the above analysis, it seems that one factor that might have influenced the teachers’
instructional strategies in imbuing what sub-category of desired attitudes is the abilities of
the students whom they were teaching in their respective course of study: for lower-ability
students, their teachers focused on building their confidence and encouraging them to
persevere, but for higher-ability students, their teachers were more inclined to help them
appreciate the relevance of mathematics. This is further confirmed by interviews with the
teachers. For example, a teacher said that her type of students needed motivation to solve
more difficult mathematical problems and so she used an amusing video to provide the link
to real life and to entice her class to solve the problems. The following shows part of a
transcript of an interview with the teacher.

Interviewer:  So what is your purpose for showing them this video?

Teacher: It’s actually to entice them to be interested in doing mathematics because ... when
you keep on practising and they don’t see how it can be linked, it is very difficult.
So we want to see, eh, ancient times people are already using Pythagoras’ theorem
... Because, my class, | think they need this kind of motivation, because some of
them will fall into a world of their own very easily. So we wanted them to ... entice
them to this kind of thing ... so after this, what they will do is, the king [from the
video] has a series of problems, so they will try to solve the king’s problems by
Pythagoras’ theorem.

Another factor that might have influenced the teachers’ instructional approaches in
cultivating which kind of positive attitudes is the beliefs of the teachers. For example, a
teacher encouraged his students to try to score at least a few marks for a difficult exam-type
guestion because he revealed during an interview that he believed that mathematics was
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about resilience and so he was attempting to convince his class not to give up on such
examination questions.

Conclusion

The study has shown how some experienced and competent teachers in Singapore
attempted to imbue desired attitudes in their students. They focused mainly on building their
lower-ability students’ confidence and perseverance, while helping higher-ability students
appreciate the relevance of mathematics. The least priority among the teachers was making
lessons interesting. An implication for local teachers is maybe they should emulate the
examples of the experienced and competent teachers in developing confidence, perseverance
and appreciation in their students (if they are not already doing so), but at the same time,
they could perhaps pay more attention to arousing in their students interest in mathematics.
A possible area for future research is to study whether the students had developed the desired
attitudes under the instructional strategies adopted by the teachers.
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This paper reports on one aspect of a bigger project: teachers’ design of instructional
materials. We found a number of design moves used by the teachers in our study. In this
paper, we report three of them: Making things explicit, making connections, and re-
sequencing practice examples.

This paper focuses on one major component of the project which examined the
enactment of the Singapore mathematics curriculum in the Secondary Schools: the design
and use of instructional materials by the teachers. We define instructional materials to be
classroom-ready materials that teachers incorporate into their lessons for students’ direct
access for their learning. We make a distinction between instructional materials (IM) and
reference materials (RM). The latter are resources (including textbooks) which teachers refer
to while planning for lessons; the former are the actual materials that are brought into their
classrooms for use in their mathematics instruction. For most teachers which were the
subjects of our study, their instructional materials differ substantially from their reference
materials — it is this ‘transformational space’ that is an area of interest to us. For the rest of
this paper, we will briefly describe a few such transformational moves as illustrated by some
teachers in our study and their underlying intentions.

Transform Move 1: Making things explicit

The fuller version in the examination of this move is in Leong et al. (2019). We provide
a brief description here. This move is illustrated by Teacher Teck Kim. Repeatedly, in the
interviews with him, he mentioned “making explicit” as a major goal in the design of
instructional materials. That is, in selecting and modifying from RM (mainly the textbook
subscribed by the school), he considered some of the contents as displayed in the textbook
not sufficiently clear to the students; in crafting the IM, he was thus consciously governed
by the principle of making the mathematical content more explicit to the students.

Figure 1 shows an example of such an explication deliberated by Teacher Teck Kim. He
made the following adaptations (among others): (i) In the RM, the textual explanation of
column vectors was located at a section that was separate from the vector diagram. in Teck
Kim’s IM, he merged the textual mode into the visual representation of column vectors. Not
only was the label of (‘43) placed beside the drawn vector, the explanation of translation of -

3” and “4” was also summarily fused into the diagram. This merging of representational
modes was the way in which Teck Kim made explicit—in this case the links among the
drawn vector, the column vector notation, and the translational significance. (ii) The two

examples in the RM were (2) and (~;). The two examples in Teck Kim’s notes were (7°)

and (:i)[the latter is not shown in Figure 1 due to space constraints]. Apart from the fact that
the magnitudes of these vectors yielded an integer value, not a surd, and thus potentially
reduce computational complexity so that the focus was on the definition and method of
obtaining the magnitude, the choice of (‘43) and (j) shows a one-component variation only

in the translation in the y-direction, allowing the teacher to focus students’ attention on the
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translational significance when “4” is replaced with “-4”, thus highlighting the need to attend
carefully to signs. In other words, Teck Kim re-worked the examples to make explicit critical
ideas (perhaps, even potential student mistakes) which may have otherwise been unnoticed
by the students. (iii) [Not shown in Figure 1] The task implicit in the RM required students’
to “write” the given drawn vector in column vector notation; the task in Teck Kim’s IM [not
shown in Figure 1] required students to do the reverse: to “draw” vector given its column
vector notation. He made explicit by filling a gap in the textbook. In this case, the gap was
the skill of drawing vectors.

Reference Material Instructional Material

A Column Vector representing a Translation

—

Explicit

i 4 means
4 units
up
e 2 Ng

-3 means 3 units left

Figure 1. Making explicit from reference materials to instructional materials

Transform Move 2: Making connections

We illustrate this move by drawing upon the IM of Teacher Siew Ong. The phrase
“making connections” — and similar phrases — occur frequently in her talk during our
interview sessions with her. This move is particularly significant as connection-making in
instructional work 1is highlighted as desirable in Singapore’s official documents:
“connections refer to the ability to see and make linkages among mathematical ideas ...”
(Ministry of Education, 2012, p. 15, emphasis added).

The context was the method of “completing the square”. The RM presents an
“investigative task” consisting of a table with four columns entitled (from left to right):
“Quadratic Expression”, “Number that must be added to complete the square”, “Half the
coefficient of x, “Quadratic expression in the form (x + a)? — b”. An example as a row

i . : 2
entry was then given for “x? + 2x” in the first column, “12 = 1” in the second column, “=

1” in the third column, and the algebraic working to obtain (x + 1)? — 1 in the last column.
Other blank rows were given in the table below this first entry to provide working space for
other samples of algebraic expressions of the form x2 + px.

The IM designed by Teacher Siew Ong was an adaptation of the RM. She retained the
four columns and kept largely to the titles of the first and the fourth columns (the ‘beginning
form’ and the ‘targeted complete square form’). She renamed the middle two columns as
“Geometric representation” (second column) and “Term to be added” (third column). Figure
2 shows how the entry in the second column looks like for the same example of x? + 2x.

Different from the RM, she intended to help students connect “square” in “completing
the square” to a “geometric square”. There is thus a deliberate design decision to draw
students’ attention to intermodal links — between the algebraic mode and the geometric mode
of representation. The geometric square provided a more natural motivation and hint as to
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what value need “to be added” (language of Column 3) within the perforated small square
to “complete the (geometric) square”. This shift of focus rendered the step in Column 3 of
the RM (“half the coefficient ...”") unnecessary as it would have become more intuitive from
the geometric mode of representation within the context of forming a geometric square. [As
an aside, the algebraic working in Column 4 now takes on a different function: it is not
merely an algebraic procedure to complete; it is a static record (algebraically) of what
happens dynamically over the entries in the last three columns. This further strengthens the
algebraic-geometric connection].

X 1
X x| x
1 X !

Figure 2. Geometric representation of x? + 2x to set up for completing the square

In addition, to set up this way of thinking by students, that is, to view a quadratic
expression as ‘almost a square’, she designed a prior page (not found in RM) where numbers
(more accessible to students initially than algebraic expressions) were also represented
geometrically as almost a square. As an example, 120 where written as 121 — 1 = 112 — 1.
This was also represented geometrically as a square of side 11 with a tiny square of 12 at the
corner snipped off. This additional preamble that she designed revealed her deliberate effort
at connection in at least these ways: (i) intermodal connections not only between algebraic
and geometric representations, but also numerical to algebraic and geometric; (ii) conceptual
connections — she recognised that students had prior familiarity with numerical perfect
squares such as 121 = 112. She drew from this prior conception to connect it to their other
prior familiar imagery of geometric squares. These were then linked and further developed
into ‘almost square’ in anticipation of connecting to the method of completing the square. In
other words, she connected concepts by developing tightly from earlier concepts.

Transform Move 3: Re-sequencing practice examples

The details for this move can be found in Leong et al. (In press). As in the first move,
we provide here a brief description. The teacher we studied for this move was Teacher Beng
Choon. She designed the IM for the purpose of helping students gain proficiency with some
‘rules’ within the topic of differentiation. For the purpose of this paper, we restrict our
consideration to the ‘formula’ of ;—x (x™) = nx™ 1.

In her case, we were unsure as to the specific RM she relied upon most. Being an
experienced teacher for many years, she could not specify a particular textbook she adapted
from as her IM had evolved throughout the years over many rounds. For the purpose of this
discussion, we referred to one common textbook to serve as a comparison to the examples
she sequenced for this same section immediately after the introduction of the formula. The

textbook provided three examples for application of this formula in this order: xiz Vx, and

1. The examples that appeared in Beng Choon’s IM were: X3, 5, % and v/x. Figure 3 provides
a summary of what she wrote on the board for each item and how she explained the
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procedure to obtain the final answer. Her main goal was to help students recognise the form
X" so that they can apply the formula correctly. As such, she needed to vary the form — so
that they can ‘see’ how surface forms that do not initially look like x" can be re-written in
such a form for correct use of the formula. At the same time, she was cognizant that students
did not get discouraged by difficulties and so she proceeded gradually from simpler cases
of the form. A brief chronology: She started with x as it is most recognisable as x". The
switch to “5” was deliberate as she wanted to draw students away from fixation of formula-
application; rather, they can think graphically and connect to differentiation as “finding
gradient”. The third and the fourth items show progressive complexity in recognising and
rewriting into the form.

appl
(@ «8 PPy 3x?

formula
() 5 98U hor. line % 0

gradient
1 rewrite -1 apply -2 rewrite 1
c AL x _— —x —7 S
© x formula x?2
. apply 1 1 . 1

d X rewrite 1 — s 23 rewrite =
@ x > xz formula 2* 5 2v/x

Figure 3. Summary of the procedures explained for each item by Teacher Beng Choon

Discussion

Clearly, these moves as described are not exhaustive nor are they unrelated. A cursory
reflection would reveal that a teacher who wishes to adopt such moves may do so in an
integrated way for the same activity — that is, making things explicit, making connections,
and re-sequencing of practice examples can be applied concurrently. The purpose, however,
of this article is to illustrate examples of each of these moves as they were adopted by the
teachers in our study. This paper highlights that Singapore secondary mathematics teachers
do not merely ‘teach from the textbook’; rather, they make intentional moves to adapt the
reference materials in ways that fit their instructional purposes which are largely ‘sound’
both from a theoretical perspective and in terms of concurrence to policy mandates. Often,
these moves are elusive to a casual observer. The results of this study reminds us as
researchers that we should avoid the simple route of pigeonholing pedagogical enactments
based on cursory observations.
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This symposium discusses the use of strengths approaches in early childhood
mathematics education. Strengths approaches can be conceptualised as educational practices
that recognise, and utilise, children’s strengths. Strengths approaches originate in the social
work sector, but are growing in recognition in early childhood education. This symposium
considers how strengths approaches might be adopted in early childhood mathematics
education, specifically, encouraging pedagogical approaches that recognise, and build upon,
young children’s strengths in mathematics. This symposium presents theorisation and a case
illustration of how strengths approaches can be meaningfully utilised in early childhood
settings in order to enhance mathematical learning opportunities for young children. The
symposium addresses three aspects: (1) Overview of strengths approaches; (2) Application
of strengths approaches; and (3) Leadership to promote strengths approaches; illustrated
within the context of early childhood mathematics education.

The symposium format is as follows:
Chair: Amy MacDonald
Paper 1: Fiona Collins & Angela Fenton An introduction to the strengths approach

Paper 2: Amy MacDonald & Steve Murphy A strengths approach to birth-to-3 mathematics
education: The case of Banjo Childcare Centre

Paper 3: Matt Sexton & Joce Nuttall Leadership of strengths-based approaches for early
years mathematics education: Using CHAT as a framework for educational leaders’
professional learning leadership

Discussants: James Russo & Toby Russo
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An introduction to the strengths approach

Fiona Collins Angela Fenton
Charles Sturt University Charles Sturt University
<fcollins@csu.edu.au> <afenton@csu.edu.au>

This paper provides a foundation for the Research Symposium, “Strengths Approaches in
Early Childhood Mathematics Education” by providing an overview of the development of
strengths-based approaches in social work and education. A framework, adapted from the
Strengths Approach (McCashen, 2017), for applying a strengths-based approach in early
childhood mathematics education is introduced.

An Overview of Strengths-Based Approaches

Strengths-based approaches, originally developed in social work practice and
psychology (Glicken, 2004; Saleebey, 1996; Seligman, 1990), are gaining momentum as
practitioners see applications in other human service fields such as education and health care
(Pulla, 2017). Globally, there is a growing expectation that professionals working with
children in their early years will adopt strengths-based approaches “to support the access and
participation of all children and families, especially those with complex needs” (Fenton et
al., 2015, p. 29). Furthermore, the Belonging, Being & Becoming: Early Years Learning
Framework for Australia (EYLF) states that “in order to engage children actively in learning,
educators identify children’s strengths and interests” (DEEWR, 2009, p. 9) and extends this
by explaining that “early childhood educators who are committed to equity believe in all
children’s capacities to succeed, regardless of diverse circumstances and abilities”
(DEEWR, 2009, p.13). This paper provides an overview of strength-based approaches and
then suggests a specific framework, adapted from the Strengths Approach (McCashen,
2017), for applying a strengths-based approach to support children in the early years in their
learning of mathematics.

The development of strengths-based approaches in the 1980s and 1990s, alongside
narrative therapies and solution-focused therapies, involved an entirely different approach
to be adopted by professionals in human service practice (McCashen, 2017). Previously,
therapy was pathology focused, where people and their problems were categorised according
to diagnoses, behaviours and/or problems (McCashen, 2017); the focus was very much on
what was wrong and as such has since been referred to as a deficit model. Later models
shifted focus towards the specific circumstances of the client and the organisations around
them available for support; the therapist was viewed as the “expert” and tasked with ““fixing”
the client in order to allow them to overcome their problem and return to a “normal” life
(McCashen, 2017). However, these models raised concerns of imparting “power over”
clients (McCashen, 2017, p. 54). In contrast, strength-based approaches are centred on the
belief that all human beings are individuals who possess strengths, are experts of their own
circumstances, and have the capacity for change if they are provided with opportunities and
access to appropriate resources (Glicken, 2004; McCashen, 2017; Saleebey, 2009). Saleebey
(2009, p. 97) states that “almost anything can be considered a strength under certain
conditions,” whilst McCashen (2017) goes further and defines strengths as

anything people have that helps them to achieve, to overcome problems, to build on things that are
already positive, to learn, grow, and be fulfilled. Strengths can be understood in terms of personal
qualities — positive characteristics and things that people are good at. Strengths include people’s skills
and capacities, their aspirations and values and the resources in their environment. (p. 33)
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In education contexts, strengths-based approaches can also present an alternate point of
view (Fenton, 2013) that is in contrast to a deficits view of learning, where emphasis is
placed on ‘gaps’ in a child’s knowledge and/or skills, or identified learning problems, such
as a focus on children with learning disabilities (see Harry & Klingner, 2007). For example,
educators working from a deficit model design learning experiences to help children
remediate “gaps” in knowledge and/or model skills which are not evident. MacDonald
(2018) warns that adopting a deficit view of a child’s mathematical capacity can lead to a
perpetual cycle of negative expectations, which can lead to opportunities for mathematical
learning being blocked, which can contribute to negative mathematical learning experiences,
ultimately resulting in disempowerment.

Instead, strengths-based approaches require practitioners to look at “individuals,
families, and communities ... in light of their capacities, talents, competencies, possibilities,
visions, values, and hopes” (Saleebey, 1996, p. 297). In essence, strengths approaches within
education are student-centred, and focussed on measuring children’s strengths, catering for
individual children’s needs, collaboration, and the deliberate application and intentional
development of children’s strengths (Lopez & Louis, 2009). Mathematics educators working
with a strengths approach will focus on what mathematics children can do, as well as the
opportunities and resources available to assist in the development of their strengths and
capacities to meet identified learning goals. MacDonald (2018) described this process as a
competency cycle, “a process of creating positive expectations and opening the way for the
development of new competencies” (p. 144).

Whilst strengths approaches are being encouraged in early childhood education, a
number of critiques of this philosophy have also been expressed, including: that it is simply
another way of describing being positive, and/or a way of reframing deficits through
ignoring or denying real problems (Saleebey, 1996). The strengths approach has also been
criticised for being “overly simplistic and superficial” (Glicken, 2004, p. 14) and for being
an ideological theology (Epstein, 2012). Glicken (2004) cautions strengths practitioners
about the complexity of discovering and applying strengths and warns that it can be a time
consuming process. Furthermore, there is the potential for educators and children to adopt
fixed mindsets if practice is limited merely to the identification and affirmation of strengths,
without the nurturing and development of new talents (Lopez & Louis, 2009).

An Introduction to the Strengths Approach

Building on the foundations of strengths perspectives’ origins in the United States, the
Strengths Approach, was developed further in Australia by St. Luke’s, a social services
organisation based in Bendigo, Victoria, as a philosophy for collaborating with others in an
effort to achieve a positive transformation (McCashen, 2017). St. Luke’s sought to develop
practice-based principles to guide their practical work with children and families. The
approach “encourages the identification of resources and the use of challenges, as they occur,
to create resilience and aptitude when working with issues” (Fenton et al., 2016, p. 46). A
number of principles guided the development of the Strengths Approach, including: the
dignity and capabilities of each person as their own change agent; the ability of each person
to enact their own strengths and capabilities; the identification and mobilisation of resources
to support development; and a collaborative sharing of power between all stakeholders
(McCashen, 2017).

The Strengths Approach is a framework for practice that encompasses reflection,
learning, planning, action and review. It is important to emphasise that the Strengths
Approach not only looks at the positives. In fact, the approach generally starts from clearly
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exploring a challenge, complex issue or need. The Column Approach (McCashen, 2017) is
provided as a scaffold for applying a Strengths Approach in five steps. Practitioners are
encouraged to consider with all stakeholders: (i) What is the challenge here? (ii) What is the
ultimate goal/vision? (iii) What existing strengths and capacities can we utilise? (iv) What
extra resources are available? (v) With the previous steps in mind — what is our plan of
action? A table version of the Column Approach (Table 1) can be used by educators, to assist
children in their early years to develop their mathematical knowledge, skills and

understanding.
Table 1

The Column Approach*

Stories and The picture of  Strengths and Other resources Plans and steps
issues the future capacities

Ask questions Ask questions that  Ask children Ask questions that  Ask questions that
that invite help children questions that help  help children to help children to
children to share  explore their them explore their  identify resources  specify steps

their
mathematical

mathematical
aspirations,
dreams, interests

strengths, as well
as their
mathematical

that might help
them reach their
mathematical

towards the
achievement of
their mathematical

Ztnoartljz ?f?gm o and goals, such as:  capacities such as:  goals, such as: goals, such as:
clarify the ¢ What do you e What are you e Who else might e What are you
challenges, such want to know/be good at? be able to help? going to do

as: ' able to do?  What do you e What other next?

, ¢ What do you like doing? skills or o What

* What’s the want to « What do the resources might information will
(’E}?ﬁ:%"j‘;'gfl discover? special peoplein e helpful? you use?
problem? ¢ Why do you your life think e What have ¢ What skills and
What ' want to you are good at? people done strengths will

¢ what's overcome this already that has you use?
happening here? - * What were you

ppening mathematical thinking about helped? « Who will help?

* What are yof)u challenge/solve when this e Who or what How will they

trying to do* tmh;Sthemat'cal happened? has been helpful help?
I -

e What have?you oroblem? e What do you in the past when ¢ \what resources
discovered? What d ' know that might yOLihhavetl)adl will you use?
Have you solved ¢ Vvhat do you be helpful here? mathematica O

* a rob)llem or need to know? P challenges / * When will it be

p , . o What have you roblems lik done?
overcome a e What will done in the past p _07 ems like
challenge like solving this when you have this?

this before? If
s0, can you tell

? -
allowyouto do?  gyperienced

) e What are you similar
me about it? interested in? mathematical
challenges /
problems?

* Adapted from McCashen (2017) and MacDonald (2018).

Implications

The Column Approach provides a “mind map” (McCashen, 2017, p. 97) for working
with children to help them: develop a narrative of their opportunities for learning in
mathematics; identify their mathematical hopes and dreams; consider their strengths and
mathematical capacities; identify resources that are available to them; and map out a way for
them to move forward. It is also recommended that a proactive first step for educators is to
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identify what they do well (for example pedagogical approaches, resource development,
leadership etc.) and ensure that they continually model and refine these strengths as they
work with children to help them recognise and utilise their own strengths in the learning
process and environment (Lopez & Louis, 2009). In this way, drawing on its social service
and psychological origins, and particularly guided with a Column Approach, the Strengths
Approach can be a practical collaborative framework for acknowledging children’s
mathematical curiosity and challenges, honouring their existing mathematical knowledge,
and importantly drawing on their strengths and mathematical capacities as their learning
develops.
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A strengths approach to birth to 3 mathematics education: The case
of Banjo Childcare Centre

Amy MacDonald Steve Murphy
Charles Sturt University Charles Sturt University
<amacdonald@csu.edu.au> <smurphy@csu.edu.au>

This paper contributes to the Research Symposium, “Strengths approaches in early
childhood mathematics education” by providing an illustration of how an early childhood
centre adopts a strengths approach to mathematics education for birth to three-year-old
children. A case illustration is drawn from a current Australian Research Council-funded
study focusing on mathematics education for children under three years of age. The case is
analysed and described using a five-step strengths-based framework.

Introduction

It is well-established that young children, prior to starting school, are capable of
engaging with a range of mathematical ideas (Gervasoni & Perry, 2015; MacDonald &
Carmichael, 2018). However, most of this research has focused on children aged four years
and older, with birth to three mathematics education receiving very little attention
(MacDonald & Murphy, 2019). However, a current Australian Research Council-funded
study being conducted by the lead author of this paper is addressing this dearth of research
through a national study of mathematics education for children aged under three years. As
part of the larger study, case studies of birth to three education settings are being conducted
in order to examine mathematics education opportunities afforded to very young children,
and the beliefs and practices of their educators which influence these opportunities. Drawing
from the larger study, this paper presents a case illustration of the birth to three learning
environment at Banjo Childcare Centre (pseudonym), a long day care service located in
regional New South Wales (NSW), Australia. Six early childhood educators and 17 children
participated in the case study, and the children ranged from 13 to 40 months in age. The
authors of this paper spent two days in the site, gathering data in the forms of continuous
video recordings; video and photographic observations; documents such as learning stories
and daily reflections; and anecdotes from educators. This case has been selected as it
illustrates how a strengths approach to mathematics education can help an early childhood
service overcome a range of challenges and barriers, and utilise their unique strengths and
resources in order to provide high-quality mathematics education for very young children.
In the case illustration that follows, we apply the Column Approach as described by Collins
and Fenton (under review) (Paper 1 in this Symposium) in order to analyse how Banjo
Childcare Centre are taking a strengths-based approach to mathematics education for the
birth-to-three-year-olds in their centre. The case is structured according to the five-step
framework, namely: (i) Stories and issues; (ii) The picture of the future; (iii) Strengths and
capacities; (iv) Other resources; and (v) Plans and steps.

The Case of Banjo Childcare Centre

Stories and Issues

As noted in Paper 1 in this symposium (Collins & Fenton), a strengths approach does
not only focus on the positives; rather, the use of the approach generally starts from clearly
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exploring a challenge, complex issue, or need. Banjo Childcare Centre, and the community
it serves, experience a range of challenges and complex circumstances. The service has a
maximum of 50 approved places; however, at the time of this study, only 42 of these places
were filled. The community receives a relatively low score on the Socio-Economic Indexes
for Areas (SIEFA) - 869 compared to the NSW average of 1001. This score indicated a
disadvantaged socio-economic position characterised by attributes such as low income, low
educational attainment, and high unemployment (Australian Bureau of Statistics, 2011).
According to the 2018 Australian Early Development Census (AEDC; Commonwealth of
Australia, 2019), 38.1% of children in this community are developmentally-vulnerable on
one or more AEDC domains; a figure nearly double the NSW average (19.9%). Moreover,
23.8% of children are developmentally-vulnerable on two or more domains, compared to the
NSW average of 9.6%. The centre itself experiences challenges in the current early
childhood reform climate, receiving a 2018 National Quality Standard (NQS; Australian
Children’s Education and Care Quality Authority, 2019) rating of “Meeting” the NQS, a
decline from their 2013 rating of “Exceeding” the NQS.

The Picture of the Future

The data presented above paint a deficits-focused picture of Banjo Childcare Centre and
their community. However, these data are not how they see themselves nor the future they
see for their children. The centre’s handbook states that educators “maintain a high level of
professionalism through working together, supporting each other and continuously
expanding [their] knowledge base”, that educators are “confident in children’s ability to
learn” and that they “encourage the children to develop a positive attitude towards learning”.
This positive picture of the future extends to mathematics learning at the centre. While not
explicitly articulated, a strengths-based picture of the future is communicated in various
ways. The importance of mathematics is highlighted through displays and explicit weekly
reporting focussed on mathematics learning. There is an expectation that children at the
centre, including very young children, can engage in sophisticated mathematical activities.
Records showed in one week children three years old and younger were engaged in various
activities that involved measuring height and volume, additive thinking, and counting using
Wiradjuri words (the local Indigenous language). Analogue clocks were displayed alongside
daily events in the toddler’s room (see Figure 1). Collectively, this evidence suggests the
Centre pictures a future where their children are capable and confident users of mathematics.

Strengths and Capacities

The centre’s handbook makes explicit that educators respond to the strengths and
capacities of the children to guide learning and teaching. The handbook states that educators
use their observations of children “to develop an educational play based program”. Further,
“children are given the chance to make decisions, experiment, and explore with a wide range
of activities.” This philosophy was evident in the way educators responded to children’s
strengths and capacities through their play in order to engage them in mathematical
activities. Counting was regularly introduced to children’s activities; for example, ball
bounces being tallied, and the time before a jump counted. Measuring concepts were
incorporated into play, such as big and small when kicking a football, fast and slow when
bike riding, tall and taller when measuring each other’s heights, and volumes when cooking.
Locating language was built into children’s play; for example, when children were playing
on a pretend horse (see Figure 2) an educator led a discussion of who was in front, on, and
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under. Educators helped children develop plans and procedures associated with their games.
In one instance, two children were endeavouring to untangle a ball on a rope, with one up
the tree and one underneath, and another child playing nearby accidentally impeding the
task. An educator supported the children in a complex series of actions to safely and
successfully free the ball.

Figure 1. Clock display in toddler’s room. Figure 2. Pretend horse using saddles and pipe.

Not only did educators notice and capitalise on children’s strengths and interests as they
presented during play, but they deliberately shaped the learning environment so that these
mathematical learning opportunities regularly arose. The physical environment was spatially
challenging, with winding and intersecting paths, objects of various heights, and spaces of
irregular form (see Figure 3). These spaces encouraged children to problem pose and engage
in mathematical activity. Further, the learning culture supported children to fully exploit
these spaces to exercise their strengths and capacities. Educators did little to structure play,
allowing children to structure their own play opportunities. For example, the play space
included a rope and pulley system attached to a tree. It was only once a small group of
children were engaged in play that involved getting buckets of bark high into the branches
did an educator join to discuss alternate ways of using the ropes to move the buckets higher.
A culture of permitting risk also supported children to fully engage in this complex learning
environment. Rather than discouraging tree climbing, objects were deliberately placed to
facilitate it. Similarly, when a group of children were jumping from objects in the yard, the
educator nearby did not restrict the activity, but rather supervised and engaged in discussion
about the height of objects and the size of the jump.

Figure 3. Spatially complex learning environment.
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Other Resources

Banjo Childcare Centre, and its community, does not have significant financial
resources. Despite this, they have been able to create a rich environment to facilitate
mathematical learning through resourceful behaviours that are both strategic and
opportunistic. Reclaimed, recycled and repurposed objects make up the play spaces,
including tyres of various sizes, wooden pallets, restored old play equipment, and items such
as the pipe and saddle described earlier (see Figures 2 and 3). The centre also makes excellent
use of the resources of its local community to enhance children’s engagement and learning.
In particular, Wiradjuri culture—the culture of the traditional owners of the land where the
centre is located—is strongly represented in the displays and practices of the centre, and, as
previously mentioned, the Birth to Three program includes the use of Wiradjuri language in
mathematical activities.

Plans and Steps

As noted, Banjo Childcare Centre works with a community facing complex issues, and
has limited financial resources with which to do this work. The centre adopts a strengths
orientation in their aims and planning for the future, including their approaches to
mathematics learning experiences for their birth-to-three-year-olds. Children are empowered
mathematically through a “secure environment with opportunities for risk-taking and self-
regulation” (Centre Handbook). Educators are trusted to constantly develop mathematics
education programs “through reflective practice and our commitment to training” (Centre
Handbook). Mathematics learning is deliberately and explicitly included in documentation
such as programs, learning stories, and classroom displays, thus highlighting the value
placed on mathematics education within the Birth to Three program.

Summary

This brief case illustration has highlighted how an early childhood service experiencing
challenging circumstances uses a strengths approach to provide a quality mathematics
education program for children aged birth to three years. Educators draw on community
strengths and their own resourcefulness in order to create a learning environment that
encourages birth-to-three-year-olds to pose and solve mathematical problems, engage with
complex spatial environments, utilise number and measurement concepts in meaningful
ways, and use mathematical language and representations to add meaning to everyday
routines and activities.
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We present a model that employs cultural-historical activity theory (CHAT) concepts to
inform research with designated Educational Leaders in early years settings. We theorise
practice change in early years mathematics education in terms of motive objects of activity
and mediation by cultural tools. We show how CHAT can be used to lead development of a
strengths-based approach to support young children’s early mathematics education through
systematic professional learning activity. Our overarching aim is to understand how
educational leadership in early learning spaces can be reimagined, drawing on CHAT to
theorise this under-researched area of mathematics leadership in early learning settings.

In this MERGA symposium paper, we present a model that employs concepts from
cultural-historical activity theory (CHAT) to inform research and learning opportunities
with designated Educational Leaders in early years settings. We show how the model can be
used to lead a strengths-based approach (e.g., Fenton et al., 2016) to support young children’s
mathematics education. Our overarching aim is to understand how educational leadership in
early learning spaces can be reimagined, drawing on CHAT to theorise this under-researched
area of mathematics leadership in early learning settings. This reimagining and expansion of
work sees Education Leaders lead enactment of strength-based approaches for early years
mathematics education through on-site professional learning.

Culturally and historically, there have been limited expectations for mathematics
education in early childhood programs (for children aged from birth to five years), relative
to the focus on mathematics in the early years of schooling (for children aged from five to
eight years). The work of Piaget has long influenced thinking about children’s learning in
early years education, with a focus on discovery learning of mathematical thinking (Stipek,
2013). This situation has been compounded by early years educators’ underestimation of
young children’s capacity to think mathematically and misunderstandings about how young
children come to understand mathematical ideas. Many educators hold negative affective
responses to mathematics in general (Knaus, 2017; Moss et al., 2016; Stipek, 2013), and they
also tend to have limited understanding of mathematical content knowledge (MCK),
particularly understanding mathematical concepts and terms (Knaus, 2017).

The position of Educational Leader has been mandatory in all early childhood services
in Australia since 2012. This policy move aims to improve program quality through the
leadership of suitably qualified staff who foster changes in pedagogical practice. In Aotearoa
New Zealand, there is no such mandatory position, possibly because the proportion of
degree-qualified staff in the sector is higher than in Australia. In this paper, we position
Educational Leaders as mathematics professional learning leaders who direct their
leadership activity towards developing colleagues’ mathematics teaching practice using
strength-based approaches. We show how this leadership-of-learning process can be
researched through CHAT concepts.
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Theorising Leadership as a Research and Learning Opportunity

We argue for the explanatory power of CHAT for researching and transforming long-
standing workplace practices, such as the historical neglect of mathematics in early years
education. Professional learning can enhance educators’ knowledge and practices for
mathematics education, including their dispositions and expectations for young children’s
mathematical learning (Perry & MacDonald, 2015). We are concerned specifically with
professional learning focused on strengths-based approaches for mathematics education with
young children, including the use of documentation associated with those approaches
(Fenton et al., 2016). We suggest that that documentation, including the concepts and
practices of strength-based approaches, offer new cultural tools to inform professional
learning in early years settings. These offer opportunities for educators to work on new
motive objects focused on young children’s mathematics learning. In this sense, we believe
that research and learning opportunities lie in expanding the work of designated Educational
Leaders to identify as mathematics professional learning leaders in their work sites.

We draw on three core concepts of CHAT: motive object of activity, cultural tools, and
mediation. CHAT understands all human activity as object-oriented (Kaptelinin, 2005); that
is, psychological and practical activity are simultaneously drawn forward by attention to
collaborative tasks (motive objects of activity) that result in desired outcomes (Engestrém,
2015). This differs from dominant understandings of motivation, which see it as an
individual and internal force of will. We use the well-known triangular representation of
collaborative activity (Figure 1) to show how subjects of the activity system (designated
Educational Leaders) are motivated to enhance teaching practices of their colleagues. The
Educational Leaders’ motive object of activity is the development of mathematics teaching
practices. The desired outcome is quality mathematics education for young children.

This relationship between Subject and Object is mediated by valued cultural tools. The
mediating function of cultural tools is due to culturally-specific meanings that inhere in those
tools. Buttons, for example, are mostly associated with clothing, but in early years education,
another contextually-specific meaning inheres in a box of buttons: the pedagogical
opportunity they offer to teach higher-order concepts (e.g., classification & subitising).

Strengih-based approach (SBA) concepts and practices
SBA documentation (e.g, “column approach™)
Children's strengths
MCK and PCK
Resources
Cultural tools and
signs

4

Educators
mathematics
Educational Leaders teaching practice Quality mathematics

Subject - Object sense Outéame educanon of young
making clubdeen

M
> =« $ Division of

Community labour

Rules o

Figure 1. Representation of the Educational Leaders’ mathematics professional learning activity system.
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Children’s Strengths as a Temporary Motive Object of Activity for
Educational Leaders as Mathematics Professional Learning Facilitators

A way for researchers to use these CHAT concepts and to understand changes in the
professional work of Educational Leaders is to address and transform long-standing practices
that have impeded mathematics education in early years learning spaces (Knaus, 2017; Moss
et al., 2016; Stipek, 2013). This could be achieved by using the example of ‘children’s
strengths’ as a cultural tool that Educational Leaders can deliberately reposition as a
temporary motive object of activity. Cultural tools do not become effective components of
practical and psychological activity without deliberate efforts to understand and expand the
meanings that inhere within them. A key “move” for Educational Leaders in early years
education therefore is to make the definition, identification, and valuing of children’s
strengths a temporary focus in their work with colleagues (i.e., a temporary motive object of
the collaborative professional learning activity they are leading).

Without this critical first stage of meaning-making in professional learning, the capacity
to mobilise any new concept in the context of teaching practice, including strengths-based
pedagogical activity, will be severely limited. Once children’s strengths takes on a stabilised
meaning across early years educators’ conceptualisation of young children’s learning,
pedagogical strategies for applying strengths-based approaches can become the next
temporary object of activity in an ongoing sequence of professional development focused on
a series of related motive objects. Educational Leaders therefore have a critical role in
progressively introducing new and more complex cultural tools to support educators’
professional learning of strength-based approaches. For example, in Figure 1, we included
mathematical content knowledge (MCK), pedagogical content knowledge (PCK), and
resources (both in the classroom and for professional learning) as further cultural tools (and
therefore potential temporary motive objects for professional learning) in the mathematics
professional learning leadership activity of Educational Leaders. As noted earlier, early years
educators may not feel adequately knowledgeable or disposed toward mathematics
pedagogy due to their own limited mathematical knowledge (Knaus, 2017). Their own
internalisation of specific mathematics concepts may therefore be a critical temporary
motive object of professional learning leadership activity to support educators’ confidence
in teaching mathematics to young children.

In the context of this symposium, the “column approach” described by Collins and
Fenton (Paper 1 in this symposium) offers a key cultural tool to enhance the PCK of early
years educators. A temporary focus on the use of this tool has been shown to effectively
foster the uptake of strengths-based approaches (Fenton et al., 2016). According to our
conceptualisation, we suggest this success is due to the new meanings the column approach
makes available to mediate early years mathematics pedagogical practice.

Educational Leaders can employ a variety of approaches in directing colleagues’
psychological and practical activity toward new cultural tools as temporary motive objects.
These strategies include providing reading materials, practice development through action
research, collaborative design-based research activities, or through the practice methodology
developed within CHAT, known as Developmental Work Research (DWR) (Virkkunen &
Newnham, 2013). Strengths of DWR include its incorporation of simultaneous research and
learning activities, allowing researchers to track shifts in meanings and practices at close
hand, and its emphasis on the volitional action of the research participants to solve practical
problems found in their work (Sannino, 2015). This would prove to be helpful in expanding
the work of Educational Leaders to include mathematics professional learning leadership.
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Conclusion

Given the insights from Fenton et al. (2016) and MacDonald and Murphy (Paper 2 in
this symposium) regarding early childhood educators’ use of strengths-based approaches for
mathematics education in early years settings, a research focus on the role of the Educational
Leader in these settings is timely. Strategies to expand their work activity as mathematics
professional learning leaders who can mobilise concepts, practices, and documentation of
strengths-based approaches as motive objects of activity is one way of fostering mathematics
education in early years settings. CHAT and DWR methodology have been shown to
transform sedimented practices in early education (e.g., Nuttall, 2013) and is effective in
expanding Educational Leaders” work (Nuttall et al., 2016).

However, this work has not hitherto focused on young children’s mathematics
development or educators’ mathematics education knowledge, practices, and dispositions.
We suggest that interventions informed by CHAT and DWR offer researchers and
Educational Leaders the opportunity to conceptualise new, expanded work activity together
for the professional learning leadership of strengths-based approaches for early mathematics
education. Such a conceptualisation draws on the role of motive objects, specifically the
adoption of new cultural tools that support the development of educators’ understanding and
use of strengths-based approaches for mathematics education. This would be a significant
shift in the cultural and historical norms of early years mathematics education, but one that
appears necessary if sedimented practices related to mathematics education in the early years
are to be transformed. This research and learning opportunity, concerning the professional
learning leadership of strength-based approaches, might be the investment that Stipek (2013)
called for in evolving mathematics education practice in early years settings.
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This symposium reports on recent developments for Let’s Count, the preschool
mathematics program implemented across Australia since 2010 by The Smith Family, a
national, independent children's charity helping disadvantaged Australians to get the most
out of their education, so they can create better futures for themselves. Let’s Count is an
early mathematics program that has been designed to assist educators in early childhood
contexts to work in partnership with parents and other family members to promote positive
mathematical experiences for young children (3-5 years). The program aims to foster
opportunities for children to engage with the mathematics encountered as part of their
everyday lives, talk about it, document it, and explore it in ways that are fun and relevant to
them. The success of Let’s Count has been reported many times at MERGA conferences,
including the Beth Southwell Practical Implications Award paper in 2016.

The papers presented in the symposium will build on the success of Let’s Count by
considering a number of recent initiatives in delivery and scaling up of the project in order
to make it available to a more extensive set of participants across Australia and
internationally. Based on a series of program evaluations, the three papers in the symposium
will consider delivery methods beyond the usual face-to-face workshop presentations to
early childhood educators and will anticipate future developments as Let’s Count undergoes
a program revision during 2020-2021.

The proposed symposium program is as follows.

Introduction to Let’s Count (Bob Perry) — 5 minutes

Paper 1: Ann Gervasoni & Anne Roche Let’s Count in an online environment

Paper 2: Amy MacDonald & Paige Lee Let’s Count in early childhood teacher education
Paper 3: Sue Dockett & Bob Perry Let’s Count and community professionals

Discussant — Wendy Field, Head, Programs and Policy, The Smith Family - 10 minutes
Questions and Discussion

The symposium will be chaired by Bob Perry and there will be ample time for discussion
and questions.
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Let’s Count in an online learning environment
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Let’s Count Online is a new e-learning approach to delivering Let’s Count professional
learning. It was evaluated in 2018. The findings suggest that the e-learning platform was
successful, and that the outcomes for educators were similar to those achieved by participants
using the face-to-face workshop professional learning model. Several key differences in
outcomes were noted, and these inform recommendations for refining Let’s Count Online.

Introduction

Let’s Count (Gervasoni & Perry, 2017) is an early mathematics program that assists
educators, in early childhood contexts, to work in partnership with parents and other family
members to promote positive mathematical experiences for young children. Professional
learning associated with Let’s Count was first offered for educators in 2010 using a face-to-
face workshop learning environment and between session activities and investigations.
Following the positive evaluation of Let’s Count, (Gervasoni & Perry, 2015a, 2015b; Perry
et al., 2016), The Smith Family received Federal Government support to make Let’s Count
available to more communities across Australia. It was then decided to develop and pilot a
complementary e-learning professional learning approach, Let’s Count Online, with the
capacity to reach more educators across Australia.

An important goal when developing Let’s Count Online was maintaining the successful
outcomes achieved through the original face-to face professional learning model. For this
reason, Let’s Count Online was evaluated in 2018 to determine the extent to which the
outcomes achieved by educators who participated in the Let’s Count Online course were
similar to or varied from the outcomes achieved by educators who participated in the face-
to-face model during the Let’s Count longitudinal evaluation (Gervasoni & Perry, 2015a,
2015b; Perry et al., 2016). It was anticipated that the evaluation findings would assist The
Smith Family to determine the effectiveness of the Let’s Count Online platform for
delivering the professional learning underpinning the Let’s Count initiative for families. The
evaluation also sought to gain insight about participants’ experiences of the e-learning
platform, and its effectiveness, so as to recommend any improvements for the Let’s Count
Online Course. The evaluation method and findings are presented in this paper, along with
recommendations for further developing Let’s Count Online.

Evaluation Method

The Let’s Count Online evaluation used a mixed methods approach, drawing on both
quantitative and qualitative approaches. Data were collected through online surveys, and
telephone interviews with participants. The design of the surveys and interview schedules
were informed by the instruments used in the Let’s Count Longitudinal Evaluation
(Gervasoni & Perry, 2015a) to enable valid comparisons to be made between the participant
outcomes for the two program delivery formats.

All those who registered for Let’s Count Online during the 2018 evaluation period
(n=814) were invited to participate in the evaluation and complete two online surveys — one
prior to commencement of the Let’s Count Online course (Time 1) and two weeks after
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completion of the course (Time 2). The Time 1 (T1) survey was completed by 207
participants and the Time 2 (T2) survey by 60 participants. Thirty-three participants
completed both surveys. Participants were drawn from every state and territory in Australia.
Telephone interviews with seven case-study participants took place twice — two weeks after
the commencement of the e-learning course and two weeks after its completion. The duration
of the course was approximately 8 weeks and took place at a time of participants’ choosing.
Qualitative and quantitative data from the surveys were used in conjunction with
interview data to provide a picture of any changes in the respondents’ reported attitudes to
mathematics and mathematical pedagogies, and the effectiveness of the e-learning platform
for professional learning. Data from the Let’s Count Online Evaluation were compared with
findings from the Let’s Count Longitudinal Evaluation (Gervasoni & Perry, 2015a) to
determine whether the outcomes for participants varied in respect to their mathematics
dispositions, skills, and levels of confidence in developing children’s mathematical
knowledge. Data were also analysed to determine how Let’s Count Online might be
improved to deliver the Let’s Count professional learning program more effectively.

Key Findings

A summary of the key evaluation findings is presented below. Of particular interest are
comparisons between educators’ dispositions, skills and confidence; their attitudes to a range
of teaching strategies; and their engagement with the professional learning models.

Dispositions, Skills and Confidence of Educators

With respect to educators’ attitudes to mathematics (either increasing or decreasing)
between T1 and T2 surveys, the findings showed that these were similar for most statements
for both the online and face-to-face cohorts. For example, for both programs at T2 there was
an increase in the proportion of participants who believed mathematics is something that |
do every day, and their liking of maths. Also, the Let’s Count Online participants’ confidence
in developing children’s mathematical knowledge increased more than for the face-to-face
course participants, however, their confidence was lower overall.

Educators’ Attitudes to a Range of Mathematical Teaching Strategies

At both T1 and T2, educators were presented with 24 statements about a range of
mathematical teaching strategies and asked to indicate whether they agreed or disagreed on
a five-point Likert scale. For 15 of the 24 statements, the initial and final percentages, as
well as the change in percentage, are relatively similar between participants in the two
programs. In contrast, for some statements there was a reduction in the proportion of
educators in the face-to-face program who indicated that they agreed with the statement from
T1 to T2, but this proportion increased for the online course participants. These statements
suggest that the online course appeared to have promoted, for some participants, pedagogies
that were more school like or traditional, than did the face-to-face course. These trends are
reflected in the increased ‘schoolification’ of much of early childhood education (Moss,
2013), but are not well-aligned to approaches recommended for mathematics education in
the early years. Illustrative statements were:

It is important that children represent their mathematics through the use of conventional symbols.

Workbooks and worksheets are essential in learning and teaching mathematics in early years settings.
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It is important that the experience of Let’s Count Online is strongly aligned with the
theoretical underpinnings of Let’s Count, early childhood approaches to learning and
teaching, including those espoused by the Early Years Learning Framework for Australia
(Department of Education, Employment and Workplace Relations [DEEWR], 2009), and
reform approaches to mathematics education. The findings suggest that this is mostly, but
not always true, of Let’s Count Online.

A key focus of Let’s Count is engagement between educators and family members
centred on children’s mathematics learning. In the T2 survey, Let’s Count Online
participants rated their engagement with a set of teacher practices before and after Let’s
Count Online. They reported lower levels of ‘talking about children’s mathematics learning
with family members’ or ‘building on the mathematics that family members tell them children
are using at home’ prior to the program, (means of 4.4 and 4.1 out of 10 respectively). The
mean rating for these practices after Let’s Count Online was 7.0 and 6.9 respectively. This
suggests that the course prompted an increase in both practices, but these activities were less
common for some.

Comparison Between Let’s Count Online and Face-to-Face

Interview data indicated that there was not as much accountability for participants’
engagement and learning in the online course compared with the face-to-face model. This
was possibly due to the different level of accountability for the between session tasks
embedded in Let’s Count Online, compared to the Family Gatherings Report required of the
face-to-face participants. In the face-to-face model, participants presented the outcomes of
family engagement strategies to other participants and received feedback and inspiration
from the experiences of colleagues, and from the course facilitators. They also discussed
their observations of children’s mathematics learning during the period between workshops,
and had the opportunity for this learning to be extended through the guidance of facilitators.
This learning opportunity was not included in the Let’s Count Online model.

The findings also suggest that there was a lesser understanding of the aims of Let’s Count
developed by Let’s Count Online participants. Interview data suggested that the course was
more likely to reinforce the pedagogical practices that the educators were already using,
rather than stimulating new pedagogical practices. Also, the Let’s Count mantra of Notice,
Explore, and Talk About Mathematics was less a feature of Let’s Count Online participants’
reflections in the interviews and survey data than for face-to-face participants.

Low Level of Difficulty for Let’s Count Online

The findings suggest that the same level of professional and academic rigour may not be
afforded by the Let’s Count Online learning environment compared with the face-to-face
workshop environment. This view was reinforced by one participant stating that Let s Count
Online did not reach the level of challenge he was seeking for his staff, and another who
explained that Let’s Count Online was the sort of course she could complete while watching
TV with her family. Perhaps the online course is more characterised by passive engagement
with the intended learning opportunities than active engagement. Possible strategies to
increase the level of difficulty and active engagement for participants may include providing
a Let’s Count Online facilitator who can provide online or real-time feedback, or the
opportunity to complete the course in workplace groups to promote discussion and feedback.
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Conclusion and Recommendations

Overall, the findings from the Let’s Count Online evaluation suggest that the e-learning
platform was successful for delivering professional learning for educators associated with
the Let’s Count program. The participants in the evaluation were very positive about Let’s
Count Online, and many appreciated the chance to access the professional learning when
opportunities for the face-to-face workshops were not available in their region. However,
some educators endured technical issues and a lack of online support for rectifying these.
There were some important differences noted when comparing the Let’s Count Online
professional learning model with the face-to-face model. For example, the reported low level
of difficulty, passive engagement and lack of accountability for learning reported by some
Let’s Count Online participants suggests that the Let’s Count Online course may benefit
from some further development.

The following recommendations provide direction for how Let’s Count Online may be
refined and strengthened to better assist educators meet the aims of Let’s Count.

1. Develop opportunities for feedback associated with the learning activities embedded
in Let’s Count Online. This may include a facilitator to provide online or real-time
feedback, or the opportunity for participants to complete the course in groups within
aworkplace or early years setting, with a leader in each setting to facilitate discussion
about the professional learning, and monitor and support engagements with parents,
and observations about children’s mathematics use, language and learning.

2. Review the Let’s Count Online content and materials to identify and alleviate any
dissonance with the theoretical underpinnings of Let’s Count.

3. Ensure that any refinement of the Let’s Count Online course includes:

a. Sustained emphasis on the Let’s Count mantra — notice, explore and talk about
mathematics in everyday contexts.

b. Strategies to sustain educator/parent communication across an entire year of
implementation.

c. A prominent, actively monitored help-line, including email and phone support.
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In 2011, the Let’s Count professional learning program was developed into an elective
distance education subject offered at Charles Sturt University. The resulting subject,
EMCI101: Let’s Count, has been offered every year since 2012, and has to date been
completed by 796 students. This paper details the subject design and provides enrolment and
evaluation data that attest to the success of the subject.

History and Development

In 2011, the first author was contracted by The Smith Family to develop the Let’s Count
program into a distance education subject at Charles Sturt University, as a means of
sustaining the Let’s Count initiative and achieving a wider impact on the early childhood
field (MacDonald, 2015). The subject EMCI101: Let’s Count has been offered at Charles
Sturt University since mid-2012, and is primarily offered as an elective in the Bachelor of
Education (Birth to Five Years) degree program. It is also available as an elective in a
number of other degree programs across the University, and is available for single subject
study, independent of a degree program. The authors of this paper have both been Subject
Coordinators of EMC101, and have been responsible for teaching, developing, and
evaluating the subject.

Subject Design

EMCI101: Let’s Count is designed to be an elective subject that brings together pedagogy
and practice. The subject provides a link between the workplace or community of the student
and their professional practice. The subject is designed so that a series of six modules deliver
the content, which is supported by current literature, anecdotes, reflective discussion
questions, and practical examples. The modules provide various ways for students to engage
with the content and critically reflect on their pedagogy and practice in relation to young
children noticing, talking about and exploring mathematics in everyday situations. Key
examples are provided, and students can use discussion forums and text-based chat sessions
to engage with the modules and associated activities as well as their peers and tutors. After
the modules have been delivered, the Let’s Count program ideas are put into practice through
two assessment items: (1) Family Gatherings; and (2) Learning Stories.

Family gatherings

For assessment item 1, students are required to plan, implement and reflect on a Family
Gathering, and present this using Microsoft PowerPoint©. This assignment is a workplace
or community-based assessment item, where students actively engage with families in their
setting to support them to notice, talk about and explore maths in everyday situations with
their children. The Family Gathering can be organised and run in any way that suits students
and the families with whom they collaborate. Family Gatherings have taken many forms,
and each session new and inventive ways are explored by students. Examples include: using
private social media groups, email, early years communications apps; individual face-to-face
meetings; larger group information sessions; casual conversations during pick up and drop
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off times; home visits, park play sessions, excursions; and often, a mixture of some of the
above. Students are encouraged to consider the context of their families as well as their own
context during the planning of their Family Gathering, and also to be flexible and responsive
to the needs of the families they work with, as well as their own circumstances. There is no
one ‘right’ way to complete their gathering; the aim is simply to support families to notice,
talk about and explore maths with their children.

At the end of the session, after assessment item (2) has been submitted, students are
invited to share their Family Gathering presentation with their peers. Students who consent
to this, have unmarked and de-identified versions of their presentations uploaded by the
Subject Coordinator to a showcase location in the learning management system, and all
students are able to access and view these presentations. On average, between five and ten
students per session opt to share their work with their peers; however, many more view the
presentations. Once some are uploaded, it is not uncommon for other students to email with
permission to share theirs, after seeing the value in the showcase. Interestingly, students who
received all variation of grades opt to share their work.

Learning stories

For assessment item (2), students are required to write three short learning stories as well
as present a 1,000-word statement on the role of learning stories in early childhood
mathematics education, including assessment and communication with families. The
learning stories can be taken from the Family Gathering or from additional observations of
children that were involved in the Family Gathering. Students are required to include
information on the context, an analysis of the mathematical learning that occurred, as well
as provide meaningful feedback and suggestions to the child and family, and suggest ways
they plan to support the child as the educator. The statement requires students to critically
consider the role of learning stories in early childhood mathematics education. Students are
asked to specifically consider learning stories as a form of communication with families, as
well as a method of mathematics assessment.

Enrolment Data

EMC101 has to date been completed by 796 students. Charles Sturt University offers
three sessions of study per year: Session 30 (for example, titled 201630), which runs March-
June; Session 60, which runs July-October; and Session 90, which runs November-February,
including the Christmas-New Year period. The subject was first offered in 201260, and was
offered in all three sessions of study until 2018, at which point a change in the BEd (Birth to
Five) course structure reduced the subject offerings to the 30 and 90 sessions only. Figure 1
displays the enrolment patterns for EMC101 across the nine years for which it has been
offered. The student numbers displayed represent the number of students who completed the
subject in each session. As can be seen in Figure 1, enrolments have consistently trended
upwards across the years of offering the subject. Dips are evident in the summer session
offerings, as one might expect. Unsurprisingly, the majority of enrolments are drawn from
the BEd (Birth to Five) program. The subject also consistently attracts enrolments from the
Bachelor of Educational Studies degree program; a program servicing students who are
pursuing careers in, for example, community education or classroom support. However, it is
interesting to note the participation from a range of other degree programs including
Bachelor of Arts, Bachelor of Accounting, and Bachelor of Science. Anecdotal evidence
indicates that students from these diverse degrees are attracted to the subject because it
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develops their skills in working with children and families, as well as communicating
mathematical ideas.
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Figure 1. Enrolment pattern for EMC101 2012 - 2019

Evaluation Data

Subjects at Charles Sturt University are formally evaluated through a Subject Experience
Survey (SES), which is completed by students in all subjects across the university. The
survey consists of 21 compulsory core items (18 Likert scale items and three short response
items) as well as a number of optional items at the Subject Coordinator’s discretion (Charles
Sturt University, 2020). EMC101 consistently achieves SES scores which are both very high
(>4 on a 5-point scale) and higher than the School mean. Example SES data from three recent
offerings is presented in Table 1.

Table 1
Example Student Evaluation Survey (SES) data
201830 201890 201930
Subject School Subject School Subject School
Item Mean Mean Mean Mean Mean Mean
The learning activities in this subject helped 4.4 3.9 4.3 3.8 4.4 4.0

me to learn effectively.
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The learning activities in this subject created 3.8 3.7 4.0 35 4.1 3.7
opportunities for me to learn from my peers.

This subject incorporated study of current 4.3 4.1 4.3 4.1 4.4 4.2
content.

The assessment tasks in this subject helped 4.4 3.9 4.3 4.0 4.4 4.0
me to learn effectively.

I could see a clear connection between the 4.3 4.1 4.3 4.1 45 4.1

learning outcomes, learning activities and
the assessment tasks in this subject.

The learning activities enabled me to judge 4.3 3.7 4.3 3.7 4.2 4.1
the quality of my own work.
The learning activities in this subject 4.4 4.0 4.3 4.0 4.4 4.1

extended my knowledge.

In addition to the SES data, the subject has been evaluated through a small-scale research
evaluation. Past EMC101 students were invited to participate in an email interview about
their experiences in the subject (MacDonald, 2015). Eighteen educators participated in the
evaluation and all reported positive experiences in the subject, evident through comments
such as the following:

I’m not confident with maths but after undertaking the course I felt I benefitted as well as the children.
It gave me the confidence to implement more ‘maths’ type activities and to talk confidently about
maths [Stephanie, VIC].

I’ve learned so much from this subject and it deepened my knowledge in maths. I can understand
maths better through children’s play and I discovered that I can ‘see’ mathematics all around me every
day [Apple, Brunei Darussalem].

I enjoyed doing the learning stories, in particular giving advice to the parents on how they can extend
on mathematics learning at home. | encourage parents to be more hands on in their child’s learning
and recognise that they are the number one teachers of their child [Carissa, NSW].

Through working on such projects with children and families as equal partners we are enabled to
share and celebrate children’s learning. The family I worked with were clearly proud of the child’s
numeracy understanding and thinking. The child was seen as competent by all and her family
expressed an intention to further extend on her numeracy learning in their everyday lives [Sarah,
NSW].

Conclusion

It appears that the translation of the Let’s Count program to a university subject has been
a successful endeavour. The elective subject consistently has a high participation rate, with
796 students completing the subject to date. The subject consistently performs well on
formal subject evaluation surveys. Moreover, it can be seen from the research evaluation
that students find the subject valuable for developing their confidence in mathematics, their
ability to identify mathematics in children’s everyday lives, and their skills in
communicating with families around their children’s mathematics learning.
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The Let’s Count Community Professional Pilot 2019 took place in six sites across three states
(New South Wales, Queensland and South Australia). The aim of the pilot program was to
implement the Let’s Count face-to-face program for the first time with a group of people who
work with young children and their families but who are not trained early years educators
working within early childhood education and care centres. This paper reports on the
evaluation of the pilot program with specific emphasis on expanding the reach of Let’s Count
whilst maintaining its integrity and outcomes.

The authors were commissioned by The Smith Family to undertake an evaluation of the
Let’s Count Community Professional Pilot 2019. The aim of the evaluation was to ascertain
the effectiveness of face-to-face implementation of the Let s Count program in mixed groups
of early years trained, centre-based educators and other community professionals. Data were
generated using surveys before and after the training sessions and telephone conversations
after each of these sessions. Seventy-nine participants and six facilitators or program
coordinators were involved in at least one aspect of the evaluation.

Background

Since 2010, the Let’s Count program in mathematics has supported centre-based early
childhood educators using a face-to-face professional learning model in geographical sites
across Australia consisting of two workshop days with approximately 4-6 weeks between
the workshops. In 2019, The Smith Family specifically targeted these community
professionals when mixed groups of early childhood educators and such community
professionals undertook face-to-face Let’s Count program sessions together and engaged in
the between-sessions requirements of the program in their own workplaces. The Let’s Count
program and its impact on early childhood educators, young children and their families has
been well documented (Gervasoni & Perry, 2017; Gervasoni et al., 2016; Perry et al., 2016;
Perry & MacDonald, 2015). This paper reports on the evaluation of the Let’s Count
Community Professionals Pilot 2019. The research questions for the evaluation are listed in
the Results section of the paper.

Methodology

The Community Professionals Pilot 2019 was undertaken in six sites across three states
(two sites in each of NSW, Queensland and South Australia). The evaluation used multiple
methods involving both qualitative and quantitative approaches.

Both authors were present for the first session of each group in order to meet participants
and undertake preliminary surveys and background discussion with all participants, Let’s
Count facilitators and Program Coordinators willing to be involved in the evaluation. As
well, participants were asked if they would undertake the follow-up activities in the
evaluation — two telephone conversations — one between the two program sessions and one
approximately three weeks after the second session - and post-Session 2 online surveys. No
child data were generated in this evaluation.
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The numbers of participants in the Community Professionals Pilot 2019 and the
evaluation are provided in Table 1. The community professionals came from many different
backgrounds and endeavours including education (other than early childhood); social work;
library and information science; business administration; aged care; sports coaching;
sociolinguistics; music therapy; and law. There were paid and volunteer workers from
libraries, playgroups, HIPPY (Hippy Australia, n.d.) and other community support groups.

Table 1
Participation in data generation

Participant Type Data Generation Approach
Early Childhood =~ Community Survey 1 Survey 2 Conversation 1~ Conversation 2
Educator (E) Professional
(CP)
44 35 44E,33CP 12E,13CP 14E,11CP 7TE,7CP

Results and Discussion

Only a summary of the results can be provided here. This is done by answering each of
the research questions, with a particular emphasis on the responses of the community
professionals.

What were the community professionals’ expectations of the program?

Many of the community professionals who participated in the Let’s Count Community
Professionals Pilot 2019 knew little about what to expect from the program before Session
1. All of the community professionals anticipated that the ‘mixed’ model would be of benefit
to them as they would be learning alongside experienced early childhood educators. Some
wondered whether they would be able to ‘keep up’ with the early childhood educators and
some brought long-held reticence about their own abilities both to do mathematics
themselves and to facilitate young children’s learning of mathematics. There was no
indication from the early childhood educators that they experienced any difficulties arising
from the presence of the community professionals.

Great networking. Great experience. A big thing was that ideas bounced off each other. (CP)

There were no disadvantages [with the mixed group]. It was great to have different ideas, read about
some, and get some ideas not out of long day care such as ways to give different ideas at home.
Opportunity to think outside the box and give us new ideas. No problems, only advantages with
community professionals group. It opened up my eyes. (E)

It was great to see the different perspectives of the community professionals, especially perspectives
on what parents are doing and thinking when the community professionals go to family homes. We
can’t do that. It was great to see what they’re doing — they often don’t have a lot of resources, so must
use basic things at home. (E)

What did the community professionals see as the benefits of engaging with Let’s
Count to themselves and their organisations?

Many of the community professionals have not only learned a great deal about
facilitating young children’s learning of mathematics from their experiences in Let’s Count
but have also used this knowledge in their own contexts. Many of them have different links
with the families of the children with whom they interact than early childhood educators
typically have, and these strong links have encouraged their use of Let’s Count. Contexts
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such as HIPPY, playgroups, library-based experiences, music therapy and several
volunteering opportunities with children and families who have complex support needs have
facilitated interactions around mathematics learning for children and families. Many of the
community professionals now see that they can be leaders in their organisations around the
establishment of effective practices in mathematics education.

It went really well and was an opportunity for us to grow and expand on what we learnt. It was a great
starting point for young people’s programs in the library.

Let’s Count provided opportunities to think about what we could do and what is possible in our
environment. It provided space and opportunity to brainstorm and hear about what other places are
doing re talking with families about numeracy concepts and to reflect on what we are doing and what
we can do as a team.

I will add Let’s Count to the programs | am already involved in, including neighbourhood networks
and refugee and migrant hubs.

What do community professionals see as the benefits of engaging with Let’s Count
to the children and families of their communities?

Being able to provide children and families who do not access centre-based early
childhood education with appropriate, interesting and play-based mathematical experiences
was seen as a major benefit of the community professionals’ engagement with Let’s Count.
Many of the community professionals who participated in the Let’s Count Community
Professionals Pilot 2019 also enjoyed the opportunity to be involved in group professional
development and in the recognition that the group gave them for their own work in the early
childhood space.

This is valuable work because the focus is on parent engagement. It is important to influence a number

of areas as not all children attend early childhood education centres. Let’s Count has a place targeting
and promoting needs of working with children and families in whatever context.

I liked the diversity of the group, across different learning environments. | enjoyed meeting people
and seeing how Let’s Count really helped across the programs, from very young children to
Kindergarten aged 3-5. Learning about how people integrate maths with very young children as well
was interesting. It made you think outside the square, more than about your own little environment.
You can learn so much from each other. It is important to be aware of other groups and programs in
your community.

In what ways did the early years trained educators experience the Let’s Count
program sessions?

As for the community professionals, early childhood educators participating in the Let’s
Count Community Professionals Pilot 2019 were very satisfied with the ‘mixed group’
model. They were particularly grateful for the diversity of perspectives which the community
professionals brought to the training sessions and for the variety of approaches they adopted
in using Let’s Count in their contexts. Many of the early childhood educators praised the
ways in which some community professionals were able to interact with both children and
families and wished for the same flexibility in their own settings. Many early childhood
educators recognised that the Let’s Count program was not ‘rocket science’ and, in some
cases, reinforced and extended current practice while others were grateful for the ‘reminder’
about what was possible.

Different perspectives were an advantage. We are supporting all children, not all of them are at early
childhood education centres. A lot of children are at home not attending early childhood education
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centres but may go to library, so we can reach more children and families. We all learn from each
other and there were some really good ideas. We are here for all children and the whole community.

Did the pilot work? Really well. Some non-educators apologised when presenting, but we thought
they brought different perspectives that were very helpful. They made us think about different ways
and about how they engage with different contexts, it added a new dimension. It was really good. |
would encourage everybody to take the opportunity to do Let’s Count training.

Librarians do it differently. They have parents there, can share parent information and have games
out for parents to try. All groups should be mixed. It is much more beneficial with community
professionals than just early childhood educators. All [participants] took something different away
from the training.

Let’s Count is applicable to all working with children and families.

Conclusion

The ‘mixed group’ model of the Let’s Count training program where early childhood
educators and community professionals undertake the program together has worked well for
all involved. There have been real benefits to early childhood educator participants in that
they have seen different ways for interacting with children and families and different ways
of facilitating the mathematics development of young children than they would have been
exposed to in a more homogenous group of participants. Community professionals have not
only learned that mathematics learning can be incorporated into their core work but also that
they can do this with minimal disruption to their programs. All participants have indicated
that they really valued the opportunities to network with other professionals from across
their communities who are also committed to the education and wellbeing of children and
families. A number of participants have indicated that they would like to see the community
professionals model as the norm in terms of face-to-face Let’s Count training and this
recommendation has been accepted by The Smith Family.
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Issues and affordances in studying children’s drawings with a
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In this third consecutive MERGA symposium focused on young children’s drawings,
three separate groups of researchers discuss the benefits and issues of using drawings as a
source of data in their studies. Although drawings are ubiquitous in early years classrooms
and in studies of children’s learning, there is no comprehensive framework for analysing
children’s drawings in mathematical contexts. The overarching purpose of these
symposiums has been to explore the qualitative methods that researchers have developed in
their distinct projects and advance our critical perspectives on interpreting drawings and
understanding the role they can play in children’s learning of mathematics.

Broadly, the researchers view drawings as an external representation of mathematical
concepts, mathematical thinking, or perceptions of mathematical contexts. Typically,
researchers trust that children’s drawings express to some extent the developing internal
systems of the child, including the affective domain. In studying the interplay between
children’s internal and external representations, researchers must grapple with the
ambiguities of interpreting representational drawing, as explained in quotation below.

“Internal systems, ... include students' personal symbolization constructs and assignments of meaning
to mathematical notations, as well as their natural language, their visual imagery and spatial
representation, their problem-solving strategies and heuristics, and (very important) their affect in
relation to mathematics. The interaction between internal and external representation is fundamental
to effective teaching and learning. Whatever meanings and interpretations the teacher may bring to
an external representation, it is the nature of the student's developing internal representation that must
remain of primary interest.” (Goldin & Shteingold, 2001, p.2).

In this symposium, as well as sharing results from recent research, the authors reflect on
some of the issues and affordances in studying children’s drawings with a mathematical eye.

Goldin, G. & Shteingold, N. (2001). Systems of representation and the development of mathematical concepts.
In Cuoco, A. (Ed.), The roles of representations in school mathematics, NCTM 2001 Yearbook, (pp.1-
23). Reston VA: NCTM.

Chair & Discussant: Jennifer Way

Paper 1: Jill Cheeseman, Ann Downton, Anne Roche & Sarah Ferguson Drawings reveal
young students’ multiplicative visualisation

Paper 2: Katherin Cartwright, Janette Bobis & Jennifer Way Investigating students’
drawings as communication and representation modes of mathematical fluency.

Paper 3: Kate Quane, Mohan Chinnappan & Sven Trenholm Children’s drawings as a
source of data to examine attitudes towards mathematics: Methodological affordances and
issues
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In the context of a multiplicative problem, our study investigated young children’s ability to
visualise and draw equal groups. This paper reports the results obtained from 18 Australian
children in their first year of school (age 5-6 years). The task 12 Little Ducks, taught by their
classroom teacher, provoked children to visualise and to draw different solutions. Fifteen
children (83%) could identify and create equal groups via drawings; eight of these children
(44%) could also quantify the number of groups that were formed. These findings show that
some young children can visualise multiplicative situations and can communicate their
reasoning of equal group situations through drawing.

The accepted wisdom of earlier research was that the intuitive pathway for children to
multiplication is through repeated addition (Anghileri, 1989). Research reported by Sullivan
et al. (2001) showed a relatively large cognitive step for children to move from using models
with counting to abstract multiplication. These authors recommended that the teaching of
multiplication require children of 5-8 years of age to imagine objects as well as model with
objects.

The theoretical framework of this research is a social constructivist theory of learning
which holds that meaning is created between individuals through their interactions (Ernest,
1991). The mathematical content was framed by the research literature related to problem
solving with children, early multiplication and division, and children’s drawings. The ability
to solve problems is a fundamental life skill and develops naturally through experiences,
conversations and imagination (Cheeseman, 2018). The perceived importance of problem
solving stimulates educators to look for authentic problem-solving situations in which
children behave as mathematicians (Baroody, 2000). The task reported in this paper is one
such non-routine mathematical problem.

Multiplicative thinking involves making two kinds of relations: the many-to-one
correspondence between the three units of one and the one unit of three (Clark & Kamii
1996). Doing so requires an ability to form visual images of composite unit structures and is
fundamental to multiplicative thinking (Sullivan et al., 2001). Young children are only able
to abstract this notion of a composite unit when they have constructed meaning in their own
minds (Bobis, 2008). In order to determine children’s meaning of groups, this study used
children’s drawings as a research tool, and to potentially be a “window into the mind of a
child” (Woleck, 2001, p. 215). Children were asked to draw a picture of what they were
visualising and to describe their thinking as they solved the problem. Materials and
modelling were used only when a child was unable to solve the problem (Sullivan et al.,
2001). We conjectured that many children make mental images and visualise quantities when
situations provoke them to do so. Our challenge was to create a context that would elicit
children’s thinking, and to interpret and understand what children imagine. The research
question we set out to answer was: How do children’s drawings, explanations and actions
reveal the ways they visualise group structures?
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Method

A teaching experiment methodology was used to explore and explain students’
mathematical actions and thoughts about recognising and making equal groups. As
researchers we wanted to experience, first-hand, students’ mathematical learning and
reasoning (Steffe & Thompson, 2000). The study included the four basic elements of
teaching experiment methodology. The “teaching episode” in this case, a sequence of five
consecutive days of mathematics lessons in one school with a class of 5-6 year-olds in their
first year of school. Three researchers witnessed the teaching and video-recorded each
lesson.

The exploratory teaching was undertaken by Sarah (fourth author). While not privy to
the team’s design of learning contexts, she contributed to the theoretical framing of the study,
and was conversant with the purpose of the research. Sarah was familiar with the Launch,
Explore, and Summarise lesson structure (Lappan, & Phillips, 2009), and she believed that
children should not be shown possible solution strategies before they attempt a task. The
research team noted that the lesson content was beyond the intended curriculum and would
present conceptual challenges for 5-6-year-olds, as would the exploratory teaching. Analysis
of the children’s mathematical thinking was based on their drawings, mathematical language
and actions, and on the researchers’ theoretical interpretation of events in accordance with a
teaching experiment methodology. We closely observed children’s interactions to infer their
thinking about multiplication as seeing “groups of groups”.

Participants were 21 children (13 girls and 8 boys) from a primary school in a large rural
city of Victoria, Australia. The mean age was 5 years and 6 months. Sarah’s class provided
a convenience sample for investigating our research question. The results are from the 18
children who were present on the day. We devised lessons as contexts in which 5-6 year-old
children could be stimulated to recognise and create equal groups and to quantify those
groups. One lesson, Twelve Little Ducks, is the setting for the results presented here. Sarah
was given a lesson outline and encouraged to implement the ideas in any way that she felt
suited her children. The problem was originally written as: Can you make 12 little ducks into
equal groups? Can you do it a different way? Draw or write what you did. To introduce the
task to her children, Sarah told a story:

In order not to lose any of her ducklings the mother duck put them into some groups that were the

same. She put them into equal groups, because it was easy for her to see that she still had her 12 baby

ducks. Can you make a picture in your head of those 12 little ducklings? The mother duck put them

into groups with the same number of ducks in each group. I wonder what groups she put them into ...
I would like you to draw a picture of what is in your head (video transcript).

Sarah chose not to show a picture of ducks or to model the problem with materials, she
explained that it might interfere with children’s thinking. She was keen to learn what her
children could imagine without objects - in a context her children would understand. Sarah
was conscious of the challenge of the task’s mathematical vocabulary as her diary showed:

These children have not heard the term “equal groups” from me at school at all until today. I did say
“the same number in each group” but I didn’t go into great detail about what | meant by equal groups.

These pedagogical decisions deliberately created a challenging for 5-6 year-olds. Blocks
were not provided initially but a child was offered blocks when it was apparent that s/he
could not begin to solve the problem.

Data were collected from two fixed video cameras, three tablet cameras operated by the
observer-researchers recording children working or in conversation with an adult.
Subsequently, photographs of work in progress, children’s finished work samples, classroom

111



Cheeseman, Downton, Roche and Ferguson

observations, and the video and photographic data were closely examined and interrogated.
Data analysis began with each university researcher describing in detail what they observed
soon after the lesson. In this way, we built a shared understanding of the events in the
classroom. Each child’s work sample was examined. Tentative categories of responses were
proposed and iteratively tested to refine category definitions.

Findings

Analysis of the work samples together with our observations, conversations with the
children, and video evidence revealed that three distinct categories of thinking could be
described in terms of demonstrated multiplicative thinking.

Evident - could simultaneously quantify objects in groups and enumerate the groups
as new units

Eight children (44%) produced 12 ducks by drawing and L OVool6
simultaneously creating equal groups. The ducks in their drawing
were located in identifiable groups, indicating that they had
perceived or imagined such groups before drawing the ducks. Elise
drew two groups of six, circled each group and labelled her .
drawing, ‘2 groop 6” (sic) (Figure 1). She could make equal groups A
and quantify the groups. It appears Elise had determined the group
size prior to drawing her solution because the ducks are drawn in  Figure 1. Elise’s first solution
equal rows.

)

Partial - having some awareness of the quantity of each group but not the number
of groups shown

Six children (33%) were categorised as having “partial”

@ understanding because they made equal groups but were not
A\ able to quantify the number of groups. Georgie drew three
S groups of four ducks (Fig 2), and when asked about her groups
o she said:
‘i'(.'.f, ) Q. Georgie:  There are four here, and four there and four there.
\ W\ (Pointing to each group.)

Teacher:  How many groups of four have you got?
Georgie:  Twelve.
] Teacher:  Twelve altogether. How many groups of four?
Figure 2. Georgie’s first solution. Georgie:  Um, I’'m not sure yet.

Emergent - unable to find a solution — even with 12 cubes to model the problem

The four children (22%) who we described as emergent
thinkers had several observed misunderstandings. For example,

Conrad was unable to make six groups of two, from his drawing. e T

It appears that Conrad did not have a solution in mind when ~ A j,’}*’-
drawing the 12 ducks as they were not drawn in identifiable gy i -
clusters or rows. The random arrangement may have contributed a#‘,’i‘ i

to the difficulty of circling groups of two. Other emergent ‘*”5‘?’, 2
thinkers were unable to make equal groups in their drawings or &F f
when provided blocks to do so. Figure 3. Conrad’s drawing
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To Conclude

We investigated whether children could visualise and construct equal groups and
recognise the composite units they formed. Our research question was answered. Some
children can imagine and draw equal group structures and in doing so recognize composite
units. Some children can also enumerate the composite units. More than 80% of the children
in the present study exhibited early multiplicative thinking. Children seemed to have
intuitive understandings of equal group structures based on their experiences because they
came to the problem we posed without any prior formal instruction about equal groups. This
finding is novel - we have found no studies that have reported similar results with 5-6 year-
old children.

Children communicated their visualisation of equal group situations through their
drawings and elaborated their meaning with verbal descriptions and gestures. Such drawings
of visualisations represent abstract thinking and call into question the accepted view of the
way early multiplication typically develops via direct modelling to partial modelling, then
to thinking abstractly (e.g., Anghileri, 1989).

We argue that it is productive to require young children to abstract problems earlier.
Requiring visualisation together with drawings is an alternative approach to direct
modelling. We acknowledge this is a small study and the results are only indicative of the
ability of young children to visualise multiplicative situations. Further research might
investigate other provocations that elicit children’s thinking about multiplication. Children’s
drawings of their mathematical reasoning are fascinating and the intuitive understandings
that young children develop about aspects of multiplication are worthy of detailed
examination.
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In sharing solutions of mathematical tasks, students may use various modes of representation
such as: language (oral/written), numerical and symbolic, or drawings (pictures, diagrams or
markings). In this paper we explore the potential of student drawings to provide evidence of
mathematical fluency. Examples of young students’ (5-8 years old) solutions to mathematical
tasks are examined through the lens of drawing representations. The investigation suggested
that students’ drawings are valuable data when analysing work samples for evidence of
mathematical fluency alongside other representations.

Drawn representations are a window into students’ thinking and are worthwhile to
explore in a mathematical context. Cai and Lester (2005) assert that representations not only
help students make sense of mathematical problems but allow for communication of thinking
to others. Bakar et al. (2016) agree that students use drawings to share solutions and suggest
that “drawing was a translation from other types of representations, used [by students] to
confirm and explain their answers” (p. 92). Within Way’s (2018) research she utilised
drawing to “reveal the variety in ... drawings, and to explore similarities and differences
across the age range” (p. 98). There exists an important transitional point during the early
years of schooling for students between drawing (personal expression) and mathematical
representation (function and purpose) (Bakar et al., 2016; Way, 2018). These representations
require further analysis in observing students’ mathematical fluency.

Data reported on in this paper is part of a larger research project (Cartwright, 2019)
investigating students’ characteristics of mathematical fluency and teachers’ noticing of
fluency. Within the study, many students produced drawings in their written work to convey
their mathematical understanding in solving tasks. The drawings, as a mode of
representation, became a vital aspect of analysis when observing a students’ mathematical
fluency. The purpose of this paper is to build on the drawing representational analysis
conducted by Way (2018). In-depth analysis of the drawing work samples addresses the
following research question: How can students’ drawing representations provide evidence
of their mathematical fluency?

Method

For the analysis, 39 Kindergarten to Grade 3 work samples were selected from schools
involved in the research study. All students responded to the same problem: The farmer saw
16 legs in the field. How many animals might he have seen?

To analyse the drawings, previously researched drawing categories (Bakar et al., 2016;
Way, 2018) pertaining to students’ development of drawings within a mathematical context
were employed. The drawing types pictographic and iconic (Bakar et al., 2016) were used
to initially sort the data. Bakar et al. (2016) define drawing as pictographic “if it has realistic
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depictions of the objects stated in the problem” and iconic drawing as containing “only
simple lines and shapes to embody the intended objects” (p. 89). Cartwright’s (2019)
mathematical fluency characteristics were then used as an additional lens through which to
view the drawings. Four fluency characteristics were used as deductive analysis categories:
use of other representations (numerical or symbolic), correct process or solution, multiple
solutions, and efficient strategy. Following the characteristics analysis, data were ordered
into a developmental sequence based on Way’s (2018) drawing categories: picture, partial
story, partition and solution.

Findings

Overall, 17 students (44%) used pictographic representations, 14 used iconic (36%), and
8 used no drawn representations (20%). Interestingly, a few students used both pictographic
and iconic representations. During analysis it was necessary to split the iconic category
further as a distinct difference between the way students used shapes and lines emerged.
Instead of using shapes and lines to represent the animal or its legs, students used lines and
circles to cordon off solutions. Some students also used lines, arrows, or circling to connect
numerical solutions to symbolic or language representations (see Figure 1). The new
category was named iconic (as organisers) to distinguish between the two uses of iconic
drawings: in place of a picture, or as part of explaining the mathematical process.

The second level of analysis took the sorted work samples (pictorial features) and
analysed the data using Cartwright’s (2019) mathematical fluency characteristics. All
Kindergarten students (N=6) used pictographic representations. Most students also included
a numerical representation. One sample included multiple solutions and the majority of
students were able to use an efficient strategy to count the legs (see Figure 2). Most students
obtained the correct number of legs (16) but did not mention the number of animals.
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Figure 1. Example of using lines and circling to Figure 2. Kindergarten example of counting by ones
organise solution

The Grade 1 samples have not been reported on in this paper as there were only three
work samples, not enough to make significant statements. For Grade 2 (N=22) twenty of the
students included a numerical representation to support their process or solution. Students
used pictographic and iconic drawing types, however, there were significant differences in
the mathematical features across the samples. One significant difference was the use of
symbolic representation. Almost all students who used no drawings included symbols.
Whereas only a few students who drew pictographic or iconic representations used symbols.
Another significant difference was with solutions and types of efficient strategies. Most
students who used pictographic representations did not produce multiple solutions and
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showed no strategy or an additive strategy. Compared with students who drew iconic
representations or no drawings where multiple solutions and higher strategies
(multiplicative) were observed. All but one Grade 3 sample (N=8) used numerical
representations and six included symbolic representations as well. Most students recorded a
correct process and solution and the majority of students used multiplicative strategies. Of
the students who drew pictographic representations, none produced multiple solutions.
Students who drew iconic representations or used no drawings were able to produce multiple
solutions, often using their knowledge of number patterns to find different combinations.

Way’s (2018) developmental sequence was used in analysing both pictorial and
mathematical features of the work samples. Levels (described in Table 2 and illustrated in
Figure 3) were adapted as the analysis progressed.

Table 2.
Developmental Sequence of Mathematical Drawings (Adapted from Way, 2018)

Level No. Level description

1. Scribble 0 Incoherent, no representation of the mathematical story

2. Picture 2 Shows pictures from the story problem (i.e. animal, farm) but no
numerical labels or symbolic representations attached

3. Emergent Story - 2 Shows pictures or iconic representations of the story and includes

incorrect process/ solution numerical values. No correct mathematical process or solution are visible.

4. Partial Story - errors 7 Uses pictures or iconic representations and numerical values to show

with process or solution process of solving the problem. Correct process but incorrect/incomplete

solution. Or correct solution with incomplete/incorrect process.

5. Partition and Solution 7 Uses pictures or iconic representations and numerical values during the
process. Shows a correct solution.

6. Advanced Partitionand 13 Uses pictures or iconic representations and numerical values during the
Solution process. May include multiple solutions or patterns to find solutions.

N=31 (students who did not use drawings have not been included within this analysis)
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Level 2 Level 3 Level 4 Level 5 Level 6
Figure 3. lllustrations of mathematical drawing levels

The use of a developmental sequence was beneficial when analysing the mathematical
fluency features. For example, both Ellen and Daniel (Figures 4 and 5) used pictographic
representations and in the initial analysis were grouped together. However, once these
student samples were analysed using the developmental sequence of drawing levels,
differences in their use of the representations appeared. Ellen used pictographic and iconic
representations in an advanced way compared to Daniel. She labelled her pictures
numerically which aligned to her cumulative count by fours. Ellen also drew lines to explain
her partitioning of 16 into eights, then fours to describe her process. Although Daniel used a
correct process and found a correct solution, his pictographic and numerical representations
were separate. It is unclear if Daniel made a connection between the animals’ legs and his

116



Cartwright, Bobis and Way

count of four. Both samples show characteristics at Level 5: Partition and solution.
However, if we see the drawings along a continuum of development, Ellen’s would be placed
higher.

Figure 4. Ellen’s work sample Figure 5. Daniel’s work sample

Discussion and Conclusion

It was clear that drawing ability by itself did not always correspond to a student’s
mathematical understanding. However, students who made direct links between drawings,
numerical, and symbolic representations, showed a higher level of mathematical fluency.
The findings suggest that there are both affordances and issues with utilising students’
drawings to analyse their mathematical fluency. One benefit was that drawings were a visual
depiction of students’ mathematical strategies. The way students grouped animal legs or
drew arrays assisted in deciding if students were applying additive or multiplicative thinking,
especially when the symbolic representations were not present. Some impacting factors
emerged. Drawing ability was an issue for students unable to draw animals appropriately,
i.e. incorrect number of legs. For students who drew pictographic representations time was
a factor. The time it took to draw the animals resulted in only one solution being found,
whereas students who used iconic representations generally found multiple solutions. Future
research could explore iconic drawing further, specifically when students created array
structures, and could be aligned to Mulligan and Mitchelmore’s (2013) levels of Awareness
of Mathematical Pattern and Structure (AMPS). Iconic representations revealed students’
knowledge of number structure and provided scaffolding to efficiently solve the task.
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Ascertaining young children’s attitudes towards mathematics has its challenges.
Methodologically, limitations exist regarding the type of research techniques that can be
employed. The use of children’s drawings as a data source has both methodological
affordances and issues. The study was conducted with 106 children in Years 2 and 3 from
three South Australian primary schools. This paper identifies some of the methodological
affordances and issues of using children’s drawings to ascertain and describe their attitudes
towards mathematics.

For Vygotsky, a “young child’s creative forces are concentrated on drawing not by
chance, but because it is precisely drawing that provides the child with the opportunity to
most easily express what concerns him at this stage” (Vygotsky, 2004, p. 43). Children’s
drawings act as a list or “graphical narration” about what a child is portraying (Vygotsky,
2004, p. 77). Numerous researchers have used children’s drawings in the mathematics
domain. However, few researchers have used children’s drawings to ascertain and describe
young children’s attitudes towards mathematics. Bobis and Way (2018) state that
“representations are an integral part of learning mathematics” (p. 56) and while these authors
refer to representations primarily from a conceptual and working mathematically
perspective, children representations of themselves are ubiquitous in their drawings. This
research connects the ubiquitous nature of children’s drawings of themselves with
mathematics education by asking children to draw themselves “doing mathematics” as a
means of ascertaining their attitudes towards mathematics.

The use of children’s drawings is an innovative approach to ascertain an individual’s
attitude which moves away from traditional research methods such as attitudinal
questionnaires. The use of children’s drawings provides several affordances that traditional
research methods do not allow, including providing a method to children to voice their
attitudes which can then describe the nature of their attitudes in depth. Conversely, the
innovative nature of this research raises several issues related to the interpretation and
analyses of children’s drawings. This paper examines some of the affordances and issues of
using children’s drawings to ascertain young children’s attitudes towards mathematics.

The purpose of this study was to investigate the attitudes of young Australian children
in Years 2 and 3 have towards mathematics. This investigation answered the broad question:
What are the range and nature of attitudes young children exhibit towards mathematics, in
both lesson and non-lesson contexts? It is essential to distinguish between the range and
nature of young children’s attitudes towards mathematics. In this paper, a distinction has
been made to ensure clarity around the two words. Additionally, the words ‘nature’ and
‘range’ have often used interchangeably, but both describe specific aspects of this research.
The range refers to the scope or extent of young children’s attitudes towards mathematics,
providing a broad view of the issue. The nature of attitude is descriptive, providing the basic
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qualities, structure, and the essence of individual attributes of children’s attitudes towards
mathematics. In other words, the nuances or fine-grain view of attitudes.

Method

This paper discusses findings from the non-lesson context where children drew a picture
of themselves doing mathematics, provided a written description of their drawing and
participated in a semi-structured interview. One hundred and six children, aged between 7
and 9 years of age, participated in a mixed-method research design where children’s
drawings started a conversation about their attitudes towards mathematics.

Utilising the work of Bachman et al. (2016) the prompt “Draw yourself doing
mathematics” was given to participants on an A3 piece of paper. The researcher read a
prompt (see Quane et al., 2019) to children with no time limit given to children to produce
their drawing. Children provided a written description of their drawing and then participated
in a semi-structured interview. Using the three research techniques is viewed as
“complementary methods” to “understand children’s lived experiences” (Macdonald, 2009,
p. 48). The generated data from the three research techniques was analysed using a modified
version Three Dimensional Model of Attitude (TMA) (Zan & Di Martino, 2007). The
original TMA framework comprised of three aspects of attitude: an emotional dimension; a
vision of mathematics; and perceived competence. In the discussion below we take up the
methodological affordances of using children’s drawings in terms of TMA, in the course of
our research.

Findings and Discussion

The use of children’s drawings was effective in identifying the range and describing the
nature of young children’s attitudes towards mathematics. However, while the use of
children’s drawing as a research technique has benefits, it raises some issues. In this
discussion, the affordances and issues pertaining to the use of children’s drawings is
reviewed.

Attitude is a multi-dimensional construct (Zan & Di Martino, 2007) that can be complex
to unpack. Any research method employed to ascertain attitudes towards mathematics needs
to disentangle the different strands of this complexity. That is, the use of children’s drawings
as a research tool needs to be sensitive to the multi-faceted nature of the construct in
question, namely attitude. Additionally, data about attitudes towards mathematics has to
capture the dynamic interplay between the dimensions of attitudes.

Drawings constitute an accessible vehicle for communication, expressing what is
important for the child. Unlike surveys, drawings are open-ended, expressive and are child-
centred tasks (Stiles et al., 2008). Stiles and colleagues (2008), found that "attitudes towards
mathematics expressed in drawings significantly correlated with attitudes expressed in the
TIMSS [The International Mathematics and Science Study] statements about mathematics™
(p. 1) and are "superior to the TIMSS statements" (p.13).

Drawing affords children to express what is important to them in a medium that they feel
comfortable. Further, children could express a variety of emotions, as shown in Figures 1 —
3. Children articulated connections between the emotions that they expressed to specific
mathematical topics and their perceived competence in mathematics.

The second dimension of attitude is children’s vision of mathematics (Di Martino & Zan,
2011). For this research, children’s vision of mathematics was characterised by the topics,
tasks, and processes that they depicted and described as well as their value and appreciation.
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The use of children’s drawings provided insights into children’s vision of mathematics in
terms of how children depicted the mathematics that they were doing. The drawings show
the interconnectedness of the three dimensions of attitude with children indicating their
emotion and self-concept. Figures 4 — 6 show the mathematical topics and the children’s
representations of these topics. Further data from the non-lesson context provided insight
into children’s perceived competence, particularly their mathematical mindset and self-
concept. For example, C16 (Figure 1) indicated that she hated mathematics, finds it hard but
wants to try “make friends” indicating she has a low perceived competence in mathematics.

Draw Yourself Doing Mataematics Draw Yoursel’ Doing Mathematics
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Lowenfeld and Brittam (1964) were instrumental in describing the developmental nature
of children’s drawings. In so doing, these authors drew attention to the principle of
‘deviation’ as a means for children to emphasise, exaggerate or omit pictorial elements. It is
important to note how an observer views these three principles. Lowenfeld and Brittam
(1964) cautioned the observer of a drawing regarding making incorrect judgments about a
child’s intention of using disproportional elements within a drawing. Correct judgements
and interpretations can only be made by asking the child about their drawing to understand
the reasons for using disproportionally or drew a particular object. When children have used
the three types of deviations, the child has drawn what is real, significant, and relevant to
them (Lowenfeld & Brittam, 1964).

The principle of deviation is seen in A25’s drawing (Figure 3), where she has emphasised
the background of her drawing. The child explained that she loved patterns. The emphasis
that the child placed on her rainbow background would not have been realised without asking
the child open-ended questions about her drawing. The background in A25’s drawing
consumed A25’s attention and focus including her responses to the interview questions.
Understanding the importance A25 has placed on the background was required to minimise
the potential for the generation data that may have been unreliable. Asking the child about
the other elements within her drawing and other open-ended questions such as “what is
maths?” provided indicators for all three dimensions of her attitude.
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A second emerging issue with using children’s drawings as a research technique is the
interpretation. The following example illustrates the potential for misinterpretation. Two
boys have used the same colour for their face, but the reasons for their colour choice is very
different. B17 (Figure 7) has chosen the colour as he believes it reflects his skin colour. B42
(Figure 8) has chosen the colour to show that he is feeling frustrated. Examining the drawings
in isolation from the other data sources may produce very different conclusions. It is only
when the child is asked about what they have drawn and why they have chosen to draw it in
the way that they have, do we truly understand the meaning in their drawings.
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Figure 7: B17; male, extremely positive attitude Figure 8: B42; male, neutral attitude

Conclusion

The use of ‘Draw yourself doing mathematics’ elicits children’s drawings that were
personal stories about their complex relationship with mathematics revealing their attitude
towards mathematics. The process of drawing was a means for children to feel comfortable
sharing their thoughts in a familiar manner (Macdonald, 2013). Children were given the time
to “comprehensively explain the intended meanings of their drawings through extended
conversations and further questioning” (Macdonald, 2013, p. 72). An affordance not offered
in quantitative measures. Children’s written responses complemented the visual and verbal
accounts adding further insights into what was important to them. By providing children
multiple opportunities to share their thoughts about mathematics, rich narratives were told
about individual attitudes towards mathematics.

In conclusion, our experiences thus far showed that there are challenges in using
drawings particularly in unpacking the developmental aspects of attitude. On balance,
however, the affordances outweigh the hindrances in deploying the technique. The
affordances of using children’s drawings can be summarised as giving children the freedom
to choose what they depict and how they portray themselves. For children’s drawings to be
understood by adults, Anning and Ring (2004) offer the following: “We need a society that
can listen to children and recognise that perhaps their drawings may tell us much more about
childhood than we ever imagined” (p 125).
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With the increased workplace demand for STEM specialists, and the trend in capable students
opting out of higher levels of secondary mathematics, the psychological influences on
mathematics subject choice are important issues to explore. Expectancy-value theory is used
to examine the factors influencing such achievement choices. In the present study, as part of
a larger programme of research on mathematics subject choice, we sought to validate self-
report measures of students’ expectancies for success, values, and perceived costs associated
with participation in mathematics. Confirmatory factor analysis supported the hypothesised
factor structure, with the measures displaying acceptable levels of internal consistency.

The growing demand for specialist STEM practitioners is undercut by a decline in
participation in sciences and advanced mathematics in school and university (Australian
Government Department of Education and Training, 2016), and an associated labour
shortage in these fields. In the final two years of secondary education, a trend exists in which
talented and capable students are turning away from the more rigorous calculus-based
mathematics courses. In the state of New South Wales, Australia, there has been a decline
from 34 to 22 percent of students opting for these higher-level courses over the past two
decades (Jaremus et al., 2018). The calculus-based courses of study available to Australian
students are Advanced Mathematics (previously known as Mathematics), Extension 1 and
Extension 2 mathematics, and these courses lay the groundwork for meeting the challenges
of many tertiary STEM pathways. Not completing adequate levels of high school
mathematics preparation is associated with attrition from undergraduate STEM majors, with
students being almost twice as likely to fail certain first-year science units if they did not
complete a calculus-based mathematics course in secondary school (Nicholas et al., 2015).

It is important, therefore, to explore the antecedents of students making choices either
for or away from participation in higher levels of upper secondary mathematics. Why are
students, especially girls, increasingly dissuaded from choosing calculus level mathematics?
What are the psychological influences on this choice? If we had a better understanding of
these factors, might we be able to increase participation in these courses through levers in
the middle school experience and the curriculum?

The current research investigates motivations for pursuing mathematics subjects in
senior secondary school, with a focus on examining gender differences in motivational
influences. The Expectancy-Value Theory (EVT) is drawn on as the guiding theoretical
framework (Eccles et al., 1983; Wigfield & Eccles, 2000), being one of the most
comprehensive frameworks for studying the psychological and contextual factors
influencing individual and gender differences in achievement choices (Wigfield & Eccles,
2000). This theory has been used extensively to examine the short-term and long-term
motivations and achievement outcomes in a variety of achievement domains.

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 123-130. Singapore: MERGA.



Bell, Way and Ginns

Research into student motivations using the EVT has predominantly been quantitative
longitudinal variable-centred studies tracking changes in positive motivations throughout
school, and their contributions to achievement-behaviour. These positive aspects of
motivations are broken into the student’s expectancy for success (perceived competence or
self-concept) and their valuing of mathematics in the forms of utility value (perceived
usefulness), attainment value (importance of doing well) and intrinsic value (inherent
interest, a similar concept to intrinsic motivation). Historically, few studies have
incorporated the negative “cost” component of the theory into empirical analyses. Cost refers
to the perceived drawbacks of engaging in an activity and has been defined as the negative
consequences derived from participating in an activity, such as perceived difficulties, fear of
failure and loss of valued alternative activities (Wigfield, 1994). In more recent years, a fast-
growing literature has begun to focus on measuring cost as a multidimensional construct
(e.g., Barron & Hulleman, 2015; Battle & Wigfield, 2003; Chen & Liu, 2009; Chiang et al.,
2011; Conley, 2012; Flake et al., 2015; Perez, et al., 2014; Watkinson et al., 2005).

The ongoing study extends this work by focusing on the influence of this negative cost
factor in relation to the motivation of high school mathematics students, to further explore
its associated effects on mathematics-related academic choices. The results of 500 survey
responses collected from Year 10 students in New South Wales are analysed to derive
motivational profiles of students with similar beliefs in their levels of expectancy for success,
the values they hold for mathematics, and the costs they associate with this subject. A latent
profile analysis will be conducted to identify and classify clusters of individuals with similar
beliefs based on patterns of categorical responses, followed by interviews of students with
high-cost profiles in an attempt to capture a further understanding of their experiences, the
complexity of the interrelated influences on their motivation, and their influences on their
choice in mathematics studies.

This paper presents initial results of the quantitative analyses assessing the construct
validity and reliability of hypothesised constructs. It provides the groundwork for subsequent
intended research exploring gendered relationships between and among the various
motivational profiles, as well as their relationship to achievement background, language
background, dependency on selective schools, coeducational/single-sex learning
environments, amongst other educational contexts. These further factors will be explored
through both quantitative and qualitative research components to follow. Results from this
study can help provide information for school-teachers in understanding factors affecting
student motivation and the types of classroom experiences and programs that may help shift
students into more favourable motivational profiles, so students may be more likely to persist
with a level of mathematics commensurate with their ability.

Method

Participants

Survey data were collected from 521 Year 10 students from 10 high schools in the
Sydney metropolitan area. Data were gathered from participants at a critical decision point
in relation to subject choice: students completed the surveys after having submitted their
subject selection forms, and so were able to report their chosen level of mathematics for Year
11. All students in the Year 10 cohort were invited to participate and were given paper
consent forms to be signed by parents or guardians and themselves. Their teachers were
asked to remind students to return forms to maximise returns from each school.
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New South Wales secondary school contexts vary significantly in demographic
characteristics, numeracy performance, and level of participation in senior mathematics. The
current study’s sample includes a range of coeducational and single sex schools,
comprehensive and selective schools. Some of this complexity was reduced by only
including government schools (none from the Catholic or private sector), and by employing
strategic sampling of schools. Participating schools were matched for socio-economic status
to minimise its influence as a confounding variable, measured by the Index of Community
Socio-Educational Advantage (ICSEA). This index is calculated based on student-level data
on a raft of factors including family background, parental level of education, and remoteness
of the school (Australian Curriculum and Assessment and Reporting Authority, 2018). The
participating schools’ mean ICSEA was 1082 (SD = 78.33), above the sector-wide mean
ICSEA value of 1000 (SD = 100). Three schools were academically selective, seven were
coeducational, two were girls-only and one was boys-only.

Instrument

The survey instrument first collected information on school attributes, including subject
preferences and academic aspirations. The questions that followed gathered information on
the level of mathematics the students had chosen for their final two years of high school and
how they believed that it matched with their ability level (“Was this level of mathematics
higher than/the same as/lower than what you believe you’re capable of?””). There were also
three open-ended short-answer questions eliciting students’ reasons for their choice in level
of mathematics. Follow-up interviews in the second qualitative part of this study will further
clarify student responses to these questions.

This section was followed by 31 items gathering students’ perceived expectancy and
value (utility, attainment, intrinsic) beliefs, which were sourced from Eccles’ Expectancy
Value measures (Eccles, 2005; Eccles & Wigfield, 1995), with grammatical and
contextualising modifications for the Australian sample developed and psychometrically
validated in Australia (see Watt, 2004). Examples of some items are: “How well do you
expect to do in your next maths task?” to measure expectancy for success or self-efficacy,
“How useful do you think maths is in the everyday world?” to tap on utility value, “Being
someone who is good at maths is important to me” to tap on attainment value, and “How
enjoyable do you find maths?” to tap on intrinsic value.

The items measuring the dimensions of cost, including effort cost, outside effort cost,
loss of valued alternatives cost, and emotional cost, were based on Flake et al.’s (2015)
comprehensive scale validation study, with “this class” replaced by “mathematics”.
Examples of items were “I worry too much about mathematics” to tap on emotional cost,
“Mathematics requires me to give up too many other activities I value” to tap on loss of
valued alternatives, “Because of the all the other demands on my time, I don’t have enough
time for mathematics” to tap on outside effort cost, and “Mathematics demands too much of
my time” to tap on task effort cost. Each expectancy, value, and cost item was rated on a 7-
point Likert scale from 1 (not at all) to 7 (extremely). A question at the end of the
questionnaire elicited student interest in participating in a short, individual, semi-structured
interview early in the following year to further explore quantitative results and how subject
choice are shaped by the various interrelated and interacting facets of motivation. For a copy
of the full survey please contact the first author via email.
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Procedure

Surveys were conducted in class, online via the Qualtrics survey platform, and were led
by the students’ normal classroom teacher. Respondents (N = 21) who provided insincere
responses (e.g. pattern drawing, string responses) were excluded from the analyses. Missing
data were rare as the online format of the survey ensured that important questions could not
be skipped; however, respondents who exited the survey without completing it were also
excluded from the analyses. The final sample consisted of 500 students (239 boys, 250 girls,
11 other, mean age = 15.69, SD = 0.77).

Confirmatory factor analysis (CFA) was used to assess the dimensionality of latent
constructs using Mplus 6.12 (Muthén and Muthén 2004). Multivariate normality is a key
assumption of a range of multivariate statistical methods, including CFA (Kline, 2016).
Mardia’s (1970) test indicated the data were multivariate non-normal. To account for this,
robust maximum likelihood estimation of covariance matrices was used, as this procedure is
less sensitive than other estimation methods to violations of the normality assumption
(Boomsma & Hoogland, 2001). Each of the latent motivation constructs of expectancies,
values and costs were analysed for fit, with their corresponding 3 to 6 items as indicators for
their assigned latent constructs.

To assess the reliability of survey measures, McDonald’s (1999) omega was used as an
estimate of internal consistency. There has been increasing criticism of the use of Cronbach’s
alpha in behavioural science research due to some of its untenable assumptions. Some of
these assumptions include the requirement that each indicator variable contributes equally
to the factor (tau-equivalence), and that error variances must be uncorrelated (Dunn et al.,
2013). McDonald’s omega takes into account the strength of association between items, as
Cronbach’s alpha’s failure to do so may overestimate the reliability of results (Dunn et al.,
2013). These initial procedures will ensure the consistency, validity and reliability of the
latent constructs measured for the purposes of this study.

Results and Discussion

Confirmatory factor analysis confirmed that the eight-factor model of motivation to be a
good fit to the data. Model fit was evaluated using recommendations by Kline (2016) and
Marsh et al. (2004), focusing on the Comparative Fit Index (CFI), Tucker-Lewis Index
(TLI), the root mean squared error of approximation (RMSEA), and the standardised root
mean squared residual (SRMR). By these recommendations, RMSEA values at less than
0.08 are considered acceptable fit and values less than 0.05 are considered excellent fit
(Marsh et al., 1996). For the CFI, values at or greater than 0.95 are taken to reflect excellent
fit to the data (McDonald & Marsh, 1990). Cut-off values close to 0.95 for TLI; close to 0.08
for SRMR (Hu & Bentler, 1999) are considered acceptable fit.

The present eight-factor model showed an acceptable fit for each of the constructs
(x* = 788.76, df = 437, CF1 = 0.964, TLI = 0.959, RMSEA = 0.040, SRMR = 0.042). Table
1 presents factor loading ranges of items against the hypothesised latent constructs, as well
as descriptive statistics, reliability (using estimates of McDonald’s omega). Where single
item indicators (e.g. Gender, NESB, Co-educational/Single-sex  school,
Comprehensive/selective school, NAPLAN achievement) were used, the variance of these
indicators was fixed at one, and standard deviation fixed at zero. For each sub-dimension,
estimates of reliability using McDonald’s omega ranged from 0.87 to 0.93, which indicates
a high degree of internal consistency for all scales; factor loadings were strong (> .60),
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indicating items were suitably measuring hypothesised constructs. Descriptive statistics,
McDonald’s omega measures of reliability are also provided in Table 1.

Table 1
Descriptive statistics, reliability using McDonald’s omega, confirmatory factor analysis
factor loadings and measurement errors for each subconstruct

Mean SD Skewness Kurtosis McDonald’s CFA Factor Mean

® Loading Residuals
Range

Expectancies 491 132 -0.77 0.57 0.93 0.88-0.92 0.01
Intrinsic 439 163 -056 -0.19 0.93 0.89-0.94 0.01
value
Attainment 462 155 -0.42 —0.66 0.87 0.83-0.84 0.02
value
Utility value 5.02 1.37 -0.45 - 0.53 0.89 0.84-0.89 0.02
Task effort 408 136 -0.01 -0.40 0.89 0.63-0.82 0.02
cost
Outside 3.83 143 0.20 - 0.47 0.92 0.81-0.88 0.02
effort cost
Loss of 348 141 0.22 -0.23 0.88 0.74-0.85 0.02
valued
alternatives
Emotional 417 152 -0.06 -0.70 0.92 0.60-0.88 0.02
cost

A correlational analysis showed that each measure of cost was negatively correlated to
each of the positive subconstructs of motivation, which was to be expected. Some cost
subscales were found to be highly correlated with one another, for instance, the correlation
between task effort cost and emotional cost being 0.87. This level of correlation is not ideal,
as a correlation of 1 means that the constructs are indistinguishable. The scale development
study from which the current survey is based (Flake et al., 2015) found similar correlations
in their initial analyses into measuring and operationalising the “cost” component for
motivation. Their confirmatory factor analyses provided the strongest support for the four-
factor solution of cost.

However, Flake et al. (2015) also found that the higher order factor model, which
included a general unidimensional cost factor, also provided a good fit to the data. They
argued that although the four-factor solution provided four highly-correlated dimensions, it
showed adequate reliability and model fit, and a further correlational study revealed that the
four cost factors had different relationships to the other positive motivation factors. This
particular scale development study was conducted in a tertiary calculus setting with a smaller
cohort (N = 228), which may explain the discrepancy between those results and the ones
produced in the current secondary setting. Flake et al. suggested that future research should
investigate the empirical structure of cost within different groups of students in different
contexts to see how their findings might replicate across educational settings. The current
study provided one such further context and showed that the cost factors also displayed high
levels of multi-collinearity. Table 2 presents a latent correlation matrix for the constructs
under analysis.
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IZ?elﬁthactor correlations for Expectancy, Values and Costs perceptions
EXP v AV uv TEC OEC LOVA EMC
EXP —
v 0.66 —
AV 0.65 0.80 -
uv 0.37 0.57 0.68 —
TEC -039 -055 -042 -035 -
OEC -041 -046 -037 -0.28 0.80 —
LOVA -035 -043 -032 -0.29 0.86 0.82 —
EMC -051 -063 -046 -031 0.87 0.72 0.73 —

Note. All correlation coefficients are statistically significant at the p < 0.001 level. EXP = expectancy for
success, IV = intrinsic value, AV = attainment value, UV = utility value, TEC = task effort cost, OEC = outside
effort cost, LOVA = loss of valued alternatives, EMC = emotional cost.

Correlations between the expectancies and values dimensions echoed that of comparable
previous studies of secondary students’ mathematics motivations using EVT (e.g. Watt,
2004). The highest correlation between these positive factors were between intrinsic value
and attainment value (r = 0.80), followed by correlations between utility value and
attainment value (r = 0.68) and between expectancy for success and intrinsic value (r = 0.66).
In the current sample, although the correlations between the cost constructs were found to
be high, the model also had a good level of fit and the cost sub-constructs were found to be
differentially related to expectancies for success and values. Interestingly, emotional cost
was related to intrinsic value more than any other cost component, which brings up the
question of how emotional cost and the psychological cost of failure impacts on high school
students’ intrinsic valuing for mathematics. This question, along with others, will be further
explored in the subsequent interview study with a subset of the survey participants.

Conclusion

The factorial structure of the underlying constructs was validated using CFA, with the
measurement model confirmed to be valid and ready to be used for further analyses on
relationships between the latent variables. High degrees of internal consistency showed that
the items were reliable in measuring the constructs they were designed to measure. The fit
indices were adequate, which was expected because the expectancy and value scales have
undergone rigorous scale validation through multiple studies, across many year groups and
in a variety of subject contexts. However, the cost scales displayed a level of multi-
collinearity, and were problematic in some pairs of sub-constructs having a higher level of
correlation. As the particular scale development study was conducted in a tertiary calculus
setting with a smaller cohort, further work needs to be done examining the construct and
dimensionality of the cost factor in the secondary context.

The present study provides a foundation for subsequent intended research linking
students’ mathematics motivational profiles with their school contexts and choice of
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mathematics course. The next steps in analyses include conducting a latent profile analysis
to explore how students hold multiple motivational beliefs simultaneously to make decisions
on persisting with difficult mathematics subjects, rather than examining the isolated effects
of single variables. Previous work on motivational profiles have shown different profiles to
be differentially related to persistence outcomes (Perez et al., 2014; Watt et al., 2019).
Studies of cost have repeatedly shown that the theorised dimensions of cost contribute
differentially to student motivations and have suggested that future research should seek to
understand the sources of cost.

Without an understanding of how costs interact with the other expectancy and value
components, and by excluding it from the EVT framework, research findings about
motivational influences may be compromised. An imbalanced value-cost relationship may
hinder motivation, so the planned interviews will seek to understand the experiences of
students to gather the reasons and sources for the costs they perceive. “What could teachers
do to optimise student motivation if they knew students were experiencing high cost?” was
a question that Flake et al. (2015) posed in their study, and highlighted that it is a question
that remains unanswered. The ongoing study aims to contribute to the literature on how the
components of expectancy, value, and cost influence student motivation in the context of
high school mathematics.
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We report on the use of a data-gathering task requiring preservice primary teachers to ‘graph’
their emerging relationships with mathematics. A cultural-historical activity approach was
used to analyse data from nine final year preservice primary teachers to reveal what and how
key events in their lives helped shape their current mathematical identities. Oscillations
between “high” and “low” points in their relationships with mathematics was a feature of
participants’ graphs regardless of their current mathematical identities. Combined with semi-
structured interviews, the graphing task is posited as a valuable method for researchers and
practitioners to explore mathematics-related identity.

The development of a positive mathematical identity is considered critical to student
learning because of its potential to influence career and higher education aspirations (Black
et al., 2010). Selecting a mathematics-related career is not just about being academically
successful in mathematics, it is also determined by how a person identifies with mathematics
as a discipline (Sfard & Prusak, 2005). It is therefore unsurprising that the development of a
healthy student identity with mathematics is considered of major importance to achieving
current goals for the Australian government’s mathematics and science related education
agenda (Australia Government, 2015). Research indicates that teachers’ personal identities
with a particular discipline can profoundly influence how they teach that discipline and
position their students to learn it (Leatham & Hill, 2010; Reay & Wiliam, 1999).
Unfortunately, it is well established that many primary teachers have not experienced healthy
relationships with mathematics as students (Maasepp & Bobis, 2014), making it difficult to
nurture positive identities in their own students. Such a situation can be detrimental to
primary students’ long-term decisions to undertake further study in mathematics areas as
early negative experiences can have enduring negative influences on students’ achievements
and aspirations in those disciplines (Black et al., 2010).

Numerous researchers have studied preservice primary teachers’ mathematics-related
identities, often with the intention of better understanding the personal experiences that
shape certain identities (Darragh, 2016). Studying identity is problematic due to its
complexity—commonly conceptualized as dynamic, multidimensional and formed through
a blend of personal characteristics and long-term socio-cultural experiences. Such
complexity has raised questions about the capacity of researchers to provide an adequate
measure of mathematical identity (Kaspersen et al., 2017). With this challenge in mind, we
sought to explore the mathematical experiences of primary preservice teachers (PSTs) that
helped shape their current mathematics-related identities. Additionally, the merits of a
relatively novel task that required participants to graph the high and low points in their
relationship with mathematics was explored. We conclude the paper by advocating the
graphing task as a valuable qualitative strategy for researchers and teacher educators to
understand the experiences and conditions under which mathematical identities develop.

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 131-138. Singapore: MERGA.
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Defining Identity

Definitions of identity vary from those who consider it to be how individuals are
perceived by themselves and others (Grootenboer et al., 2006) to those who emphasise the
socio-cultural context in which individuals act (Kaspersen et al., 2017). However, Sfard and
Prusak (2005) conceptualized identity as discourse comprising endorsable stories or
narratives about ‘who one is’ independent from one’s actions (Kaasila et al., 2005). No
matter how it is defined, researchers generally conceptualize identity as a multidimensional
construct, combining elements such as knowledge, beliefs, attitudes, emotions, confidence
and dispositions that influence how individuals view themselves and are viewed by others
(Beauchamp & Thomas, 2009; Kaasila et al., 2012). In essence, we see identity as relational
by nature, incorporating both cognitive and affective aspects (Kaasila et al., 2012; Leatham
& Hill, 2010) and is dynamic in nature in that an individual’s identity is considered to be
constantly shifting as a result of social interactions. More specifically, in the current study,
we use Lutovac and Kaasila’s (2019) term ‘mathematics-related’ identity because it
encompasses all aspects of a preservice teacher’s identity related to mathematics.

Preservice teachers’ mathematical-related identities can be influenced by their socio-
cultural backgrounds. A study by Watkins and Noble (2008) involving 35 Year 3 students
from different ethnic backgrounds revealed that Chinese parents had higher expectations for
their children’s achievements than their Anglo and Pasifika peers. Such cultural background
influences could impact the developing identities of young children in either positive or
negative ways. Socio-cultural factors that can potentially influence identity go beyond
ethnicity to include a range of family, religious, educational and socio-economic background
elements.

Theoretical Perspective

Studies that are framed in cultural-historical activity theory (CHAT) view identity as
essentially a social experience, whereby the context must be considered when interpreting
an individual’s activity or responses (Engestrom, 2001). In this study, we were interested in
primary PST’s shifting relationship with mathematics (the context) over time (historical) and
how they responded (the activity) to salient events (socio-cultural) in their lives.

The mathematics-related identities that PSTs develop as students via various socio-
cultural contexts can not only influence the actions that they take regarding their own
relationship with mathematics but those of their future students (Maasepp & Bobis, 2014).
Thus, it is of utmost importance that primary PSTs not only develop healthy mathematics-
related identities, but that mathematics educators can easily assess information about their
PST’s identities to ensure adequate interventions might take place.

Research Design

While most investigations adopt a qualitative tradition to explore mathematics-related
identity (e.g. Black et al., 2010; Darragh, 2016), some quantitative studies exist (Kaspersen
et al., 2017). Given an aim of this study was to gain a deep understanding of the socio-
cultural experiences of prospective primary teachers, we adopted qualitative methods
including a reflective task to elicit the historical information we needed. Hence, a second
aim of our study was to explore the merits of a qualitative identity task that encourages
individuals to graphically represent the high and low points in their relationship with
mathematics over their life experiences. The identity graphing task, accompanied by an
individual semi-structured interview, is appropriate for studies adopting a cultural-historical
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approach given its capacity to capture reflective insights into the impact of past events that
may not have been obvious to PSTs when they occurred. The research questions addressed
were:
1. What experiences in the lives of prospective primary teachers do they report as
influencing their emerging identities with mathematics?
2. To what extent can an identity ‘graphing’ task provide information about the socio-
cultural and historical contexts in which mathematical identities are shaped?

Setting and Participants

All prospective primary teachers (N = 96) enrolled in the final year of a four-year
Bachelor of Education program (B.Ed. Primary) at a large university located in an Australian
state capital were invited to participate in the study. Nine PSTs (six female, three male) aged
20-24 agreed to participate. Background data were collected at the start of the interview for
all participants and are summarized in Table 1. All participants completed mathematics in
their final year of secondary school and were born and schooled in Australia. Four PSTs had
Asian born parent(s).

Table 1
Background Details of the Nine Participants

Participant  Parents’ Birth Level of Mathematics completed in Year 12 (final
Pseudonym Country year of secondary school)
Abigail Both Australian Intermediate
Mother UK :
Arthur Intermediate
Father Hong Kong
Angela Both Sri Lankan Advanced
Brenda Both South Korean ~ Advanced
Benjamin ~ Both Australian Intermediate
Blake Both Australian Lowest Level
Charlotte Both Australian Lowest Level
Celeste Both Australian Lowest Level
Caitlyn Both Chinese Intermediate

In this paper we report detailed findings for two of the PSTs to illustrate the capacity of
the identity graphing task. However, we draw upon data from all nine participants when
referring to common themes. Brenda and Caitlyn were selected for closer focus due to the
clarity of annotations on their identity graphs and because the end-point on their graphs (their
relationship with mathematics as they perceived it at the time of this study) were very
different, despite sharing some similar socio-cultural experiences.
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Data Collection Tasks, Procedure and Analysis

The introductory phase of the interview involved questions intended to gather
information on PST’s family backgrounds, schooling and involvement in mathematics study.
The second phase comprised an identity graphing task. The ‘Me and Mathematics’
instrument developed by Lewis (2013) was adapted to gain a visual representation of each
PST’s relationship with mathematics. This instrument was modified to specifically capture
how PSTs’ mathematical identities had been shaped by their past experiences. Participants
were asked to reflect upon their memories (as far back as they could recall) and involvement
with mathematics that they felt helped shape their current relationship with the discipline.
They were then provided with a A4 sheet of paper containing a pre-drawn horizontal and
vertical axis. The horizontal axis was labelled “key events that have shaped my identity with
mathematics” and the vertical axis was labelled “degree of enjoyment/dislike/confidence/
anxiety”. Participants used a black pen to construct a line graph representing the high and
low points in their ‘relationship’ with mathematics and then annotated it with a different
coloured pen to describe the nature of each experience.

In the final phase of the interview and immediately after drawing their identity graphs,
participants were questioned to clarify reasons for turning points in their graphs. Our focus
here, is on those turning points. In particular, we wanted to gain a better understanding of
the socio-cultural aspects underpinning such key events and of PSTs’ behavioural, cognitive
and affective responses to them. The open-ended questioning offered in-built flexibility
during data collection as it encouraged PSTs to comfortably share their stories, eliciting
‘how’ and ‘why’ they possessed certain mathematics-related identities (Neuman, 2013).
Blending the strengths of identity graphing and semi-structured interviews improved data
validity as the focus for the data collected was specified, and the participant role in the data
generation process was increased (Tashakkori & Teddlie, 2010).

Individual interviews were audio recorded and transcribed to assist with analysis. Data
from the interviews and the identity graphs were combined for analysis to provide a wholistic
picture of each PST’s data. An across case thematic analysis was conducted involving Braun
and Clarke’s (2006) six phases—data familiarisation, generation of initial codes, search for
themes, review and defining themes, and report production. Given our interest in primary
PSTs’ shifting relationships with mathematics from both a cultural and historical
perspective, initial coding adopted the major theme of culture which was soon divided to the
subthemes of ethnicity-culture, family-culture, and school/classroom-culture as analysis of
data proceeded.

Results and Discussion

Thematic analysis involving all nine participants revealed that cultural expectations,
parental and teacher influences were among the key factors that shaped PSTs’ mathematics-
related identities. A notable feature common to all identity graphs, was the oscillations
between “high” and “low” points in PSTs’ relationships with mathematics throughout their
lives. This characteristic oscillation occurred regardless of whether they perceived their
current mathematics-related identity in a positive or negative light. These graphic
representations affirm conceptualisations of identity as a dynamic construct that is constantly
shifting. Moreover, just one event has the potential to instigate a downward or upward
trajectory in mathematics-related identity formation. Of interest was the nature of events that
could influence trajectory changes and why some PSTs could experience similar events to
others but develop very different mathematical identities. It is reassuring to note that a
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downward trending relationship with mathematics can be reversed with the right
combination of socio-cultural experiences. We now restrict our presentation and discussion
of data to Brenda (Figure 1) and Caitlyn (Figure 2).

Brenda and Caitlyn both expressed the view that their Asian heritage greatly influenced
their mathematics-related identity formation as they were growing up. Brenda, who went to
a selective high school, reflected: “If I told someone who was not Asian that I did 3-Unit
maths, they wouldn’t be surprised ... . Non-Asian students would be surprised if they did
perform better than | did.” While the stereotype assumption that “Asian students are good at
mathematics and non-Asian students are not” in both PSTs’ schooling experiences was
prevalent, they responded differently. On inspection of her graph, it is clear that Brenda
considered her earliest relationship with mathematics as quite positive (the first high point
in Figure 1). It was recalled in terms of her academic performance relative to her peers. She
used a different coloured pen (blue) to record each memory referencing her parents and
family — successive comments pertaining to family appear at the two lowest points on her
graph. Brenda eventually opted to take advanced mathematics for her final years of
secondary school and despite some low points associated with poor test scores in Year 11
(as represented in Figure 1 at the fifth turning point), managed “through effort” to improve.
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Figure 1. Brenda’s identity graph

The same stereotype had a negative impact on Caitlyn. In early high school, she wanted
to maintain the expectation that Asians are good at mathematics but when she achieved
poorly in Years 9 and 10 (as represented in Figure 2 by the dip between Years 7 and 9/10),
she actually felt “proud not fitting into that Asian stereotype”. She also stopped caring or
“trying” to do well in mathematics, believing she had already failed the Asian expectation.

135



Bobis, Nguyen and McMaster

Resistance to the Asian stereotype image by Caitlyn had a lasting impact on her relationship
with mathematics, continuing into her B.Ed. program and contributed to her resultant
“indifferent” attitude toward mathematics.
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Figure 2. Caitlyn’s identity graph

Brenda’s Korean parents placed significant pressure on her to perform well in
mathematics. She shared that her parents “put a lot of emphasis on maths” and that “other
subjects weren’t considered” as important. Brenda experienced reduced self-confidence in
mathematics, as illustrated by the dip between Year 10 and 12 (Figure 1). A relaxing of
parental pressure to achieve in university mathematics was one of the factors that Brenda
attributed to regaining enjoyment in mathematics during her preservice program. Similarly,
Caitlyn’s parents, particularly her father, applied a great deal of pressure to perform well in
mathematics and attributed her ‘less than expected’ performance to the belief that “boys are
naturally better at maths”. Caitlyn indicated that once her parents concluded that she was not
going to achieve the level they expected of her, she stopped trying to improve and became
content to be “indifferent” to mathematics (see final down-turn in Figure 2). Sadly, such
indifference can be detrimental to her ability to nurture positive relationships with
mathematics by her future primary students.

Mathematics teachers and friendship groups were also substantially involved in shaping
PSTs’ mathematical identities. For example, Caitlyn attributed her upward slopes and peaks
on her identity graph to the “better”, “kind and amazing” mathematics teachers she had late
in high school and to the influence of “studious friends” in her first year of high school.
Similarly, Brenda considered her positive experience of mathematics teaching in first year
university as the reason for a spike in her interest and enjoyment of mathematics—a
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relationship that steadily increased to her final year of the program (as represented by the
final two turning points in Figure 1).

Conclusion

The identity graphs revealed that a range of socio-cultural experiences, including cultural
stereotypes, parental expectations, peer pressure, school culture, teacher expertise and
teacher empathy had the potential to shape PSTs’ personal views of and attitudes towards
mathematics, resulting in different mathematics-related identities. The semi-structured
interviews were critical to the interpretation of the reasons underlying individual PST’s
responses to each critical experience.

In this paper we have shown how personal mathematics-related identities can be elicited
from primary PSTs using a simple graphing task and interpreted via a cultural-historical
activity perspective. We posit the graphing task as a valuable qualitative method for
researchers and teacher educators to understand the experiences and conditions under which
mathematics-related identities develop. Combined with a semi-structured interview, the task
encourages participants to provide rich descriptions of past experiences and reasons as to
how/why they were considered influential in the formation of their mathematics-related
identities. Such information can assist mentoring processes to help prospective teachers
reflect upon identity formation and the experiences that can positively shape the
mathematics-related identities of their future primary students.
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This paper reports on two teachers’ perceptions as part of a project examining the learning
that took place when 9 and 10-year-old children used ScratchMaths in their programme. The
project used design-based methodology, which incorporated video-recorded classroom
excerpts, teacher interviews, and teacher analysis and review of their practice. The teachers
identified the students’ problem solving, collaborating using explicit mathematical and
coding language, and being cognitively engaged. They also recognized that their own practice
evolved into a more faciliatory role, while their understanding of coding processes grew
through learning beside, and through, their students.

In 2020, the new Digital Technology Curriculum (DTC) became a mandatory part of the
New Zealand (NZ) Curriculum but research indicates that NZ teachers and schools will find
adopting and implementing DTC challenging. This is because it encompasses proficiencies
such as coding that are outside the expertise and experience of many NZ primary teachers’
current understanding of digital technologies (Crow et al., 2019; ERO, 2019). Crow et al.
(2019) indicated a gap in the availability of resources that are specifically situated in
curriculum contexts, which would practically assist engagement with coding. They also
advocated that teachers and schools develop unique implementations. This paper reports on
a small research project that examined teacher practice with coding through the use,
evaluation and adaption of University College London’s ScratchMaths resources, and the
associated student learning. The project also aimed to enhance teachers’ coding and
computational thinking-based pedagogies and student learning while simultaneously
addressing the limited resources available for teaching coding in NZ.

Some NZ research has evaluated similar curriculum implementation at high-school level
(Johnson et al., 2017) and international research has examined some aspects of DTC (e.g.,
Falkner et al., 2014; Johnson et al., 2014). However, none of this research specifically
examined the affordances and implementation of DTC in the NZ primary-school context.
There has been very little research on the use and influence of coding in NZ schools, hence
the implementation of the DTC would benefit from being analysed by a collaborative
partnership of teachers and researchers, as teachers consider how, when and where it will
best be integrated into existing classroom practice, and explore how to support student
learning.

Scratch is a free-to-use graphical programming environment that provides opportunities
for creative problem-solving. It is a media-rich digital environment that utilizes a building
block command structure to manipulate graphic, audio, and video aspects (Peppler & Kafai,
2006). Studies have shown its potential for developing computational and mathematical
thinking in an integrated way, particularly in geometry and algebraic thinking (Calder,
2018). ScratchMaths aims to integrate computing and mathematical thinking effectively.
Mathematics is used as a context and gives purpose for developing computational thinking,
while the process of coding, particularly with ScratchMaths, is identified as being influential
on the development of mathematical thinking (Benton et al., 2018) and the understanding of
mathematical ideas such as algorithms and the 360 degree turn (Benton et al., 2017).

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 139-146. Singapore: MERGA.
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However, the ScratchMaths resources, while well-tested and effective resources, are
structured, with small incremental steps to be undertaken by students individually, whereas
in NZ learning is seen as a more collaborative, creative process (Ministry of Education,
2007). The project examined how the ScratchMaths resources might evolve to be more
conducive for learning in the NZ context. For instance, the development of collaborative
student-led projects in Scratch (e.g., Calder, 2018), which might also emerge with
ScratchMaths, would be conducive to collaborative problem solving.

Collaborative Problem Solving

In the consideration of collaborative problem solving, collaborative learning is first
discussed, together with its potential to improve learning and understanding. Ways that
collaboration supports learning when digital technologies are used and the influence of both
in facilitating problem solving are next briefly identified. The connection between
collaborative problem solving, the use of digital technologies, thinking, and student
engagement is then considered. Collaborative learning occurs when two or more students
are engaged in an activity, interacting with each other and learning together (Dillenbourg,
1999). This perspective of learning in mathematics repositions learning more as participation
in a social practice then as an acquisitional process (e.g., Cobb & Bowers, 1999; Sfard,
1998). Educational collaboration associated with problem solving has been connected to
academic success. For example, Mercer and Sams (2006) showed how students collaborating
while engaged in an online task produced enhanced learning outcomes in mathematics. Other
studies have illustrated how the collaborative use of digital technologies can support students
in developing more flexible approaches to problem solving (e.g., Mercier & Higgins, 2013).

Mercer and Littleton’s (2007) definition of collaborative learning goes beyond the
sharing of ideas and task coordination to “reciprocity, mutuality and the continual
(re)negotiation of meaning” (p. 23). Collaborative learning in line with this definition
involves the utilization of individual understandings and expertise, with the collaborative
interaction influencing the thinking of at least one participant in the interaction, even if there
is only a minor adaption, coupled with a repositioning of the learners’ perspective and
understanding. When students work collaboratively on a task there is frequently a
coordinated approach to the sense making and the approach taken when engaging with the
task. The joint coordination of a task enables students to communicate and negotiate in order
to support decision-making (Zurita & Nussbaum, 2004), and, as such, they are involved in
“a coordinated joint commitment to a shared goal” (Mercer & Littleton, 2007, p.23).

In general, digital technologies can enable opportunities to explore and organize data or
mathematical phenomena in ways that might facilitate mathematical thinking, and to see
patterns and trends more quickly in mathematical situations that might otherwise be too
complex to do so. With coding, this offers potential to learn through the iterative process of
engagement with the coding process, and reflection on the output that the coding generates.
The coder can try something and instantaneously identify the effects of the new coding,
enabling them to generalize coding attributes and refine their approach. With a visual
environment such as Scratch, where the coding and output screen sit side by side, these
relationships are even more easily identified (Calder, 2018).

Computational thinking can be considered a collection of problem-solving skills that
relate to principles of computer science (Curzon et al., 2009). At times, computer science
involves creating applications to solve real-life problems using computational thinking, an
analytical, computing approach for problem solving, modeling situations and designing
systems (Wing, 2006). Abstraction, allied with logical thinking, innovation, and creativity,
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is considered central to the constitution of computational thinking (Wing, 2006). These
elements also resonate with mathematical thinking and problem solving in mathematics.
ScratchMaths appeared to be an engaging and relatively easy to use space for problem
solving.

Research has indicated that students become more engaged when using digital
technologies, with enhanced mathematical learning also evident (e.g., Attard & Curry, 2012;
Bray & Tangney, 2015; Pierce & Ball, 2009). In educational settings, engagement is
recognized as more than the student being interested or participating positively, but as a
complex, eclectic relationship between the student and classroom work (Fredricks, et al.,
2004). They perceived it as being multi-faceted and operating at cognitive, affective and
behavioral levels. With regards to using mobile technologies in the process of learning
mathematics, Attard (2018) concluded that they do improve student engagement at
operative, cognitive, and affective levels.

Additionally, studies have indicated that Scratch was an effective medium for
encouraging communication and collaboration (e.g., Calder, 2010, 2018). This paper
considers teachers’ observations and perspectives of the students’ problem solving,
collaboration and engagement as they undertook coding tasks using ScratchMaths.

Research Methodology and Design

Using a design-based research methodology, with the teachers as co-researchers, the
project examined two teachers and their 9 and 10-year-old students’ use of the ScratchMaths
resources. This methodology, designed by and for educators, endeavours to enhance the
impact and implementation of educational research into improved classroom practice (e.g.,
Anderson & Shattuck, 2012). It can illuminate the challenges of implementation, the
processes involved, and the associated pedagogical and administrative elements (Anderson
& Shattuck, 2012). Design research necessarily comprises multiple cycles, which involve a
number of different design and research activities. Nieveen and Folmer (2013) divide these
activities into three distinct phases: the preliminary research phase; the prototyping or
development phase; and the summative evaluation phase. These three phases, involving the
teachers and including videoing of their classes, were implemented through iterations of use,
reflection and modification of the resources and the associated pedagogy.

The research design was also aligned with teacher and researcher co-inquiry whereby
the university researchers and practicing teachers work as co-researchers and co-learners
(Hennessy, 2014). Allied to this was an emphasis on collaborative knowledge building. The
research design was based on a transformational partnership arrangement that aims to
generate new professional knowledge for both academic researchers and teachers
(Groundwater-Smith et al., 2013).

The ScratchMaths resources identified by the teachers to use initially were from module
one and included: Moving, turning and stamping, and creating circular rose patterns. The
ScratchMaths resources and existing projects were used as starting points for the lessons,
with the “unplugged” activities also incorporated into the sessions. Some of these class
sessions and individual groups working on the tasks were video recorded. There were two
iterations of the review and design process with videoing of classes each time, followed by
co-researcher meetings to examine the classroom practice. One element of these meetings
was the analysis of classroom video recordings. Discussions in the meetings were recorded,
as were the teacher interviews.
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The research question related to this paper was: In what ways might the use of coding
embedded within a mathematics curriculum context, influence teacher practice and
children’s coding and mathematics engagement?

Results and Discussion

The paper reports on teachers’ perceptions of how using ScratchMaths facilitated the
learning process in four key areas: problem solving, collaboration, mathematical thinking
and the teachers’ pedagogical approach. The teachers consistently commented on how using
ScratchMaths fostered a problem-solving approach as the students found solutions to
unfamiliar problems in mathematical contexts, through a variety of approaches. For
example:

Annie:  The children were problem solving, risk taking and learning from failure

Marama: It’s massive (problem solving). For some activities there are no instructions for how to get
them from there to there, they just had to work it out.

The students use of ScratchMaths within the problem-solving process at times led to
enhanced engagement. The process of debugging code was a particular aspect that some
students became immersed in. This is a part of computational thinking that involves
reviewing the code through trialing and when it didn’t produce the desired output,
collaboratively problem-solving possible solutions. It might also involve the output
unexpectedly stopping or going into continuous loops. While the aspect of debugging was
highlighted by the teachers at times, usually students were self-motivated with this process
through wanting the script to be consistent with their expectations of the output. Marama
commented on the student engagement consequential of the debugging process:

There would not be many things that would have them that focused on what they’re doing so intensely.
They would be doing debugging the whole time.

The teachers identified that the students not only appeared more cognitively engaged but
that the process facilitated enjoyment and a sense of fun.

Marama: They’re having a laugh as well you know... it’s not all serious... even though it’s heavy duty
problem solving. They’re having fun, they’re smiling and enjoying working with each other
too.

Marama: Well, it’s not quiet in our classroom but it’s not off task noise, it is completely on task noise.
It’s talking about what they are doing and it’s excited talk.

The students interacted with each other in a relatively natural, seamless manner as they
explored potential solutions and then collaborated to make their codes more efficient. As
they worked to design the scripts and subsequently make the codes more efficient, they
shared ideas and potential solutions using language that used coding terminology, or was
related to the mathematical or coding processes that they were discussing. The teachers noted
this in the interviews. For instance, Annie indicated how the collaboration fostered their
shared understanding of language, and hence from her perspective, their mathematical and
computational thinking:

Annie: It supported students’ learning through communicating with friends, problem solving,
increasing their mathematical knowledge and mathematical and coding language, bringing
that all into the norm of how we can talk about coding.

Annie:  So, then we can look at different ways of how children create a script to get to an end product
and look at just simplifying the script.
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Marama identified instances when students found efficient ways to code that were valued
by other students, enhancing their mana (respect) within the class. Sometimes this wasn’t
the students who were usually perceived as being more capable in mathematics so it
readjusted those perceptions.

Marama: There are kids that are capable but then someone quietly just comes up with this really
simple code to do something that someone else has taken a long time to do and they think
they’re good so it’s kind of just levelled everyone out

This also indicated how using ScratchMaths facilitated collaboration. Collaborative
learning can be perceived as going beyond the sharing of ideas and task coordination to the
ongoing negotiation of perspectives and meanings (Mercer & Littleton, 2007). Collaborative
learning in line with this definition was identified:

Annie:  So, it gives a context for social interaction to happen where they’re learning to code and
learning maths.

Marama: They’re definitely getting extended in their maths but also that social side of it, working
together collaboratively like that and not... someone not (always) taking a lead role, they’re
all in different roles all the time, sometimes they’re teachers, sometimes they’re learners.

While the ongoing negotiation and evolving perspectives are indicated here, this also
indicates that the students’ roles were flexible and contingent on their personal, and the
group’s understandings. Observational data also suggested that there was contestation of
ideas during the collaborative work. Not only did the students interact through the ongoing
dialogue as they problem solved to find solutions, students did at times became leaders of
learning.

Marama: One of the girls solved this thing that really no-one else was managing to do and she
managed to crack it. Well the whole class was whoosh over there, so that’s fantastic that
she’s having to explain it and off they go all excited.

Much of their work involved mathematical thinking. Further, the interview data revealed
that at this later stage, for one teacher, the activity focused on the mathematics to begin the
task. So, the coding in some instances was a way to enact the mathematical ideas. This was
the perception of one of the teachers:

Annie:  It’s the maths first and then the coding.

After several weeks they decided to make the work with ScratchMaths an integral part
of their mathematics programme, so one of the classes usual mathematics sessions became
the session using ScratchMaths. The teachers also found that the mathematical thinking
related to both concepts and processes arose more naturally within the ScratchMaths
activities. For instance:

Annie: | think because maybe the opportunities with this program and what it’s actually focused on
with the angles and the measurement side and the negative numbers — we’ve been going
through this for three terms so it’s that continual weekly learning of that that’s probably
been more cemented than what it could have been if we had been teaching it in isolation.

While the teachers made the mathematical thinking explicit to the students by referring
directly to the mathematics and using mathematical language, some of the mathematics
emerged through attempting to solve and accomplish the tasks, and the collaboration on the
coding aspects. In this way, some of the mathematical thinking and learning was more
incidental as the need arose, and outside the usual curriculum level for that age group.

Annie: It was just-in-time learning around the maths concepts. The use of angles was very in-depth.
They used negative numbers, degree turns and always mathematical language.
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For instance, negative numbers were not part of the curriculum for this particular age
group. In a later discussion they identified some of the other mathematical thinking that
occurred: Relationships, exploring variations, precision with language, methodical thinking,
and strategies for problem solving. Their spatial awareness, understanding of angles, and
positioning sense through the use of coordinates, were all engaged to varying degrees. There
was also evidence of relational thinking as the students made links between their input, the
actions that occurred on screen, and the effect of specific variations of size in coding
procedures. They discussed how the students came to conclusions and gave explanations of
what they had done.

The fourth aspect reported here is the teachers’ pedagogical approach, which varied from
their usual approach when teaching mathematics.

Marama: I don’t know that I need to know everything. Most of the time it’s the kids that are the ones
that solve things. They are learning off each other a lot more, they’re going to each other a
lot more, they’re talking a lot more.

Annie: The classroom approach is to explore, but the mathematics and coding objectives are
explicit. At times (we) start with ScratchMaths for say, angles. There is a purposeful context
for the learning.

Marama: The teachers’ role is facilitating learning — actively scaffolding processes and content.

The teachers were consistent in their belief that positive student learning had occurred and
also regarding students’ collaboration and engagement when problem solving. They
articulated their personal learning regarding coding processes, while acknowledging that
their role in the classroom had evolved.

Conclusions

Although findings are presented as four separate aspects, they were mutually-influential
elements that the teachers perceived had contributed to student engagement and learning.
The work with ScratchMaths simultaneously influenced teacher practice, moving them
towards a more faciliatory approach and greater understanding of coding processes. The
students’ mathematical thinking and learning in coding were tied to their solving of both
mathematical and coding problems, while the explicit language of both contributed to the
communication of processes, concepts and solutions. Students at times became leaders of
the learning.

Much of the conceptual understanding and thinking related to the Geometry and
Measurement strand of the NZ curriculum, in particular, angles and spatial perception.
However, the process the participants undertook more directly facilitated mathematical
thinking through the creative problem-solving process it evoked, and the development of
logic and reasoning as they responded to the various forms of feedback.

While the findings were limited by the size of the project and the particular context in
which they were enacted, they nevertheless give insights into the ways learning in both
mathematics and coding might be enhanced through the ScratchMaths resources. The
research is ongoing, with more schools and a broader range of classes and teachers now
involved, and there is still analysis of the data to be completed, but further research into a
broader range of contexts and some assessment and analysis of students’ mathematical and
computational thinking is anticipated and will give clearer, more comprehensive insights.
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When mathematics teachers plan lessons, they interact with curriculum materials in various
ways. In this paper, we draw on Brown’s (2009) Design Capacity for Enactment framework
to explore the practice of adapting curriculum materials in the case of a Singapore secondary
mathematics teacher. Problems from the textbook used and the worksheets she crafted were
compared to determine how she adapted the content. Video-recordings of the lessons and
post-lesson interviews were used to clarify how her personal teacher resources contributed
to her design decisions. The findings suggest that her seemingly casual use of problems from
the textbook are in fact unique variations of adapting curriculum materials.

Singapore’s success in large international studies (e.g., TIMSS, PISA, etc.) has left many
nations curious to learn about its pedagogical practices. However, a common assumption is
that Singapore teachers predominantly employ a “drill and practice” approach and are
reluctant to deviate from curriculum materials (e.g., printed textbooks, workbooks) to meet
the specific needs of their students (Toh et al., 2019). Despite this, Leong et al. (2018)
demonstrated that such was not the case for Singapore secondary mathematics teacher, Teck
Kim, who created worksheets by modifying content from a textbook for “making things
explicit” (p. 47). His modifications included: (i) filling in gaps in the content he felt were
fundamental; (ii) linking different representations to deepen students’ understanding; and
(ii1) highlighting ideas he deemed critical. In light of this, we argue that a key feature to
Singapore teachers’ practices, which may generally go unnoticed, is their transformative use
of curriculum materials in planning instruction tailored for their students. In this paper, we
explore another case of a Singapore secondary mathematics teacher, Mrs Fung (pseudonym),
who demonstrated another way to adapt curriculum materials that was different from Teck
Kim when she crafted trigonometry worksheets using a textbook for her lessons. To do so,
we utilise Brown’s (2009) Design Capacity for Enactment (DCE) framework to explore the
adapting process and to answer the question: How does Mrs Fung, an experienced and
competent mathematics teacher in Singapore, adapt curriculum materials to design
worksheets?

Theoretical Underpinnings

Teachers’ use of curriculum materials has been conceptualised in many ways. For
instance, Shulman (1987) broadly described teachers’ interactions with textbooks as
pedagogical reasoning and actions, which involves comprehension, transformation, and
instruction, informed by their knowledge and understanding of the text. For Sherin and
Drake (2009), these interactions were referred to as reading, evaluating, and adapting, which
drew on teachers’ curriculum strategies. For Amador et al. (2017), these interactions

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43™ annual conference of the Mathematics
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involved a set of skills, known as curriculum noticing, in which teachers attend to the
materials, interpret what they attended to, and decide how to respond (e.g., to include or omit
a problem). Likewise, Brown and Edelson (2003) described this as a teachers’ pedagogical
design capacity (PDC), their ability to “perceive and mobilize resources in order to craft
instructional contexts” (p. 13). First, teachers perceive and interpret curriculum resources,
then they evaluate their potential to achieve instructional goals, and finally these evaluations
inform their decisions for teaching. To demonstrate the factors involved when teachers
interact with curriculum materials, Brown (2009) proposed the Design Capacity for
Enactment (DCE) framework. The framework is composed of two types of resources:
curriculum resources and teacher resources. Curriculum resources are physical objects and
their representations (e.g., manipulatives), the representation of tasks (e.g., instructions for
teachers, structure of lesson), and representations of concepts (e.g., models, descriptions of
concepts). Teacher resources include the teacher’s goals and beliefs, their subject matter
knowledge, and their pedagogical content knowledge.

Brown (2009) characterised teachers’ interactions by considering the varying degrees of
responsibility shared between the curriculum and teacher resources. On one end of the scale,
teachers can offload their responsibility as designers of the lesson and instead choose to rely
primarily on the curriculum resources (e.g., teaching in direct alignment with the textbook).
On the other end of the scale, teachers can improvise by predominantly relying on their own
resources. According to Brown, improvisations are typically spontaneous and occur due to
unexpected events, such as realising students held fundamental misconceptions about a
related concept. As a result, a conscientious teacher may deviate from the textbook to address
these misconceptions by generating their own content. Lastly, an intermediate of the two
processes is when teachers adapt the curriculum materials. By sharing the responsibility to
design between the curriculum and teacher resources, teachers can use content in a textbook
as inspiration for instruction. For example, instead of directly using an example given in the
textbook, the teacher could generate a similar example by changing the context and figures,
thereby applying their own subject matter and pedagogical content knowledge to ensure the
lesson goals are still achieved.

The DCE framework has also been used by Amador (2016) to describe teachers’
approaches to lesson planning in relation to their consideration for students’ thinking. Three
planning themes emerged from the study: (i) adapting in response to students’ understanding
(e.g., editing exercises to highlight features that students had neglected in the previous
lesson); (ii) producing competence in students’ procedural fluency (e.g., frequently
including in-class quizzes to demonstrate ability to solve); and (iii) regulating content to
ensure students keep up with the curricular pace, regardless of students’ progress (e.g.,
strictly following the school syllabus, maintaining the same lesson structure).

In the context of Singapore, the teaching practices and supposed curriculum are often
perceived by those outside of Singapore as overwhelmingly aimed at producing and
regulating. Thus, students would rarely have opportunities to engage in “genuine” problem
solving experiences that would be more conducive to their knowledge growth, such as
experiencing productive struggle (Schoenfeld, 2017; Henningsen & Stein, 1997). Instead of
adapting or improvising materials to accommodate students’ needs (e.g., to stretch their
thinking), Singapore teachers are believed to be offloading responsibility to the curriculum
resources which aligns with more traditional teacher-centred practices (Toh et al., 2019). In
the context of the aforementioned teacher, Teck Kim, Leong et al. (2018) reported that he
purposely adapted content from the textbook by changing the representations and improvised
his own self-created tasks. This brought us to wonder, how does Mrs Fung, an experienced
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and competent teacher similar to Teck Kim, negotiate curriculum resources and her teacher
resources to inform her decisions in adapting curriculum materials? To what extent are her
goals achieved through her decisions?

Methods

The data presented was taken from a larger project, which explored the distinctive
instructional practices enacted by Singapore mathematics teachers. Mrs Fung had taught
secondary mathematics for over 10 years and had been recognised by the local professional
community as being an effective mathematics teacher. The class that Mrs Fung taught was
a Year 9 class, which comprised students who scored between the 25" to 60" percentiles in
the nationwide Primary School Leaving Examinations (PSLE) at Year 6. Mrs Fung was
selected as the subject of the study after the first author, a non-native to Singapore, observed
her unique implementation of personally authored worksheets to teach introductory
trigonometry in place of the textbook, Discovering Mathematics 3B Normal Academic
(Chow et al., 2015a). The trigonometry unit consisted of seven lessons between 30-60 min
in duration. In this paper, we discuss Lesson 6 of the trigonometry unit.

Three sources of data are presented in this paper. The first are the physical materials that
Mrs Fung used and created. This includes one worksheet (Worksheet 6.4) crafted by Mrs
Fung, and the curriculum materials she drew on for the design of her worksheet — Section
6.4 from the textbook (Chow et al., 2015a) and the teachers’ guide (Chow et al., 2015b). The
second source of data is a video-recording of the post-lesson interview conducted with Mrs
Fung after Lesson 6, which discussed her goals and the events of the lesson. Some prompts
that were used in the interview were:

e What were your goals for the lesson?

¢ Do you think you have achieved your goals that you have set out to achieve? How

were the goals achieved?

e What is the most ambitious or challenging thing you did in the lesson?

The third source of data is a video-recording of Lesson 6 when Mrs Fung implemented
Worksheet 6.4, where a researcher took a non-participant observer approach.

Data analysis was conducted over three phases. In the first phase, the problems from
Section 6.4 (Chow et al., 2015a) were categorised according to the mathematical processes
required to solve them (e.g., insert an auxiliary line, two-step calculations). The model
examples from the teachers’ guide (Chow et al., 2015b) were also consulted to confirm these
were the expected solving methods.

In the second phase, the categories found from Section 6.4 were applied to the questions
in Worksheet 6.4 to determine if Mrs Fung had offloaded, adapted, or improvised from the
textbook. This included two levels of comparison: item-to-item and set-to-set. On the item-
to-item level, the categories were used to determine if Mrs Fung had offloaded, adapted or
improvised the content in her worksheet. On the set-to-set level, the structure of the
worksheet and its contents as a set were compared with the entire of Section 6.4 to determine
similarities and differences in sequencing. The usefulness of this dual-level of analysis will
be made clearer in the next section of this paper.

In the final stage of the analysis, the post-lesson interview and video-recording of Mrs
Fung’s enactment of the lesson were used to triangulate the decisions she made to offload,
adapt, or improvise. We focus on her discussions about her lesson goals and beliefs which
impacted her design decisions.
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Findings and Discussion

Before implementing Worksheet 6.4, Mrs Fung played an introductory video for the students
in the lesson to demonstrate how trigonometry could be used to solve contextual problems.
Subsequently, she began implementing Worksheet 6.4 and asked the students to complete
the first question by themselves. If time permitted, students would consult with their peers
seated nearby, typically to check if their solutions were comparable. Mrs Fung neither
encouraged nor discouraged students to share ideas with their peers but always requested
that they initially attempt the problems by themselves. After the solution for the question
was discussed by Mrs Fung, the class moved onto the next problem in a similar process.

Prior to Worksheet 6.4 within the Trigonometry unit, the students had encountered and
solved problems using the Theorem of Pythagoras, learnt how to determine if a triangle was
right-angled, and applied trigonometric ratios to triangles with acute angles to find unknown
sides and angles. In the teachers’ guide to the textbook (Chow et al., 2015b), the primary
learning objective of Section 6.4 was to “apply the trigonometric ratios to solve some real-
life problems” (p. 10). The analysis of Section 6.4 and comparison with the model solutions
given in the teachers’ guide resulted in three categorisations of problems: (A) insert an
auxiliary line to solve an angle/length; (B) two-step calculations to find an unknown length;
and (C) two-step calculations to find an unknown angle (see Table 1 for examples). Four
worked examples (one of Type A and C, two of Type B) were first presented in Section 6.4,
then a similar problem was subsequently provided for each of the corresponding worked
examples for students to attempt. Afterwards, 19 exercise problems were given to be used
by students for further practice.

Table 1
Summary of categories of problems from Section 6.4 in Chow et al. (2015a)

Type  Process Order in Examples
B WS

A Insert an auxiliary 1 2 (Al) - See Figure 2 for full problem. g
line to solve an 4
angle/length 7

A 20 [7]

B Two-step 2 3 (B1) - AB and CD are two buildings on 0 %ﬂ
calculation to find level ground BD ... Find the T
an unknown height of AB. . ':.E| s |
angle/length i il

3 4 (B2) - The diagrams show the cross- | ~—a
section of a shed ABCD ... The e
roof AD is 3m long ... Find the §
height of the wall. & e

5 1 (B3) - B shows a bird flying above a “|
point A on the horizontal ground, |\

AD ... Find the height of the bird I N\
above the ground. L ;;;.\;

C Two-step 4 - (C1) - In the diagram, ADC is a o ——F
calculation to find straight road. Town B is 13km hY
an unknown angle away from A ... Find the size of

<BCD 3

Note. The table does not include the complete list of problems from the textbook, only those relevant to the
ones utilised by Mrs Fung. TB = Section 6.4 in textbook (Chow et al., 2015a), WS = Worksheet 6.4
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In comparison, at the item-to-item level, Worksheet 6.4 consisted of four problems that
were identical to four problems seen in Section 6.4. The representations of the problems
were not altered by Mrs Fung in her worksheets, which would therefore suggest that she had
offloaded her responsibility to design questions solely onto the curriculum resources and did
not adapt or improvise in her Worksheet 6.4. In other words, Mrs Fung had copied the
instructions and diagrams directly from Section 6.4 and did not include any modified or self-
designed content.

When comparing the two resources at a set-to-set level, it was evident that Mrs Fung had
adapted from Section 6.4 to design Worksheet 6.4 by omitting and resequencing specific
content. Firstly, Mrs Fung had only provided questions to students and did not provide any
worked examples. Although the specific reasons for this omission were not explicitly
discussed, Mrs Fung made several statements during the lesson and interview about how
students had attempted similar problems before without the real-life context and that she
wanted them to first attempt the problems individually. For the first question (B3), she
provided students with “five minutes to try out on your own”. Then she told the students,
“instead of telling me, most of you are already quite good with your TOA CAH SOH. Try
to read the content first, then they give you the diagram”. As she roamed around the
classroom, she prompted those students who appeared to have difficulty getting started to
“just give [the problem] a go”, to identify the appropriate sides and the relevant angles, and
reiterated that she would like everyone to attempt the questions individually first before
sharing or asking for help from neighbouring students. As she began to check their answers,
she asked a student, “Shane, you saw [another student’s] second part or you already know?
You already know or after you seen his? You saw his, then you realized [what to do]?”” She
continued to prompt students individually who appeared to be stuck but never told them the
solution. From these instances, it would suggest that one of Mrs Fung’s goals was for
students to learn to make sense of questions independently by drawing on their existing
knowledge. By omitting the worked examples, students would be more likely to engage in
the type of thinking that is typically expected in problem-solving activities (Henningsen &
Stein, 1997) and experience some moments of struggle in solving these typical textbook
problems.

Secondly, adaptations can be seen when comparing the sequence of problems. While
Section 6.4 had presented questions A1-B1-B2-C1-B3 in this order along with worked
examples preceding each question, Mrs Fung had chosen to present questions in the order of
B3-Al-B1-B2 (Table 1). Aside from the absence of C1 in Worksheet 6.4, which was not
addressed by Mrs Fung in the interview or the lesson, Mrs Fung had moved B3 to be the first
question. As previously stated, Mrs Fung had begun the lesson with a short introductory
video that provided scenarios for when trigonometry would be used in real life. In her post-
lesson interview, she expressed that she wanted to show students the video to help them get
a sense of “what is application of trigonometry about”. As they had only ever encountered
contextless problems, she was concerned that they would have language difficulties which
would hinder their ability to understand and attempt the problems. In relation to her goal,
Mrs Fung’s awareness of her students’ abilities and their previous understandings
contributed to her decision of the first problem she chose. The example in the video and B3
involved similar representation of tasks and diagrams (Figure 1), and thus it would be
productive to choose B3 as an introduction to solving applications in trigonometry if students
were to initially try to solve the problem by themselves. Although B3 was offloaded from
the textbook at the item-to-item level, when examining the differences at a set-to-set level,
Mrs Fung’s resequencing of questions demonstrated an adaptation of the textbook. This
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adaptation was influenced by the representation for B3 and Mrs Fung’s teacher resources,
namely her pedagogical content knowledge and her goals to develop students’ sense of how
trigonometry is applied.

(a) Example from introductory video (b) First question (B3) in Worksheet 6.4

Figure 1. Initial example and question given in Lesson 6

After most of the class successfully solved B3, Mrs Fung forewarned the students that
the next problem, Al (Figure 2), would not be as “straightforward”. In her post-lesson
interview, she noted that her goal was for students to be able to solve problems involving
two triangles but that she had anticipated that A1 would be the most challenging problem
for her students - “majority of them don't know how to approach this question”. As there
were no worked examples of similar problems provided, nor had she included any problems
that required adding an additional line to bisect the isosceles triangle in any of her other
worksheets, it was unlikely that her students had encountered such a problem before and
would know to draw the auxiliary line. Although she had intended to provide a hint for
students, she wanted to “let them struggle a bit” first, suggesting that she held the belief that
experiencing struggle was worthwhile and important for learning mathematics. In choosing
to specifically include A1, Mrs Fung’s decision was intended to provide an opportunity for
students to grapple with the problem in search of a way to approach it, thereby deepening
their skills and understanding of solving trigonometry problems with two triangles. Despite
the appearance that her inclusion of A1 was merely an offload of Section 6.4, Mrs Fung’s
interview suggests this was a deliberate decision for both providing an opportunity for
students to struggle and a resequencing with a consideration for students’ learning
progression.

13. Inthe diagram, 0.4 and OF represent two positions of the minute hand of a clock,
04 = 0B =20 cm and ZAOQB= 130" Find
{a) the distance AR, B
(&)  the perpendicular distance from O to 4B,

vy
A 20 fa)

Figure 2. Question Al in Worksheet 6.4, taken from (Chow et al., 2015a, p. 21)

Mrs Fung’s goals and underlying beliefs which informed the decisions she made in
offloading and adapting from the textbook can be described as an attempt to facilitate
opportunities for productive struggle (Schoenfeld, 2017). As the worksheet became the main
resource used in the lesson, to a large extent it replaced the textbook — a resource that would
have an abundance of worked examples and hints that would have been useful for students.
By omitting worked examples and asking her students to make sense of the problems
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individually before providing guidance, Mrs Fung’s adaptation through omission afforded
students the opportunity to try several methods and to learn from those that did not work,
rather than replicating a solution method from a worked example.

Secondly, while using an introductory video and B3 could ease students into solving
application problems, Mrs Fung immediately followed B3 with A1 — a problem she was
aware would cause some confusion. Mrs Fung discussed her concerns in the interview about
ensuring students could eventually manage to solve the problem, but still insisted that
students make an effort to think about how to approach the problem in the lesson. The
selection and sequencing of Al had the potential to cause students to become discouraged,
especially those who had previously solved B1 easily and were now completely unaware of
how to even approach Al. However, the nature of these adaptations also allowed her to act
as a guide to coach students as she roamed around the room and supported students
experiencing struggle. In comparison to the American teachers in Henningsen and Stein’s
(1997) study who avoided moments where students might experience struggle — despite
knowing that they may be beneficial for learning, Mrs Fung actively tried to create these
opportunities.

The use of the dual level of analysis prompted further investigation of Mrs Fung’s use
of the curriculum resources that was not accounted for by the DCE framework (Brown,
2009). Similar to Teck Kim from the study conducted by Leong et al. (2018), at first glance
Mrs Fung’s worksheet appeared to adhere with the previously mentioned assumption that
Singapore mathematics teachers simply offload their responsibility to tailor content to meet
students’ needs, and instead select and use standard questions to develop procedural solving
methods. At an item-to-item level, Mrs Fung’s offloading of problems seemed to be
consistent with this assumption. However, by examining Mrs Fung’s worksheet on a set-to-
set level, Mrs Fung’s worksheet could be understood as a product of her interpretation of the
curriculum resources and appropriation of the content with respect to her knowledge of her
students’ needs. She adapted from the textbook by omitting worked examples and re-
sequenced problems, while also essentially replacing the need for the textbook during
instruction. While Teck Kim adapted a textbook to create a worksheet to make concepts
explicit to his students, Mrs Fung adapted the nature and sequencing of the textbook to
facilitate students’ exploration in solving. This study of Mrs Fung provides yet another step
in the ongoing work of unpacking the complexities involved in Singapore teachers’ design
of instructional materials.

Concluding Remarks

The phenomena of teachers adapting curriculum materials is complex. At present,
existing frameworks on teachers’ curriculum use do not seem to fully capture what goes on
through the materials teachers create and the invisible process of deciding how to adapt.
Namely, while the DCE framework differentiates teachers’ interactions with curriculum
materials as offloads, adaptations, and improvisations, it does not address the potential for
different grain-sizes of offloads, adaptations and improvisations. In this paper, Mrs Fung’s
interactions with the materials for designing her lessons were analysed on two levels which
illuminated the different ways that she adapted from the textbook. From Mrs Fung’s
discussion of her lesson goals and observations of her enactment, her desire for students to
grapple with problems and attempt to solve them independently were facilitated by these
adaptations.

A limitation of the study is that the findings stem from secondary data gathered from a
larger research project which focused on teachers’ instruction, rather than their design of
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instructional materials. Hence, the inferences which were made about her design decisions
are restricted to the limited data available.

The case of Mrs Fung hopes to contribute to dispelling misconceptions about Singapore
teachers’ practices. In addition to Teck Kim, our findings suggest that when Singapore
teachers interact with curriculum materials to design lessons, there’s often more to the
process than meets the eye. However, we also get the sense that we are just scratching the
surface on what is an extremely complex phenomenon where several resources are all
simultaneously involved. Furthermore, we propose that for Teck Kim and Mrs Fung,
adaptations do not merely stop once the worksheets are created. Instead, they undergo an
additional round of adaptations during instruction in response to students’ reactions to the
worksheets. Future research should aim to examine the implications of additional rounds of
adaptations in comparison to a single round of adaptation.
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Despite recent calls to adopt practice-embedded approaches to teacher professional learning,
how teachers learn from their practice is not clear. What really matters is not the type of
professional learning activities, but how teachers engage with them. In this paper, we position
learning from teaching as a dialogic process involving teachers’ pedagogical reasoning and
actions. In particular, we present a case of an experienced teacher, Mr. Robert, who was part
of a primary school’s mathematics professional learning team (PLT) to describe how he
learned to teach differently, and how he taught differently to learn for a series of lessons on
division. The findings reiterate the complexity of teacher learning and suggest possible
implications for mathematics teacher professional development.

There have been recent calls to incorporate collaborative inquiry-based approaches
embedded in teachers’ practices to improve the teaching of mathematics. This has led to the
adoption of collaborative professional learning activities such as video clubs (van Es &
Sherin, 2002), Lesson Studies (Clea Fernandez & Yoshida, 2004), and collaborative lesson
research (Takahashi & McDougal, 2016). However, it would be “wishful thinking” to expect
that teachers would learn just because they gather “to talk about practice” (Bryk, 2009, p.
599). In Singapore, while there is extensive support for teachers to engage in learning
communities for the purpose of working collaboratively to learn and improve their teaching,
it is unclear whether and how teachers learn from these activities (Hairon & Dimmock,
2012). What really matters, therefore, is not the kind of professional development activities,
but rather how teachers engage with these activities (Choy & Dindyal, 2019; Fernandez, et
al., 2003). As claimed by Sherin (2002), learning from teaching occurs when teachers have
opportunities to negotiate among three aspects of their teacher knowledge: understanding of
mathematics, curriculum materials, and knowledge of how students learn. In this paper, we
refer to Sherin’s (2002) metaphor of teaching as learning to examine how a primary
mathematics teacher, Mr. Robert, learned from his teaching through a dialogic process
involving pedagogical reasoning and action (Shulman, 1987) as he worked with his
colleagues on a series of lessons to teach division for Primary Three pupils (aged 9). The
paper is framed by the following question: How does a primary mathematics teacher learn
from his own teaching via his participation in a professional learning team?

Theoretical Considerations

Following Shulman (1987), we see that teaching “begins with an act of reason” and
“continues with a process of reasoning” to culminate in a series of pedagogical actions, and
“is then thought about some more until the process can begin again” (p. 13). In other words,
with the aim of improving teaching, teachers need to learn to use their knowledge base for
teaching to provide justifications for their instructional decisions through a process of
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pedagogical reasoning. This process involves taking what one understands about content and
“making it ready for effective instruction” (Shulman, 1987, p. 14), through a cycle of
activities involving comprehension, transformation, instruction, evaluation, and reflection
leading to new comprehension. According to Shulman (1987), comprehension refers to how
teaching first involves understanding the content and purpose. When possible, teachers
should comprehend what they teach in different ways and relate these ideas to other ideas
within and beyond the subject. The key distinctive of a teacher’s work lies in how a teacher
transforms his or her content knowledge into “forms that are pedagogically powerful and yet
adaptive to the variations in ability and background presented by the students” (Shulman,
1987, p. 15). Transforming this knowledge involves preparation, representation,
instructional selections, adaptations of these representations and tailoring the representations
to specific students’ profiles. Although comprehension and transformation can occur at any
time during teaching, Shulman (1987, p. 18) sees these two processes as “prospective”,
occurring before instruction, an “enactive” performance in the classrooms. Moving on to a
more retrospective process, Shulman highlights evaluation as the means to assess students’
understanding and to provide feedback. But it is through reflection, by which a teacher looks
back at the instructional processes and experiences, that a teacher learns from his or her
experiences. This learning is encapsulated in the process of new comprehension where
teachers have a better understanding of teaching and learning.

Shulman highlighted that new comprehension does not necessarily follow through from
reflection. This explains that some teachers learn from their teaching experiences, while
others do not. Hence, we argue that new comprehension of content, student learning, and
teaching actions occurs when a teacher has a shift of attention, gaining awareness of new
possibilities in teaching and learning (Mason, 2002), or simply when a teacher notice critical
aspects of teaching and learning. These new insights expand the teacher’s current cluster of
resources, orientations, and goals (Schoenfeld, 2011), which in turn becomes the base from
which the teacher make sense of instruction. Moreover, as Choy (2016) has highlighted,
productive noticing can take place during planning, instruction, and reviewing of lessons.
Consequently, new comprehension can occur during any of the activities of Shulman’s
model of pedagogical reasoning and action.

Instruction Instruction
Prior Expanded
Resources, Initial . Resources, New Initial -
N R — . Transformation . N p— . Transformation
Orientations Comprehension Orientations Comprehension
and Goals and Goals
Assessment Assessment

Reflection

New
Comprehension

Reflection

Context

Context

Figure 1. Adapted Model of Pedagogical Reasoning and Action.

Building on ideas from both Shulman (1987) and Schoenfeld (2011), we developed an
adapted model of pedagogical reasoning and action to highlight the dialogic processes
involved when learning from teaching. The strength of Schoenfeld’s ideas lie in the fact that
teaching is goal-directed, rests on a set of resources, and driven by a teacher’s orientations.
The orientations aspect is quite important as it explains why some teachers loop back to do
happily what they have been used to doing and in doing so, submit to the exigencies of the
context. Thus, in the model above, we show that teaching starts with some prior resources,
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orientations and goals (ROG) and some initial comprehension. The teacher then transforms
the initial comprehended ideas into a form suitable for teaching the students. The iterative
and cyclical processes of transformation, actual instruction and assessment of learning feed
forward to the reflection of the teacher (to different extents for different teachers). This
process leads to some new comprehension, which may or may not lead to a new expanded
set of ROGs and the cycle repeats. What this adapted model affords us is the opportunity to
capture the complexity of the dialogic processes involved when teachers learn from their
practice. On one hand, teachers comprehend new ideas about content and teaching to apply
them in their instruction. On the other hand, they learn new ideas as they apply their new
comprehension in their instruction. We shall now illustrate the dialogic nature of a teacher’s
learning from teaching through the example of Mr. Robert, who learned and applied new
ideas about division as part a professional learning team.

Methods

The data presented in this paper were collected as part of a larger project which aims to
develop the proof of concept for a new professional learning model for mathematics
teachers. Drawing on current theoretical perspectives of teacher noticing (Dindyal, et al.,
2021; Fernandez & Choy, 2019), we conceptualized professional learning sessions where
teachers would have opportunities, in the context of a community of inquiry (Jaworski,
2006), to work and co-learn with us by:

1. Focusing on unpacking the mathematics in the curriculum documents;

2. Investigating how a topic may be unpacked in terms of a sequence of lessons, and a
lesson as a sequence of tasks;

Teaching a sequence of lessons as part of a unit;

Observing and reflecting upon a sequence of lessons;

Articulating their learning from the observations; and

Suggesting possible changes to the sequence of lessons and tasks based on their
learning.

oA

As highlighted by Jaworski (2006), sustainability is often an issue with communities of
practice and learning. To ensure sustainability and feasibility, we co-designed protocols to
guide each professional learning session as teachers worked together to plan and teach a unit
of work. As each session lasted about an hour and so, it was crucial that we built in specific
focus for each session to facilitate more productive discussions. We also provided teachers
access to relevant research and practice-based articles when requested, as well as templates
to facilitate teachers’ inquiry processes. Data collected include voice and video recordings
of the discussion during the sessions, photographs of lesson artifacts such as lesson plans,
discussion notes, and when available, samples of students’ work.

In this paper, we report how Mr. Robert, an experienced primary mathematics teacher
from Eunoia Primary School (pseudonyms), perceived and harnessed affordances as he
worked with a team of nine other teachers to discuss the teaching of long division to Primary
Three pupils (aged 9). The sessions were facilitated by a Lead Teacher, Ms. Mandy, who
had extensive experience teaching in the primary school. We were present at the sessions as
knowledgeable others to share new ideas for teaching. We did not insist that the teachers
adopt any particular idea that we had shared. Instead, we left all the instructional decisions
to them because we wanted to investigate their decision-making processes. The vignettes
described here were developed from data collected from four discussion sessions and a video
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recording of a short 20-minute segment of Mr. Robert’s teaching. The voice recordings of
the discussion sessions were parsed for segments related to discussions on the teaching and
learning of long division. Notable episodes involving mathematically significant moments
were marked for further analysis. Irrelevant incidents such as logistics and administrative
matters were discarded. The marked segments were reviewed, and initially coded for
processes related to our adapted model of pedagogical reasoning and action (See Figure 1).
The reviewed segments were then transcribed before they were coded using a “thematic
approach” (Bryman, 2012, p. 578) to highlight aspects of how Mr. Robert learned from his
practice. We acknowledge that it is difficult to distinguish Mr. Robert’s learning from the
learning achieved by other teachers. Here, we assume that Mr. Robert, as an individual, can
learn from his own teaching experiences, the ideas and experiences shared by his colleagues,
as well as ideas we, as the research team, had shared with him. This corresponds to what
Mason (2002) terms as the three worlds of experiences.

By Teaching We Learn: A Dialogic Process

Findings developed from our data suggest a dialogic process by which Mr. Robert had
learned from his practice. First, we claim that he learned some new ideas about teaching
division during the PLT discussions that offer opportunities to teach differently. Second, we
propose that he taught differently by trying out some of the ideas learned, which in turn give
rise to new comprehension. We will now describe vignettes of teachers’ learning, focusing
on Mr. Robert to highlight the dialogic process of learning from teaching.

Learning to Teach Differently

For the first two sessions, we worked with the teachers to unpack mathematical ideas
related to division using the components of school mathematics as proposed by Backhouse
et al. (1992), namely concepts, conventions, results, techniques, and processes. All the
teachers were cognisant of the quotative and partitive notions of division and were fluent in
performing the long division algorithm. They were also familiar with the key terms such as
quotient, remainder, and divisor but not the term dividend. More specifically, they seemed
to see quotient and remainder as part the answer to a division problem. For example, they
would write 82 + 4 = 20R2, seeing 20 as the quotient and 2 as the remainder being the answer
to 82 + 4. They did not think of other expressions that give the “same answer” as problematic.
For instance, when we highlighted that 62 + 3 = 20R2, the teachers did not notice any issues
with the notation. The usual way of writing the answer as “20R2” suggests that 82 + 4 is
equal to 62 = 3. It appeared that the teachers did not notice this until we pointed out the issue
to them. To highlight that the relationship between dividend, quotient, divisor, and
remainder, we introduced the following “new equation”:

Dividend = Divisor x Quotient + Remainder

For the teachers, this was something new and so we highlighted the relationship between
division and multiplication, e.g., 20 + 4 =5 is related to 20 = 4 x 5. More importantly, the
equation involving dividend, quotient, divisor, and remainder was linked to how division
can be demonstrated through manipulative, “splitting” the number into two or more
components, and the long division algorithm. As an example, we showed how 82 + 4 can be
visualised as distributing 80 items into 4 equal groups, with 20 items in each group; or seen
as 80 + 2, which can be rewritten as 4 x 20 + 2; and the long division which gives the quotient
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20 and a remainder of 2 when 82 is divided by 4 (See Figure 2). The sharing of these new
ideas provided opportunities for teachers to engage in comprehending the content and
transforming their new-found knowledge to usable forms.
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Figure 2. Snapshot of our sharing as documented on the whiteboard.

Teaching Differently to Learn

This “new” equation which highlighted the relationships between dividend, quotient,
divisor, and remainder was taken up by Mr. Robert who tried to use this idea for his own
teaching (Turn 15):

15. Mr. Robert I tried in my class, in fact | introduce in my class last week the quotient
.. like something like 9 = 4 + remainder something, you know the
remainder thing? For the equation thing we did last week.

16. Ms. Mandy Dividend = Quotient x divisor + remainder.

17. Teachers [inaudible] remainder theorem.

18. Mr. Robert We did that last week. We could get the simple ones. But how you
translate this to the long division working, it’s still a disconnect.

19. Researcher Yea. So, they could get this, they can understand this kind of thing ...

20. Teachers Small numbers [inaudible]

21. Mr. Robert 2 digits they can get, 3 digits they are gone.

22. Researcher Ok, so they could get 2 digits but not 3 digits.

23. Mr. Robert Maybe at the start we just started with 2-digit number. In fact, once it

goes beyond 20, they are a bit lost already.

Mr Robert’s use of the “new equation” highlights how new ideas shared or discussed
during PLTs can open up new opportunities to teach differently. As Mr. Robert
comprehended these ideas for himself and transformed them into a sequence of examples
involving 9, some 2-digit numbers, and even 3-digit numbers for his instruction (Turns 15,
21, and 23), he also began to be more aware of his students’ thinking (Turns 18 and 21). He
was able to assess that his students may be confused when the numbers went beyond 20.
However, it was his reflection about the possible disconnect between this “new equation”
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and the long division algorithm that opened up new threads of discussion and possibly
opportunities to acquire new comprehension during the PLT.

Cycles of Learning to Teach Differently and Teaching Differently to Learn

Here, we begin to see how Mr. Robert’s pedagogical reasoning and action had afforded
opportunities for him to learn to teach differently. In the discussion that followed, we
explored with teachers how students could make sense of division problems using different
methods. For example, for 48 + 3, students can do repeated addition: 3 +3 +3 + ... =48; or
they can do repeated subtraction: 48 —3 -3 —3 — ... =0. Students can also do skip counting:
3,6,9,...,48; or reverse skip counting: 48, 45,42, ..., 0, amongst others. We also introduced
the different chunking strategies (Putten et al., 2005), or what others refer to as partial
quotients (Takker & Subramaniam, 2018), before we linked these informal strategies to the
long division algorithm. For example, for 78 divided by 3, students may think of 3 x 10 =
30 and they will subtract 30 from 78 to give 48. Then they may subtract another 30 from 48
to give 18, and 18 divided by 3 is 6. Therefore, the answer is 10 + 10 + 6 = 26. This can be
presented in this manner:

6
10} 10+ 10+ 6 =36
_10
3)78
—-30
48
—-30
18
—18
_ 0
Mr. Robert then explored and used these ideas in his own teaching. As seen from the
snapshots taken from the video snippet of his lesson (see Figure 3), we see how he had
tailored some of the ideas for his students. Although Mr. Robert decided not to write the
“new equation” explicitly, he used the ideas to go through some of the informal division
strategies with his students. Mr. Robert’s decision to use the “7R1” notation could be in part
due to how all the approved textbooks present the answers.
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Figure 3. Snapshot of Mr. Robert’s lesson to demonstrate informal strategies.
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Figure 4. Snapshot of Mr. Robert’s lesson to demonstrate the chunking strategy.

In another snapshot (see Figure 4), we see Mr. Robert demonstrating the chunking
strategy (Putten et al., 2005) for his students. As seen from Figure 4, he used different colours
to denote the different place values to make it clearer for his students. This use of colours
was inspired by one of his colleagues in the same PLT who shared how the use of colours
helped his students to grasp the importance of place value to understand long division. Here,
Mr. Robert demonstrated the importance of learning new ideas from his colleagues and
trying these ideas to see if they work. As we examine Mr. Robert’s teaching and learning,
we begin to gain insights into how he had learned from unpacking the mathematics, his
colleagues, and knowledgeable others to be aware of different possibilities for teaching. But
we also see how he had actually tried to teach differently in order to learn from his own
teaching by assessing his students’ understanding and reflecting upon the lesson.

Discussion

It was clear to us that the teachers in the PLT, including Mr. Robert, struggled with these
ideas initially. However, it was also clear to us that teachers began to scrutinise these new
mathematical ideas about division and explored the possibility of incorporating these ideas
for their teaching. In other words, we argue that professional discussions involving
experiences from different people, which focused on making connections between
mathematics and pedagogy, have the potential for teachers to learn to teach differently.
Nevertheless, for teachers’ practices to change, it is necessary for them to try out these new
ideas, as Mr. Robert had done, and reflect on their teaching to gain new insights. That is, for
teachers to learn from their practice, it is necessary for them to learn about new ideas to teach
differently and teach differently to learn these new ideas.

What Shulman (1987) implied in his model of pedagogical reasoning and action is that
teachers can learn from their own teaching, or the idea of docendo discimus—by teaching,
we learn. This idea aligns with the current notions of professional learning, which involve
some form of job-embedded teaching inquiry activities, such as Lesson Study. However,
implementing such teaching inquiry activities may be challenging due to time and resource
constraints. There is a place and time for more elaborate teaching inquiry as part of a
teacher’s professional learning. But, what about the possibility of a teacher learning from his
or her own teaching on a day-to-day basis? If we were to examine the processes of
pedagogical reasoning and action, it became apparent that the model revolves around a
teacher’s day-to-day teaching activities. Hence, we propose two fundamental shifts in our
thinking about professional learning. First, we see every teaching moment as an opportunity
for professional learning. Second, we see pedagogical reasoning as the primary mechanism
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to effect changes in pedagogical actions, and eventually changes in one’s system of
resources, orientations, and goals. As exemplified by Mr. Robert, every moment in teaching
can provide affordances for teachers to learn from their own practice.
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The development of mathematical reasoning is a key proficiency for mathematics within the
Australian Curriculum. However, reasoning can be difficult for teachers to assess,
particularly with pen and paper tests. In this study, interview tasks were designed across three
curriculum areas at three different levels to assess student reasoning through the use of
examples and non-examples. Non-examples can be used to assist in building boundaries and
deepening conceptual understanding. Through the interview, teacher and student dialogue
can help students to demonstrate reasoning and clarify concepts through explanation and
justification.

This paper examines the use of task-based clinical interviews to assess reasoning in the
early years of school. The development of mathematical reasoning is considered a key
proficiency within the Mathematics Learning Area of the Australian Curriculum and is
described as a facility for “logical thought and actions” with “increasing sophistication”
(Australian Curriculum Assessment and Reporting Authority, [ACARA] 2018a). This may
be demonstrated, in part, through a student’s ability to compare and contrast ideas, explain
their thinking and justify conclusions made. In partnership with and addressed through the
learning area foci of the Australian Curriculum are the General Capabilities, including
Critical and Creative Thinking. Within this capability, students develop capacity to
“generate and evaluate knowledge” and “clarify concepts and ideas”, through “thinking
broadly and deeply” and using reason and logic (ACARA, 2018b). These definitions are
aligned to Kilpatrick’s (2001) description of adaptive reasoning, where students think
logically about conceptual relationships, reflect on their learning and justify their work. As
an essential part of the curriculum, responsibility for assessing reasoning and critical
thinking lies with the teacher.

Assessing students’ capacity to demonstrate reasoning in mathematics can be
challenging for teachers (Herbert et al., 2015). Formal, written pen-and-paper tests can be
difficult for F-2 students (Foundation, the first year of school - Year 2) to complete. It has
been established that this form of assessment may not accurately reflect students’ conceptual
understanding (Clements & Ellerton, 1995) and presents challenges to students at this level
due to the reading and writing skills required, in light of the students’ own developing
literacy skills (Clarke, et al., 2006). One-to-one task-based interviews which are grounded
in research are more effective at revealing students’ conceptual understanding as well as
their thinking and reasoning. For the purposes of eliciting and demonstrating mathematical
thinking, interviews are well suited to early-years students (Cheeseman & Clarke, 2007). It
is through the dialogue that happens between the teacher and the student that the student’s
reasoning becomes evident.

Task based interviews using non-examples, such as the ‘triangles task’ in the Early
Numeracy Research Project, allow students to reason through justification (Horne, 2003).
Similarly, Clements’ (1998) discussion of interview tasks using examples and non-examples
of 2D shapes, demonstrated that they allow students, through comparing and contrasting, to
focus on the essential attributes of the shapes and promote critical thinking. Examples in
mathematics generally fall into two categories: examples of a concept; or examples of the
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application of a procedure. Within these categories, examples can take the form of ‘generic
example’, ‘counter-example’ or ‘non-example’. Non-examples can help to clarify
understanding by sharpening distinctions and deepening understanding of mathematical
ideas (Bills et al., 2006). They provide an opportunity to reveal student thinking, and for
students to apply reasoning and formulate justifications for why an example is correct or
incorrect (Cavey & Kinzel, 2015). Teachers using non examples can assess students’
conceptual understanding and reasoning using interview tasks designed to reveal
misconceptions.

Methodology

Task-based clinical interviews were used to assess the reasoning of three students, at
three different curriculum levels and in three different content areas. Task-based interviews
were chosen for their utility as they are a valued tool for revealing student thinking,
particularly for students in the early years of school (Clarke et al., 2006). Students are able
to use discussion as a means of revealing understanding and therefore reading levels are not
an issue (Bobis et al., 2005). Task-based interviews have developed from a background of
Piagetian and Vygotskian theory, understanding that learning occurs in a social context. The
interview process is centred around the dialogue which takes place between the child and
the researcher, and the role of language is central to this. The researcher asks probing
questions and the child clarifies meaning through explanation (Hunting, 1997).

Tasks were designed in consideration of research, including the development of
conceptual understanding and common misconceptions, with one task for each level, at
Foundation (number recognition, matching quantities and numerals to ‘seven’), Level 1
(Counting on and counting back for early addition), and Level 2 (fractions, identifying
‘quarters’, demonstrating understanding of equal parts in a continuous model and fractions
in a discrete model). Tasks were created with examples and non-examples for each content
area, to expose conflicts in understanding which can arise through misconceptions (Zazkis
& Chernoff, 2008). With non-examples, students can dismiss concepts that do not fit with
their conceptual understanding however the dialogue within an interview can challenge this
notion. Non-examples were intentionally included because they can be used to clarify
boundaries for a concept, or where a procedure may not be applied, or fails to get a correct
answer (Bills et al., 2006).

“Kye”, aged five, “Cara”, aged seven, and “Oliver”, aged eight, (pseudonyms) attended
an urban government school, where the need for assessing reasoning had been identified as
an area for improvement within the school. The students were interviewed on site in a
meeting room. Tasks were conducted with each student individually, and instructions, or
questions were read to the students by the researcher. The students were then asked to explain
their answers and why they had chosen (or not chosen) each answer. Each interview took
approximately 10-15 minutes. The researcher recorded each answer and students’ use of
reasoning and justification were analysed from their responses

Tasks

Task 1

Task 1 (Figure 1) is a Foundation level task about number recognition. The Australian
Curriculum lists the content descriptor for this as: “Connect number names, numerals and
quantities, including zero, initially up to 10 and then beyond (ACMNA002)” (ACARA,
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2018a). Key concepts for this task include Gelman and Gallistel’s Counting Principles
(1978) which state that meaningful counting relies on children knowing how to count and
what to count. How to count includes: the one-to-one principle, where each item is counted
only once, and assigned to a number as it is counted; the stable-order principle, where the
number names are always used in the same fixed order; and the cardinal principle, where the
last number counted or named is the total of the collection. What to count, relies on
understanding the abstraction principle where anything can be counted including where the
items in a collection are different, and the order-irrelevance principle where objects can be
counted in any order.
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Figure 1. Foundation task

This task required the student to circle all the representations that showed ‘seven’.
Images chosen to represent familiar objects for Foundation students include: tens frames,
counters, fingers, and common objects, as well as numerals. The types of images were
chosen to reflect the counting principles, which are necessary for conceptual understanding.
All items assess cardinality and the stable order principle. In addition, the cutlery assesses
the abstraction principle, and the cupcakes and counters in a circle assess one-to one
correspondence and order-irrelevance. The tens frames images assess order-irrelevance and
could demonstrate knowledge of combining and partitioning (Clarke et al., 2006). Non-
examples include the numeral *1°, with extra ‘tails’ which could be mistaken by small
children as the numeral ‘7’. The counters arranged in a circle represent ‘six’ but could be
counted incorrectly by a student who is not able to create a start and end point for their
counting. One set of tens frames and one set of hands are non-examples, displaying ‘eight’.

Task 2

Task 2 (seen in Figure 3) is a Level 1 task about early addition and subtraction strategies
of counting on and counting back. The Australian Curriculum (ACARA, 2018a) lists the
content descriptor for this as: “Represent and solve simple addition and subtraction problems
using arange of strategies including counting on, partitioning and rearranging parts
(ACMNAO15)”. Research used to construct the task focused on counting stages (Steffe et
al., 1983), particularly those at the initial number sequence stage or counting in verbal unit

165



Copping

items. Students at this level are able to hold a number in their head and have a conceptual
understanding of the quantity that the number represents. Students are then able to count on
a given amount of numbers to find a total. (See for example the top left column of Figure 3).
This is acomplex cognitive task requiring that the child understands the relationship between
the symbolic representation of the task, as well as its relationship to process, numeration and
quantity (Boulton-Lewis & Tait, 1994).

The first question demonstrates both a correct method, (top left column of Figure 3), and
a common misconception for students who learn counting on as a process, (top right column
of Figure 3). These students count on, but include the last number stated, lacking the
conceptual understanding of the requirements of the task. Question two addresses counting
back, which is often more challenging for children than counting forward (Steffe et al.,
1988). A number line is provided for support, with the non-example showing a common
misconception where the child counts marks on the number line, (top number line in Figure
3), and a correct example where a child draws ‘jumps’ on a number line, demonstrating
counting back, (bottom number line in Figure 3).

Task 3

Task 3 (as seen in Figure 4) is a Level 2 task about fraction representations of quarters.
The Australian Curriculum lists the content descriptor for this as: “Recognise and interpret
common uses of halves, quarters and eighths of shapes and collections (ACMNAO033)”
(ACARA, 2018a). Key concepts for this task include the relationship between the numerical
representation of a fraction and models to represent this. Due to the frequent use of ‘pie’
representations in the teaching of fractions, students can misunderstand the representation of
a fraction in terms of a whole, particularly in a discrete model (Gould, 2005).

Representations of examples in the task include continuous and discrete models, equal
parts, different shaped wholes, and an equivalent fraction. Common misconceptions for
students include the understanding of equal parts in diagrams, and the relationship between
wholes and parts of wholes, particularly in discrete items (Gould, 2005). Non-examples in
this task include non-equal parts, images that represent one fifth in discrete and continuous
models, and a whole that has been divided into quarters.

Results and Discussion

Task 1

Foundation student “Kye” completed the number identification task (Figure 2) and was
immediately able to identify the numeral ‘7 as correct and the numeral ‘1’ as incorrect,
stating, “It’s not seven, because it’s a one”. He then counted the seven fingers correctly,
demonstrating one-to-one matching (Gelman & Gallistel, 1978) as he counted each finger.
Kye counted the cupcakes as seven, again counting them with one-to-one deliberate
matching, touching each cupcake as he counted. When drawing around the cupcakes, he
recounted, drawing a line past each cupcake as he counted, resulting in an unusual ‘circling’
of the items. He then counted the bottom right ten frame (Figure 2) once and circled it. Kye
once again relied on one-to-one matching, and did not demonstrate more complex
understanding of number, which could perhaps have demonstrated part-part-whole number
knowledge (Clarke et al., 2006), such as ‘5 and 2’, or ‘three empty spaces’. he then counted
the second set of fingers as eight fingers and said he wasn’t going to circle it, because it was
eight fingers.
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Kye had great difficulty counting the cutlery. He began counting and stopped halfway
through and went back to the start twice. On the third attempt he said he was going to count
them “carefully”. He proceeded to count each item very slowly, but again stopped. He then
said, “I’m going to count them at the bottom, and use my pencil”. Kye counted the handle
of each item, placing a pencil dot on the end of each cutlery item to count seven items. He
then repeated the process before circling the items. The cutlery, demonstrating the
abstraction principle (Gelman & Gallistel, 1978), were an obstacle that prevented Kye
counting the items. His strategy was to count the items at the bottom, where the items were
all the same. Kye also had difficulty counting the six dots in a circle and did not have a
clearly identified beginning and end point for his counting. Kye counted seven dots,
recounting his initial dot at the end, and immediately and confidently circled the group.
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Figure 2. Kye’s response to Task 1

Kye counted the final ten frame as eight and then started to circle the ten frame. He was
asked, “How many did you say there were?” and responded, “Eight”. He was then asked
which ones he was circling, and he said, “the sevens” After discussion he decided he would
recount the items. He recounted the dots, placing a cross on each to count eight and said he
wouldn’t circle them because there were eight and not seven. Kye was able to demonstrate
one-to-one counting and some of the counting principles. His reasoning demonstrated an
ability to justify why he believed something was correct. His critical thinking skills were
used in his ability to adapt his counting skills with the cutlery counting to enable him to
effectively count the items.

Task 2

Year 1 student “Cara” completed the addition and subtraction task (Figure 3). Cara was
able to correctly answer both questions in the task, but interestingly only able to demonstrate
reasoning in one part of the interview. In the addition question, Cara wrote her answer clearly
stating that the incorrect answer was wrong “...you don’t count the number your (sic) on.”
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When questioned, Cara said, “you already have 7, you don’t need to count it again, you have
to count on the next number”. Cara has demonstrated a correct understanding of the
procedure for counting on (Boulton-Lewis & Tait, 1994). She has also demonstrated an
ability to think logically about the relationship between the concept of addition and the
example and non-example provided (Kilpatrick, 2001). Cara has justified why one answer
was correct, and why another was incorrect.

Figure 3. Cara’s response to Task 2

In the subtraction question, although Cara was able to answer the problem correctly, she
was unable to demonstrate reasoning. When questioned on what she meant by “counted back
properley (sic)”, she said, “That’s the way you’re supposed to do it.” On further prompting,
she continued to talk about the “right way”. This was a procedural approach and her response
demonstrated that Cara had a ‘rule’ for using a number line; however, she did not have a
conceptual understanding of why this method was successful. Her inability to justify her
response, or why the other answer was incorrect, revealed that although she could identify
the correct solution, she could not articulate her mathematical reasoning.

Task 3

Year 2 student “Oliver” completed the fraction task (Figure 4). Oliver was able to
demonstrate understanding of quarters in both a discrete and continuous fraction model
(Gould, 2005). The task does not show discrete fractions with items of different sizes, which
should be added to the task for future interviews. Oliver was able to articulate the reasons he
provided to justify what was and what was not a representation of a quarter, including the
need for equal sized parts in a continuous fraction model. He was able to clarify from the
non-examples of fifths, what a quarter was: “This has five bits, but a quarter is one out of
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four”, and “There’s five people, not four, so it can’t be a quarter. It’s a fifth.” The non-
examples sharpened his interpretation of quarters (Cavey & Kinzel, 2015).
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Figure 4. Oliver’s response to Task 3 and interview notes

Logical reasoning is evident in Oliver’s identification of two-eighths as a quarter. “It’s a
quarter if you include both the purple bits, there’s four lotsof 1,2 -1,2, 1, 2,1, 2,1, 2. So,
two is a quarter in that scenario”. His justification and explanation of his ideas is a
demonstration of clear reasoning and his current conceptual understanding (Kilpatrick,
2001). Interestingly, Oliver stated that the pizza showed a quarter as all the quarters were
even. The interviewer said, “When I look at the pizza, I see four quarters, because they’re
all the same.” Oliver responded, “You know, I think you’re right, they are all the same.”
Initially the non-example had been dismissed by the student; however, the interview exposed
this conflict in understanding, and enabled Oliver to more clearly clarify his understanding
and create new boundaries for the concept of a quarter (Bills et al., 2006).

Conclusion

Although this was a small-scale study, only assessing one child within each identified
concept, some conclusions can be drawn. Using examples and non-examples in a task-based
interview situation allowed a teacher researcher to clarify conceptual understanding of three
students, within specific topics of the mathematics curriculum area. The tasks required
students to identify correct and incorrect examples of concepts and to justify their responses,
in order to demonstrate mathematical reasoning. A task-based interview assessment allows
for dialogue between the teacher and the student, to clarify the student’s thinking, and
provides an opportunity for the individual student to articulate conceptual understanding.
Prompting questions from the interviewer can be used to seek explanations, with reasoning
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and justification from the student; however, this relies on the pedagogical content knowledge
of the assessor. Therefore, the need for carefully planned, research-based tasks is essential
to the effectiveness of an assessment such as this, and can be useful to teachers, promoting
the assessment of reasoning, rather than just assessment of a procedure, or ability to follow
a ‘rule’. This enables the teacher, as the assessor, to gain a deeper knowledge of the
conceptual understanding of the student. The potential for a larger study, with a wider range
of students, could be considered to better understand the possibilities of using task-based
interviews to assess reasoning in a wider range of mathematical concepts.
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Young children are capable of engaging with ratio, measurement and operator meanings of
fractions earlier than many national curriculum standards indicate, yet current trends in
children’s understanding of fractions in Australia, remain weak. Research suggests that
spatial reasoning can positively influence mathematical knowledge; however, the connection
between spatial reasoning and fraction understanding remains under-researched. This paper
will present qualitative data from a Design Based Research study that examined a spatialised
approach for teaching fractions to 6-and 7-year-old children. Findings indicate that spatial
reasoning played an important role in helping children develop early fraction knowledge.

Examining the various perspectives of early fraction development reveals spatial
reasoning may play an important role in the construction of such ideas. For example, research
relating to young children’s proportional and fraction understandings suggests that children
engage in spatial scaling when reasoning in such contexts, which requires mentally shrinking
or expanding spatial information to determine the relationships between the relative
magnitudes (see Huttenlocher et al., 1999; Mohring et al., 2015) This work aside, Bruce et.
al. (2017) state there are many ‘gaps’ in relation to what is known about spatial reasoning
and its impact on mathematics education, including how different aspects of spatial
reasoning may support young children’s engagement with, and understanding of, early
fraction concepts. To explore this phenomenon, the following research question was
examined in a Design-Based Research (DBR) intervention study: In what ways does the
inclusion of a spatial reasoning approach to fraction instruction in the early years of
schooling influence children’s understanding of key fraction concepts?

Background

Fractions are an essential building block of mathematical knowledge yet are complex
because they are represented in multiple interpetations, such as fraction as a relation
(ratio/rate/ proportion); fraction as operator; and, fraction as a measure (see Confrey 2008;
Orbersteiner et al., 2019). Partitioning as an experienced based activity, provides the
foundation for the development of children’s understanding of fractions (Lamon, 1996;
Siemon, 2003) including the closely associated concepts of unitising and equivalence. These
concepts should be explored through the three aforementioned fraction contexts to enable
flexible and sophisticated understandings to develop (Confrey, 2008). However, current
research indicates that the key difficulties young children exhibit in developing early fraction
ideas are concerned with making the connections between the concepts of partitioning,
unitising and equivalence and the various representations and interpretations in which they
are explored (Bobis & Way, 2018; Way et al., 2015).

A growing body of research indicates that young children can engage with these concepts
utilising spatial reasoning (Congdon et al., 2018; Mohring et al., 2015). This research
demonstrates that young children can adequately problem solve in ratio and proportional
contexts when presented with spatial, non-symbolic representations. These fraction ideas are
typically not introduced into the curriculum until upper primary and middle school years.

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43" annual conference of the Mathematics
Education Research Group of Australasia), pp. 171-178. Singapore: MERGA.
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Whilst this body of research is limited, it does provide the warrant to explore the impact
spatial reasoning may have on helping children understand the relationships between early
fraction concepts, contexts and associated representations, to mitigate the persistent
challenges children exhibit in this area of mathematical learning.

Theoretical Perspectives

Spatial reasoning is defined using the National Research Council’s [NRC] (2006)
framework, which describes spatial reasoning as a problem-solving activity, involving the
coordinated use of space, representation, and reasoning. For the purposes of this paper, the
spatial reasoning constructs of spatial visualisation, spatial structuring and gesture will be of
focus.

Spatial Visualisation

Lowrie et al. (2018) define spatial visualisation as “the ability to mentally transform or
manipulate the visuospatial properties of an object...for example, visualizing a cube from
its net or predicting a pattern on a piece of paper that has been unfolded” (p. 3). This spatial
skill is the multi-step manipulation of objects generated or retrieved in one’s mind. Given
this definition, this skill involves visualising how different objects and contexts may be
manipulated mentally to help develop ideas of partitioning unitising and equivalence within
the three different meanings of fractions.

Spatial Structuring

Spatial structuring can be defined as “the mental operation of constructing an
organization or form for an object or set of objects”(Battista & Clements, 1996, p. 503). This
focusses on identifying objects’ spatial components and their composites, and establishing
what relationships exist between these elements. Fraction understanding is founded upon
partitioning, unitising, multiplicative thinking, and patterning which are also foundational to
spatial structuring (Papic et al., 2011).

Representations

Internal and external representations are key components of the spatial reasoning
framework. Goldin (1998) describes internal representations as systems of verbal/syntactical
representations, which describe the way a learner processes imaginative or mental images
that include visual and spatial cognitive configurations. These representations involve
children mentally organising a problem and mapping the processes for problem solving. In
the context of fractions, the external representations such as concrete materials, pictorial and
graphical representations, and language are central to this component of spatial reasoning
and mathematics education. Additionally, gesture is considered an external representation
which mediates mathematical meaning, particularly in learning and communicating spatial
information (see Alibali et al., 2014; Bobis & Way, 2018) and is an important theme in
relation to the present study.

Gesture

Gestures are described as the movement of a part of the body (typically one’s hands or
head) that is used to covey an idea or meaning. It can be used to connect, illustrate and
exemplify complex mathematical ideas so that children develop a deeper level of
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understanding and play a significant role in the cognitive processing of spatial information
(Alibali et al., 2014). The visuospatial nature of gesture makes it suitable for capturing spatial
information, in this case, information pertaining to early fraction ideas such as magnitude,
as it brings the imagined or abstract spaces and objects into a more concrete form.

Research Design

This paper reports on a sub-set of data collected as part of a larger DBR study, that
comprised of three cycles: a pilot cycle (Cycle 1) and two cycles of a teaching intervention
which included an identical pre and post-assessment and unit of work that replaced the daily
mathematics program for each class (Cycle 2 and 3), over a period of approximately three
weeks (per cycle). This methodology was chosen based on the premise that the educational
context is imperative for developing and extending theories for learning, and that "learning,
cognition, knowing, and context are irreducibly co-constituted and cannot be treated as
isolated entities or processes” (Barab & Squire, 2004, p. 1). Results presented for discussion
in this paper are drawn from two tasks in Cycles 2 and 3: (i) a pre/post assessment item and
(if) a mapping-based task from the unit of work. Participating students did not receive any
additional mathematics instruction during the intervention period. The participating
classroom teachers also agreed not to teach their regularly planned fraction unit before their
class participated in the intervention.

Participants

44 children aged 6-and 7-years participated in Cycles 2 and 3 of the intervention. The
participating classes (Year 1-2 in Cycle 2; Year 2 in Cycle 3) were from separate, regional
South Australian government primary schools. The teacher of each class did not teach any
mathematics during this intervention; however, they acted as an additional researcher, by
observing each lesson and recording their own reflections, interpretations and interactions
with the children throughout each lesson.

Research Instruments

A 13-lesson unit of work was developed for this study. The unit of work was created and
taught by the author of this paper. In Cycle 1, each lesson was piloted to determine its
suitability for inclusion in the unit of work, and to determine the spatial skills and
representations the children engaged with during each activity. Each of the lessons in the
unit of work was approximately 50 minutes in length. An example of a task from this unit
of work is based on a provocation developed from the picture book Knock, Knock Dinosaur
by Caryl Hart: “The dinosaurs have escaped the house. They’ve decided to explore the
neighbourhood. Help us find them!”. Children were given clues and directions for where
the dinosaurs had been ‘seen’ throughout the town. Using laminated maps and large carpet
maps of fictional cities and towns, the children were asked to identify the locations of the
dinosaurs, based on clues that contained fractional information (e.g., a quarter of the way
along the train track; halfway along the bicycle path etc.). Many of the pathways chosen
were not represented on the maps in a straight line, or were open to interpretation (e.g.,
negotiating which end of a path determined the ‘start’ of the measure). Thus, spatial
reasoning was explicitly embedded into the anticipated problem solving strategies for this
task.

An identical pre-and post-assessment was developed to assist in identifying the changes
in understandings and strategies developed from the unit of work. The assessment was
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administered in a one-to-one task-based interview format with the researcher. Each interview
consisted of 24 questions relating to the children’s whole number knowledge, fraction
knowledge and their spatial reasoning abilities. A rubric was developed to assess each item
and to make comparisons between children’s initial and final understanding. Children’s
work samples were collected for analysis in this study and a journal for observations,
interactions and reflections was maintained throughout the project.

Data Collection

Each child completed the pre- and post-assessment tasks within two days immediately
before and after the unit of work was taught. The assessment took approximately 25 minutes
for each child to complete. Children’s work samples were collected and their dialogue,
gestures and use of materials was documented by the researcher during each item.

The unit of work consisted of a 50-minute lesson each day for 13 consecutive school
days. During each lesson, the classroom teacher and researcher kept separate journals of
observations and interactions throughout each lesson. At the conclusion of each lesson, the
classroom teacher and researcher held a de-brief about the perspectives of the learning.

Data Analysis

All data was analysed using Hybrid Thematic Analysis (Swain, 2018). The method of
analysis chosen for this study enabled key themes and relationships to become visible, which
were important for developing an understanding of the possible connections between spatial
reasoning and fraction knowledge.

Analysis from two tasks revealed the relationship between spatial visualisation, spatial
scaling and gesture. The first task was taken from the identical pre-post assessment. It was
designed to explore how children conceptualised unit fraction magnitude when asked the
following question: Which is bigger, a third or an eighth? How do you know? Children were
asked to explain their reasoning with access to a range of materials including counters,
popsicle sticks, strips of paper, and drawing materials made available (but not compulsory)
for use. The intention was for children to demonstrate how they visualised and represented
their understanding of magnitude.

The second task, “The dinosaurs have escaped the house!”, taken from the unit of work,
indicated the influence spatial reasoning had on children’s understanding of fraction as
measure contexts. This task invited children to explore partitioning and unitising with an
emphasis on spatial visualisation.

Whilst both tasks had an intentional focus on spatial visualisation, the findings suggested
that spatial structuring and gesture were deeply embedded in the children’s conceptualisation
and representation of their knowledge.

Results and Discussion

In the assessment task, which is bigger, a third or an eighth? How do you know? every
child from Cycles 2 and 3 (n=44) answered this question with “an eighth” in the pre-
assessment phase. The most common explanation to the second part of this question, how do
you know? was “eight is bigger than three” indicating a reference to whole number
magnitude understanding. Additionally, no child chose to use any materials for their
explanation, nor use any gesture other than a shrug of the shoulders to indicate they did not
know the reason for their answer. Conversely, in the post-assessment, 34 of the 44 children
assessed within Cycles 2 and 3 not only answered correctly, but provided rich descriptions
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supporting their answer that included gesture, evidence of spatial reasoning, and the use of
materials to support their understanding of unit fraction magnitude. To exemplify, two
responses from this question are presented (see Table 1) that are indicative of the
interconnections between spatial and gestural elements evident in the majority of children’s
post-assessment responses to this item.

Table 1
Post-assessment interview (Pseudonyms assigned)

Speaker Interview transcript

Adam: 1It’s a third, because look — if have this square paper (A4 rectangular sheet)
and | imagine, like cutting in this way (gesturing cutting the paper across two
evenly spaced places, horizontally across the page), | get threes, each of these
are a third. To get eight, you have to make more cuts and get more pieces, but
the pieces get smaller and there’s more of them, but they’re heaps smaller — |
can see them shrink. And it doesn’t matter what size paper you use — a three is
always bigger than an eighth.

Troy: It’s a third. When I see the parts in my head, I imagine a line and I can break it
up evenly. Just...it’s like... it’s the more pieces or groups [of things] you need
to make out of something, the smaller they get or less you have (gesturing the
forming of parts with hands, moving imagined objects to imagined groups in
the air in an array like structure).

Adam’s response suggests some understanding of partitioning as he described how he
was able to visualise the process, using gesture to communicate his claims. He demonstrated
spatial visualisation through his description of visualising the units “shrinking” as he applied
more partitions, which required holding multiple pieces of information in his mind’s eye at
once, whilst manipulating different components of the mental images (Lowrie et al., 2018).
Adam’s response indicates an understanding of quantitative equivalence in his discussion of
relative magnitude, evidenced in his explanation of the relationship between the fractional
units (i.e., a third is always bigger than an eighth regardless of the common whole) which
demonstrates emergent multiplicative thinking. Adam’s justification of this relationship
suggests some abstraction about the essential foundations of fractional knowledge. These
foundations include an appreciation for equal parts, and understanding that when the number
of partitions increase, the size of the parts decrease (and vice versa) (Lamon, 1996; Siemon,
2003). Spatial visualisation, in addition to the use of gesture, appeared to assist Adam to
communicate his understanding of fraction magnitude suggesting he is developing ideas of
the relationship between partitioning (division) and multiplication. Additionally, Adam’s
explanation reveals there was an organisational structure to how he visualized the different
partitions, by the way he gestured column and row structures when explaining how multiple
unit fractions were created within the same whole. This suggests he was drawing on his
internal representations of the patterning and the repeated units related to partitioning and
unitising (Papic et al., 2011) which supported emergent multiplicative understandings and
indicated an awareness of spatial structure.

Troy’s response indicated a transfer of knowledge with reference to partitioning in
continuous and discrete models. That is, Troy’s response demonstrated an understanding of
the measurement meaning of fractions by his description of a line that he mentally partitioned
into thirds. Troy’s response also exemplified the transfer of partitioning knowledge from
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continuous to discrete contexts, by visualising and gesturing the unit fractions of a set. The
transfer from continuous to discrete contexts is an important landmark in early fraction
understanding, as these ideas require different cognitive demands (Confrey & Maloney,
2010). The demands include recognising that a continuous model is the formation of
multiple, contiguous parts; and the discrete model involves the need to perceive a set within
one entity. In this case, gesture appeared to be closely associated with how Troy structured
and visualised multiple partitions of either discrete or continuous contexts. Alibali et al.
(2014) argued that gesture is a vehicle for communicating spatial information, which was
evident in his gestures regarding the size and orientation of the unit fractions (i.e., an array
like formation). Moreover, Troy’s description and use of gesture throughout this task
suggests that the spatial composition of the of the unit fractions and the relationship to the
fraction construct of measure, was an essential part of his understanding and ability to
transfer such ideas across continuous and discrete models.

The second task used for this analysis provides further evidence to address the research
question by explicating a connection between spatial visualisation, spatial structuring,
gesture and fraction as measure ideas. For example, to introduce the set of dinosaur tasks
described above, the following question was posed: A T-Rex was spotted halfway between
the central fountain and the duck pond — where would she be? From observational data and
work sample analysis, most children recognised the fraction as measure context for this
activity and engaged in a spatial strategy to solve the problem. This was indicated by drawing
straight lines ‘as the crow flies’ on the map (some children gestured paths with their hands)
to determine how the paths could be partitioned between the landmarks to represent where
the dinosaur was located. Several children (n=8) interpreted this task as finding the halfway
point of the path the dinosaur may have taken from the central fountain to the duck pond.
That is, the children drew non-linear paths from one landmark to another and then identified
the half-way point, as Shaun’s work sample illustrates (see Figure 1).

Figure 1. Shaun’s work sample

Shaun’s path has been marked ‘no’ at one location and the path marked with an ‘X’
(digitally enhanced for ease of reading) at another point. When the researcher asked him
what the “no” meant, Shaun explained that he initially copied the location his friend had
marked for determining half of the path, but Shaun soon realised that his friend was
indicating the halfway point of a different path to what he had drawn. Shaun stated that he
had to “straighten out the line [drawn path] in my head” (whilst gesturing pulling his hands
apart) and when he considered the first mark (“no”), he realised this was “more like a three-
part of the way [a third] (using their hands to gesture the three parts of the path), than a two
part [half]”. Shaun then placed an X’ on the path (above the yellow car) as the halfway mark
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instead. To paraphrase, Shaun stated that it did not matter how long the path was or in what
shape/ orientation; to be half meant there were two equal parts of the concerning path. His
recognition of the differing path lengths and its relationship to the target fraction
demonstrates an emerging understanding of proportional thinking (fraction as relation).
Although Shaun initially copied his friend’s map, he recognised it could not be an accurate
representation of the same fractional measure, as their paths were different lengths. Shaun
stated he would have to mentally manipulate these paths (using spatial visualisation) to
enable a comparison of measures. This type of thinking also suggests spatial structuring was
an important component to his conceptualisation of the problem, particularly when
combining components into spatial composites such as units of thirds and halves (Battista &
Clements, 1996), to establish the relationships between these measures within his own
representation and in comparison to his friend’s path. Shaun demonstrated an understanding
of relative magnitude, by explaining the differences of absolute measures through visualising
and comparing the different paths and used gesture as a vehicle to demonstrate the iterative
unit fractions of halves and thirds. Emerging proportional thinking as illustrated in this
example was evident in 19 children’s responses throughout the intervention, which
highlights the abstraction and transfer of these concepts.

The relationship identified by this study between spatial visualisation, gesture and the
concept of partitioning (in a fraction as measure context) extends Lamon’s (1996)
description of partitioning as being an ‘experience-based activity’. The deep engagement
between spatial visualisation with gesture forms an important part of this experience as it
served as the vehicle for children articulating their experiences of partitioning. Moreover,
spatial structuring was an important component in children’s development of unitising and
equivalence ideas that formed from their engagement with spatial visualisation and gesture,
which in turn suggested it positively influenced the children ability to conceptualise the
multiplicative nature of fractions in both discrete and continuous contexts. It is clear that the
common multiplicative foundations spatial structuring and early fraction concepts share,
influenced the way children visualised and used gesture when representing key fraction
ideas.

Conclusion

The relationship between visualisation, gesture, spatial structure and fractions is an
important finding and contribution to understanding how young children develop such ideas.
Importantly, this study revealed that this relationship also contributed to children’s
abstraction and transfer of understanding of these concepts in both discrete and continuous
models which is an essential component for developing conceptual understanding of
fractions. Moreover, the results from this study go some way to addressing the persistent
problems young children face in developing deep connections between the concepts and
contexts in which fractions are explored and represented (Bobis & Way , 2018). These new
understandings imply there are considerable benefits in adopting a spatialised approach to
teaching fractions in the early years of primary school, because it can allow for a better
exploration and understanding between the nature of young children’s spatial reasoning,
representations (internal and external) and the role these factors play in young children’s
development of fraction knowledge. The limitations of this study include the sample size of
participants involved, and lack of video recordings for greater fidelity measures. However,
future research directions could include a longitudinal study to provide greater insights into
the connection between different aspects spatial reasoning and their impact on children’s
development of rational number knowledge more broadly.
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Teachers’ conceptions play an important role in their instructional practices. In this study,
the researcher explored a small sample of Fijian secondary school mathematics teachers’
conceptions of assessment. Thirteen mathematics teachers from two case study schools took
part in this study that utilised one-to-one interviews to gain insights into teachers’ beliefs on
the purposes of assessment. The findings further indicate that a majority of the teachers held
contemporary conceptions of assessment. While they did value summative assessment roles,
teachers tended to support the use of assessments to improve or support student learning.

The term assessment can be interpreted in different ways by different stakeholders. For
example, while some teachers see assessment as an activity that is used to improve classroom
instruction, others may value it as a means of establishing accountability within the school.
Moreover, some may even perceive assessment as an activity that has no value at all (Brown
2003, 2004). In other words, varying conceptions of assessments can be placed on a
continuum that has traditional conceptions on one end and the other representing
contemporary conceptions. For example, teachers can, on one hand believe that assessments
serve solely accountability purposes (and seen as irrelevant (Brown, 2004)), while on the
other end of the continuum of conceptions, they may see assessments as purely an activity
with a pedagogical aim. Educators can hold mixed beliefs, representing any point on the
traditional-contemporary continuum. For the purpose of this study, we define conceptions
following Brown (2004) as a guiding framework used by an individual to understand,
respond to, and interact with a given phenomenon. In other words, teachers’ conceptions of
assessment can include their beliefs, attitudes, or perceptions (Harris & Brown, 2016).

Research suggests that such a continuum of teacher conceptions is likely when teachers
are asked to list various purposes of assessment (Barnes et al., 2015). Apart from the
‘purposes’ category, assessments can be differentiated using other criteria such as nature of
tasks used, cognitive demands associated with tasks, including frequency and grading of
assessments (Wallace & White, 2014). The traditional-contemporary continuum of
assessment can be seen as parallel to the commonly used summative-formative
classification. Summative assessments are those that usually come in the form of
standardized tests, measuring terminal performance while formative assessments represent
any assessments that are designed primarily to support student learning (Wiliam, 2007,
p.1053).

Teachers’ conceptions play an important role in their instructional practices (Ashton,
2015; Buehl & Beck, 2015; Marshall & Drummond, 2006; Skott, 2015). Despite notable
progress in re-thinking learning and assessment over the past two decades, there exists many
different understandings of the term assessment and other associated terms such as formative
assessment (van de Watering et al., 2008). For example, Popham (2014) explains that
American educators usually see teachers’ role in formative assessment as more important
than students’ roles in improving their own learning.

Differences in conceptions therefore could mean that teachers take relatively different
perspectives on using assessment information. There is sufficient evidence that assessments,
when developed and used appropriately, would lead to improved student learning (Black &
Wiliam, 1998). In the Fijian secondary education context, assessments are generally
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Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
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conducted to prepare the learners for the external examinations at the end of the year. As
such, the majority of the ongoing assessments take the form of written examinations that are
similar in content and structure to the national examinations. In light of the relative
importance of teacher conceptions, this study aimed to explore how a small group of Fijian
secondary mathematics teachers’ perceived assessments amidst an examination-oriented
education system. While the study reported here was part of a larger study that aimed to
explore how well mathematics teachers took up formative assessment practices (Dayal &
Cowie, 2019), exploring teachers’ initial conceptions about assessment was seen as an
important part of the larger study’s context. The following research question guided this
study: What are Fijian secondary mathematics teachers’ conceptions of assessment? Are
Fijian secondary mathematics teachers’ able to conceptualise the contemporary purposes
of assessment?

After presenting the sociocultural framework used for this study, a brief review of
literature is provided. This is followed by research methods, results, and discussion. Finally,
some conclusions and implications are outlined.

Theoretical Orientation

Brown and colleagues have identified the following four teacher conceptions of
assessment. These include assessment serving four distinct purposes: improving teaching
and learning; holding students accountable for learning; making schools and teachers
accountable for student learning, and assessment serving no legitimate purpose in schooling
(Brown 2003; Brown 2004; Brown & Hirschfeld 2007). The first conception presents a
rather fallibilist or humanist view of assessment. It sees assessment as learner-focused, for
joint use by students and teachers to improve teaching and learning. This conception blends
well with the idea of formative assessments or ‘assessment for learning’ loosely defined as
any activity from which the elicited information is actually used to make changes to teaching
and learning with the view to improve learning (Black & Wiliam, 1998). Formative
assessments are in line with student-centred learning and Sheppard (2000) calls this the
emergent assessment paradigm. Formative assessments are more about feedback that could
be used to improve learning. Such a view of learning and teaching is consistent with the
sociocultural theory that regards knowledge as fallible and a product of human creativity.
This view of knowledge means that learning or knowledge creation is seen as a social process
in which the learner is an active participant.

Conceptions not confined to this contemporary end of the assessment conceptions
continuum would fall somewhere in between and would likely be represented by the other
remaining conceptions identified by Brown and colleagues. At or near the traditional end,
assessments serve rather authoritarian roles such as measuring how much learning has taken
place, monitoring, recording and reporting students’ performance, and holding individuals
and institutions accountable for their actions. Toward this traditional end, knowledge is seen
as objective and infallible (Sheppard, 2000; Wallace & White, 2014). Seen from this
perspective, assessment’s purpose is mainly for grading and certification. Such conceptions
align well with the behaviorist ideas and sees assessment as merely measuring students’
learning using quantitative methods. While realizing the important roles of assessment, this
study took sides with Popham (2014) who claimed we must not rely only on traditional
notions of assessment but should, instead, consider those conceptions of assessment that
support effective teaching and learning. This paper conjectures that mathematics teachers
would benefit a lot with a contemporary conception of assessment.

180



Dayal

Literature Review

Hui and Brown (2010), in their study involving primary school teachers’ in Hong Kong,
revealed that these teachers were very well aware of the “improvement” purpose of
assessment. In other words, the Hong Kong teachers generally held an ‘assessment for
learning’ conception of assessment. The study did note, however, that some teachers also
held accountability conceptions of assessment. Their data indicated that some teachers
believed that the assessment tasks they designed were also valid for “accountability” and
“examination” purposes. The study concluded that the prevalence of accountability as well
as examinations conceptions of assessment among Chinese teachers may hinder the
successful implementation of an assessment-for-learning policy.

In another study, involving Fijian pre-service and in-service teachers, Dayal and Lingam
(2015) also noted that teachers held multiple conceptions of assessment. While a majority of
the seventy participants’ initial understandings aligned to a traditional conception that
involved measuring students’ performance, some of the participants agreed that assessments
could have formative functions when they were asked to list down other major purposes of
assessment. The study revealed that a higher proportion of pre-service teachers held an
‘assessment of learning’ conception of assessment in comparison to the teachers who had
some years of teaching experience. This was revealed when both group of teachers were
asked to choose from two different roles of assessment that they would favour: the master
role, indicating ‘whatever assessed should be given importance’, against the servant role
which suggested that ‘whatever is important should be assessed’. Of the practicing teachers,
74% favoured the servant role, compared to only 30% of the pre-service teachers. The
authors, however, showed concerns regarding a good number of in-service teachers still
holding a narrower view of assessment. Dayal and Lingam’s (2017) study utilized an open-
ended questionnaire to explore pre-service and in-service teachers’ beliefs about the two
major purposes of assessment. Their findings confirmed that pre-service and in-service
teachers could hold beliefs which are in support of summative assessment, formative
assessment, or both types of assessment. Majority of the pre-service and in-service group
gave explicit support in favour of formative assessments. None of the participants, however,
noted that both forms of assessment are irrelevant, contrary to findings such as Brown
(2004).

In terms of how secondary mathematics teachers perceive assessments, one notable, yet
small study was that of Wallace and White (2014). The authors followed six pre-service
mathematics teachers through what they termed a reform-minded teacher education
programme in the United States. A notable feature of these programs was the inclusion of
assessment ideas embedded in course assignments. The study’s findings confirmed that pre-
service secondary mathematics teachers initially held traditional perspectives on assessing
student learning. The authors called this the ‘test-oriented’ perspective, characterised by
assessment beliefs such as: assessments are tests, the purpose of assessment is to provide a
grade, and assessment involves closed-ended tasks. The study noted that the pre-service
teachers could modify their assessment practices by evolving through the ‘task-oriented’ and
‘tool-oriented’ perspectives on assessment. The latter represented the developmental phase
where these pre-service teachers were able to see assessments as designing new ways that
would help facilitate student learning.

The studies reviewed here and others such as Nisbet and Warren (2000) and Smith et al.
(2014), confirm that both practicing and pre-service teachers have different conceptions of
assessments. Some of these studies also point out that different assessment perspectives may
have the potential to lead to different assessment practices, and the inherent need to explore
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teachers’ conceptions of assessment. Studies such as Wallace and White provide evidence
that teachers can modify their assessment-related conceptions when given support. While
this is not an explicit aim of the current study, exploring the conceptions of a small group of
practicing Fijian mathematics teachers will add to our understanding of how assessments are
perceived by mathematics teachers. The context of our study is presented next.

Context and Methods

The participants in this study were 13 mathematics teachers from the two case study
schools: Marau College and Kaivata College (pseudonyms used). Marau College had nine
teachers in the Mathematics Department, and Kaivata College had only four. The
mathematics teachers had taught for an average of 9 years, ranging from 20 years to only
three years. All of them had tertiary qualifications. For the five male and eight female
teachers, real names are replaced by pseudonyms beginning with the letters A to M, the
letters indicating the order in which the interviews were carried out. In order to elicit
teachers’ conceptions of assessment, one-t0-one interviews were held at the teacher’s
respective schools. One-to-one interviews seemed suitable for two reasons. Firstly, it
allowed the teacher participants to express freely their beliefs and experiences with
assessments in mathematics. Secondly, the one-to-one interviews helped the researcher
know the participants better, and this helped build positive relationships for the later phases
of the study that involved teachers as key stakeholders in research (Kieran et al., 2013). On
average, one interview lasted for fifteen minutes. The study utilised the following prompts
for the interviews:

1. Think of the term Assessment. What comes to mind? List as many ideas as possible.

2. What is the main purpose of assessment? What are some other purposes of

assessment?

All thirteen interviews were audio taped and transcribed. The interview data were
analysed using traditional-contemporary continuum presented under the theoretical
framework of the study. For example, upon transcribing the interviews, each response was
read in full and the keywords or phrases that represented each participant’s beliefs about
assessment were highlighted and placed under either traditional or contemporary
conceptions. For example, if the participants used the keywords or phrases that resembled
traditional conceptions of assessment such as ‘grading’, ‘passing an exam’, ‘measuring’ or
‘testing’, these participants were classified as showing a traditional conception of
assessment.

Results
This section presents the findings of the study.

Assessment Purposes

While all thirteen participants were able to define the term assessment, only five of the
participants showed a narrower, traditional view of assessment. For these teachers,
assessment essentially meant “testing students’ knowledge” (Ella) , or “getting to know
whether the students have got the content we have taught” (Cathy) , “to test whether students
have understood and whether they are revising their work™ (Fran), and “to know how much
they know” (Bhim). A strong focus on answering the ‘how much’ question, coupled with
ideas related to ‘testing’ or ‘exams’ revealed that, for this group, assessment meant
answering the question ‘how much does a student know?’, thus reflecting a traditional,
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measurement view of assessment. For example, Jenny, in her description of assessment said
that assessment is “the test given to see how much students have learnt from something” and
“it is an activity to grade the students”. When asked about the major purpose of assessment,
Jenny replied: “To rank”. When asked to list a few other purposes, she said “to test and select
the best”. From Jenny’s interview account, it could be said that she had a strong inclination
towards an ‘assessment of learning’ view of assessment. This view of assessment has a
strong leaning towards a testing culture, promoting competition, and using examination
results to select students for placements. In her interview, Jenny revealed that she did not
use assessments in a formative manner.

For the rest of the participants, assessment was more than ‘testing’. For example, Kumar
said that assessment meant “monitoring the performance throughout the year”. Her
definition viewed assessment as a continuous event, and not a one-off task. A similar view
was given by Ledua, who said that “assessment is an ongoing process to see if the student is
learning the concepts or not”. Isha listed a number of ideas such as “exam, presentation,
short test, assignments, tutorials, oral assessment, quiz and class-based assessment (CBA)”
when talking about her views on assessment. She showed strong emotions against
summative assessment — “sometimes assessment is like a ‘torture’ to students, especially the
three- hour exams.” Gavin showed an understanding that assessment not only concerned the
students but also the teachers when he stated that “assessment is something which tells me
how I have done in my class as a teacher”. Overall, the majority of the teachers showed an
expanded, contemporary view of assessment in their initial discussions on assessment. These
views had elements of formative assessments such as views about having multiple forms of
assessment; views about assessment as a continuous process; and views about assessment as
informing the teachers on their work as well.

When asked to recall the major purpose of assessment, the teachers in this study
exhibited the same tendency. Those who had initially shown a measurement view of
assessment (Ella, Cathy, Fran, Bhim and Jenny) listed its summative function as the main
aim of assessment. Examples of these included: “To test the students’ knowledge” (Fran),
and “to test students’ ability” (Bhim). When asked to list any other purposes of assessment,
three out of the five teachers were able to pick up some formative aims of assessment. For
example, Cathy referred to teachers’ teaching techniques and how assessment could help
teachers know how they are performing. Ella stated that teachers could work on weaker
students as a result of assessment. However, this group of teachers was still hanging on with
their initial ideas about testing and examinations. As Ella noted, “if they have done a test,
they have got low marks, it means we place more time on them.” Only two teachers, Bhim
and Jenny, in this group were unable to list any formative purposes of assessment. In their
view, all purposes of assessment were summative in nature. Excerpts from Jenny’s interview
are shared below:

Researcher: In your view, what is the major purpose of assessment?

Jenny: To test the students’ ability, to assess students and to know how much they know.
Researcher:  Can you think of any other purpose?

Jenny: To pass exams and go to higher level?

Researcher:  Any others?
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Jenny: Ummm...to see which students are, I mean good at which particular field, and
whether they are supposed to go to tertiary institutions.

The other eight participants had listed formative assessment practices as one or more of
the purposes of assessment. For example, Dan explained that the major purpose was for “us
to know how well the students have learnt”. He went further to claim that assessment “helps
us to improve in our weak areas”. For Ana, assessment helped provide feedback not only to
the students but also to the teachers. She showed formative aims or purposes when she
claimed that “tests are not always giving us all about learning.” Mere claimed that the main
purpose of assessment was to help students to learn. Apart from this, she added that
assessment is used “to improve students’ learning and teachers’ teaching — when the
activities | have given have not been done well, I come back and re-think about my teaching
strategies.” Another teacher, Gavin, held similar beliefs about assessment. His views about
assessment reflected an inclination toward the formative view of assessment as well. He
viewed assessment as something “which tells how I have done as a teacher”. For him, good
assessment meant that he had to “re-look at what students have given me and what | expected
as the correct answer. If there were some differences, | have to do that again, or re-design
my class and take another approach”. These statements reveal that this group of teachers had
strong views about the role of feedback in assessment. Their overall view of assessment
could be classified as being more aligned towards assessment for learning.

Teachers in this group had also shown a combination of summative and formative
purposes. For example, Isha mentioned “gaining certification” as the second purpose of
assessment. In summary, majority of the participants were well versed in both summative
and formative purposes of assessment. This group of teachers seemed to favour formative
practices much more than summative or measurement purposes of assessment. Some even
had strongly rejected the idea of “testing” alone. These sentiments are clearly visible in the
accounts of some of these teachers: “the current assessment (three-hour exams) does not tell
much as it is just a paper and pencil test — a lot of writing and recalling is involved.
Learning/expressing is not there” (Isha); “assessment in mathematics can be very broad, in
various forms. In my school, we just assess using paper work. We can assess by doing more
practical work. There can be theory and practical assessment” (Haris). The views expressed
by teachers suggest that they value formative assessment even more than summative
assessment.

Discussion and Conclusion

Two types of assessment have been well distinguished in the assessment literature —
summative and formative assessment, although these may not necessarily be mutually
exclusive dimensions. A more productive view about assessment is the former and this is in
line with the socio-cultural views of learning (Sheppard, 2000). Only five of the participants
held a narrow, summative view of assessment. Two of these five (Jenny and Bhim) had very
strong traditional conceptions of assessment, while the other three showed some support for
formative assessments. This group of teachers tended to value the testing and grading
function of assessment more. One reason for this could be that these teachers simply
disregard the value of formative assessments. Another reason could be that they may not
have used formative assessment practices well and thus may not have experienced any
positive consequences of such assessments on student learning. The latter is more likely
given the examination-oriented education system in Fiji.
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Eight of the 13 participants held contemporary conceptions of assessment. While they
did value summative assessment roles, teachers tended to support the use of assessments to
improve or support student learning. Despite working in an environment dominated by the
summative culture, it is interesting how this group of teachers supported the idea of
formative assessment. It would be worth investigating how these beliefs are formed. Initial
instincts, including understanding gained from sociocultural perspectives suggest that
personal experiences with the use of summative testing may be one of the factors. As one
teacher indicated, three-hour examinations are a kind of ‘torture’ to pupils’ brains. From a
social perspective, it can be argued that while summative examinations have been part of the
Fijian education system from decades, teachers may have had bad experiences with
summative assessments. It may also be inferred that the teachers in this study had seen that
there are no real learning benefits from too much summative testing. It is interesting to note
that a majority of the mathematics teachers do not render much support for traditional
assessment practices, although they use such ‘examinations questions’ in their usual
classroom teaching. Such a finding is consistent with previous studies like Dayal and Lingam
(2015, 2017) that noted a relatively higher percentage of practicing teachers who favoured
formative assessment practices. Ashton (2015) noted that belief systems rely heavily on
evaluative and affective components. This may, to some extent, mean that a majority of the
teachers in this study have negative feelings about summative assessments. In summary, it
can be said that while cultural aspects may have affected the teachers’ beliefs about the
nature of mathematics, personal experiences, including external factors such as school and
national policies may have had some impact on shaping the teachers’ beliefs about learning,
teaching and assessment.
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Probability and statistical literacy is an important aspect of the school curriculum in many
countries. In this study, we report on findings from a larger study that engaged pre-service
teachers as key stakeholders in research in exploring teaching probability and statistics using
a game-based teaching approach. The current study focuses on 23 pre-service teachers’ views
about game-based teaching and learning. Our sample of teachers were from two universities
in the Pacific region. The findings strongly indicate that pre-service teachers can derive useful
pedagogical knowledge by engaging in the game-based teaching intervention. All the pre-
service teachers support the use of real-life based practical approaches in their teaching.

In a rapidly evolving world, there is a strong need to understand and be able to use
mathematics in all aspects of life. One particular area of mathematics that we use or rely
upon on a daily basis is probability and statistics (Koparan, 2019). The use of probability
and statistics translates down to the need to understand and use data in almost all aspects of
life, such as education, health, or predicting future events such as adverse weather
conditions. This aspect of learning mathematics is termed probability literacy or statistical
literacy (Jones et al., 2007). It includes having a working “knowledge and understanding of
numeracy, statistics and data presentation” (Pierce & Chick, 2013, p. 190).

Given the importance of statistical literacy, many countries place probability and
statistics in their core mathematics curriculum. For example, in the New Zealand school
curriculum, probability is part of the three sub-strands in the curriculum document and
viewed as critical in the learning of mathematics (Ministry of Education, 2007). In the Pacific
education context, many educational jurisdictions have included statistical literacy as an
important aspect from the early years of the school curriculum (Fiji Ministry of Education,
Heritage & Arts, 2017).

Given the relative importance of probability and statistics in our curriculum, it is
imperative that teaching of the probability and statistics curriculum aligns, to a higher
degree, with our recent understandings of the term statistical literacy. Therefore, it is critical
that teachers of probability and statistics are exposed to making use of lots of real world
examples and activities in their teaching. One of the ways of doing this is through the use of
games. In this study, we report findings about the usefulness of teaching probability and
statistics using a probability teaching sequence designed by one of the authors (Sharma,
2015). The paper reports on benefits and challenges of using games from the perspective of
our relatively small sample of secondary pre-service mathematics teachers from two
different universities in the greater Pacific region. The research questions addressed in this
paper are: To what extent do the pre-service mathematics teachers find the probability
teaching sequence useful? What are some of the benefits and challenges they foresee in
adapting such games in their teaching?

After presenting the theoretical framework, a short literature review is presented. This is
followed by the specifics of the study’s research design. Then, results and discussion are
presented. A brief conclusion sums up this paper.

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 187-194. Singapore: MERGA.
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Theoretical Framework

In this study, we utilised the socio-cultural theories of learning. The influence of socio-
cultural context on a learner has been examined mostly from Vygotsky’s frame of reference.
The sociocultural environment incorporates use of a variety of tools such as language, sign,
and cultural tools (artefacts) to assist with reaching higher mental models (Vygotsky, 1978).
Given the aim of the study was to explore pre-service teachers’ views about the benefits of
using a newly introduced probability teaching sequence (reference withheld), it was
important to see how they suggest they could make use of the ideas that they could have
possibly derived from the teaching sequence. Given that we were exploring pre-service
teachers’ future intentions, it was critical that most of these are turned into productive actions
when they begin teaching mathematics. In this regard, Valsiner’s zonal theory (Valsiner,
1997), an extension of Vygotsky’s zone of proximal development (ZPD), is seen as a useful
framework for viewing teachers’ thought processes as well as their actual actions (Goos,
2014).

Vygotsky defined ZPD as “the distance between the actual developmental level as
determined by independent problem solving and the level of potential development as
determined through problem solving under adult guidance or in collaboration with more
capable peers” (Vygotsky, 1978, p. 86). According to Valsiner’s zone theory (Valsiner,
1997), one can assist a learner reach ZPD with the help of available resources and processes
within the proximity to enable their zone of free movement (ZFM) and zone of promoted
actions (ZPA) (Goos, 2014). ZFM usually includes contextual factors that limit pre-service
teachers’ thinking and actions, while ZPA includes all those activities that are designed by
other adults, such as university lecturers, that are aimed at developing or promoting new
skills. In this study, we focus on the pre-service teacher as the learner. Hence, it is important
to critically review the contribution from each zone, in particular, focusing on what benefits
and challenges pre-service teachers see in using the probability teaching sequence and how
they intend to use the teaching sequence.

Literature Review

Two major interpretations of probability can be distinguished. The classical (theoretical)
viewpoint assumes that it is possible to represent the sample space (all possible outcomes)
as a collection of outcomes with known probabilities. For example, the probability of rolling
a six on a regular six-sided die is one-sixth. In such a case, the theoretically derived
probability is an estimate of the actual probability that is not known. Batanero et al. (2004)
argue cases of equiprobability that arise in some simple game scenarios, such as rolling a
die, may not be the same in complex everyday situations, such as weather predictions, risks
and epidemics. On the contrary, the experimental interpretation assumes that the probability
of something happening can be determined by doing experiments. A large number of
identical trials (e.g., tossing two coins) are conducted, and the number of times a particular
event (e.g. one head and one tail) occurs are counted. The greater the number of trials, the
closer the experimental probability will move towards the theoretical probability of an event.
By comparing inferences from their theoretical and empirical work students can evaluate
and modify their hypotheses.

Students leaving school should be able to interpret probabilities in a wide range of
situations (Jones et al, 2007). If students are to develop meaningful understanding of
probability, it is important to acknowledge the different interpretations, and to explore the
connections between them and the different contexts in which one or the other may be useful.
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Games can provide a useful context for exploring different interpretations and contexts.
Batenero et al. (2004) provide an excellent example of how different probability teaching
contexts can be explored using games. They engaged a group of teachers in experiments
involving different coloured dice. Although the authors did not specifically seek the
participant teachers’ views about the usefulness of such gaming experiments, they speculate
that teachers do acquire knowledge that would be beneficial in their later professional work.

Research evidence suggests that teachers, including prospective teachers, find teaching
probability and statistics difficult or challenging (Batanero et al., 2004; Leavy et al., 2013).
For example, the findings from a small sample study conducted by Leavy et al. (2013) in
Ireland suggests that prospective secondary mathematics teachers perceive statistics as a
challenge due to, among other factors, the need to think and reason statistically. Anecdotal
evidence suggests that teaching probability and statistics is also a challenge for Pacific
Islands teachers. One possible factor could be the mismatch between the nature of
probability and statistics, and the teaching approaches used by teachers. As reported by
Dayal (2013), teachers from the Pacific Islands have a tendency to teach mathematics using
traditional approaches such as relying heavily on notes and examples followed by routine
textbook-type exercises.

The brief review of literature suggests that two different, yet not mutually exclusive,
approaches to understanding the teaching probability and statistics are prevalent. This study
hopes to add to our understanding of how pre-service teachers can derive potential teaching
ideas for both theoretical and experimental aspects of probability and statistics. The literature
seems to suggest general prevalence of teaching challenges as well as an acknowledgement
of the potential benefits of teaching using games. The current study also aims to add to our
understanding of pre-service teachers’ perceptions of the degree of usefulness of games in
teaching.

Research Design

To conceptualise our larger study, we drew on design-based research theory (Cobb &
McClain, 2004). Design research is a cyclic process with action and critical reflection taking
place in turn (Cobb & McClain, 2004; Nilsson, 2013). Further, all participants are equal
partners in the research process (Kieran et al., 2013). Using a case-study design (Yin, 2014),
our study itself involved cycles of three phases: a preparation and design phase, a teaching
experiment phase, and a retrospective analysis phase. Both mathematics educators were
involved in the whole research process. The role of researchers involved posing questions,
and observing the research unfold with minimal interference. This paper reports on post-
intervention findings, after our pre-service teachers had completed the teaching experiment
phase. The teaching experiment, called the probability teaching sequence, involves a
scenario where two people play a dice game. Each player throws a die and the difference of
the two outcomes is calculated by subtracting the smaller number from the bigger number.
If the difference is 0, 1, or 2, player A wins. If the difference is 3, 4, or 5, player B wins. The
main question that pre-service teachers were required to think about when playing the game
was whether or not the game was fair and to justify their reasons. From a socio-cultural
perspective, the probability teaching sequence provides pre-service teachers an opportunity
to ‘think” and ‘act’ within their ZPD. For the full teaching intervention, see Dayal and
Sharma (2020). The research context, participants and procedures are described in the table
below.

189



Dayal and Sharma

Table 1

A summary of context, participants, procedures and instrument

Research
Context

Research Participants

Research process

Research Instrument

The University
of Waikato
(UW) is located
in Hamilton and
operates from
two campuses,
Hamilton, and
Tauranga, in
New Zealand.

The University
of the South
Pacific (USP) is
a regional
university that is
owned by 12
member
countries in the
Pacific and is
head-quartered
in Suva, Fiji
Islands.

10 pre-service
mathematics teachers
completing their Graduate
Diploma in Teaching
programme

Equal number of males
and females

Six New Zealanders, four
international pre-service
teachers

All teachers have
mathematics as their
teaching major.

Participants are
represented using letter
codesO -Y.

13 pre-service
mathematics teachers in
their final year of the 4-
year BSC GCED
programme

Equal number of males
and females

All teachers have
mathematics as their
teaching major

Ten teachers from Fiji,
four from Kiribati.

Participants are
represented using letter
codes A- N

e The second author is the

coordinator of the
teaching methods course.

Upon completing the
intervention, one-to-one
semi structured
interviews were
conducted.

All ethical guidelines, as
per UW research ethics
approval, were adhered
to. For example, each
student gave their
informed consent and
were assured that their
non-participation or
withdrawal would not
affect their performance
in the teaching methods
course.

All interviews were audio
recorded.

The second author was
not teaching the
participants.

The intervention was
held on a non-teaching
day (Saturday) at the
USP.

All teachers gave written
informed consent and
volunteered to be part of
this intervention.

USP ethics approval was
sought prior to the
intervention.

Post intervention,
participants reflected in a
focus group set up.

All discussions were
video recorded.

Post intervention one-to-one
interviews with the
following prompts:

e Think back on the
activity we did today.
Did you all like the
activity? Why or why
not?

o Are there any probability
teaching ideas that you
can take to your
classroom? Will you be
using these ideas in your
teaching?

e Suppose you were to
recommend this teaching
sequence to a colleague.
When will you suggest
him or her to use it?

¢ Do you feel there are
some challenges in doing
this activity?

e What kind of support, if
any, would you require?

Post intervention focus
group discussions using
the above prompts.

e Group 1: Participants
A,C.E, H, I (Fiji)

e Group 2:B,D, F,G,J
(Fiji)

e Group 3: K,L,M,N
(Kiribati)

Findings and Discussion

The individual interviews and focus group discussions were transcribed and analysed by
each author. The following sections present the common themes that arose after analysing
pre-service teachers’ opinions about the probability teaching sequence.
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Affective and Cognitive Benefits

All the participants explicitly stated that they liked the probability teaching sequence.
The reasons provided related to the teaching sequence being interesting “because it allowed
us to think” (Participant A) about probability and “learn from their own mistakes”
(Participant K) rather than learning probability using formulas. In addition, the pre-service
teacher participants talked about affective reasons, such as “we liked the dice activity
because it is better than giving notes from the textbook™ (Participant K) or “this is a very
creative way of learning probability” (Participant C).

Similar to the USP participants, UW participants also noted affective and cognitive
benefits of the probability teaching sequence. Some of the responses included:

“Open questions build student self-confidence because students can answer at their own level of
understanding” (Participant Q)

“It is different to most tasks with probability, so it will be good for students to get a change from
routine” (Participant P)

“The game makes students think logically to show all possible outcomes of rolling two dice”
(Participant O).

Deriving affective as well as cognitive benefits and learning about probability teaching
ideas was a common theme reported by a number of participants from both contexts when
asked about whether or not they liked the activity. It is encouraging to note that the pre-
service teachers were able to recognise such benefits and acknowledge that the teaching
sequence provided another, interesting way to learn probability. This may be due in part to
some of our participants, especially those from USP, being largely exposed to traditional
approaches to learning during high school and university, such as completing routine
textbook-type exercises (Dayal, 2013).

Deriving Teaching Ideas

In terms of learning about probability teaching ideas, the USP pre-service teacher
participants could identify some holistic ideas as well as a number of specific topics that they
could explore using this teaching sequence. The pre-service teachers’ very general hints
about teaching probability included comments such as “we learnt how to create good
experiments using dice” (Participant L). In their discussions, the pre-service teachers from
USP uttered various probability- and statistics-related terms (e.g., events, trials, chance of
events, outcomes, skewness of outcome, expected probability, fairness, graphs, making
predictions). In comparison, some USP pre-service teachers appeared to have some difficulty
with identifying topic-related terms. For example, when asked to share the probability
teaching ideas they could take into their classrooms, some participants in Group 3 stated
general themes, such as “conducting experiments using dice” (Participant L) or “teaching
probability” (Participant N).

It is worthy to note that these participants were all from Kiribati. In the Kiribati context,
these participants mentioned that probability is introduced late in the school curriculum, only
in upper secondary curriculum (Years 11 and 12). In contrast, in Fiji and NZ, probability
and statistics is introduced from the early years.

Similar to the USP cohort, the UW cohort was able to list a range of teaching topics as
well. For example, one participant mentioned the topic of sample space:

“The lesson sequence allows students to explore sample space by using representations that make
sense to them. For example, some students may use grid of numbers whereas others may use tree
diagrams” (Participant P).
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In addition to naming such probability teaching topics, it was encouraging to note that UW
teachers were able to suggest many other pedagogical aspects from the probability teaching
sequence, such as the sequence having a clear learning objective and a good range of
questions that could promote student learning. For example:

“The lesson sequence has clear objectives for student learning. The teacher can share these goals with
students.” (Participant O)

“The sequence includes a range of questions. Asking questions can give teachers information about
students’ thinking” (Participant S).

Overall, the pre-service teachers derived a number of useful general teaching ideas, such
as conducting experiments, as well as ideas about specific subtopics that are present in
probability and statistics. The need to have practical activities using dice or coloured cubes,
or even coconuts, were mentioned by USP and UW participants. The need for more real-life
based activities were also mentioned:

“It is important that students make connections to everyday life situations” (Participant U)

“Students will be actually doing the thing. They will actually see what is happening by throwing the
dice...and recording the data...” (Participant A).

As well as thinking about connections to real life experiences, participants thought about
how the activity allows students to make connections to existing mathematics they may
know. One UW participant noted:

“It provides opportunities for students to make connections between probability concepts with
everyday life and with other topics of study such as fractional number” (Participant Q).

Making connections to real-life and between different representations is critical in
developing probabilistic understanding (Nilsson, 2013; Van de Walle et al., 2014). The
findings suggest that the probability teaching sequence will likely benefit teachers as it
provides them opportunities to ask students to play around with chance generating
mechanisms, and use multiple representations such as tables, diagrams and graphs to explore
probability concepts in a meaningful context. Since students can draw different
representations to determine the theoretical probabilities, there is scope to make connections
to real-life as well as among these different representations as reflected above.

Future Teaching and Challenges

All our pre-service teachers explicitly stated that they will be using this teaching
sequence in their actual classroom teaching. When asked to suggest ways in which they
would recommend this teaching sequence be best used, the groups seemed hesitant in
providing specific answers. However, they stated a few specific scenarios, such as teaching
a probability topic or as an assessment. Some responses included:

“In conducting experiments about chance” (Participant L)

“This activity would not be accessible at the start of a junior mathematics probability study, however
it could be used as formative assessment” (Participant V)

Some participants reiterated general teaching ideas, such as:
“teaching probability in a real-life situation” (Participant A)

“use of experiments instead of textbooks, by using real-life context we can also help students learn
probability more effectively.” (Participant X)
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In terms of teaching challenges, the major challenge noted by participants was the time
factor. The reasons given by the USP cohort was mainly that the school teaching period was
only of 1 hr and this activity could not be well implemented in an hour’s time. Upon inquiry
by the researcher if the teaching sequence could be broken down into smaller bits, the groups
seem to agree that the time factor challenge could be overcome through this. Views such as
giving a lesser number of trials was one of the ways suggested to overcome this challenge.
In addition to time, the USP and UW participants mentioned class management as a possible
challenge, “challenging and disruptive classroom environment that results in a lack of
engagement” (Participant V). Some participants though stated that this challenge could be
overcome by having smaller groups or by asking students to work in pairs.

In the context of mathematics lessons in Fiji and Kiribati, there is high importance placed
on preparing students for external examinations. Hence, the limited lesson time, as
mentioned by some of the participants, is a realistic challenge faced by many teachers. There
was a consensus among the USP participants that covering the teaching syllabi well-ahead
of time was critical for ensuring that ample time was left for students to attempt past-year
examinations as part of their examination revisions. It was no surprise, then, that Participant
I suggested that the use of these activities be reserved for “during a revision class”, instead
of part of the introduction of the topic or prior to revision.

Overall, our findings support, to a large extent, that some participants may use this
probability teaching task or any shorter variant of it in their actual teaching. However, some
may front load probability content first using more direct teaching methods, then use a game
like this at the end of the unit to apply the learning. Seen from a socio-cultural perspective,
the study provides evidence that our pre-service teachers’ potential to learn new skills and
develop (ZPD) is enhanced by engaging with the probability teaching sequence (ZPA), as
well as via thinking and interactions with their peers in small group settings (ZFM).

Summary and Implications

While this study can be seen as a step forward in collaboration among teacher educators,
it had its own limitations. One major limitation was that the two research contexts were quite
different in terms of many factors, such as high school and teacher education curriculum.
We negotiated such challenges by frequently discussing emerging issues through emails and
Skype (e.g, the research process). Achieving exact consistency was not seen as critically
important (Moss, 1994); instead, we made sure that an in-depth exploration was carried out
while being within the ambit of our university learning and teaching regulations. The pre-
service teachers registered an overwhelming support for the probability teaching sequence.
They saw the probability teaching sequence as having affective and cognitive benefits for
them, as well as the students. In addition, we noted a strong degree of support in terms of
using this or a similar teaching sequence in their later teaching career. Lesson time
constraints and class management were among the few challenges mentioned by the pre-
service teachers if they were to implement the teaching sequences. Overall, our findings
suggest that pre-service teachers find the probability teaching sequence useful and they could
derive useful teaching ideas by engaging in this game-based teaching intervention.

From a socio-cultural perspective of learning, we note how our participants could
challenge and modify their probability teaching ideas. Exposing pre-service teachers to such
activities could be seen as extending their ZFM. However, only a few participants were able
to suggest actual teaching ideas, yet suggesting some very general ideas which can be seen
as a development of their ZPD. The fact that these pre-service teachers were cognisant of
the teaching challenges suggests that while teachers may have noble ideas or intentions, not
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all of it could be easily translated into action (Goos, 2014). In terms of future research, we
intend to follow a small sample of our participants, with an aim to explore if and how they
implement these ideas in their classroom.
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This theoretical paper examines views about the role of language and mathematical discourse
in learning mathematics. Current research is still addressing what constitutes a mathematical
discourse. As new conceptions of the purpose of language use in mathematics are explored,
and associated ontological and epistemic positions are revealed, one might ask: how are we
able to reframe our view of language to support a social participation perspective? This paper
proposes the consideration of Wittgenstein’s philosophy of language games to shift our
conception of classroom language use in mathematics to encompass broader contextual
features such as participation, patterns of exchange and social norms.

This theoretical paper examines sociocultural theories and practices that considers
language as central to learning mathematics. Underpinning these theories and practices is
the notion of a strong connection between talking and thinking where social interaction
impacts on learning (Barwell, 2018; Sfard, 2007; Vygotsky, 1978). Discourse practices
recognise that there are many different factors that contribute to build meaning in a
mathematical situation (Moschkovich, 2019). These factors may include the use of symbols
or physical materials and written as well as verbal language (Moschkovich, 2019).
Importantly for the theme of this paper, a mathematical discourse considers all uses of verbal
language, or utterances, to support meaning. Informal language use is not disregarded.
Research has demonstrated that particular discourse practices in mathematics assists students
to engage more deeply in learning, building meaning, and knowledge in mathematics
(Barwell, 2016).

Exploring conceptions of learning, meaning and knowledge relating to language can
reveal the influence of an ontological perspective. Stretching the concept of language use to
embrace a broader notion of what can be considered a mathematical discourse may involve
finding new ways to see language. It is expected that the development of new forms of
language use in learning mathematics can be supported by a corresponding shift in
underpinning ontology (Murphy, 2015). Exploring Wittgenstein’s notion of language games
(1953) is a possible means of allowing such a shift (Standish, 1995).

This paper aims to examine how sociocultural theories influence a view of language use
in the learning of mathematics; in particular, | attempt to reframe the view of language to
support a social participation perspective. I propose that an interpretation of Wittgenstein’s
concept of language games, which is underpinned by social participation, can be helpful by
providing a perspective of classroom language use that avoids seeing words as autonomous
entities. Overemphasis on the use of specific words and terms can result in a narrow view of
language use in learning mathematics (Barwell, 2016). This view prioritises the correct use
of technical vocabulary or formal academic language. Instead, the idea of language games
focuses attention on the broader contextual features in which talk occurs, such as
participation, patterns of exchange, and social norms.

Wittgenstein’s Language Games

Wittgenstein (1953) aimed to demonstrate that words are not defined by reference to the
objects they designate, nor by mental representations one might associate with them, but by
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how they are used in the context of social activity. He challenged the idea that the meaning
of words is anchored by invariable rules that can be demonstrated in acts of ostensive
definition. Wittgenstein also opposed the notion that the rule for how to use a word can be
abstracted from all particular uses. The meaning of the word is the use of it, which can only
be learnt through such use with other language users. Wittgenstein questioned the idea that
we can come to understand the essential meaning or essence of a word. He asked whether
the word or concept of game has an essence that can meaningfully be defined in certain terms
such as necessary or sufficient conditions (Wittgenstein, 1953):
Consider ... proceedings we call games, I mean all games, card games, board games, Olympic games

and so on. What is common to them all? ... If you look at them you will not see something that is
common to all, but similarities, relationships, and a whole series of them at that. (p. 66)

Wittgenstein puts forward the idea of language games to illustrate the point that without
considering use in context it can be nonsensical to theorise about what words mean; that
understanding and meaning are inextricable from the social contexts within which speakers
interact. The notion of language games is used to help us to see that the rules that guide how
words are used are embedded in the social contexts of such use; they are part of a “form of
life” (Wittgenstein, 1953, p. 68).

The idea of a pragmatic theory of meaning contrasts with many commonly held views
about how language operates in mathematics (Moschkovich, 2019). The notion that
mathematical terms are tightly defined can result in such definitions being placed front and
centre as a language feature in learning experiences (Strom et al., 2001). Rather than viewing
the meaning of mathematical terms as fixed and the rules by which they are used as
invariable we might seek to understand, instead, what are the norms or rules of the language
games being played and in which contexts do language experiences support learning?

Wittgenstein’s idea of language games does not provide a model of how mathematical
discourse should look. Neither are language games part of a theoretical framework that can
be mechanically applied. | am suggesting that language games are a way of seeing a
mathematical discourse that looks beyond particular words and phrases and attempts to
describe the overall purpose of the mathematical activity. The purpose is described in terms
of social participation. For example, a language game could be one in which students appear
to make a genuine effort to engage with others’ ideas. The purpose of this game might be
described as recognising other peoples’ thinking. A language game could be one that
involves trying to trump or better the previous speaker and the purpose is one-upmanship or
winning. Yet another game could involve the teacher playing a catch-and-pass role. They
chair a discussion by distributing contributions without comment or rephrasing. The purpose
is to increase fluent exchange between interlocutors and support connection between ideas.
There is not one type of language game, as there is no monolithic form of language
(Moschovich, 2019). A description of language games is not intended to be definitive. Using
a language games perspective aims to provide a way for teachers and researchers to look at
a mathematical discourse that allows a connotation of meaning in terms of purposes for
social participation.

References to Wittgenstein’s importance for education often acknowledge his influence
in providing an alternative view of the role of philosophy and note a corresponding shift in
epistemological and ontological viewpoints (Standish, 1995). As new ideas for the purpose
of education and the nature of learning are explored, a means of supporting the shift in ways
of seeing, analysing, conceiving and acting as researchers and practitioners will also be
required. For example, Wittgenstein’s opposition to Cartesian conceptions of mind and
understanding allows us to reframe our view of the nature of learning and knowledge
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(Smeyers, 1998). A change of approach recognises that overvaluing the use of technical or
formal mathematical language can be inhibiting rather than enabling and that informal or
natural dialogue can be effectively blocked. Viewing the language of mathematics too
narrowly can fail to allow the natural use of language to discuss, explain and reason. Such a
view can hinder the process of inducting children into mathematical practices (Wagner &
Andersson, 2018).

As young children are initiated into the practice of mathematics, they will already be
exploring how they can engage in certain discourses to express and develop their thinking.
Rather than constraining or obstructing natural use by maintaining too closed a view of how
mathematical language should look, emphasis is placed on looking for natural use of
language to develop. As a theoretical lens, the idea of language games allows a view of the
broader contextual features in which a mathematical discourse occurs.

The following sections will consider sociocultural theories and practices in relation to
developing classroom discourse for mathematics. It offers reflections of how Wittgenstein’s
language games potentially provide a lens for viewing the development of exploratory talk.

Exploratory Talk

A focus of research into classroom language use has been to distinguish between
different types of talk. Talk that is rote learnt through repeated procedure or ritual can be
considered essential to formative stages of learning (Sfard, 2007). In these formative stages,
the role of a teacher is to model and shape how language is being used by students. However,
highly practised forms of talk could be considered exemplifications for all classroom
language use. Such a view can be normatively restricting. While ritualised forms of language
use may be necessary for early initiation into new learning, it is thought that progression
through later stages of learning requires more creative and generative uses of language
(Sfard, 2007). Exploratory talk involves student-initiated language use that actively
communicates about and negotiates meaning. As exploratory talk develops, patterns of
classroom language use might be tentative, incomplete or fragmented yet allow for inventive
purposes for talk. Overemphasis on polished forms of public speaking, or presentational talk,
and on the correct use of formal language, can hinder opportunities for exploratory talk
(Barnes, 1976).

The goal of supporting children as they develop use of exploratory talk has been
researched on the difference between characterising mathematical language use as ‘playing-
with’ and ‘playing-at’ (Fleener et al., 2004). Playing-with language use is seen as generative
and employed by students to actively invent contexts to extend meanings. In contrast,
‘playing-at’ language use is considered to be evident when a student merely attempts to
provide the teacher with an expected response. The development of exploratory talk requires
that teachers are able to recognise and create opportunities for this form of language
exchange. Having a tuned ear to help guide or shape verbal exchanges towards exploratory
talk is an important skill, as outlined above by the various talk moves a teacher can employ.
However, such hermeneutical listening is not easily achieved. To support exploratory talk,
teachers are required to use interpretive listening to allow students to expand and relate
meanings rather than narrowing them. Attempts to support ‘playing-with’ language uses will
collapse into ‘playing-at’ games if the teacher appears to feel the need to seek closure to the
learning episode and feels pressured to ensure that students have used acceptable
mathematical terms and phrases (Fleener et al., 2004).

Using language games as a lens can provide a number of insights into the failure of
‘playing-with’ language games: It is difficult for a teacher to avoid authoritative control and
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to use interpretive listening to guide their own participation (Fleener er al., 2004). The
perceived need for students to use mathematical terms correctly can restrict opportunities for
exploratory talk. There also seems to be a tendency for both teachers and researchers to focus
on the use of specific words or terms rather than notice patterns of exchange or attempts to
convey meaning using informal language.

Dialogic Pedagogies

Researchers have identified features of teaching and learning that support the
development of dialogue (Hardman, 2019). Common to such dialogic pedagogies are talk-
intensive practices that encourage students to engage in extended discourse to share and
build a common understanding (Snell & Lefstein, 2018). Dialogic pedagogies are motivated
by the idea often attributed to Vygotsky (1978) that regularly engaging in dialogue of a
certain nature supports the ability to internalise a reasoning dialogue. An essential
component of dialogic theories is the importance of learners interacting with others,
including the teacher.

It has been recognised that the development of a dialogic pedagogy takes a certain skill
set of the teacher (Khong et al., 2019). Research has aimed to explore and describe effective
roles for teachers to provide practical support within classrooms. These roles include asking
probing and clarifying questions, encouraging students to elaborate on their ideas,
acknowledging and validating students’ proposals, and encouraging sustained discussion
(Sedova et al., 2019). Such ‘talk moves’ are designed to help teachers to interact with
students and are also used to prompt and encourage peer-to-peer interaction. Different
focuses of research into talk moves include: initial moves to engage discussion, moves to
follow up ideas, moves to encourage students to interact with each other’s ideas and moves
to make student thinking visible (Ritchhart et al., 2011; Webb et al., 2014). Encouraging
students to relate their thinking to a previous expression is an example of talk move that
helps to build connections between ideas and prompt interaction.

Dialogic pedagogies emphasise the importance of collective participation and surfacing
social norms that guide and shape the purpose of talk. Describing the purpose of a language
game will also surface social norms. A language game could be one sided or balanced and
interactive. A language game might prioritise authoritative use of technical language or
allow novice attempts and informal expressions. A language game is a situated, social
activity. Describing a classroom language game makes explicit the purpose, manner or intent
of social participation.

Philosophical Positions

Opportunities for the development of exploratory talk may require more than teachers
employing a set of techniques. It may also help if ontologies or epistemologies are reframed.
The normative persuasion of a received ontology can imply that a shift in a teacher’s views
about knowledge is required to support the introduction of exploratory talk in mathematics
(Murphy, 2015).

Ontological and epistemological views of mathematical knowledge will likely translate
into different approaches towards engaging students in talk when learning mathematics. For
example, a positivist perspective that sees mathematical knowledge as a set of stable patterns
or universal invariants will likely influence teachers to lead students towards making correct
interpretations (Radford, 2006). From this perspective, talk is more likely to be viewed
merely as a means of reporting. For example, talk is used to allow students to report the
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current state of their knowledge. Alternatively, a non-positivist perspective, which sees
learning in mathematics as a generative process of meaning making or gaining
understanding, will frame a view of knowledge in different terms. Exploratory talk is
associated with the concept that knowledge is generated through collectively social activities
(Barwell, 2018). So, increasing opportunities for use of exploratory talk in classrooms would
appear to require that teachers are able to shift or reframe their epistemological perspectives.

How a teacher participates in mathematical talk with students could provide some insight
into their views about mathematical knowledge. Using a language games lens, a teacher’s
influence on patterns of language use can be interpreted to uncover tacit beliefs about the
purpose of language and the status of mathematical knowledge. If there is a causal
connection, connections can be inferred between teacher ontology and observable features
of classroom discourse. Increasing opportunities for exploratory talk may then require
shifting a teacher’s views about the nature of mathematical knowledge.

Learning-as-Participation

If interpersonal language use is seen to be necessary for the development of thinking
then language exchanges and children’s participation in such exchanges, with each other and
with the teacher, are central to learning. Through our participation with other language users
we become able to use language ourselves and develop our own thinking. This social
participation approach sees learning mathematics as an initiation into using language in new
ways. Learning is defined by participation in social practices rather than the acquisition of
concepts or knowledge. Here the conception of learning and knowledge is reframed. The
enterprise of learning mathematics is seen as becoming initiated into using a mathematical
discourse and the goal is for students to eventually become participants in the use of
exploratory talk (Sfard, 2007).

From this perspective, language is considered in much broader terms than just involving
the utterance of words or phrases. As many features of a context are considered to give sense
to the social activity in which language use occurs, it is no longer possible to examine
language as an isolated or autonomous phenomenon (Gee, 2014). Ontological implications
associated with the concept of discourse can appear to contradict commonly held views
about the nature of mathematical knowledge. This conflict arises when the effect of
background influences in shaping meaning appear in the concept of discourse. These
background influences are often implicit, but powerful factors which are posited by
sociocultural theories of language to shape the overall meaning and intention of a discourse.

Common to sociocultural theories of language is the idea that the terms of exchange take
their meaning, intention or purpose from the contexts in which they are used. However, any
attempt to pin down or isolate what it is about a particular context that conveys meaning to
the discourse situated therein can seem impossible when considering a myriad of possible
features (Gee, 2014). Further, the notion of context is not restricted to any particular instance
of use, but extends to all previous uses. Terms of exchange have historical context: meaning
has been shaped and formed through all previous uses and continues to be reshaped by each
particular instance of use. In this view, language appears to be a fluid phenomenon with
innumerable factors that influence meaning (Sierpinska & Lerman, 1996).

A language games perspective is consistent with a view of learning mathematics in
discursive terms. Knowing mathematics is seen to be synonymous with being able to
participate in a mathematical discourse (Sfard, 2007). However, viewing this participation
and recognising forms of engagement does not necessarily require that we attempt to identify
definitive sources of meaning. Wittgenstein suggests that philosophical theorising about
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ideas such as certainty or meaning can lead us to have unrealistic expectations about
language. The idea of language games is useful in allowing us to escape the trappings of
theoretical dogmatism. That is, thinking that we need to pinpoint the meaning of terms used
in a mathematical discourse is based on the idea that there are direct referents for the meaning
of terms. A language games perspective is not based on this idea of objectivity. Using a
language games lens involves looking in an adaptable and flexible way at the meaning of
mathematical communication within social contexts.

Everyday Language and Mathematical Discourse

Proponents of a view of classroom mathematical language use that recognises a broad
conception of contextual meaning emphasise that natural or ordinary language use allows
for less complicated assimilation of practice (Moschovich, 2019). The ease of using
everyday language can be contrasted with the difficulty of learning technical or formal
language. A distinction between everyday language and academic language seems
straightforward. However, some researchers argue that this distinction oversimplifies the
complexities of relationships between language, communication, and learning
(Moschkovich, 2019). It is then recommended that everyday and school mathematical
practices are not presented as a dichotomous distinction (Gutierrez et al., 2010;
Schleppegrell, 2010).

While cautioning us to avoid drawing impermeable lines between everyday and
mathematical language uses, Moschkovich (2019) does see value in clarifying the
differences between mathematical ways of talking and formal ways of talking
mathematically. Here, we are asked to open our conception to a broader view of what an
authentic mathematical discourse can be in a classroom. We are encouraged to move away
from a simplified view of language framed in terms of words, phrases, vocabulary or a set
of definitions and expand our view of the mathematics register. The proposed shift of focus
is towards reasoning rather than accuracy and towards precision as an object of inquiry rather
than a requirement of engagement: “instruction should move away from interpreting
precision to mean using the precise word, and instead focus on how precision works in
mathematical practices” (Moschkovich, 2019, p. 6). We are asked to share a progressive
view of mathematical discourse that allows language use to flourish with attention on active
negotiation of meaning within mathematical situations.

Likewise, avoiding an instrumentalist view that sees mathematics and language as sets
of tools or competencies that provide a means to an end can allow us to see mathematics as
a way of thinking or reasoning which is part of our general existence; “the capacity to think
mathematically is inseparable from the capacity to reason in general and should be seen as
an essential part of the latter” (Rider, 2017, p. 504). Rejecting the assumption that a child’s
world is not in some way mathematical before they enter school helps to reframe our enquiry
into practices of instruction; the problem of “how can mathematics instruction recognise the
pupil’s experience?” is misconceived from the outset. The question should rather be “how
can instruction make children recognise the mathematical in their experience?” (Rider, 2017,
p. 511).

The question of what constitutes a mathematical discourse could be considered pivotal
for theories that see learning in discursive terms. But rather than seeing the benefit of such
theories hinge on a need to define what is meant by a mathematical discourse, they can be
considered useful in providing a perspective for inquiry that explores this very notion. Using
the idea of language games to see students as participants in discourse practices might reveal
complexities, such as the relationship between everyday and mathematical discourses. This
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perspective could help teachers and researchers shift away from oversimplified views of
language (Barwell, 2016). Seeing learning mathematics in discursive terms is not an attempt
to provide a definitive description of a mathematical discourse, but a way to view how
classroom language is actually being used within rich social contexts as students grapple
with new mathematical situations.

Conclusion

Learning can be seen as the change that takes place as students become participants in a
mathematical discourse. A view of learning mathematics in discursive terms emphasises the
importance of patterns of social interaction and recognises progression of learning in
mathematics as a move towards more uses of exploratory talk (Sfard, 2007). Exploratory
talk is thought to extend learning in mathematics by allowing generative and collaborative
discourse (Murphy, 2015). The adoption of dialogic pedagogies may benefit this form of
classroom talk. However, overemphasis on the correct use of formal academic language can
impede the development of exploratory talk in learning mathematics (Barwell, 2016). In
discursive terms, rather than seeing mathematical terms as autonomous and with objective
referents, the broader context of a mathematical discourse is considered to give meaning and
purpose to learning. Thus, Wittgenstein’s idea of language games is suggested as a useful
perspective for seeing learning mathematics in discursive terms. This perspective could be
useful in providing insight into the influence of a teacher’s views about mathematical
knowledge on the development of exploratory talk. Language games could also support the
development of an expanded view of a mathematical discourse.
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“Out-of-field teaching” is an international phenomenon that seems particularly prevalent in
mathematics. Our study is evaluating the impact of a national professional learning program
for out-of-field secondary mathematics teachers in Ireland. Using the Productive Pedagogies
framework, we compared the pedagogical practices of three pairs of teachers who were either
upskilled, still out-of-field, or always in-field. The findings suggest that graduates of the
upskilling program are developing pedagogical practices more like those of in-field teachers.

“Qut-of-field” teaching is an international phenomenon that involves teachers being
assigned to teach subjects that do not match their training or education (Ingersoll, 2002).
This practice seems particularly prevalent in the teaching of mathematics. Out-of-field
teachers of mathematics typically possess a teaching qualification but have limited advanced
studies of mathematics and little or no specific preparation in mathematics pedagogy. There
IS growing recognition of the need for professional development programs that meet the
particular needs of out-of-field teachers (Du Plessis et al., 2014). To date, however, there
has been little research on the effectiveness of such programs (Faulkner et al., 2019). This
paper reports on aspects of a larger study that is evaluating the impact of a long-term, large-
scale, government-funded, nationally-consistent, university-accredited program offered to
out-of-field teachers of mathematics in Ireland — the Professional Diploma in Mathematics
for Teaching (PDMT).

Background to the Study

In Ireland, concerns about student performance in post-primary school mathematics at
the beginning of the 21% century led to the introduction in 2010 of a new curriculum that
shifted emphasis towards understanding and problem-solving and away from memorisation
and procedures (National Council for Curriculum and Assessment, 2005). Concurrently, the
Teaching Council of Ireland (2013) introduced new accreditation requirements for initial
teacher education programs. In mathematics, fully qualified teachers must have a degree-
level qualification with the specific study of mathematics comprising at least one-third of
the degree. There are also minimum credit requirements in analysis, algebra, geometry, and
probability and statistics, with additional credits to be obtained in a variety of optional topics.
Despite these strict requirements, school principals in Ireland have autonomy in recruiting
staff and assigning teachers to subjects and classes, thus leaving open the possibility of
placing teachers in out-of-field positions.

Ni Riordain and Hannigan (2009) speculated that the phenomenon of out-of-field
teaching of mathematics could be a possible obstacle to achieving the goals of the new
mathematics curriculum. They conducted a national survey of teachers of mathematics in
Irish post-primary schools, collecting data on respondents’ teaching assignments, degree
qualifications, and the subjects they were qualified to teach according to the requirements
specified by the Irish Teaching Council. This survey established that 48% of respondents
were teaching mathematics without the necessary subject-specific qualifications. In response
to this finding, the Department of Education and Skills (DES) funded the PDMT to develop
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the content and pedagogical content knowledge of out-of-field teachers of mathematics to
the level required by the Teaching Council. Six cohorts comprising 1078 teachers
participated in the PDMT from 2012-2020.

The PDMT is a 2-year part-time postgraduate program with teachers’ tuition fees funded
by the DES. Delivery of the program is led by the University of Limerick in conjunction
with a national consortium of higher education institutions. PDMT participants teach full-
time in their schools while they undertake the program in the evening, on weekends, and
during school vacations via a blended learning approach. Ten undergraduate mathematics
modules are delivered online in 30-hour blocks across 6-week sessions, with additional face-
to-face and online support. Two yearlong mathematics pedagogy modules are delivered
face-to-face via weekend workshops and a one-week summer school. These pedagogy
modules emphasise classroom practices that support problem-solving and promote
conceptual understanding. One of the pedagogy modules also requires participants to
complete a supervised action research project on their practice in the mathematics classroom.

An important aim of the PDMT is to develop out-of-field teachers’ knowledge of
mathematics content and pedagogy. The program additionally aims to support teachers in
developing pedagogical practices aligned with the goals of the new mathematics curriculum
in Ireland, and this is the focus of the present paper. To gain insights into the latter aspect of
the PDMT, we compared video-recorded mathematics lessons taught by teachers who were
currently, formerly, or never out-of-field in order to address the following research question:
What similarities and differences can be observed when comparing the pedagogical
practices of out-of field, upskilled, and in-field teachers of mathematics? (Upskilled teachers
are those who have completed the PDMT.)

Conceptualising and Evidencing the Impact of Professional Development

Researching the impact of teacher professional development poses methodological and
conceptual challenges. Desimone (2009) discussed the strengths, weaknesses, and trade-offs
between observations, interviews, and surveys as the most common methods for studying
teacher learning, and stressed the importance of choosing data collection methods to match
a study’s research questions. Adler et al. (2005) also pointed out that a personal investment
in teaching makes it difficult for teacher educators to take a critical stance towards the
research we do with teachers, and they suggested developing strong theoretical languages in
order to distance ourselves from what we are looking at. In the present study, as the authors
have the dual roles of researchers and teacher educators in the PDMT, we aimed to achieve
this critical distance by situating our research within Desimone’s (2009) conceptual
framework for studying teacher professional development.

Desimone’s (2009) framework has two components. The first component identifies the
critical features that define effective professional development in terms of increasing teacher
knowledge and skills and improving their practice. Drawing on existing empirical research,
Desimone proposed that this set of critical features places emphasis on: (a) content focus,
(b) active learning, (c) coherence, (d) duration, and (e) collective participation. The second
component of the conceptual framework is “an operational theory of how professional
development works to influence teacher and student outcomes” (p. 184). For this component,
Desimone proposed a model with the following steps:

1. Teachers experience effective professional development (defined in terms of the set

of critical features outlined above).

2. The professional development increases teachers’ knowledge and skills and/or

changes their attitudes and beliefs.
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3. Teachers use their new knowledge and skills, attitudes, and beliefs to improve the

content of their instruction or their approach to pedagogy, or both.

4. The instructional changes foster increased student learning. (p. 184)

Desimone (2009) acknowledged that other potentially important factors existed, but
these were not incorporated into her model because they have not yet been the subject of
much research on the impact of professional development. These factors might include, for
example, professional identity (Hobbs, 2012), the role of the principal in providing
opportunities for teacher learning (Du Plessis et al., 2015), and the role of curriculum
materials and implementation (Remillard & Heck, 2014). Desimone also conceded that her
model could be criticised as representing a positivist viewpoint. However, she maintained
that the model could still be used in studies with different theoretical perspectives on teacher
learning as a means of integrating the knowledge generated by empirical research with “the
emerging consensus of what is good professional development” (p. 187).

Desimone (2009) noted that it is rare for a single study to investigate all four elements
of her proposed model; in particular, there are significant methodological difficulties in
designing evaluations that measure the effects of professional development on student
achievement. Research conducted by our larger team has analysed the critical features of the
PDMT program (Step 1 in Desimone’s model; see Goos et al., 2020) and its effect on the
teachers who participated in the program (Steps 2 and 3; see Lane & Ni Riordain, 2020; Ni
Riordain et al., 2017). In this paper, we further examine the impact of the PDMT on teachers’
pedagogical practices (Step 3) as a key element in Desimone’s model of teacher change.

Research Design and Methods

We would have liked to investigate the effects of the PDMT on participants’ classroom
teaching approaches by observing lessons taught before and after the teachers experienced
the program. However, this was not possible due to resource constraints and the demands of
delivering a large, complex program involving 13 higher education institutions. Our research
team’s earlier analysis of PDMT participants’ action research reports indicated that teachers
perceived a shift in their pedagogical practices towards more student-centred approaches that
emphasised conceptual understanding and problem-solving (Lane & Ni Riordain, 2019). To
further investigate these teacher self-reports, we designed a cross-sectional study to compare
the pedagogical practices of three groups of teachers: (a) those currently teaching
mathematics out-of-field (n=2); (b) those who had been upskilled to fully qualified status by
completing the PDMT (n=2); and (c) those who had always been fully qualified, in-field
teachers of mathematics (n=2). These six teachers were recruited from six different schools.

Teachers were observed by the second author as they taught six junior secondary
mathematics lessons in two blocks of three consecutive lessons. These lessons were also
video-recorded for later analysis. Pre- and post-lesson interviews were conducted by the
second author to obtain teachers’ perspectives on lesson objectives, anticipated and actual
challenges or successes, knowledge, and confidence levels. Surveys were also administered
to the teachers to collect demographic information and data on teacher self-efficacy, job
satisfaction, and preparedness for teaching topics in the secondary mathematics curriculum.
All data collection was carried out by the second author. This paper draws only on teacher
demographic data and the video recordings of lessons they taught.

The Productive Pedagogies framework was selected as a classroom observation
instrument that has been theoretically and statistically validated in Australian research
(Lingard et al., 2001). Although not specifically designed for mathematics classrooms, it has
been used in longitudinal studies of mathematics teaching (e.g., Makar, 2011) as well as in
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large-scale studies of primary and secondary school lessons in a range of curriculum areas.
The 20 items of the Productive Pedagogies framework are shown in Figure 1. The framework
has four dimensions, two concerned with the academic outcomes of schooling (left side of
Figure 1) and two with the social outcomes (right side of Figure 1). The Intellectual Quality
dimension emphasises the importance of all students being presented with challenging work.
Connectedness makes learning meaningful by linking new knowledge to prior knowledge,
other subjects in the curriculum, and the world beyond school. Supportive Classroom
Environment foregrounds relationships and giving students a voice in the classroom, while
Recognition of Difference provides students with the capacity to act as responsible members
of a democratic society. A 5-point rating scale is used to provide an index of the variation in
quality of classroom practice for each item.

Intellectual Quality Supportive Classroom Environment

Higher order thinking (HOT) Student direction (SD)

Deep knowledge (DK) Social support (SS)

Deep understanding (DU) Academic engagement (AE)

Substantive conversation (SC) Explicit quality performance criteria (EC)
Problematic knowledge (PK) Student self-regulation (SS)
Meta-language (ML)

Connectedness Recognition of Difference
Knowledge integration (KI) Cultural knowledge (CK)
Background knowledge (BK) Inclusivity (I)

Problem-based curriculum (PBC) Narrative (N)

Connectedness beyond the classroom (CBC) Group identities (GI)
Active citizenship (AC)

Figure 1. Productive Pedagogies dimensions.

Before observing and video-recording lessons taught by the six teachers, the second
author discussed the Productive Pedagogies scoring manual with the first author, who is an
experienced user of the Productive Pedagogies framework. Both authors used the scoring
manual independently to rate an online video of a junior secondary mathematics lesson, after
which they compared their ratings and resolved any differences via further discussion. After
the data collection was completed, the second author watched the video-recorded lessons,
assigned scores for each item, and calculated mean scores on each dimension for each of the
three types of teachers (out-of-field, upskilled, in-field). Similarities and differences between
the teachers were further examined for each dimension by inspecting item scores.

Results

Demographic Data

Table 1 summarises the gender, years of mathematics teaching experience, and grouping
(out-of-field, upskilled, in-field) of the participating teachers. Both out-of-field teachers
were female and had taught mathematics for up to 10 years; the other teachers were male
with mathematics teaching experience ranging from less than five to more than 16 years.
Table 1 also shows the year in which upskilled and in-field teachers gained their mathematics
teaching qualifications through the PDMT or initial teacher education program respectively.
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Table 1
Teacher Demographic Characteristics
Teacher
Characteristic T1 T2 T3 T4 T5 T6
Gender/ Group M M F M F M
us IF OOF us OOF IF

Years teaching mathematics 16-20  11-15 <5 <5 6-10 6-10
(year qualified) (2018) (1999) (n/a) (2018) (n/a)  (2010)

Note. OOF = out-of-field; US = upskilled; IF = in-field

Pedagogical Practices

Table 2 presents the mean scores on the Productive Pedagogies dimensions for each
group of teachers over the three lessons for which they were observed. Thus, each mean
score is derived from six observations (two teachers x three lessons). One observable trend
is that out-of-field, upskilled, and in-field teachers all scored highest on the dimension of
Supportive Classroom Environment and lowest on the dimension of Connectedness. The
same pattern was found in Makar’s (2011) analysis of pedagogical practices in Australian
primary school teachers’ “regular” mathematics lessons.

Table 2
Productive Pedagogies Mean Scores

Teacher Group

Dimension Out-of-Field ~ Upskilled In-Field
Intellectual Quality 2.64 3.00 3.61
Connectedness 1.54 1.79 1.75
Supportive Classroom Environment 3.67 3.27 4.07
Recognition of Difference 3.10 2.23 2.57

Note. A 5-point rating scale was used. Each group comprises two teachers who were observed for three lessons.

Looking across the rows of Table 2 enables comparison between the three groups of
teachers on each Productive Pedagogies dimension. In-field teachers had the highest mean
scores for the dimensions of Intellectual Quality and Supportive Classroom Environment,
while upskilled teachers recorded the highest mean score for Connectedness — although this
was very similar to the mean score of the in-field teachers. Out-of-field teachers achieved
the highest mean score for the dimension of Recognition of Difference. This may be because
they were the only teachers in the sample who taught mixed-ability, rather than streamed,
mathematics classes. These two teachers were observed to place particular emphasis on
encouraging participation of struggling students, thus highlighting the element of Inclusivity
(Figure 1) for this non-dominant group in their classrooms.

Because the PDMT is mainly concerned with teaching mathematics for academic
outcomes, we next examine the detail of teachers’ pedagogical practices in the corresponding
dimensions of Intellectual Quality and Connectedness. Tables 3 and 4 show each teacher’s
score totals for the three observed lessons for each item of these dimensions. (Score totals
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are displayed instead of mean scores for ease of comparison across multiple teachers and
items.) Pedagogical practices that seem to characterise the greatest difference between
teacher groups are highlighted for discussion.

Table 3
Intellectual Quality Score Totals

Out-of-Field Upskilled In-Field
ltem T3 T5 T1 T4 T2 T6
Higher Order Thinking 8 8 9 10 8 15
Deep Knowledge 9 9 11 13 12 15
Deep Understanding 9 12 10 10 12 12
Substantive Conversation 5 9 5 10 8 9
Problematic Knowledge 6 6 5 8 11 12
Meta-language 5 9 9 8 12 5

Note. A 5-point rating scale was used. Each teacher was observed for three lessons.

Within the dimension of Intellectual Quality, the greatest differences — equivalent to at
least 6 points across three lessons, or a mean of 2 points per lesson on the 5-point observation
scale — occurred on the items representing Higher Order Thinking, Deep Knowledge, and
Problematic Knowledge (Table 3). The general trend is for the scores to increase from out-
of-field to upskilled to in-field teachers. Also notable is the high Meta-language score for in-
field teacher T2, who regularly provided help in the use of mathematical terminology for
students who had been identified with low literacy skills.

Figure 2 provides examples of questions posed by Teacher 5 (out-of-field), Teacher 4
(upskilled) and Teacher 6 (in-field) that illustrate differences in the quality of their
pedagogies for promoting Higher Order Thinking. According to the Productive Pedagogies
classroom observation manual, Higher Order Thinking requires students to manipulate
information and ideas in ways that transform their meaning and implications, for example
by synthesising, generalising, explaining, or arriving at a conclusion or interpretation. This
level of thinking is evident in the question asked by Teacher 6, and to some extent by Teacher
4. However, Teacher 5’s question only requires students to rehearse procedural routines.

T5 (OOF) T4 (US) T6 (IF)
Solving equations Simultaneous equations Introducing simultaneous equations

Q. Now what happens if I Q. How do I get this —3x | Q. Which of these equations do you think is

have the scales and I take 8 | to become an x? the hardest to solve? Why?
away from 12 on the RHS? 1) 95x2 —2x+105=0
Q. Can you explain to me 2) 3x+2y=8
Q. What did she do to both | what you did? 3) 9x*—39x® +9x2—-90x+ 3035 =0
sides of the equation? 4) Vox* — X3 — 45% —87x = 0

Figure 2. Examples of teacher questions illustrating variation in promotion of Higher Order Thinking.

For the dimension of Connectedness, the differences between teacher groups were less
pronounced — perhaps as a consequence of the lower scores across all three groups (see Table
2). The greatest difference — equivalent to at least 3 points across three lessons, or a mean of
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1 point per lesson on the 5-point observation scale — occurred on the item representing
Problem-Based Curriculum (Table 4). In line with the Intellectual Quality dimension, the
trend here is for scores to increase from out-of-field to upskilled to in-field teachers.

Table 4
Connectedness Score Totals

Out-of-Field Upskilled In-Field
Item T3 T5 TL T4 T2 T6
Knowledge Integration 3 3 4 3 3 3
Background Knowledge 6 7 7 6 6 6
Problem-Based Curriculum 6 6 7 9 8 10
Connectedness Beyond the 3 3 4 3 3 3

Classroom

Note. A 5-point rating scale was used. Each teacher was observed for three lessons.

Figure 3 shows examples of tasks presented by Teacher 3 (out-of-field), Teacher 1
(upskilled) and Teacher 2 (in-field) that illustrate differences in the quality of their
pedagogies for promoting a Problem-Based Curriculum. The Productive Pedagogies
classroom observation manual defines a problem as a task with no specified correct solution
that requires knowledge construction on the part of students. In keeping with the
mathematics education research literature, we re-interpreted this definition to mean that a
mathematical problem is a task for which the student does not know, and needs to construct,
the solution method (National Council of Teachers of Mathematics, 2000). There is some
evidence that this kind of knowledge construction is called for in the tasks offered by Teacher
2 and Teacher 1; however, the task set by Teacher 3 instead requires using well-defined
algorithms for algebraic manipulation.

T3 (OOF) T1 (US) T2 (IF)
Expanding and simplifying Introducing patterns Introducing Pythagoras’ Theorem
4(x +2) XY 2 XY, 2, X, ¥, Z, ... (Counting up boxes in the squares of the
6(a+4)+22a+3) What letter is in the 63 sides) ... How many boxes should be in
position? here (the square on the hypotenuse) based
on what we did earlier?

Figure 3. Examples of tasks illustrating variation in problem-based lessons

Conclusion

In this paper, our focus was on the extent to which the PDMT encouraged teachers to
take up pedagogical practices that emphasise conceptual understanding and problem-
solving, in line with Ireland’s new secondary mathematics curriculum. Because it was not
possible to collect longitudinal data on PDMT participants, we instead designed a cross-
sectional study to identify similarities and differences between these upskilled teachers and
other teachers of mathematics who were still out-of-field or had always been in-field. This
design does not allow us to make claims about causality in relation to the PDMT, but it does
illuminate some interesting comparisons between these three groups of teachers. The groups
were similar in that out-of-field, upskilled, and in-field teachers all scored highest on
Supportive Classroom Environment and lowest on Connectedness, a finding that aligns with
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previous research using the Productive Pedagogies protocol (Makar, 2011). Some of the
differences between groups suggested that upskilled teachers (PDMT graduates) might be
adopting pedagogical practices more like those of in-field teachers than those who are still
teaching mathematics out-of-field, especially in relation to promoting Intellectual Quality
and Connectedness. These conclusions can only be tentative, given the small sample, but
they suggest that structured lesson observations can usefully supplement upskilled teachers’
self-reports of changes in their pedagogical practices arising from participation in a targeted
professional development program. In addition, such structured lesson observations may be
useful for informing the design of programs to develop out-of-field teachers’ (and also pre-
service teachers’) knowledge of mathematics and pedagogical practices, particularly in
pinpointing specific items within the academic outcomes of schooling that require further
consideration (e.g., knowledge integration and connectedness beyond the classroom).
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Noticing structural thinking through the CRIG
framework of mathematical structure

Mark Gronow
Central Queensland University
<m.gronow@cqu.edu.au>

Structural thinking skills should be developed as a prerequisite for a young person’s future
mathematical understanding and a teachers’ understanding of mathematical structure is
necessary to develop students’ structural thinking skills. In this study, three secondary
mathematics pre-service teachers (PSTSs) learned to notice structural thinking through the
CRIG framework of mathematical structure. The framework consists of Connections,
Recognising patterns, ldentifying similarities and difference, and Generalising and
reasoning. | report here on how the CRIG framework helped the PSTs’ notice structural
thinking.

To develop an ability to notice structural thinking, teachers must first of all be aware of
mathematical structure. Mason et al. (2009) defined mathematical structure as ‘“the
identification of general properties which are instantiated in a particular situation as
relationships between elements or subsets or elements of a set” (p. 10). Stephens (2008)
described structural thinking as an awareness of how mathematical properties develop into
generalisations. Furthermore, Mason et al. (2009) promoted structural thinking as
understanding the concepts and knowing procedures to use and when solving mathematical
problems.

Varied theories exist about structure; as mathematical structure or structural thinking.
Wertheimer (1945) proposed that mathematical structure is knowing how a formula is
connected to a mathematical concept. Hiebert and Lefevre (1986) combined conceptual and
procedural knowledge as ‘proceptual’ thinking across mathematical processes. Stephens
(2008) defined ‘structure’ as synonymous with relational thinking (Skemp, 1976). Schwarz
et al. (2009) proposed that structural thinking is knowing the relationships and connections
between mathematical concepts.

The concept of structural thinking in mathematics is not clearly understood by many
teachers of mathematics (Richland et al., 2012). Mason et al. (2009) stated that teachers’
awareness of structural relationships transforms students’ thinking and disposition to
engage, they believe that teachers need to focus on structure so students can think
structurally. Research in teachers’ awareness of mathematical structure or structural thinking
is limited. Gronow et al. (2020) explored secondary mathematics teachers’ understanding
and use of mathematical structure. Their study investigated how teachers used mathematical
structure and encouraged structural thinking through components of mathematical structure:
Connections, Recognising patterns, Identifying similarities and differences, and
Generalising and reasoning. The four components, known as CRIG pedagogical framework
of mathematical structure developed during Gronow et al.’s (2020) study found teachers’
identified with structure but were not aware they were using it in their teaching. The CRIG
framework, in this study, is introduced to PSTs as an effective mechanism for learning to
notice structural thinking. The four components of the CRIG framework are detailed next.

Connections. Vale et al. (2011) recognised connections between mathematical
representations as fundamental to structural thinking. Making connections between contexts
or concepts allows learners to develop mathematical understanding. Mathematics teachers

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 211-218. Singapore: MERGA.
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make connections between prior, present and future learning, and in real-world contexts of
mathematical representations.

Recognising patterns. Patterns are essential in children’s mathematical development
which begin with their observations of the natural world. Children recognise, observe and
generate patterns before reaching school and learn patterning in formalised learning
situations that develop structural thinking processes that lead to a deeper understanding of
abstract mathematical concepts. Mulligan and Mitchelmore (2009) found that children’s
structural thinking, identified in patterning awareness, is essential for mathematical concept
formation in future learning.

Identifying similarities and differences. Learners develop structural thinking through
noticing the differences in mathematical representations. Mason (1996) believed structural
thinking is noticing similarities and differences in mathematical relationships. Mulligan and
Mitchelmore (2009) discovered that children who found similarities and differences in
patterns were involved in structural thinking.

Generalising and reasoning. Mason (2008) described this as an activity that develops a
more in-depth experience of mathematics. Mathematical thinking that eventuates into a
generalised fact is structural thinking, it connects mathematical relationships from concrete
representations to abstract ideas. Mason et al. (2009) wrote that appreciation of structure
involves the experience of generality. Stephens (2008) applied structural thinking to
designing arithmetic questions. He asserted that children who could articulate a generalised
principle underlying a whole problem were thinking structurally.

The framework of noticing also supports the process PSTs learning to notice structural
thinking. Scheiner (2016) identified how noticing is not restricted to a single process. Mason
(2002) asserted that “every act depends on noticing” (p. 7), he used the term “awareness” to
characterise the ability to notice, referring to noticing as an awareness of what one is
attending to. In this study, noticing structural thinking implies an awareness of understanding
and use of mathematical structure.

By adopting Mason’s (2002) approach to noticing, the development and use of
mathematical structure has emerged as a form of directing PSTs’ attention to their
mathematical thinking. Mason studied what he noticed when doing mathematics and called
what he noticed the structures of attention of how one thinks mathematically. The aim of
this study is for the PSTs to notice structural thinking through learning the components of
the CRIG framework of mathematical structure. The PSTs use of the CRIG framework
provides an opportunity to detect their awareness of structure, thus answering the research
question: How does the CRIG framework help PSTs to notice structural thinking?

Method

Context and participants

PSTs in their final year Bachelor of Education/Bachelor of Arts (secondary mathematics)
degree at a Sydney university were invited to participate in this study. Three PSTs, referred
to as Ms K, Ms M, and Mr T, volunteered to participate in the study during their professional
experience placement. Each PST taught mathematics at a secondary school in metropolitan
Sydney. Ms K taught an accelerated Year 9 class, Ms M taught a top streamed Year 8 class,
and Mr T taught a mixed ability Year 7 class. The PSTs were familiar with the concept of
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mathematical structure through the content of courses studied in their undergraduate degree;
however, they had no prior knowledge of the CRIG framework.

Study design, instruments, and data collection

The study design comprised of three cycles of: professional learning workshops (PLWSs),
which were audio recorded. Video recordings of PSTs’ mathematics lessons and a noticing
reflection audio recording of PSTs reviewing a recorded segment of their mathematics
lessons.

Analysis

The audio recordings of the PLWSs and noticing reflections were all transcribed to a word
document and uploaded to NVivo (QSR International, 2017). The videos of the mathematics
lessons were also uploaded to NVivo. NVivo was used to code the data from the PLWs,
mathematics lessons and noticing reflections for PSTs’ utterances and comments that
identified a CRIG component. The data were analysed for evidence of the PSTs’ noticing of
structural thinking through the PSTs attending to the CRIG framework. The videos acted as
the main source of evidence for identifying the PSTs noticing structural thinking through
their use of the CRIG framework when teaching. The PLWs and the noticing reflections
provide further evidence of the PSTs attention to the CRIG framework.

Results

This section presents a summary of the data collected for each PST from the three cycles
of PLWs, mathematics lessons and noticing reflections. An outline of the results from the
PLWs are given, followed by exemplars of each PSTs’ utterances from the mathematics
lessons and comments made during the noticing reflections in Tables 1, 2 and 3, coded to a
CRIG component.

During the PLWs, the PSTs were taught to notice structural thinking through the CRIG
components. The first PLW began with a presentation on the CRIG framework, followed by
a viewing of a video titled Related Problems: Reasoning About Addition (Teaching Channel,
2017), where a teacher used the CRIG components to teach addition to a Year One primary
class. Ms K Recognised patterns in the teacher’s instructions to students. Ms M also
Recognised patterns as a teaching strategy to engage the students. Mr T noticed that the
students used Similarities and differences to make generalisations.

In PLW 2, the PSTs viewed a video recording of a child attempting several different
arithmetic problems, they were asked to examine the child’s mathematical thinking when
solving the problems. Ms K noted the child relied on calculations and did not Identify
Similarities and Differences between the numbers. Ms M noticed the child was using
Generalising and Reasoning in her structural thinking when she recognised that the problem
could be solved another way. Mr T stated the child “Got it after the CRIG prompt, meaning
she has structural understanding.”

In PLW 3, the PSTs considered how the CRIG framework could be applied to teaching
the expansion of binomial products. Ms K made Connections to the distributive law and
expanding the expression using the FOIL method. Ms M was Identifying Similarities and
Differences when changing numbers, pronumerals, signs and coefficients in the binomial
expression. Mr T stated that Generalising and reasoning was identified as a way to
summarise the process of expansion and apply it in other mathematical contexts.
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Table 1

Exemplars of Ms K using the CRIG Framework to Notice Structural Thinking

Cycle Mathematics lesson Noticing reflection

1 Topic: Simultaneous equations Connections between the equation
Connections to the relationship between the ~ and the graph. “I think to show how
graphs’ intersection points and solving the  the y“and the x“ is giving us part of
equations simultaneously. the circle, that relationship.”
Recognising Patterns of the power of x to ~ ldentifying similarities and
determine the curve’s shape. differences between graphs and
Identifying similarities and differences eﬂua]flt(;]nsz hS(él’ they could Seetﬂ;ﬁt
“What is different about the line’s shape?” all o (—‘:‘,m ad a square except the

last one.

2 Topic: Angle sum of polygons Recognising Patterns to develop
Connections to prior learning “How did we ~ the formula: “They understood it
prove the angle sum of the quadrilateral?” ~ better with the pattern.

Angle sum of a polygon formula: Identifying similarities and
Recognising patterns: “Can you find the differences different patterns helped
pattern of what is going on between the students’ thinking. “T had the
number sides and triangles?” triangles meeting at a point. |
Generalising and reasoning: “Calculate the adjusted Ili'as ! satv\’/’the pattern they
interior angle sum of any polygon.” Were working out.

3 Topic: Quadratics Connections: “I was connecting it
Connections “Quadratics and parabolas go 10 when we did the 'non-llnear
hand-in-hand. The visual representation of a simultaneous equations.
quadratic is a parabola.” Recognising Patterns, “Rather than
Identifying Similarities and Differences of ~ drawing random graphs, I"d link
the x2 expression in an equation “This is not ~them to recognise any patterns from
of degree two; it is a power of negative two. factorised quadratics.

So, this is not a quadratic.” Generalising and Reasoning
Generalising and Reasoning relationships ~ “Generalising the solutions of when
between the equation and the graph. crossing the x-axis.

Table 2

Exemplars of Ms M using the CRIG Framework to Notice Structural Thinking

Cycle

Mathematics lesson

Noticing reflection

1

Topic: Circumference of a circle

Connections to a real life example of a
pizza as a sector of a circle.
Recognising patterns in the ratio of a
circle’s circumference and diameter.

Similarities and Differences comparing
the circle’s radius and diameter.

Generalising and Reasoning through
students’ discussion when dividing
the circumference by the diameter.
“I’m looking at what they just did.
I’m asking them to contribute what
they found and see what they
conclude from what they've done.”
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2 Topic: Area of composite shape Recognising patterns “asking them
Identifying Similarities and differences to ~ how to figure out the area. That
explain the formula of the area of circles. ~ could have been kind of recognising
“Area equals 772 which is the same as patterns.”
sayingm X r X r.” Identifying Similarities and
Generalising and reasoning “How come  differences “How to write something
we have m for every circle? Because the in exact form and not exact form
circumference divided by the diameter Generalising and reasoning “Asking
was always equal to r.” them questions they can conclude.”

3 Topic: Volume of a cylinder Connections “How they could use
Connections of a real-world problem: previous things they've learnt.”
“This is a picture of the sinkhole. What Recognising patterns “By helping
shape does it look like?”, them recognise patterns to work
Generalising and reasoning “What do we ~ mathematically.”
need to know to solve this problem? What Generalising and reasoning
are we trying to find in the end?” “Recognising the meaning and

interpreting the information.”
Table 3

Exemplars of Mr T using the CRIG Framework to Notice Structural Thinking

Cycle Mathematics lesson Noticing reflection

1 Topic: Ordering fractions Connections “I should have
Connections to a real example “What is reworded the question because this
one-third of my chocolate bar.” was what we did last lesson.
dentifying Similarities and Differences in ~ Recognising Patterns “What do you
ordering fractions “When you look at this, ~notice I'm doing with these
which one’s bigger? Or, which one’s numbers?
smaller?” Identifying similarities and
Generalising and Reasoning defininga ~ differences “Show the diagram of
rule “The size of the parts needs to be the ~ Shaded fractions not symbolically.
same.”

2 Topic: Adding and subtracting fractions Recognising patterns: “I tried to set

Identifying Similarities and Differences
“What do you notice about the
numerators?”

Generalising and Reasoning, using a
whole number method to add fractions.
“So, if 1 + 1 = 2, then, if | use the same

thing,fora%+2i, is1+1=2,and 2+

2 = 4,s0it’s over i. Right?”

up some patterns and then asked
them to recognise the patterns.”

Generalising and Reasoning “I’ve
tried to incorporate generalisation in
terms of asking them, ‘What do you
think would be the next pattern?’”
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3 Topic: Stem and leaf plot graphs Recognising patterns: “So I should
Similarities and Differences between have put one number on so the
graphs and stem-and-leaf plots. “Now students to see a pattern.
what were the things we compared. Identifying Similarities and
What’s similar?” Differences “I should have asked
Generalising and reasoning to analyse about the placement of these three
stem-and-leaf plot data. “Take a look at numbers: “How are they different?

your graph and talk to the other person
and tell them what the graph tells you?”

Discussion

During this study, the PSTs’ noticing of structural thinking developed through their
learning of the CRIG pedagogical framework of mathematical structure. Noticing of
structural thinking was evident in their references to the CRIG framework drawn from the
statements made during the PLWs, utterances in their mathematics lessons, and noticing
reflection comments. Exemplars given demonstrate the PSTs’ noticing structural thinking
through the CRIG components.

The PSTs use of the CRIG components were identified in varied pedagogical strategies.
Ms K encouraged students to use a pattern to find the rule for the angle sum of a polygon,
Ms M used real world examples for each of her lessons to connect students understanding to
the mathematical concept and Mr T used the CRIG components in his questions.

The PSTs’ teaching accommodated the CRIG framework and supported their
understanding of the mathematical content. Ms K considered other patterning approaches to
finding a rule for the angle sum of a polygon and Ms M noticed similarities and differences
in binomial expansions. The PSTs’ pedagogy focused on a structural thinking learning
environment, Ms K promoted students’ thinking by challenging them to connect the equation
to a graph, Ms M connected mathematical concepts to real-world examples and Mr T asked
questions so students would notice patterns, and similarities and difference. In their noticing
reflections, the PSTs stated how the CRIG framework supported their teaching. Ms K, was
thinking of her future teaching: “If I were to do this again, I’d teach the patterning way, and
I would incorporate the CRIG more.” Ms M stated CRIG helped her understand student
thinking “They're trying to understand the difference between volume and capacity.” Mr T
reflected on how CRIG improved his explanations. “I should have made it more explicit, by
connecting to their prior experience.” The CRIG framework in these cases supported the
PSTs’ noticing of structural thinking.

Prescott and Cavanagh (2007) found that secondary mathematics PSTs tended toward a
traditional teaching pedagogy. Awareness of the CRIG framework encouraged the PSTs in
this study to move beyond traditional teaching pedagogy. The PSTs were more inclusive of
student learning, as noted when asking CRIG component focused questions. Mr T’s
questions promoted students’ structural thinking. He challenged students’ thinking about
why using a whole number method when adding fractions was incorrect. “So, if 1 + 1 = 2,

then, if | use the same thing, for a%+ 21 iIS1+1=2,and 2 + 2 = 4, soit’s over i. Right?”

The PSTs diverse pedagogical strategies also saw them use the CRIG components when
instructing or communicating with students. In her second mathematics lesson, Ms K used
Recognising patterns to help students develop the angle sum of a polygon formula. As the
students had discovered a different pattern, one that was not considered by Ms K, she acted
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in-the-moment and noticed the students’ new approach, she encouraged her students to
continue with their strategy and asked one student to explain it to the class. Ms M promoted
student involvement in her lessons by arranging students in groups to complete activities,
many of which had a real-world experience, such as, here final lesson of finding the volume
of a cylinder as a sink hole.

The professional learning program to understand and use the CRIG framework helped
the PSTs’ to notice structural thinking. lvars et al. (2018) identified the need for a specific
framework for PSTs to have effective noticing. The CRIG framework provided this focus.
The ability of the PSTs to understand the CRIG framework and to use it demonstrated its
simplicity as a practical and useful tool for teachers of mathematics. The PSTs’ content
knowledge was established from their extensive mathematical background in their university
studies. The CRIG framework, however, deepened the PSTs structural understandings of
mathematical relationship, for example Ms K’s students finding an alternative approach to
finding the angle sum of a polygon.

The PSTs’ lack of professional experience before this study could have influenced their
fundamental understanding of the CRIG framework and their ability to notice structural
thinking. However, having more teaching experience in the future will provide continual
opportunities notice structural thinking through the CRIG framework when doing
mathematics and when teaching. The PSTs’ teaching experience was restricted to their
university professional experience program. Researchers have identified how PSTs’ limited
experiences influence what they attend to when teaching. Star and Strickland (2008) found
that secondary mathematics PSTs were not good at noticing mathematical content. Mason
(2002) also asserted that PSTs lack experience in recognising and using classroom
interactions effectively to promote mathematical understanding. Contrary to the results of
these studies, the PSTs in this study produced mathematics lessons that engaged students
with activities, instructions and questions that focused on developing students’ structural
thinking through using the components of the CRIG framework. The PSTs effectively
demonstrated an ability to learn and apply the CRIG framework as a new pedagogical skill
to mathematical content that they had not taught before. The introduction of structural
thinking through the CRIG framework could be regarded as an extra burden for the PSTs to
consider when teaching. Nevertheless, the evidence indicates that the PSTs were comfortable
with identifying and including the components of the CRIG framework in their lessons and
were able to notice structural thinking.

The PSTs were able to articulate the benefits of the CRIG framework to notice structural
thinking they indicated that the CRIG framework had shaped their noticing structural
thinking and had changed their teaching. Ms K stated that thinking structurally helped her
make sense and explain mathematical concepts. In the final PLW, Ms K stated, “You
structure your practice to facilitate deeper thought as to what and how things made sense.”

Conclusions and Further Research

The CRIG framework proved to be useful for helping PSTs to notice structural thinking.
The CRIG framework provided the PSTs with a foundation for teaching mathematics that
helped them focus on developing their understanding of mathematical structure. Moreover,
this provided PSTs opportunities to notice structural thinking.

Mason (2002) introduced the concept of noticing into the lexicon of mathematics
education, and with his colleagues (Mason et al. 2009) the notion of teachers’ noticing of
structural thinking has emerged as a significant contribution to mathematics teaching. PSTs
noticing of structural thinking as the focus of this study has demonstrated, as evident from
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the results, that there is potential to advance the discourse of mathematics teaching in this
area.

The introduction of mathematical structure in the teaching and learning of mathematics
and the noticing of structural thinking has implications for future research in mathematics
teaching. Future research could consider how developing noticing structural thinking
through the CRIG framework may benefit practicing teachers of mathematics (e.g., primary,
secondary, pre-service, novice, experienced, and out-of-field teachers).
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Spatial reasoning is identified as a Numeracy general capability in the Australian Curriculum,
and more globally as a significant precursor to mathematics proficiency. Currently, the
literature surrounding mathematical-spatial relations remains largely removed from
classroom practice. This paper provides a reflection on the spatial cognition field as it relates
to mathematics. The focus of the review is to find points of connection between psychological
notions of spatial skills and spatial reasoning as it stands in curriculum and assessment.

Spatial reasoning as an instinctive, vital, human capability has been demonstrated
throughout history (e.g., locating the source of the Cholera epidemic in London; supporting
the discovery of DNA; NRC, 2006). At a global level it refers to proficiency in mentally
representing and transforming objects and their relations (Mulligan, 2015). At a local level,
spatial reasoning is ingrained in daily activities, such as the ability to locate our keys, the
process of parking a car or packing a suitcase. Although these different skills are often taken
for granted and fall under the label spatial reasoning, it may not be the case that being good
at one type of skill ensures aptitude for another (Newcombe, 2010). Spatial reasoning as an
umbrella term has been deemed so closely related to mathematical proficiency it no longer
makes sense to explore whether the two are related (Mix & Cheng, 2012). Whole books
(Mix & Battista, 2018) and mathematics research journal special issues (Resnick et al., 2020;
Sinclair & Bruce, 2015) have been dedicated to the theoretical positing of mathematical-
spatial relations. Despite the decades of analysis, the gap between cognitive theories of the
mathematical-spatial relationship, and classroom promotion of spatial reasoning remains
vast (Lowrie et al., 2020). This paper presents a review of some of the different spatial
understandings brought about by differences in terminology, and how these link to the
current state of spatial instruction in mathematics classrooms. The aim of this paper is to
identify connections across the fields about mathematical-spatial relations, with a view to
providing a common conceptual framework on which to build future empirical studies.

Spatial VVocabulary

Spatial terminology varies across discipline, country of origin and research intent. One
reason may be that the richness of our mental imagery is poorly articulated by our linguistic
capabilities (Hayward & Tarr, 1995). Consequently, a range of terms have been used to
define spatial concepts with little consistency. Here | seek to define key spatial vocabulary
to provide a shared conceptual framework that is currently lacking in the literature.

The term ability is often used to differentiate students in education and has been defined
as a “salient psychological attribute” (Wai et al, 2009, p. 817), implying it is stable over time.
By contrast, spatial skills suggest the opportunity for growth and change (Uttal et al., 2013).
More generally, spatial reasoning invokes thoughts of non-verbal problem-solving while
spatial thinking conjures up images of a habit of mind or more holistic spatial sense
(Whiteley et al., 2015). These terms are distinct from the mental processes that occur during
spatial tasks. Visual imagery (imagining a referent object(s); Presmeg, 1986) and spatial
relations (relative position or movement between objects; Hegarty & Kozhevnikov, 1999)

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
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are often used to describe stable spatial characteristics. By contrast, spatial manoeuvres are
the dynamic mental processes undertaken when performing tasks (Ramful et al., 2017). The
accuracy and usefulness of these processes may vary depending on spatial aptitude and task
demands (Hegarty & Kozhevnikov, 1999; Presmeg, 1986).

Never is the lack of consistency in terminology more evident than when searching
keywords in the literature. For example, in conducting their spatial training meta-analysis
Uttal et al. (2013) searched 14 different terms yet failed to include spatial reasoning or
thinking. To move the field forward there needs to be consistency in the meaning and use of
spatial terms. A proposed conceptual model for spatial terminology is presented in Figure 1.

Spatial
Reasoning

Spatial
skills

Spatial
abilities

Mental Spatial Spatial
Rotation Visualisation Orientation

Individual Psychometric
Differences Tests

[ Spatial Thinking ]

Figure 1. Conceptual model of spatial terminology.

Spatial abilities

Spatial ability was described as an intelligence distinct from verbal ability almost 140
years ago (Galton, 1883). The measurement of spatial ability was predominantly conducted
with instruments developed by psychologists (Hegarty & Waller, 2005). Despite research
now indicating that spatial aptitude is not fixed (Uttal et al., 2013), there are individual
differences that show trends in spatial abilities. Generally, males perform better on spatial
ability tests (Hegarty & Waller, 2005). However, research is emerging to suggest that gender
differences may lie in strategy choices, thus calling into question some of the long-held
beliefs about gender factors in spatial ability theory (Newcombe, 2020).

Piaget and Inhelder (1967) proposed that although infants show evidence of spatial
coding, mature spatial reasoning does not emerge until age 9 or 10. Congdon et al. (2018)
report evidence for pre-schooler’s awareness of spatial properties, but it is not until a few
years into formal schooling that language and conceptual understanding develop. Separate
spatial abilities also seem subject to different developmental trajectories. Crescentini et al.
(2014) found that the ability to perform object-based spatial tasks emerged earlier than tasks
requiring awareness of one’s body and environment. This may be largely due to children’s
exposure to activities and environments that support the development of spatial reasoning at
the different scales (Newcombe, 2002; 2020). Understanding the developmental path of
spatial abilities may assist educators and researchers in providing appropriate experiences
for children to foster their spatial reasoning. The dotted line between spatial abilities and
spatial reasoning in Figure 1 above signifies that spatial capacity (or ability) exists for
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everyone, however, education, experience and environmental interaction are most influential
in the development of the more holistic notion of spatial thinking (Newcombe, 2002).

Spatial skills

Spatial skills are the quantifiable factors comprising spatial reasoning that are distinct,
yet related (Carroll, 1993). The structure of these skills, much like the overarching theme
itself, remains under some debate. Newcombe and Shipley (2015) proposed a typology of
spatial tasks categorised by the characteristics of the referent object(s); whether they
remained still (i.e., static) or moved (i.e., dynamic) and whether spatial relations were within
(i.e., intrinsic) or between (i.e., extrinsic) objects. Such a framework could provide
researchers with the foundations for linking the mental manoeuvres undertaken during
spatial tasks and skills in other fields, such as mathematics. However, the typology proposed
by Newcombe and Shipley is largely based on psychological tests and has yet to be supported
by further research or in applications beyond lab-based studies (Mix et al., 2018).

Measuring spatial skills. The idea of assessing different spatial skills emerged in the
field of aptitude testing for occupations (Hegarty & Waller, 2005). As psychometric tests
measuring spatial skills continued to evolve, correlations with other skills and outcomes
emerged. For example, spatial skills were the strongest predictor of Science, Technology,
Engineering and Mathematics education success and career choice in a 50-year longitudinal
study (Wai et al., 2009), above verbal ability and mathematics proficiency.

Spatial task performance has been related to mathematics outcomes in correlational
(Gunderson et al., 2012; Mix et al., 2016) and intervention studies (Cheng & Mix, 2014),
leading to categorisation of spatial skills based on test affordances. For example, object-
based spatial skills are considered in a different category to egocentric skills, where one’s
perspective becomes the reference point (Sorby, 1999). This distinction is a consequence of
test design and the intentional promotion of specific strategy use (Hegarty & Waller, 2004).
This psychological approach results in cognitive theories limited by the measures used in
empirical studies and may be counter-productive to the development of robust models of
mathematical-spatial relations that are based on applications of spatial skills.

Ramful et al. (2017) adopted a different methodology in the development of their spatial
reasoning instrument (SRI). They defined spatial constructs (as opposed to skills) by the
spatial manoeuvres found in the Australian Numeracy curriculum; namely, mental rotation
(i.e., imagining an intact 2D shape or 3D object in a different orientation; Cheng & Mix,
2014), spatial visualisation (i.e., performing complex, multi-step manoeuvres that change
the form of the referent object; Hegarty & Waller, 2005), and spatial orientation (i.e.,
imagining different perspectives, navigating, or taking different orthogonal views;
Newcombe & Shipley, 2015). These constructs correlate with psychological tests of spatial
skills but provide opportunities to explore links with mathematical-spatial processing in a
more applied way. This measure is the first of its kind but there are calls for more measures
of spatial reasoning that consider real world spatial problem-solving (Mix, 2019).

Spatial Reasoning

Spatial reasoning, as a foundational component of Numeracy, requires an awareness of
space, the ability to imagine objects and relationships, and use this information to reason and
problem-solve (ACARA, n.d; NRC, 2006). Spatial reasoning manifests differently across
situations (such as the constructs identified by Ramful et al., 2017). For example, mental
rotation involves imagining an object’s position within its direct environment, while spatial
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visualisation exists in isolation, where the environment is less important than the relations
within and the ability to visualise and transform the object’s form. Spatial orientation
requires imagining dynamic interaction with an environment on a larger scale.

Spatial reasoning is not easy to quantify, and researchers look to spatial tests (Mix, 2019)
or to the most explicitly spatial aspects of curricula (i.e., geometry; Battista et al., 2018) to
make inferences about its underlying structure. Spatial reasoning in education goes beyond
success on spatial tests. Educators need to be equipped with the tools to recognise and foster
students’ awareness of space in the mathematics classroom, and to encourage them to notice
spatial relations in their interaction with the world.

Spatial Thinking

Spatial thinking is less well-defined by literature, except where used interchangeably
with spatial reasoning. Newcombe (2010) used the term spatial thinking to describe Albert
Einstein’s unique way of seeing the world, that is, in pictures and relations. In this paper, I
propose a distinction between spatial reasoning, the application of spatial skills during
problem-solving, and spatial thinking, the tendency to visualise non-verbal aspects of objects
and relations, separate to mathematical thinking (Newcombe, 2010; Whiteley et al., 2015).

In the National Research Council (2006) report, spatial thinking was defined as an
“amalgam of three elements: concepts of space, tools of representation, and processes of
reasoning” (p. 3). Figure 1 shows spatial thinking as underpinning all forms of spatial
representation and assessment discussed above. This model positions spatial thinking as a
habit of mind that guides communication, reasoning and problem-solving. Therefore,
promoting spatial thinking across education, provides students with strategies when faced
with new or complex materials (Uttal & Cohen, 2012).

Visualisation

Much like the absence of spatial terms in Uttal et al.’s (2013) literature search, Figure 1
did not capture all aspects of spatial vocabulary. One missing element is visualisation, which
is critical for spatial thought (Battista et al., 2018). Visualisation occurs differently for those
with varying spatial skill levels. Strong spatial thinkers tend to generate mental images that
facilitate problem-solving and concept development, poor spatial thinkers tend to produce
mental images that, while detailed, offer little in their affordances for problem-solving
(Hegarty & Kozhevnikov, 1999; Presmeg, 1986).

Mathematics and Spatial Reasoning

A complete review of the mathematics-spatial literature is beyond the scope of this paper
and well captured in Mix and Battista’s (2018) edited book. Here, | focus on the connection
between cognitive theories of mathematical-spatial relations and spatial reasoning in
mathematics curricula and assessment based on Ramful et al.’s (2017) three constructs.

Mental Rotation

Mental rotation is one of the most extensively studied spatial skills in the mathematics
literature. In fact, 3D mental rotation training by Cheng and Mix (2014) was found to lead
to improvements on missing term addition and subtraction tasks. Furthermore, mental
rotation is thought to support geometric reasoning by providing the mental models on which
to examine geometric properties (Battista et al., 2018). For example, to perform
mathematical rotation tasks on a coordinate grid, one must first be able to correctly visualise
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the rotation of the referent object. The disconnect between the psychological and educational
notions of mental rotation are evident in these two lines of thought. While one is focused on
repetitive, comparison tasks that rely on speed to force rotation (psychology; Hegarty &
Waller, 2005), the other advocates for mental rotation processes in building conceptual
knowledge for geometric understanding (mathematics education; Battista et al., 2018).

Apart from small-scale studies (e.g., Bruce & Hawes, 2015; Cheng & Mix, 2014), the
development of mental rotation in mathematics classrooms remains largely incidental as a
result of engagement with geometry material (Lowrie & Logan, 2018). Lowrie et al. (2018)
provided a pedagogical model for developing mental rotation beyond curriculum learning
through a classroom-based spatial intervention. However, the unique contribution of mental
rotation to mathematics improvement was not addressed.

Spatial Visualisation

The complex, multi-step manoeuvres that constitute spatial visualisation are evident
within mathematics curricula in geometric concepts of symmetry and net to solid
conversions. Furthermore, psychological measures of spatial visualisation such as paper
folding have been found to relate to multiplicative and algebraic thinking by reflecting
students’ ability to map folds to parts (Empson & Turner, 2006). Lowrie et al. (2019) trained
spatial visualisation skills, which led to improvements in geometry and word problems. They
concluded that the impact on geometry tasks was reflective of students’ increased ability to
manipulate spatial properties, while the word problems were evidence for improvements in
representing information spatially during problem-solving (Hegarty & Kozhevnikov, 1999).

Rittle-Johnson et al. (2019) found strong relationships between patterning, mathematics
and spatial visualisation. They found that spatial visualisation at the beginning of the pre-
school year was a significant predictor of later numeracy performance (a subset of the
mathematics assessment) in that same year. They also found that initial patterning skills were
a significant predictor of later mathematics, over and above prior mathematics knowledge
and a composite spatial measure. Their findings shed light on the complex relationship
between spatial skills, patterning and mathematics. It is possible that spatial visualisation is
helpful when developing mathematical understanding but is less influential long term when
content knowledge increases.

Spatial Orientation

Few psychological studies have explored the direct role of spatial orientation in
mathematics (Newcombe, 2010) but mapping tasks and orthogonal perspectives are explicit
elements of the Measurement and Geometry strands of the Australian Curriculum (ACARA,
n.d.). Two longitudinal studies have examined the unique role of spatial orientation in
mathematics performance. Frick (2019) found that spatial orientation skills measured in
kindergarten predicted performance in quantity, magnitude and geometry tasks, but not
arithmetic in year 2. Mix et al. (2016) found significant contributions of spatial orientation
to a general mathematics measure in years 3 and 6. Spatial orientation skills such as
understanding scale and magnitude are critical for performance on mapping tasks as well as
development of number line knowledge (Gunderson et al., 2012) and proportional reasoning
(Mohring et al., 2016). Given these preliminary findings, | propose that this is a spatial
construct that should be included in empirical studies of mathematics-spatial relations.
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Spatial Intervention

Many studies to date have analysed correlational data, providing valuable insight into
areas where spatial intervention may support student learning (Mix, 2019). Spatial skills
have been found to be malleable and responsive to training (Uttal et al., 2013). In their meta-
analysis of spatial training studies Uttal et al. (2013) found no difference in effect sizes as a
result of the form of the training (i.e., instructional courses, video games or spatial skills
training) on spatial outcomes. However, when examining potential transfer to mathematics
the range of outcomes has produced variable results (Stieff & Uttal, 2015). Stieff and Uttal
acknowledge the difficulty in conducting classroom-based studies on a large-scale but when
done successfully, they have the greatest potential for effecting change.

To progress the field and transfer theoretical understandings to practical, student benefits
we need to shift the focus from performance on cognitive tests to how spatial reasoning
manifests in mathematics. Lowrie and colleagues have demonstrated reliable transfer to
mathematics achievement (Lowrie et al., 2017; 2019; in press) in ways that others in the
spatial cognition field have not (Cheng & Mix, 2014; Hawes et al., 2017). They achieved
this through the integration of spatial skills in a pedagogical framework, delivered by
classroom teachers (Lowrie et al., 2018). In their intervention studies, ranging in length from
3 to 10 weeks and focusing on mental rotation, spatial visualisation and spatial orientation
(Lowrie et al., 2017; in press) or spatial visualisation alone (Lowrie et al., 2019), Lowrie and
colleagues consistently demonstrated mathematics improvements with effect sizes ranging
from .38 — .40 (Cohen’s d) compared to business as usual control groups.

There remains a gap in the literature. To date there have been no systematic studies of
spatial skill interventions to determine their contribution to mathematics. Studies remain
either isolated (e.g., 3D mental rotation; Cheng & Mix, 2014; spatial visualisation; Lowrie
et al., 2019) or combined (e.g., Lowrie et al., 2017; in press), making it difficult to identify
the unique contributions of spatial skill development to mathematics. Similarly, the effect
on mathematics has been too broad, leaving the field still speculating about the mechanisms
that result in improvements in mathematics based on spatial training (Stieff & Uttal, 2015).

Limitation and Conclusion

The focus of this review has been to highlight some of the connections between cognitive
theories of spatial skills, emerging from lab-based studies, and applied spatial reasoning, in
education. This review could not be exhaustive and there remains a considerable absence of
spatial terminology as well as spatial concepts such as transformation, and representation.
These were excluded based on the goal of seeking common ground across psychological and
educational domains, as these terms often have different meaning in the two fields. For
example, in mathematics transformations are functional in problem-solving (Battista et al.,
2018), while in psychology transformations refer to mental manoeuvres (Frick, 2019).

To progress the field in practical and constructive ways the focus on spatial reasoning in
mathematics needs to be situated within real world applications (Lowrie et al., 2020). Spatial
instruction needs to be explicit, not merely fostered through the more spatial content within
the curriculum. To bridge the disconnect between cognitive theories of mathematical-spatial
relations and classroom practice, there needs to be shared meaning and studies need to be
conducted at scale with teachers instrumental in the process. Finally, experimental design
needs to allow for conclusions to be drawn about the mechanisms that connect spatial
thinking, reasoning and skills with mathematics understandings to ensure sustainable and
positive outcomes for students.
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Location and Transformation skills are critical tools for navigating the world and establishing
foundational steps for geometric reasoning associated with co-ordinate grids and the
Cartesian plane. The contextual nature of using local landmarks to understand students’
mental representation of large-scale space has the potential to enhance these skills. This paper
examines a classroom activity that draws on students’ local knowledge when representing
their environment. Factors such as geographic distance and isolation, and incorporation of
spatial relations are explored. Recommendations are made for educators to incorporate the
sophisticated local knowledge when building mathematical understanding.

From the Foundation year of school, the Australian Curriculum identifies Location and
Transformation as critical elements of mathematics (ACARA, n.d.). This content sits within
the general capability of spatial reasoning. Although identified in the Australian Curriculum,
educators are left with little support for incorporating spatial instruction in their teaching
(Lowrie & Logan, 2018). Engaging with position and movement provides a novel
opportunity to embed learning into tangible, real-world, contexts for students. Rather than
abstract notions of mathematical content confined to a page or screen, teaching about large-
scale space affords students the opportunity to be active participants in their learning.
Physical exploration has been linked to greater accuracy and flexibility when estimating
landmarks and distances compared with abstract (i.e., virtual) experience (Richardson et al.,
1999). This embodied approach to spatial reasoning has been found to be effective in
mathematical and cognitive learning models (Nathan et al., 2020; Tversky, 2009). To
address the problem of how to bring spatial instruction into the classroom in an accessible,
contextualised way, we explore engagement with a spatial task that drew on the local
knowledge of students from culturally and geographically diverse schools.

Location and Transformation

Location and Transformation are interwoven throughout the Australian mathematics
curriculum. In the early years, the focus is on position and movement to assist with simple
directions. As students develop, they are taught increasingly complex mapping skills as a
foundation for the introduction of the Cartesian coordinate system (ACARA, n.d.). Despite
the inherently spatial nature of this content, concept development often fails to consider the
opportunities of promoting spatial representations to provide students with a fallback
strategy when content difficulty increases (Lowrie, Logan & Patahuddin, 2018).

Location is a broad term spanning Measurement and Geometry, ranging from descriptive
language (i.e., behind or next to), to pictorial (grid representations), and symbolic (co-
ordinate systems). This learning progression was identified by Lowrie, Logan and
Patahuddin (2018) as critical for development of sound mathematical understanding. They

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 227-234. Singapore: MERGA.
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posit that student experiences support language growth and engagement with pictorial
representations (i.e., concrete materials, gesture, maps, pictures). It is these foundations that
foster development of symbolic understanding and further applications to more complex
mathematical concepts.

Large-scale Spatial Representation

Mapping skills sit at the nexus of numeracy and spatial cognition. Numeracy (via
Location and Transformation) and Geography curriculums emphasise the development of
mapping skills throughout schooling (ACARA, n.d.), while psychologists explore the
relationship between mental representations of real and virtual environments to understand
the development of navigation skills (Keil et al., 2020; Richardson et al., 1999).

Drawing on student experience is critical when developing mathematical and spatial
thinking (Lowrie, Logan, Harris et al., 2018). Connecting new learning to students’
knowledge provides the foundation for language development such as directional and
relational language (e.g., the park is south of school, I go past the corner store on my way).
Although language alone is not sufficient for developing spatial thinking (as this would
undermine the non-verbal nature of the concept), language can be critical for directing
attention and building towards more complex spatial concepts (Newcombe & Stieff, 2012).
Experience and language lay the groundwork for developing increasingly sophisticated
large-scale spatial representations and map understanding (Larkin & Kinny-Lewis, 2017).
These tools transcend cultural boundaries and provide access points for all students when
building content knowledge.

Large-scale spatial representation has traditionally been thought to reflect a cognitive
map incorporating Euclidean space, landmarks, and routes (Tversky, 2003). Although
cognitive maps develop through exposure to both physical space and maps, the notion that
the representations themselves are map-like is a topic of some debate (Foo et al., 2005).
Some researchers have argued that mental representations of large-scale space may be more
like graphs, with spatial locations represented as nodes, connected by familiar routes but
flexible enough to account for changes in orientation and task demands (Peer et al., 2021).

Spatial Relations

Landmarks serve two main purposes in spatial representations (Presson & Montello,
1988): 1) as navigational cues, and 2) as reference points for determining spatial relations
(Clements & Battista, 1992). Here we focus on spatial relations, however the salience and
organisation of landmarks in the spatial representation can be highly contextual. For
example, a student may recall passing the park and shops on their journey to school, but it
does not necessarily help them position the locations from a birds’ eye perspective.

Scale adds an extra element to the notion of spatial relations. The structure of large-scale
space is divided into regions that, even in the absence of language, can be thought of in terms
of distance and direction (Kuipers, 1978). By removing physical boundaries, students are
free to reveal the scale and relative position of the landmarks as they exist in their mental
representation. It is through this physical enactment of their mental representation of space
that we can gain insight into their awareness of their local environment, including scale and
relative position, and use this as a springboard for developing further content knowledge.
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The Context of the Study

Research has shown that a great deal of curriculum content is established in a city-centric
style that leaves students in regional and rural communities at a disadvantage (Roberts,
2017). However, recent work has highlighted the incredibly sophisticated local knowledge
possessed by students outside of city centres (Lowrie et al., 2021). It is this contextualised
knowledge we propose provides curriculum accessibility for all students in developing
Location and Transformation understanding.

When performing tasks relating to their local environment, visual prompts allow children
to recall and represent a greater amount of information than free recall alone (Matthews,
1985). Therefore, by providing students with physical stimuli we can explore children’s
representation of space using familiar landmarks (Peer et al., 2021). Tversky and Hard
(2009) argued that the mere presence of an individual in a spatial perspective task alters the
interpretation of spatial relations. In this study, while all students were oriented to face north,
relations between landmarks were relative to the school or position of other landmarks (as
determined by the student).

This study is situated within an Australian Research Council Discovery Project exploring
spatial reasoning in children from culturally and geographically diverse communities.
Specifically, this study examined students’ large-scale spatial representations, with a focus
on factors such as geography, distance, and spatial relations, with the goal of analysing the
efficacy of using local knowledge to foster foundational spatial concepts.

Method

Participants

Thirty Grade 5 students from three NSW schools participated in this study. The sites
represent vastly different geographic locations and population density: an urban site in
Western Sydney, a rural site (population < 1,000), and a regional site (population > 30,000).

Procedure

Students were shown a collection of local landmark sites (such as parks, shops,
prominent town features) and asked whether they recognised the site. They were asked how
often they visited or travelled past the site, whether they had positive or negative feelings
about the location, and how familiar they were with the site.

Students were seated facing north and given a piece of A3 paper with a dot representing
the school in the centre. As each site varied significantly in terms of geography and density,
the school was chosen as a central point as it was familiar to all students, and consistent
within and between sites. Students placed the photos of landmarks they recognised around
the school point from a bird’s eye perspective over their local area. Students performed this
task twice on consecutive days with different landmarks. The photos were large compared
to the school marker and the A3 paper. There were no constraints on the way students were
able to complete the task and all photos were provided to the students at the same time.

Scoring and Analysis

We analysed student representation according to three criteria, and then made site-based
comparisons using Analysis of Variance, and Nonparametric tests (chi-square) to explore
distributions within sites:
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1. Landmark recognition = proportion of the possible landmarks recognised
Landmark accuracy = landmarks positioned correctly relative to school
3. Spatial relations = the scale and relative position of landmarks

a) Scale = some photos placed further than others

b) Relative position = clustering of photos

no

Results

Landmark Recognition

A 3x3 mixed factorial ANOVA revealed significant main effects in landmark
recognition across distance categories (within-groups) and site (between-groups), and a
significant interaction, F(4,54) = 3.85, p = .008, partial eta? = .22. All students recognised a
larger proportion of near landmarks, F(2,26) = 19.59, p < .001, partial eta? = .60. Between
sites, rural students recognised a significantly larger proportion of landmarks than urban
students, F(2,27) = 4.13, p = .027, partial eta? = .23. Means are presented in Table 1.

Table 1
Average percentage of sites identified in each of the distance categories
Near (<1 km) Intermediate (1-5 km) Far (>5 km) Total
Urban 56% 57% 56% 56%
Rural 94% 76% 57%* 76%
Regional 100% 50% 43% 64%

*Note. All far landmarks in the rural site were located in neighbouring towns roughly 40-50km away.

Urban students recognised half of all landmarks across distance categories, while
regional students were familiar with all locations within 1 km of school, dropping to half the
sites beyond 1 km. By contrast, rural students identified a large proportion of landmarks in
their own town. Despite the distance of the far landmarks, rural students still identified more
than half the possible landmarks.

Landmark Accuracy

A 3x3 mixed factorial ANOVA revealed significant main effects in accuracy by distance
(within-groups) and site (between-groups) and a significant interaction, F(4,54) = 2.88, p =
.031, partial eta? = .18. Landmarks in the near range were positioned most accurately,
F(2,54) = 13.60, p < .001, partial eta? = .34. At the school level, rural students were more
accurate than urban students, F(2,27) = 8.21, p = .002, partial eta? = .38. At the urban site
there was no difference in performance based on distance categories while rural and regional
students experienced decreasing accuracy as distance increased. Regional students had a
sharper decline with increasing distance than rural students (see mean percentages in Figure
1).

m<lkm 0O1-5km BE5+km
100%

80%

60%
40%
C wm n
0%

Urban Rural Regional

Proportion of
correctly placed
landmarks

Figure 1. Mean percentage of landmarks in correct position relative to school site
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Spatial Relations

Students used different strategies to demonstrate their mental representation (examples
in Table 2). We analysed the final position of the photos as not all students verbalised their
thinking during the task. The most distinct differences were in orientation and structure.
Some students kept all photos facing themselves while others rotated the photos to reflect
how the landmark would appear when journeying from school. The structure students chose
when arranging the photos varied between grid-like and relational. The relational structure
accounted for the scale and relative position of landmarks, or a combination of both. These
differences are discussed further in the next section.

Table 2

Representation categories
Orientation Upright Rotated
Structure Relational

Scale and relative position. A third of all students demonstrated elements of scale and
relative position, however, this had no significant connection with accuracy. One exception
was for those that demonstrated scale, these students were more accurate when placing near
landmarks, F(1,29) = 6.81, p = .014. There were no significant differences for the other
distance categories. Table 3 includes sample arrangements of the four categories.

Table 3
Sample representations, and student numbers per category

Scale

Yes

Relations

No
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Non-parametric analysis (cross tabulation using chi-square statistics) revealed a
difference by site in the representation of scale, ¥*(2) = 8.69, p = .01, but not relative position,
¥*(2) = 46, p = 79. A large proportion of students in the rural and regional sites represented
scale compared with only one urban student. Despite the distance category parameters
remaining constant, students at the urban site appeared less sensitive to the distance when
arranging the landmark photos.

Discussion

Recognition and Accuracy

Landmarks within 1 km were most recognisable and positioned with the most accuracy
(with the exception of urban students). Regional students were incredibly familiar with their
local area, within 1 km, recognising all the possible landmarks and accurately positioning
80% of those. More progressive, rural students were able to recognise most landmarks within
their town and still more than half of the landmarks in towns 40-50 km away. Even at this
distance, rural students correctly placed roughly half of the landmarks, which was more than
the urban or regional students whose far landmarks were roughly 5 km away. Tversky (2003)
talks about key landmarks when referring to cognitive maps. In towns like the rural one in
this study, the geographic size and relatively low density may contribute to students being
aware of all landmarks. By contrast, the density of the urban environment makes competition
for landmark memory much higher. For example, most students in the regional town were
able to identify something as routine as a street sign, while at the urban site only a
McDonald’s and a movie theatre were consistently recognised. The regional students
similarly recognised a local McDonald’s but were also able to identify local parks, shopping
centres, petrol stations and hardware stores. It is possible there are fewer of these to compete
for attention, or the nature of children’s lived experience drives their memory for these
locations. This finding has implications for classroom practice, the richness of local
knowledge demonstrated by rural and regional students can be drawn upon when introducing
concepts such as scale. When verbalising their thinking, those students who demonstrated
scale and relative position were able to clearly articulate the relations between the sites, and
often drew on these relationships to help them position less familiar photos.

Presson and Montello (1988) discuss the importance of context when it comes to spatial
memory for location. Our results highlight the impact of student context in mental and
physical representation of their local environment. We argue that the sophisticated local
knowledge in rural and regional areas should be harnessed when building understanding
around Location and Transformation. Similarly, it would benefit urban students to engage
more with their local environment, for example through community walks or mapping
exercises, to provide foundational experiences and develop directional language before
building towards more abstract representations of space. Educators are well-placed to draw
on student strengths and experiences when building mathematical knowledge — this task is
one example of how local knowledge can be used.

Spatial Relations

The open-ended nature of the task allowed students to reveal the diversity of their mental
representations of the local environment. While some students kept all photos upright, others
rotated the images to align with their view as they mentally traversed the journey. This latter
approach may be indicative of the graph approach (Peer et al., 2021), with students
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connecting nodes (i.e., locations/landmarks) via their well-travelled routes. Anecdotal
evidence from some students’ reflections suggested that these differences may be due to
map-like (i.e., bird’s-eye) versus route-based strategies. Future research may benefit from
exploring these distinctions further.

Relative position. Despite the body of work discussing relative position as a critical
component of the accuracy of spatial representations (Peer et al., 2021; Presson & Montello,
1988), our findings did not establish a link between students who demonstrated relative
position and their accuracy in positioning landmarks. The difference between our study and
those before are that we drew on the local environment in selecting landmarks, whereas
previous studies have focused on new learning. In these instances, the locations (or nodes)
under consideration are determined by the researcher. In our study it may be that students
were drawing on knowledge beyond what we presented to them, for example a third site
(such as home) may have helped them triangulate locations (Foo et al., 2005).

Scale. By contrast, representation of scale did show significant connections to accuracy
and context. Those that demonstrated scale by positioning the photos at varying distances
from school were more accurate in their placement of near landmarks. It is one possibility
that these students had a robust mental representation of their local area and then used this
to extrapolate to the larger area. In newly learned environments nearer landmarks have been
shown to be associated with greater salience and accuracy (Keil et al., 2020).

Consistent with the notion that context is critical when examining Location, rural and
regional students were more likely to represent scale. The nature of their interaction with
their local area appears to have a bearing on their awareness of the scale of the environment.
Many rural students travel long distances by bus to school while many regional students
reported not travelling very far beyond their local community in their daily lives. Both
environmental conditions may contribute to students’ sense of environmental scale (Presson
& Montello, 1988). Scale and magnitude are foundational numeracy skills, our findings
suggest that where city-centric teaching models may disadvantage some students (Roberts,
2017), the opportunity to draw on students’ local knowledge and experience may make
abstract mathematical concepts more accessible for all students.

Future Directions

This task provided some insights into the different ways students represent large-scale
space. The factors explored in this paper were broad in terms of geography and assumptions
about student experience of both the sites and town structure. Future research may look at
more individual factors, such as students’ freedom to roam, means of transport, and family
culture. Although we explored the use of relative position and we did not analyse the order
in which students placed the photos, it is possible more in-depth analysis of the students’
actions and thinking may give insights into key landmarks (or nodes) around which their
spatial representations were built.

Conclusion

Much of the spatial research examines lab-based or abstract notions of spatial reasoning
which often leaves students in regional and rural areas at a disadvantage. We have visited
sites with different social, geographical and cultural contexts. We have chosen to examine
the question of spatial representations with a different lens. Our results indicate that the
engagement with the local environment afforded by rural and regional living has provided
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students with an advantage in representing their familiar space. We suggest that this
embodied, contextualised spatial knowledge is a strong foundation for building
mathematical knowledge around Location and Transformation as a springboard for more
complex mathematical skills.
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This paper reports on a new initiative of collaborative work between the Australian
Curriculum, Assessment and Reporting Authority (ACARA) and Cambridge University as
part of the 2020-21 review of the Australian Curriculum: Mathematics Foundation — Year
10. The ACARA mathematics curriculum development team worked with the Cambridge
Mathematics team using the Cambridge Mathematics Framework, which incorporates
summaries of the research literature, to inform the review of Statistics and Probability in the
mathematics curriculum as part of ACARA’s program of research.

The Australian Curriculum, Assessment and Reporting Authority (ACARA), during the
2020-21 review of the Australian Curriculum: Mathematics Foundation (pre-Year 1) to Year
10, identified an opportunity to trial a new approach to coherent curriculum design. A team
of curriculum specialists incorporated the Cambridge Mathematics Framework (CMF) into
the Statistics and Probability areas of the curriculum review as an analytical tool for
examining content revisions, making decisions, and providing justification to other
stakeholders based on consolidated interpretations of relevant research. Teams from
ACARA and the University of Cambridge developed ways of incorporating the CMF which
led to areas of validation and areas of change in the curriculum and recommendations for
use and support of the CMF for the Cambridge team to apply in the future. This paper
presents an outline and some details of this new initiative and discusses implications for the
Australian Curriculum, the CMF, and curriculum review more broadly.

Challenges for domain coherence in curriculum design

Learning mathematics has been described as the process of building a scaffold from the
ground up, a rising and expanding network of ideas supported by the synthesis and
consolidation of ideas students have already developed (Tall, 2013; Thurston, 1990). Day to
day in the classroom, this process is non-linear, as teachers and students visit related ideas
back and forth, retracing steps, making connections, bringing new ideas to bear on old ones,
and vice versa. A coherent mathematics curriculum seeks to provide a substantive

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
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progression within key organising constructs, structuring the process in time across years of
study while supporting the underlying conceptual structure of the domain (Jameson et al.,
2018; Schmidt et al., 2005).

The extent to which this is possible depends on what knowledge can be brought to bear
about the underlying structure of the domain. Each teacher, curriculum designer, and
researcher in mathematics education, from their own education and professional experience,
has developed a sense of the ideas and the relationships between them that make up parts of
this scaffold, though perspectives on some areas will be based on more information than
others due to individual specialisations. However, opportunities for sharing these
perspectives to assemble a larger coherent picture are often limited.

The importance of connecting research and practice is well recognised in mathematics
education, but there are challenges to making these connections successfully (Flessner,
2012). These challenges stem in part from how research is designed and the investment it
takes to bring professional judgment from practice and research together. First, much of this
research is structured around developing particular theories of learning and understanding
of surrounding issues, and produces knowledge in a very different framework to pedagogical
knowledge (Mclintyre, 2005). Each study is intended to address a specific gap in knowledge,
to make a unique or complementary contribution with respect to existing research and
experience. This means that studies typically do not result in unambiguous recommendations
for practice individually, and the collective picture can be even more complex.

Secondly, in order for research to contribute to practice, teachers and educational
designers need practical access to it. Some barriers to access are physical or financial, while
others have simply to do with the time it takes to find, read, and synthesise reports of multiple
studies, and the study or training required to be familiar enough with research practices and
strands of work in the field for critical analysis (van Schaik et al., 2018).

Another challenge is that curriculum design involves agents and stakeholders who are
members of different communities of practice (Pinto & Cooper, 2018; Remillard & Heck,
2014), with differences between their priorities and perspectives on mathematics. Pinto and
Cooper (2018) reported that in curriculum design discussions between different types of
stakeholders, people with backgrounds in more than one camp act as knowledge brokers -
people who can translate between perspectives and help the group to make decisions based
on shared understanding. Shared objects of discussion can also help. However, discussions
which are not successfully mediated may not end with meaningful agreement, whether about
structuring principles or scope and sequencing.

Lastly, a challenge lies in the compressed selection of objectives which occurs
distinctively in every curriculum due to time and resource constraints. Different decisions
guide this selection under different circumstances, but it always involves trade-offs — for
example, depth and breadth, this set of key ideas or that set of key ideas, ordered along in
this sequence or that sequence. It is not possible or even necessary to include everything, but
the choices which are made affect the coherence of mathematical experiences in the
classroom and opportunities for teachers to develop a more connected perspective of the
domain (Schmidt et al., 2005). Whatever selection is made, the curriculum aims to have its
own sense of completeness, coherence, consistency, correctness and relevance, in particular
as it is developed to provide access to educational entitlement for students.

Conceptual mapping has been used in multiple instances to address curriculum
challenges. Confrey et al. (2017) have designed ‘“learning maps” based on learning
trajectories, which are empirically supported conjectures of the network of constructs
students experience as they build understanding of mathematical concepts. Learning maps
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are designed to show details which help teachers to provide learner-centred instruction
(Confrey et al., 2017). Koch et al. (in press) have developed a network representing teacher
knowledge of mathematical topics for middle grades in Canada, derived from empirical work
with teachers rather than students. The CMF has some similarities with each of these and
also key differences. It allows maps to be generated from a network of mathematical ideas
which, similar to Confrey et al.’s (2017), represent concepts building on one another, but
these concepts in the CMF are derived from interpretation and synthesis of research
literature. They represent not professional knowledge itself, as in Koch et al.’s (in press)
work, rather what the reviewed research suggests is useful for designers to know about
students’ conceptions.

Context

Review of the Probability and Statistics component of the Australian Curriculum

The current F-10 Australian Curriculum review process began in June 2020 when
Australian education ministers through the Education Council agreed to the terms of
reference, and a guiding paper, The Shape of the Australian Curriculum, was developed.
From there, content review began, as well as consideration of how the proficiencies could
be further developed and incorporated with this revised content. The Cambridge
Mathematics team were introduced to the project in June 2020 and began working with the
team of curriculum specialists tasked with reviewing content in the Statistics and Probability
strands, with both teams using the CMF to explore questions and inform regular discussions.

The review was structured around the organising ideas of Mathematising, Structure, and
Approaches and took place in four steps: (1) identifying core concepts at the Learning Area
level, (2) identifying core concepts at the Strand (branch) level, (3) using identified core
concepts to curate essential content for the learning area and identifying any gaps,
redundancies or imbalances, and (4) organising content with embedded proficiencies into
strands using core concepts and/or core concept organisers within the wider Mathematics
scope and sequence, also relying on an initial programme of research. Once this process was
initially completed, the result was sent out for feedback from teacher and curriculum
specialist reference groups. The next stage in the process is public consultation.

The ACARA team had in place its own programme of research which made them aware
of key issues they wanted to look at further in Statistics and Probability. However, work with
outside groups, like the Center for Curriculum Redesign, and drawing on Australian research
in the field (Bargagliotti, 2020; Callingham & Watson, 2005; Callingham & Watson, 2017,
Franklin, 2007; Watson & Callingham, 2020), led them to seek additional feedback on
aspects of the work. Their two guiding questions for the collaboration were: (1) In what way
would engaging with the CMF and the Cambridge team support/validate the revisions to the
Statistics and Probability strands of the revised -curriculum? And (2) |If
adjustments/additions are made based on engagement with the CMF, what led the ACARA
review team to make these changes?

The Cambridge Mathematics Framework (CMF)

The CMF is a tool for conceptual mapping in educational design which supports
research-informed design decisions in mathematics education. It consists of a searchable
network of key mathematical ideas and the relationships between them in the domain of
school mathematics, along with a set of tools for exploring and analysing the network and
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descriptions of what these ideas look like in the classroom. These ideas are ordered in
relation to their interdependence, not tied to year ranges, and this provides the opportunity
for designers to make choices of their own with respect to temporal sequencing.

The network is derived from interpretation and synthesis of mathematics education
research carried out by the Cambridge Mathematics team. The ideas in the network are
linked to underlying research sources and can be accessed in the form of dynamic maps
which are presented with corresponding Research Summaries, which tell and reference the
stories of the map representations with respect to the research sources. External content, like
curriculum statements, tasks or assessment items can be linked to the network to help
designers to analyse how the ideas underlying their work depend on each other, as was the
case with the ACARA collaborative work.

The goals of Cambridge Mathematics involve domain coherence at different levels of
educational design, and the CMF is intended to inform design work at different scales:
national, regional, and school-level curricula, resources, and even lessons in some contexts.
All levels are important for optimal impact, but opportunities to trial the CMF are more
frequent for smaller resources. The Cambridge team viewed this collaboration as a valuable
contribution to its current formative evaluation goals. In this case, they wanted to examine
whether the CMF as a reference tool was meaningful, trustworthy, useful, and usable for
curriculum design spanning a range of years in school mathematics.

The CMF situates statistics education as learning how to understand variability in data
(Macey et al., 2018). This variability is expressed through the concept of a distribution and
exploration of its graphical and mathematical representation. Figure 1 shows an example of
this and illustrates the materials the ACARA team was working with; the map shows the
highly connected waypoint “knowing simple distributions” which draws together the
sometimes-disparate ideas that underpin the concept of a distribution, and establishes a
stepping point for more advanced statistical concepts that rely on it.
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Figure 1. A view of a portion of a map within the CMF

Methods

The collaboration between the ACARA and Cambridge teams took place primarily in
and between seven meetings from June - August 2020. After an orientation meeting in which
the two teams discussed the context and established mutual goals, they met again for the
Cambridge team to introduce the features of the CMF and demonstrate how to search and
how to work between maps and detailed descriptions. The Cambridge team linked ACARA’s
original curriculum statements to mathematical ideas expressed in the CMF and produced
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underlying maps of ideas and relationships which they provided to the ACARA team for
consideration. Having previously piloted the CMF in the design of the UNICEF Learning
Passport mathematics curriculum (Oates et al., 2020), which spanned a wide year range, the
team was able to apply ideas from that project to the ACARA review.

The ACARA team kept diaries and notes on a weekly basis as they worked with the
CMF. The Cambridge team used the diary-interview method, adapted from Zimmerman &
Wieder (1977) to develop a detailed picture of their activities. One ACARA team member
kept a running diary, while others kept notes, and in each joint discussion the ACARA team
would raise issues which had come up in their work over the past week, having to do with
the content, use of the CMF, or both. In the final meeting before the revisions went out for
initial review, the ACARA team debriefed the Cambridge team on the full diary and their
sense of how things had gone overall relative to their interests and expectations.

Outcomes and discussion

Ways of working with the CMF

The ACARA team identified the location of core concepts in the CMF and explored
similarities and differences in the way these concepts were represented and the landscape of
other connected ideas. This process helped them to clarify what they thought the core
concepts were and how things could be structured around them for students to approach and
investigate. To do this, they used search features and structural cues in CMF maps. After
reflecting on this process, they noted that “there was sufficient detail” in the map “to provoke
further exploration of ideas but without predicating the outcome, so it can be a tool for
critical inquiry”. It was possible to find and recognise “big ideas writ small” and then
continue to the next issue.

The higher-level core concepts, structure, approach and mathematising, had already been
transformed to key organisers for a larger set of core concepts so that these could be revised
and restructured more usefully. From this process, what it means to reason stochastically
became a structural focus. Proficiencies like problem solving and reasoning are always
embedded in specific content areas, and the ACARA team reported that the CMF helped
them to do this more meaningfully, integrating content statements with proficiencies and
bridging between the statements and the bigger picture.

Within the timeframe for the review, the ACARA team found themselves choosing what
to pay attention to in the CMF based on what most surprised them based on their expectations
and prior understanding. When they identified areas requiring particular attention, they used
not only maps but some of the more detailed information in the CMF, including descriptions
of ideas, rationale for structure and examples of what it looks like in the classroom when
students are working with them. They referred to the research summary level of the CMF as
applicable for more detailed investigation, however, as these summaries had already been
reviewed by external researchers in general, they trusted that research had been reasonably
and robustly interpreted.

Use of research synthesis for validation and change

The ACARA team found that research synthesis in the CMF provided further validation
for many of the revisions they were planning based on the research they had already
consulted. They found there was a high level of consistency with their existing
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understandings, but that some things stood out as being particularly surprising, and it was
these that drew their attention for further investigation.

There were a few notable areas in which the ACARA team decided to adjust content and
sequencing based on the implications of research synthesis in the CMF; four examples are
given below.

e Before: There was initial concern that the pairings of measurement and geometry,
statistics and probability was restricting development of other connections — the
ACARA team knew there were connections between measurement and statistics
which weren’t being explored.

e After: Some of the connections they found in the CMF led to rich discussions around
how connections between the mean, error and measurement could be made and
actively furthered in the curriculum presentation on the website.

e Before: Summary statistics, which are introduced close together in the current
curriculum, sometimes leading to students being unable to distinguish between
mean, median and mode later on, as well as to ‘procedural approaches' that lacked
understanding of what the measures are and why they'd be of interest.

e After: The separation of these statistics as distinct ideas with distinct relationships to
other topics in the CMF which built up to them prompted the ACARA team to make
several changes. They moved mean and median around to get at deeper conceptual
understanding of each and to introduce them at different times, shifted from
frequency to mode, and introduced ordinal data, which wasn’t included previously,
so students would engage with these concepts sooner.

e Before: The notion of distribution was mentioned 11 times in content and
achievement standards across 10 year levels, but nevertheless seemed procedurally
driven and not conceptually connected for the ACARA team.

e After: After discussing research implications which were apparent in the CMF, they
shifted to embedding expectation of reasoning about representations, conceptual
understanding, and connections. Distribution is now mentioned only twice but it is
richer in that it points to how to talk about distributions in terms of their
characteristics (spread, skewness, etc.).

e Before: The ACARA team felt that some connections between probability and
statistics were not being made.

e After: The idea in the CMF that probability estimates are the result of narrative
frequency was used as a way to bring statistics and probability together more
explicitly.

Use of maps as shared artefacts in discussing decisions with stakeholders

The ACARA team felt the maps they were working with would be a useful contribution
to discussions with reviewers in which they might need to provide justification for their
decisions. Not only did the maps link to research sources and research summaries (synthesis
documents), but they also showed what some of the key sequencing decisions were as a
result and allowed the conversation to focus on these areas. The full consultation with
teachers has not yet begun, but the curriculum and teacher reference groups have provided
initial feedback. Qualitative feedback from the combined teacher and curriculum reference
group indicated they had seen a positive development in the statistics strand from the original
version of the material.
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Drawing on this, the ACARA team identified instances where the CMF was used to
provide justification for decisions in a way that reference group members agreed was clear
and helpful. In one example, CMF maps were used to illustrate the reason for separating
statistics and probability as different strands. Some reference group members with a
particular focus on statistics felt that the “end-game” or big picture was more apparent, and
that it helped see the purpose and meaning of particular decisions. The ACARA team felt it
gave them more confidence in laying out their perspective, knowing their reasons had
research behind them and they could trace choices back to this in a discussion.

Formative evaluation

Just as the ACARA team found the CMF useful for analysing gaps, ordering, and
coverage, the Cambridge team found the reverse was also true. The ACARA team’s critical
engagement with the CMF as curriculum designers provided valuable formative feedback
on the representation of mathematical ideas in the CMF, the tools available for working with
relevant information and how these could be efficiently accessed and effectively used.
Several points from the Cambridge team’s evaluation themes are below:

1. Meaningful: Overall, the ACARA team recognised within the CMF concepts which
they were working with, realised implications, and made meaningful decisions.
There were particular areas in which it became clear during discussion that some
implications were not explicitly represented in the CMF. In such cases, CMF content
was further refined and possibilities for other supporting documents were raised.

2. Trustworthy: The ACARA team themselves felt the CMF provided them with good
justifications for their curriculum revisions. Other stakeholders agreed.

3. Useful: (a) Because the CMF is a dynamic digital online tool, the collaboration
demonstrated that it was productive for two teams across the world from each other
to interact virtually around the same artifacts. (b) A theme running throughout the
joint discussions was the notion of perspectives from research being represented
explicitly vs. implicitly; the Cambridge team realised some perspectives needed
more explicit and actionable support, either in the network or the guidance
documents. Discussions like this are useful to identify whether other assumptions
about what is implicit in design need to be made more real for designers.

4. Useable: (a) From the ACARA team’s perspective, the CMF “made the research
usable” and “did the heavy lifting in a limited time frame”. They noted the CMF
helped them to overcome time and resource constraints to bring new and well-
synthesised research influences into the review. (b) The ACARA team found their
first exposure to the CMF mapping environment to be demanding, but it
progressively became more comfortable and they felt it had been worth getting over
the initial familiarisation hump. The Cambridge team could provide additional
support to streamline this process. (¢) The ACARA team concluded that using the
CMF was not a shortcut in terms of time spent, but they felt the output reflected a
broader range of research and was more coherent, helping them meet review goals.

Conclusions

The ACARA team entered the collaboration seeing potential in the CMF as a tool for
validation, conceptual insights, construction and exploration, and they agreed that these
goals had been met. The process that worked for them involved using the CMF for a
combination of individual exploration, group decision-making and justification activities,
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providing some evidence that the design of the CMF supports active professional decision-
making. Reflecting on the outcomes, the ACARA team identified opportunities where the
CMF could be used in other strands beyond statistics and probability. The Cambridge team
continues fine-grained analysis of interview data which can inform refinement and future
use of the CMF for curriculum design, and is in the process of following up on suggestions
which emerged from the process. This collaboration demonstrated the value of the CMF as
a map-based design tool to support mathematics curriculum design, and processes emerged
which will streamline its use in future versions.
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This paper describes the development and efficacy of an online tool for assessing the
numeracy of undergraduate students. The tool was designed to be easy to administer, provide
immediate feedback to students on whether they had the required level of numeracy, and to
be consistent with other measures of adult numeracy. When used with students taking a
mathematics or statistics course, we found a significant correlation of r = 0.45 between their
numeracy score and final mark in their enrolled course. Students who had a humeracy score
less than our threshold had a 30.6% probability of failing their course, whereas students who
had a numeracy score of at least our threshold had a probability of failing of only 8.0%.

We define numeracy, in an undergraduate university context, as having the knowledge,
skills, and confidence to use mathematical tools in a range of disciplinary contexts. Tertiary
educators may expect students entering their programmes to have the prerequisite numeracy
to successfully complete their quantitative courses. However, student performance does not
necessarily align with these expectations (Parsons, 2010). Students lacking numeracy skills
are less likely to continue with a course when they are faced with difficulties with
quantitative material (Matthews et al., 2009). Large scale numeracy assessment tools such
as the Literacy and Numeracy Test for Initial Teacher Education (LANTITE) (Australian
Council for Educational Research, 2016) and the Literacy and Numeracy for Adults
Assessment Tool (LNAAT) (Tertiary Education Commission [TEC], 2008), have been
developed to provide detailed feedback to individuals about their numeracy competency.
Such tools are aimed at measuring the level of numeracy demonstrated by an individual
rather than establishing if that person has a sufficient level of numeracy to be successful in
a particular situation. Therefore, we sought to develop an undergraduate numeracy
assessment (UNA) tool that could be used specifically for identifying if students have the
prerequisite level of numeracy to enable them to be successful in their quantitative courses.

Background

The New Zealand Ministry of Education (2009) cautions us on using educational
assessment as a sole means of assessing numeracy capability because high school students
with high levels of success in formal qualifications may often present with low levels of
numeracy. Since expectations from lecturers about students’ mathematical competence does
not necessarily align with numeracy entry levels (Parsons, 2010), high school leavers who
are not identified by their teachers as having problems with numeracy may be identified
subsequently in adulthood (Bynner & Parsons, 2006). Furthermore, the teaching of
mathematical and statistical knowledge within courses of a quantitative nature does not
necessarily link directly to a students’ mathematical qualification (Gnaldi, 2006; Taylor et
al., 1998).

2021. In Y. H. Leong, B. Kaur, B. H. Chay, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 243-250. Singapore: MERGA.
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We built upon descriptions of students’ numeracy difficulties that were generally
anecdotal or restricted to mathematical content (Taylor et al., 1998). We identified important
underlying numeracy constructs for undergraduate students that included proportional
reasoning, understanding of rational numbers, and multiplicative thinking (Galligan &
Hobohm, 2015; Linsell & Anakin, 2012; Linsell et al., 2017). These constructs can be found
in the large-scale numeracy assessment tools, such as the LANTITE and LNAAT. However,
there are limitations when using these tools to assess the numeracy of undergraduate
university students. First, students with high attainment take longer to answer questions than
students with low attainment (TEC, 2017). Thus, students and education practitioners may
feel that the time taken to complete a robust adaptive test across a six-step progression may
be arduous or unnecessary. Second, assessment feedback provided to a student describes
individual strategies, strengths, and knowledge (Hall & Zmood, 2019; TEC, 2008) but not a
level of numeracy competency. Third, the New Zealand TEC has aligned numeracy
progression benchmarks in the LNAAT to levels of the mathematics and statistics in the
New Zealand Curriculum and to National Certificate of Educational Achievement (NCEA)
standards for numeracy assessment (Thomas et al., 2014). A LNAAT score of 605 (Step 5)
approximates to the NCEA numeracy standard as required for university entrance. However,
further work is needed to confirm whether LNAAT is well aligned and represents numeracy
competencies that adults require to be successful in society. Further study is also needed to
investigate numeracy competency, to predict success in quantitative courses at the university
level. One way to address the limitations of the large-scale assessments is to carefully frame
assessment items. We define framing in three ways. First, assessment items need to be
encased in appropriate and meaningful contexts (Mason et al., 2009). Second, items must
allow for authentic user responses. Third, items must assess conceptual knowledge alongside
procedural fluency (Hiebert & Carpenter, 1992). With well framed assessment items,
educators may be able to establish a student’s numeracy competence and predict their
readiness to succeed in quantitative courses.

Development of Assessment Tool

Our aim was to produce a dependable assessment tool that was easy to administer, gave
immediate feedback to students on whether they had the required level of numeracy, and
that was consistent with other measures of adult numeracy. We decided that an online
assessment would be necessary for facilitating marking and giving immediate feedback to
students. We had previously used the LNAAT for investigating numeracy of undergraduates
(Linsell & Anakin, 2012; Linsell et al., 2017). The LNAAT has been aligned with other
measures of numeracy (Thomas et al., 2014) and we therefore decided to benchmark our
tool against this.

We wanted to determine whether students had a particular level of numeracy, rather than
measure what level of numeracy students had. Therefore, it was unnecessary to set questions
that could be answered with lower levels of numeracy than our requirement. Our previous
work (Linsell et al., 2017) had indicated that Step 6 of the LNAAT numeracy scale was
necessary for success in undergraduate quantitative courses. Furthermore, detailed
examination of the responses of students to the LNAAT numeracy questions suggested to us
that a score of 740 was necessary, considerably higher than the 690 threshold for Step 6
(Casey & Knowles, 2018). Step 6 includes requirements for students to:

e solve addition and subtraction problems involving fractions, using partitioning
strategies;
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e solve multiplication or division problems with decimals, fractions and
percentages, using partitioning strategies;

e use multiplication and division strategies to solve problems that involve
proportions, ratios, and rates;

e know the sequences of integers, fractions, decimals and percentages, forwards
and backwards, from any given number.

Our assessment consisted of 20 questions on the topics of fractions, decimals, ratios and
proportions, and percentages. Students were required to answer five questions, which
covered a range of sub-topics, in each topic.

Using a question format similar to that of the LNAAT, our assessment made use of
meaningful contexts, previously unseen by the students, to determine whether the students
could use mathematical tools to solve problems. This use of contexts ensured that conceptual
knowledge (Hiebert & Carpenter, 1992), rather than just procedural knowledge, was
required to solve the problems. Contexts were chosen that reflected the experiences of
undergraduate students but that were not specific to any particular academic subject. Figure
1 shows an example of a question that requires students to make use of their knowledge of
operating with fractions (this sample question is for illustrative purposes only and was not
used in any assessments). The format for this question was multiple-answer, while other
questions made use of numeric answers, fractions (both proper and mixed), multi-choice and
drag-and-drop formats.

7

Snow Days

Starting from June, you can expect to see increasing amounts of snow on the mountains in New Zealand.
More snow falls in July but August may well be one of the best times for snow.

A typical ski season lasts for 131 days in NZ.

When Adrian started working at one of the skifields he was told that it had snowed on % of the days

during the season last year.

Which two of the following calculations can be used to help Adrnan calculate how many days it had
snowed during the ski season last year.

[ Divide 131 by 2 fifths

[ Multiply 131 by 0.4

[ Divide 131 by 5 then multiply by 2
[ Divide 131 by 2 then multiply by 5

Figure 1. Snow Days question employing multiple answer format.

To ensure authenticity of students’ work when sitting the assessment in computer
laboratories, we designed the assessment to make it unlikely that nearby students would be
answering the same question, or that one student’s answer would be useful to another student
sitting the assessment later. The assessment used a number of levels of randomisation. In
addition to randomising the order of questions, contexts were randomised (e.g., for
multiplying fractions the context of recipes was randomised with the context of student
allowances) and pictures accompanying the questions were changed accordingly, names of
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people, objects, places and courses were randomised (e.g., quantity of flour to quantity of
sugar), and the numbers used in each question were randomised. When randomising
numbers, it was important to select values that did not alter the level of difficulty of the
question (e.g., in the Snow Days question only the fractions 2/5, 2/10, 3/5, 3/10 were used
and the number of snow days was randomised between 131 and 139 excluding 135).

The platform we used was adapted and further developed from an online system for
assessing first-year university students of mathematics and statistics at the University of
Otago. Question presentation was simplified, fractional and drag-and-drop answer formats
were added, and the reporting of feedback expanded. The development of the question bank
and its benchmarking took multiple iterations of setting the test, analysing answers (e.g., too
easy, too hard, misleading etc.), improving questions, and adding questions. The test was
first administered in MATH151 General Mathematics, and the success rate for questions
was found to vary between 28% and 89%. Possible reasons for the range of difficulty were
identified and questions were revised. Next, two parallel versions of the test were developed
and used in EMAT198 Essential Mathematics for Teaching. Again, questions that were
particularly easy or hard were identified and modified if necessary. Students taking
EMAT198 (n = 67) also sat a LNAAT assessment, which was used for benchmarking. There
was a strong correlation of r=0.45 (p<0.001) between EMAT198 students’ scores on UNA
and their LNAAT results (see Figure 2). Regression showed that a LNAAT score of 740
corresponded with a UNA score of 14.

We combined all questions (modified if necessary) from iterations 2 and 3 for use in
STAT115 Introduction to Biostatistics in the second semester. For this fourth iteration the
success rate for questions was found to vary between 49% and 92%. This variation is likely
to be due to general gaps in students’ conceptual knowledge rather than assessment item
difficulty. In total, there were five iterations of question development and improvement to
develop a test for use in the following year.

500 600 700 800 900
LNAAT

Figure 2. Correlation of UNA vs LNAAT assessment score in EMAT198 (n = 67)

Numeracy of Undergraduates

For students taking MATH151 General Mathematics, the UNA numeracy assessment
was administered during tutorials in the third week of Semester 1 2019. The test was carried
out under exam conditions. Of the 142 consenting students taking MATH151, 131 sat the
UNA test, with the remaining 11 students not attending the tutorial in which the test was
administered. Students scored between 1 and 20 on the 20-item test (M=13.3, SD=4.2) (see
Figure 3). Sixty students (45.8%) scored less than our threshold score of 14 marks and 24
students (18.3%) scored less than 10 marks.
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Figure 3. MATHI151 distribution of students’ scores (n = 131) on the 20 item UNA test

For students taking STAT115 Introduction to Biostatistics, the UNA numeracy
assessment was completed by students in their own time in the first week of Semester 2 2019
and was unsupervised. However, students were encouraged to take the test to inform
themselves of their numeracy needs and were given five marks towards their final grade in
the course for taking the test. Of the 785 consenting students taking STAT115, 701 sat the
UNA test, with the remaining 84 students opting not to do so, despite the inducements.
Students scored between 0 and 20 on the 20-item test (M=14.9, SD=4.7) (see Figure 4). One
hundred and eighty-eight students (26.8%) scored less than our threshold score of 14 marks
and 90 students (12.8%) scored less than 10 marks.

Fr

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
UnaScore

Figure 4. STAT115 distribution of students’ scores (n = 701) on 20 item UNA test

As can be seen from Figures 3 and 4, the distribution of scores for STAT115 students
sitting the test independently is rather different to that for MATH151 students sitting under
exam conditions. Not only did a smaller proportion score less than our threshold score, but
a much higher proportion scored 18 or more on the 20-item test. This difference could be
accounted for by the variation in testing procedures rather than any differences between
cohorts of students. The numeracy and attainment of the two cohorts is explored further in
the next section.

Numeracy and Attainment

Overall, there was a strong and significant correlation of r=0.45 (p<0.001) between UNA
numeracy score and the final mark of students in MATH151 and STAT115. Students who
had a numeracy score less than our threshold of 14 marks had a 30.6% probability of failing
their course, whereas students who had a numeracy score of at least our threshold had a
probability of failing of only 8.0%. However, a much clearer picture is obtained by
examining the attainment in MATH151 and STAT115 courses separately.
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Figure 5. MATH151 students’ attainment (n = 131) on course vs UNA score

For MATH151 there was a strong and significant correlation of r=0.41 (p<0.001)
between UNA numeracy score and the final mark in the course. Of the students scoring less
than 10 marks, 54% failed MATH151 (see Figure 5) with a mean score of 41% (M=41,
SD=32). Similarly, 31% of students scoring 10 to 13 marks failed MATH151 with a mean
score of 55% (M=55, SD=28). Only 14% of students scoring 14 or more marks failed
MATH151 with a mean score of 71% (M=71, SD=26). It was interesting to note that the
students who did not attend the tutorial and therefore did not sit the UNA test had a similar
failure rate to those students who scored less than 10 marks. The failure rate (54%) for
students scoring less than 10 marks or not sitting the UNA test was 3.9 times as high as the
rate (14%) for students who achieved at least our threshold score of 14 marks.

PassFail
ErFass
W ail

Count

i e -
10

No UNA =1 10-13 =13
UNA Score

Figure 6. STAT115 students’ attainment (n = 701) on course vs UNA score

For STAT115 there was a strong and significant correlation of r=0.46 (p<0.001) between
UNA numeracy score and the final mark in the course. Of the students scoring less than 10
marks 32% failed STAT115 (see Figure 6) with a mean score of 56% (M=56, SD=17).
Similarly, 24% of students scoring 10 to 13 marks failed STAT115 with a mean score of
62% (M=62, SD=20). Only 7% of students scoring 14 or more marks failed STAT115 with
a mean score of 76% (M=76, SD=17). It was extremely interesting to note that the students
who chose not to sit the UNA test had a failure rate even higher than those students who
scored less than 10 marks. The failure rate (44%) for students scoring less than 10 marks or
not sitting the UNA test was 6.3 times as high as the rate (7%) for students who achieved at
least our threshold score of 14 marks.

Discussion and Conclusions

We used assessment items from UNA with students enrolled in EMAT198 to reliably
calibrate using regression analysis against the LNAAT test to map a threshold score of 14
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on UNA with the LNAAT adult progression at Step 6 and a score of 740. This score is higher
than the 605 (Step 5) benchmark which corresponds to NCEA Level 1 numeracy assessment
(Thomas et al., 2014) that is required for university entrance. Results from 832 students
enrolled in mathematics and statistics courses within this study, using a UNA benchmark
score of 14, indicate a significant correlation between UNA score and final examination
result, demonstrating its suitability across a range of undergraduate courses with quantitative
material. Furthermore, the cost and management of large-scale assessment (Brumwell et al.,
2018; Hall & Zmood, 2019) can be mitigated by the provision of a well framed, 20 item
assessment, which identifies a particular level of numeracy competence (Galligan &
Hobohm, 2015) rather than a description of a learners’ strategies, strengths, and knowledge
(TEC, 2008) making it both time and financially advantageous. The importance of
presenting questions in real-life contexts (Norton, 2006; Mason et al., 2009) is widely
understood. Furthermore, UNA uses familiar adult contexts to assess the use of conceptual
knowledge rather than procedural fluency (Hiebert & Carpenter, 1992).

In describing how the UNA was developed, we also demonstrated the efficacy of the
UNA to identify whether students had a particular level of numeracy rather than measure
what level of numeracy students had. This decision allows us to not only analyse the data
but consider appropriate actions to take as a result (Blaich & Wise, 2011). The next steps are
to examine how other disciplines, such as commerce, health sciences, and humanities, may
use the UNA. Expanded use of the UNA may assist lecturers to question and examine their
expectations about their students’ mathematical competence and its alignment with
numeracy entry levels (Parsons, 2010). Additionally, educators may find the UNA
convenient for identifying the number of students who are likely to experience conceptual
difficulties in their course. The UNA also provides an alternate source of numeracy feedback
to educators that is consistent with other measures of adult numeracy such as the LNAAT.
Educators may use results from the UNA to suggest that identified students seek numeracy
support. To this end, students may be more likely to continue with the course and complete
it successfully.

Further areas to address include: developing a larger bank of questions in the context of
students’ specific disciplines (e.g., nursing, pharmacy, business); and the process and
potential issues (e.g., resources, time) in scaling up the use of UNA across an institution. We
anticipate that educators will find the UNA useful for identifying if students have the
prerequisite level of numeracy to enable them to be successful in their quantitative courses
and that it will be a dependable assessment tool that is easy to administer, provides
immediate feedback to students, and is consistent with other measures of adult numeracy.
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Why should we argue about the process if the outcome is the same?
When communicational breaches remain unresolved

Joanne Knox
The University of Auckland
<j.knox@auckland.ac.nz>

This paper uses the commognitive framework to analyse how a group of four primary school
students classify odd and even numbers. The findings show how students’ reasoning is
grounded in their personal uses of “odd” and “even”. The students attend to different features
of “oddness” and “evenness” and agree on which numbers are odd and even but disagree
about why. The findings highlight the role that proving can play in signalling differences in
reasoning within a group of students that may otherwise remain hidden. However, they also
suggest students’ awareness of the breach in communication may not be sufficient to
engender a resolution, even when pedagogical moves toward this direction are made.

Mathematical proof is fundamental to the work of mathematicians, and many educators
maintain that it should also be a fundamental part of school mathematics
(CadwalladerOlsker, 2011). However, proving activity has been neglected in mathematics
education (Stylianides, 2016), especially in the primary classroom. Accordingly, there have
been recent calls recommending proving for all mathematical content areas and across the
grades. For example, the PISA 2021 framework (OECD, 2018) highlights the centrality of
mathematical reasoning and reforms in some countries’ curriculum documents also now
require proof and proving to be taught at all levels (e.g., Common Core State Standards
Initiative [CCSSI], 2010; Department of Education [DfE], 2013; NCTM, 2000).

Although the fundamental purpose of a mathematical proof is to know whether a
mathematical assertion or idea is true or false (CadwalladerOlsker, 2011), proving also has
a more practical role in explaining and convincing others about our statements or theorems
(Stylianides et al., 2017). It is through this practical role that proving has potential to support
deep learning and sense-making. For instance, the NCTM’s (2000) standards refer to proofs
as offering “powerful ways of developing and expressing insights” through which “students
should see and expect that mathematics makes sense.” (p. 4).

What constitutes proof and proving at the primary level, however, is not entirely clear.
Whilst it is unlikely that formal, deductive proofs expressed algebraically would be within
reach of typical primary school students, Stylianides (2007) provided empirical accounts of
how young students’ informal arguments could be mapped onto corresponding formal
proofs. These student arguments made use of manipulatives or diagrams to provide visual
demonstrations of a generic example. Building from this research, Stylianides (2016) defined
a proof as an argument, which is accepted by the classroom community and, uses and
communicates reasoning in ways that are endorsable by the wider mathematical community
but are also within reach of the classroom community. Nevertheless, even with a working
definition of primary-level proofs, there is little research that explores how young students’
arguments develop and become accepted within the classroom community. In this paper |
utilise Sfard’s (2008) commognitive framework to provide insights into how young students’
arguments unfold as they substantiate (verify with evidence to prove why a reason is true)
their classifications of numbers as even or odd.

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 251-258. Singapore: MERGA.
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Theoretical Framework

Sfard (2008) defines mathematical discourse as a special form of communication, including
self-communication (thinking), that is distinguishable via four interrelated characteristics:
Its keywords (e.g., ‘odd’, ‘even’) and their use; its visual mediators (e.g., numerals, symbols,
counters, pictures); its endorsed narratives (e.g., theorems, proofs, conjectures, definitions),
and; its routines — discursive patterns, according to which mathematical tasks are being
performed (e.g., the ways in which interlocutors substantiate oddness and evenness).
Learning is seen as a lasting transformation in a learner’s discourse, which is identifiable by
changes in one or more of these four characteristics.

In terms of the keywords of interest to this study, ‘odd’ and ‘even’ are labels that function
as nouns to denote discursive mathematical objects which may be realized in a multitude of
ways; infinitely many numbers (e.g., ‘odd’ could be one, seventeen, one billion and one;
‘even’ could be two, forty-six, three million and eight) and each of these numbers could be
realized as numerals (e.g., 1, 17; 2, 46), icons (e.g., an arrangements of dots) or symbolically
as algebraic expressions (e.g., 2n+1; 2n). However, the illusory nature of mathematical
objects (being products of our discourse as oppose to actual, tangible objects) entails that
none of these realizations could be singled out as being ‘the’ object. During initial phases of
learning, learners may have limited realizations of the signifiers ‘even’ and ‘odd’: Evidence
of an expansion of realizations signals learning.

Another characteristic feature denoting the development of discourse is the level of
objectification. Sfard (2008, p. 44) defines this as a process involving both reification—
replacing talk about processes with talk about objects — and alienation — presenting
phenomena impersonally, as if they were occurring independently from human participation.
For example, when someone speaks of ‘even’ as “numbers that can be shared equally
between two people”, an activity (sharing) is indicated and the word ‘even’ acts as an
adjective describing numbers. Whereas in the sentence “even plus even is even”, ‘even’ has
been objectified: The word is used as a noun that encapsulates all even numbers and
realizations of even into one set, giving it separation from any activity and more permanence.

According to the commognitive framework, development occurs through the learner’s
exposure to, and participation in, the discourse he or she is supposed to individualise, and
the support he or she receives from other participants. Encounters between interlocutors who
use the same mathematical signifiers (words or written symbols) in different ways, or
perform the same mathematical tasks according to differing rules, have an indispensable role
in this (Sfard, 2008, p. 162). Such encounters, termed commognitive conflicts, provide space
for participants to consider new ways of talking, which is a prerequisite for experiencing a
change in what they see. Sfard (2008, p. 258) maintains that resolving a commognitive
conflict involves one of the interlocutors gradually accepting and adopting the
incommensurable discourse and abandoning his or her own.

With regard to the group of students in focus, in this paper | ask, “What are the sources
of commaognitive conflict in the context of classifying odds and evens?” and “When and how
can a commognitive conflict fail to give rise to a modification in students’ discourse?”

Research Design

The present data is taken from a larger study aiming to investigate how students’ arguments
unfold and develop as they engage in proving activity. Year 4 students from two NZ schools
were selected by their teachers to be withdrawn from their class to work in groups of four at
a time with me (as a teacher-researcher) on three different tasks: (1) classifying numbers as
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odd or even; (2) proving conjectures about the sums of odds and evens; and (3) proving
conjectures about the products of odds and evens. As the unit of investigation in this study
was discourse, teachers selected students and groups according to whom they considered
would be willing and able to engage in dialogue.

The data presented in this paper is taken from one group of four 8-year-old students as
they participated in the first task. The students took turns to classify numbers presented on
cards as odd or even and, as each card was classified, they were asked to substantiate their
classifications and were encouraged to consider one another’s questions and thinking. The
cards displayed increased in complexity, from single digit numbers (shown as Numicon tiles
or numerals) to six-digit numbers. Numicon tiles are visual representations of numbers 1-10
presented as dots within a frameless 2 x 5 rectangle (see Figure 1).

2 3 4 5 6 7 8 q 10

Figure 1. Numicon tiles.

The main aim of engaging students in this first task was to provide a baseline discourse
for each student (i.e., what they already knew about ‘odd’ and ‘even’), enabling me to track
their learning (observable via the development of their discourse). The group sessions were
audio and video-recorded, and their conversations were closely transcribed along with
corresponding and relevant details about what the students did (e.g., gestures, facial
expressions, actions, photos of their work). Here | conducted detailed discourse analysis
utilising Sfard’s (2008) commognitive framework to look for well-defined, repetitive
patterns (routines) in students’ discourses regarding their use of the words ‘odd’ and ‘even’
and their substantiating narratives about oddness and evenness. | also made use of realization
trees. Whilst Sfard used “realization trees” (p. 165) to map personal realizations based on
observations of the individual person implementing them, I constructed a combined tree of
realizations for the group, mapping each interlocutor’s observable realizations along specific
branches, to help examine and clarify consistent and inconsistent uses of words within the

group.

Findings and Discussion

Throughout the classification task all four students correctly classified the numbers and they
agreed with the classifications made by their peers. Indeed, if the students had been asked to
simply sort the cards into odd and even boxes with no justification, it would have been easy
to assume that they held a common understanding about odd and even numbers. However,
when | examined the routine ways the students substantiated their classifications, it became
clear that their use of the words ‘odd” and ‘even’ was different. Sfard (2008) states that
interlocutors’ word use (or what others might call ‘word meaning’) is important because “it
is responsible for what the user is able to say about (and thus see) in the world.” (p. 133).
Due to the scope of this paper, data that illustrate the students’ word uses have been
compressed in Table 1, rather than shown in their entirety. | include the turn number to
provide the reader with an idea of turns elapsing and to enable me to refer to key turns within
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my analysis. A combined tree of realizations (Figure 2), constructed from the student group’s
discourse, is provided to visually illustrate the students’ word uses.

Table 1
Student Substantiations for Classifying Numbers as Odd or Even

Card shown Jane, Zara and Robert’s responses Danny’s response
and teacher’s
question
Why is ‘six”  [31] Jane: Because three plus three equals ~ [32] What the heck! That’s not right!
even? six and that’s even. [34] That’s so not right... three plus three...
% how does the three come here?
Why is ‘nine’ [43] Zara: It’s got a one there. (Pointing to  [45] So, even are always first, ‘cos zero, two,
odd? the single one at the top of the four, six, eight, ten. And then the odd
Numicon piece.). numbers are starting from one—one,
m] three, five, seven, nine, eleven. It goes
like that. So that nine is odd.
Why is ‘four’ [55] Robert: Because, two and two. [58] But how did you get the two?
even? [59] Robert: Mm... er, because two plus [60] How did you get the two?! Where’s the
0 two. two? How did you get the two?
il [70] It’s just the sequence. Same as the
[73] Zara: Erm also if, if you had two Fibonacci sequence and the other
people then you’d be able, they’d both sequences.
get two each. [79] | know something. So, it’s like always
like even-odd, even-odd, even-odd a
number.

[81] No odd can, odd can still be a fair share
‘cos you can split it up into decimals.
Like with seven you can make three point

five.
Why is ‘five’  [90] Jane: Because a four and one. [91] But how did you get the four and one?
odd? [92] Jane: Because the four is even, but five
5 has like...

[93] Zara: Instead of adding two on, you [102] I know something. So, everything is like
add on one and then it wouldn’t be even-odd, even-odd, then even, then odd,
even. so that’s odd.

[94] Zara: So, two, two and one.

Why is [119] Jane: Because eleven and eleven. [120] All you need to know is like if it ends
‘twenty-two’ with a... if... This is like a simple way-
even? if it ends with a zero, two, four, six or

- eight it is an even number...
[122] And if it’s one, three, five, seven, nine

it’s odd.

Jane, Zara, and Robert’s substantiations of evenness and oddness

Table 1 shows that Jane substantiates evenness as referring to numbers formed by adding
the same, or an even amount to itself (a double) to make a number [31, 119]. Her realization
of the signifier ‘even’ is characterised by Branch 2a on the combined tree of realizations.
Similarly, Robert substantiates the evenness of four by attending to “two plus two” [55, 59]
and so his realization is also aligned with Branch 2a. Jane substantiates numbers as being
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‘odd’ because they are an even number “and one” [90] (shown on Branch 2b). Zara has two
substantiation routines for evenness: When two people have equal shares [73] (shown on
Branch 2a) and, numbers that are formed by “adding two on” [93] (shown on Branch 2c).
Her substantiations show she realises oddness as being unlike evenness because the structure
deviates from ‘adding two’, to having “a one there” [43, 93, 94] (shown on Branch 2d).
Whilst Zara’s substantiations of oddness and evenness are not completely identical to Jane’s
and Robert’s, the student group share a common branch (Branch 2) because their realizations
of the signifiers ‘even’ and ‘odd’ attend to the symmetrical or asymmetrical structure of such
numbers. | refer to their discourses about odd and even as being structure-based.

| Even | Odd
\2
Numbers in the | Numbers in the Even Odd
sequence: sequence: in structure in structure
0-2-4-6-8 1-3-5-7-9 (symmetrical) (asymmetrical)
la 1b 2a 2b 2c 2d
e.g. 'six’ as e.g. 'seven’ as In the form 2n NOT in the form 2n In the form n2 NOT in the form
0,2,4,6,8,10... 1,357,9,11... e.g. ‘six’ as and/or in the form e.g. ‘six’ as n2
343 2n+1 24242 and/or in the
2x3 e.g. ‘seven’ as 3x2 form n2+1
1a(i) 1b(i) double 3 (2x3)+1 thrfe shares of e.g. ‘seven’ as
“two equal Double 3 plus one wo (3x2)+1
Numbers ending | Numbers ending shares” Two unequal 6:3=2 Unegqual shares:
in0,2,4,6,8.... in 1-3-5-7-9... 6:2=3 shares: “No remainder” 2424241
“No remainder” 4and3 7+3=2rl
e.g, 138 eg, 135 7+2=3r1(or 3.5) 3 shares of 2 with
4310 4,313 3 each with a a remainder of
11,736 11,739 remainder of one one

Figure 2. A combined tree of realizations showing the group’s realizations of the signifiers ‘odd’ and ‘even’.

Danny s substantiations of evenness and oddness

In contrast to the other students, Danny rejects (sometimes vehemently) structure-based
substantiations of evenness and oddness [32, 34, 58, 60, 81, 91]. Even though the first three
cards were presented as Numicon tiles, making the structure of these numbers visibly salient,
his comments about Numicon 6 [32, 34] and Numicon 4 [58, 60] suggest he cannot even see
the ‘three plus three’ in six nor see the ‘double two’ in four. However, Lavie and Sfard (2019)
warn the researcher’s tendency to look for things that children don’t or can't do yet, means
that they “remain oblivious to the possibility that the child’s response to the [task
situation]... may be about something else” (p. 423). Indeed, Danny’s apparent bafflement
and rejection of Jane’s narrative is not necessarily because of an inability to see doubles but
because, for him, his use of the word ‘even’ has nothing to do with a doubling criterion.
Danny’s routine uses of the words odd and even become apparent in his substantiation of
nine as odd [45], and he repeats this substantiation for each subsequent number presented.
For Danny, just as there is a Fibonacci sequence [69] and numbers within this set are
‘0,1,1,2,3,5,8...°, the signifiers ‘odd’ and ‘even’ are sanctioned by sets of numbers in the
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sequence of ‘even-odd-even-odd-...’. His substantiations are shown by Branches 1a (for
even) and 1b (for odd). When the task changes to include numbers with more than one digit,
Danny elaborates on his substantiation of oddness and evenness, adding a ‘check the last
digit’ [120; 122] procedure to his ‘check for place in with sequence’ procedure (shown on
Branches 1a(i) and 1b(i)). Accordingly, I refer to Danny’s discourse about odd and even as
being sequence-based.

Level of objectification

Having illustrated how Danny’s realizations of the signifiers odd and even are different
to those of the other students, 1 now point to a further point of difference between their
discourses in terms of the degree of objectification. Jane’s, Robert’s and Zara’s
substantiating routines refer to numbers on the cards as specific concrete objects that serve
as realizations of ‘odd’ and ‘even’, and these routines require an action. According to their
routines, one is required to check if the specific numbers can; be made by a double [31, 55,
59, 119]; make two fair shares [73], or; be grouped in twos to prove evenness [93]. Oddness
is proven where an even result is not possible or in instances where a remainder of one or
unequal shares are created [43, 90, 93, 94]. These students also tend to use the words ‘odd’
and ‘even’ as adjectives; for example, when Jane substantiates the evenness of six, she
describes the even quantity of “three plus three” [31]. In contrast, Danny’s discourse replaces
talk about processes on concrete objects with talk about ‘even’ and ‘odd’ as mathematical
objects existing in their own right, each as a condensed set of numbers reified from his
known sequencing procedures. And when Danny uses the words ‘odd’ [81] and ‘even’ [45]
they serve as nouns rather than adjectives; for example, “odd can still be a fair share”. In
short, for Danny ‘odd’ and ‘even’ is the sequence itself, just like the Fibonacci sequence
[70], whereas for the other students, these keywords appear as describing features derived
from actions on specific numbers. These characteristics all provide evidence to suggest that
Jane, Robert, and Zara are in the process of discovering generalizable features of odd and
even, and show Danny’s sequence-based discourse on odd and even to be more objectified
(and thus more entrenched) than the structure-based discourse of the other students.

The (unresolved) commognitive conflict

The exchanges in Table 1 present an example of what Sfard (2008) calls “commognitive
conflict” (p. 161): The students have realized the signifiers ‘odd” and ‘even’ in different
ways and so are classifying numbers as odd or even according to different rules. The different
branches of realizations (Figure 2) illustrate the differences in the students’ substantiations
of evenness and oddness and thereby expose the source of the breach in communication:
Jane, Zara, and Robert have a shared structure-based branch of realization for odd and even
and so are able to communicate their process of classifying odds and evens effectively with
one another whilst Danny’s sequence-based branch of realization for odd and even is
disconnected from the others’, meaning he is unable to communicate his process effectively
with the other three group members.

To support the students to resolve the commaognitive conflict, the teacher-researcher
makes several attempts to scaffold their participation in one-another’s discourses. An
example of this can be seen in Table 2, where the teacher-researcher has assumed that Danny
cannot see the double structure of even numbers and the asymmetry of odds, and she attempts
to scaffold his participation in this structure-based discourse.
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Table 2

Why is ‘Five’ Odd?
Line  Speaker What was said What action occurred
103. Teacher: And you were a bit confused weren’t you. When you said, Directed to Danny.

“Where’s the four and the one come from?” Is that right?
When she [Jane] said, “Five is four and one”.
104. Danny: | know, | know. I know why. Cos five is like split and there’s  Points to the
a four and there’s a one but that doesn’t make any sense in  Numicon 5 piece.
high-school maths, ‘cos it goes like...
105. Jane: We’re not doing high school maths.

106. Danny: | know but, but it doesn’t make any sense to like a really
good, really good mathematicians ‘cos it has no sense.

This exchange is interesting as it shows signs of Danny attuning (albeit very slightly) to the
discourse he initially rejected. And yet even when he eventually begins to endorse the other
students’ structure-based substantiations, he positions them being substandard to his own
routine when he says theirs’ “doesn’t make sense” in “high school” (a more authoritative
setting) and by “really good mathematicians” (people who have higher mathematical status)
[104, 106]. In other words, he elevates his sequence-based substantiation routine as one that
does ‘make sense’ and is endorsed by people and places of mathematical authority. By doing
so, he maintains incommensurability between the two discourses. Hence, the teacher’s
pedagogical move to encourage Danny to make sense of the other students’ did not result in
him endorsing their substantiations.

For group members to resolve commognitive conflict, a “gradual mutual adjusting of
their discursive ways” is required (Sfard, 2008, p. 145). However, during the entire
classification task there was little evidence to suggest this occurring. The failure to resolve
the conflict can be attributed to two factors. Firstly, the conflict was not about the outcome
of classifying numbers as odd or even, it was about how the students substantiate oddness
and evenness. For the students, deciding which numbers are odd and even was the goal of
the task so they had no reason to resolve it because, on this, they agreed. Secondly, although
the teacher encouraged the students to share their thinking and participate in each other’s
discourses, Jane, Robert, and Zara’s structure-based routines were supporting them to make
sense of and explain generalizable properties of even and odd, where Danny’s routine way
of substantiating oddness and evenness was too objectified for this purpose. And Danny
rejected the other students’ structure-based substantiation routines because his sequence-
based routines were more entrenched and, not only did they work and produce the same
outcome, they also were more efficient than the alternatives. From David’s perspective the
structure-based substantiations required a process (checking for symmetry in one way or
another) and so were time-consuming and unnecessary when, with his substantiations, the
last digit, simply and instantly, confirmed a number’s membership in the set of even or the
set of odd numbers. Accordingly, even when he eventually endorsed the structure-based
substantiations, he maintained incommensurability between these and his own by
positioning his routines as superior ones that worked in more authoritative contexts and with
people who had more authority.

Conclusion and Implications

For effective interpersonal communication within the group to occur, group members
need to build on one another’s ideas using “the same means as those endorsed by his or her
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interlocutors” (Sfard, 2008, p. 173). This paper shows that whilst members of this group
agreed on classifications of numbers as odd or even, they held different meanings of the
keywords ‘odd’ and ‘even’ and accordingly substantiated oddness and evenness differently.
Utilising the commognitive framework has helped highlight these distinctions in the
students’ reasoning that may otherwise be tacit. In terms of resolving the commognitive
conflict, the students were unwilling to build on one another’s ideas or reach a
communicational agreement that rationalised these group decisions because they saw no
incentive in doing so: They agreed on the classifications (which they interpreted as the goal
of the task) and the alternative discourse did not serve them well with respect to this goal.
Sfard (2007) notes that learners need good reason to change their routines, and | posit the
classification task presented no such reason for any of the students to modify their
substantiation routines.

The findings highlight the role proving activity can play in mathematics classrooms. In
the absence of students’ substantiations, a group consensus about an answer (in this case
about which numbers are even and odd) may prematurely signal shared reasoning. Pressing
students to publicly air their substantiations can bring differences in students’ reasoning to
the surface, which may otherwise be hidden. However, the findings also serve as a warning
that common pedagogical moves to capitalise learning from mathematical disagreements by
encouraging students to make sense of one-another’s ideas may not necessarily result in
students’ adoption or even endorsement of them. Therefore, if a criterion for proof in the
primary classroom is an argument accepted by the classroom community (Stylianides, 2016),
the commaognitive framework provides a useful lens to glean insights into barriers that a
community may need to overcome in order to reach consensus.
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Is the natural number 7 rational? Is it complex? We argue that the answers to these questions
relate to the ways numbers are taught. Commonly, a new kind of numbers is presented as an
expansion of a previously familiar kind of numbers, which results in a nested image of the
relations between number sets. In this article, we introduce an alternative approach, in which
one transitions between different numerical domains, some subsets of which are isomorphic.

Is the natural number 7 rational? Is it complex? Based on our experience with raising
such questions to many students and teachers, we speculate that most members of the
MERGA community will answer affirmatively. This might relate to a common way of
teaching, where a new kind of numbers is presented as an expansion of a previously familiar
kind, resulting in a nested image of number sets (see Figure 1). In this short theoretical
discussion, we introduce an alternative perspective, in which one transitions between
different numerical sets, some subsets of which are isomorphic.

Complex
Reals
Rationals

Integers

Figure 1. Nested image of number sets.

The Metaphor of Expansion

Many scholars argue that mathematics emerges from communication, which is replete
with ubiquitous and often transparent metaphors (e.g., Lakoff & Ndfiez, 2000). Drawing on
experiences that are expected to be common to the communicating actors, metaphors can
open the door even to the most abstract mathematical ideas (e.g., Barton, 2008; Sfard, 2008).
This feature turns metaphors into a powerful didactical tool that becomes handy when new

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 259-264. Singapore: MERGA.
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numbers are introduced and when they are related to those numbers with which learners are
already familiar.

In instructional settings, new kinds of numbers are often “grown” from an expansion of
the concept of number: novel elements are introduced to a familiar number set yielding its
expansion. For instance, Gonzalez-Martin et al. (2013) maintain that,

the learning of different sets of numbers can be seen as a progressive extension of the initial perception

of numbers through the algebraic structure of nested number sets, from the primitive notion of
counting, to the ideas of comparing, measuring and solving equations (p. 230)

At least three reasons can be offered for the didactical appeal of expanding learners’
concept of number:

o Different number sets share many familiar number-symbols, words, related concepts,
and properties (e.g., commutativity, associativity, identity). This allows teachers to
develop new numbers out of the ones that students are already familiar with.

e The expansion epitomizes mathematics as a highly connected and coherent body of
structural relationships. Given that numbers accompany students’ learning all the
way from kindergarten to university, every encounter with new numbers turns into
an opportunity to perpetuate this image.

e This perspective aligns well with a common narrative, in which new numbers are
positioned as a patch that resolves issues and inadequacies with numbers of the “old”
kind. Naturals do not allow subtracting a larger number from a smaller one, hence
the integers. Not all divisions of two natural numbers result in a natural number,
hence the rationals. While bearing some resemblance to the development of numbers
throughout mathematical history (e.g., Kline, 1972), an expansion of the familiar
presents a sensible rationale for introducing new numbers.

As with any metaphor taken literally, expansion comes with its issues. For instance, it
draws attention to the introduced add-ons, while glossing over the changes that they impose
on the familiar structure. This might at least partially explain why students often assume that
their previously held truths about numbers remain intact. At the elementary-school level,
well-documented examples concern the notions of successor and density that children “carry
over” from natural to rational numbers. For instance, pupils can claim that 2.4 is the next
number after 2.3 and that 7.5 is the only number between 7.4 and 7.6 (e.g., Vamvakoussi &
Vosniadou, 2010). Similar phenomena occur in a more advanced context. Kontorovich
(2018a) showed that many tertiary students continue referring to complex numbers with a
zero imaginary part as positive and negative. In fact, some of his participants even became
irritated with the questionnaire specifying the number set for each question and lamented
“Why do you always mention whether it’s R or C? 2 is positive no matter where!”.

In research and practice, the exemplified ways of thinking are often stigmatized as
products of students’ “bias”, “naivety”, and “overgeneralization”. However, we suggest that
the metaphor of expansion may play a role in the robustness of these ways of thinking.
Indeed, it seems more reasonable to expect expansion to enrich familiar concepts rather than
transform them beyond recognition. Of course, a diligent teacher will emphasize the ways
in which new numbers are different from the “old” ones. Yet, it is still not easy to keep track
of what changes and what remains valid after the expansion. For instance, NCTM standards
(2000) prescribe understanding complex numbers as solutions to quadratic equations that do
not have real-number roots. Students are usually introduced to the quadratic formula in the
system of real numbers. Accordingly, it seems to be taken for granted that the quadratic
formula remains intact even after renouncing square-rooting negatives — one of the most
prominent taboos of reals.
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The Metaphor of Transition

The issues that we described in relation to the expansion metaphor appear serious enough
to consider whether it is the only way to introduce new numbers. The alternative that we
bring to the fore is the metaphor of transition. Within it, learners are not asked to mobilize
familiar numbers to engender new ones but encouraged to depart from one numeric set to
arrive at another. Transitions take place between distinct domains, situating the differences
between them as an expected norm rather than an anomaly. For travellers, an appreciation
of transition implies that the destination is foreign, and its mysteries are waiting to be
discovered. It also means that the luggage carried from the port of departure should be
selected carefully since not everything will continue to be useful. Overall, for the sake of a
positive experience, transitioning students had better be attentive and alert to the rules and
customs of the foreign terrain, as these are likely be different from the familiar. This is not
to say that similarities between the new and the old will not be recognized. Such instances
would be a pleasant surprise, enabling to leverage previously gained knowledge and
experiences in new circumstances.

The transition metaphor may be viable for introducing new kinds of numbers.
Specifically, it may offer a cohesive frame to attune learners” mindsets to the encounter with
new number-names, symbols, and operations; to enhance their readiness to adjust and make
sense of new number rules; and to explain why some familiar mathematical truths should be
lost in transition. Transition also provides room to grow insights and appreciations of the
familiar kind of numbers from the newly developed perspective.

To illustrate the metaphor of transition, let us consider an example where a somewhat
extremal attempt is made to disconnect between real and complex numbers. Imagine a
teacher who welcomes students to a new mathematical domain consisting of dots residing
on a plane with one special dot O. “What can be done with them?”, students ask. “Well,
there is one operation we can do, let’s call it “tapiritanga” and “tapiria” as its process.” Then,
the teacher shows how tapiritanga of the dots z; and z, yields another dot z; via a so-called
parallelogram law (see Figure 2). Through a guided investigation, students can find out that
“tapiritanga” is commutative (i.e., z; tapiria z, is the same as z, tapiria z, ), associative (i.e.,
z, tapiria z, and then tapiria z5 is the same as z, tapiria z; and then tapiria z,), and tapiria
of O to any dot leaves this dot intact. To impede students from carrying over “old” meanings
of the concept, the teacher refrains from referring to dots as numbers. Instead, the teacher
invites students to consider whether numerical domains with which students were familiar
until now and the new world of dots have something in common. To support this process of
discerning similarities, the teacher can reveal that “tapiritanga” is “addition” in Maori (See
Zazkis et al., 2021 for more illustrations of this sort).

We acknowledge that teaching with the metaphor of transition in mind is likely to come
with issues. Supporting students in establishing productive relations between different kinds
of numbers is probably among the first issues to emerge. Teaching experiments are needed
to show what these issues can look like and how they can be handled. What we wonder about
iIs whether students who transitioned between numerical sets will adhere to the
abovementioned ways of thinking as students for whom the concept of number was
expanded. Another point to consider is how the rules of new numbers can be harnessed to
make students re-appreciate numbers of the familiar kind. For instance, will the students in
our example enjoy the fact that a “flat” version of the parallelogram law works as the addition
of reals on a number line?
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Figure 2. z; as a result of the ‘tapiritanga’-operation between z; and z,.

Images Underpinning the Relations Between Number Sets

Herein we draw on the notion of subset to illuminate the mathematical grounds for the
metaphors of expansion and transition. To recall, the set A is called a subset of the set B if
every element in A is also an element in B. The expansion metaphor draws on the nested
relationship among number sets, commonly visualized as presented in Figure 1: natural
numbers are a subset of integers, which are a subset of rationals, which are a subset of reals,
which in turn is a subset of complex numbers. To be explicit, we consider the subset relation
of numbers as a mathematical stance rather than a deductively derivable result. Within this
perspective, recognizing 7 as an element of natural numbers warrants its being an integer,
rational, real, and complex number.

This recognition may become easier or harder depending on how numbers are
represented. For instance, when numbers appear as dots, the dot entitled “7” remains fixed
when the natural number line extends to the negative direction to become the integer line.
The “7”-dot stays in place when the dotted line becomes dense with rationals and reals, and
even when it expands to become the Argand plane. The situation is different when symbolic
representation starts playing a more significant role, especially when different kinds of
numbers are defined through symbols. For instance, complex numbers are often
characterized by a real and an imaginary part. Then, 7 + 0i and 7 become different
representations of the same mathematical object. In this sense, one could argue that 7 + 0i
IS 7, in more or less the same way that “seven” in English is “whitu” in Maori. This is
opposed to a common students’ claim that “the addition of zero i has no impact”.

The transition metaphor draws on an image in which different number sets are
isomorphic to some subset of each other. To recall, two sets are isomorphic if there exists a
bijection between their elements that preserves a binary relationship, for instance addition
and multiplication. Figure 3 depicts this relation with an example of real and complex
numbers. From this standpoint, the natural 7 is different from the integer 7 (or +7), rational

7 (or %), and from the complex 7 (or 7 + 0i). Yet, these numbers could be considered

equivalent, if one wishes to identify them as such. Similarly, the relationship between natural
and rational numbers is captured by considering naturals as isomorphic to a subset that,
mathematically speaking, is perfectly embedded in rationals.
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Complex

Figure 3. Isomorphic image of real and complex humbers.

An isomorphic image can help in resolving what may appear as an issue within the nested
view on numbers. Zazkis (1998) discussed an incident, where her pre-service classroom was
divided around the quotient in the division 12 by 5: some of the students argued for 2 with a
whole-number quotient in mind, while others advocated for 2.4, implicitly assuming
rational-number division. In a similar vein, Kontorovich (2018b) reported on a student who
struggled to cope with the fact that +/9 was 3 when approached as the (real) square root
function, but the application of De Moivre formula on the complex 9 entailed 3 and —3. In
both cases, the difference of the results is an issue within the nested number image but not
necessarily with the isomorphic view. Through the latter lens, identically appearing words
and symbols can be interpreted rather differently in different number sets.

Specific images of the relation between number sets underpin mathematical software. In
MAPLE, the command isprime tests for whether the input is a prime number. Working with

an older version of MAPLE, we witnessed that it outputted “true” for isprime(7) but “false”

for isprime (%) isprime(7.0) and isprime(3.5 X 2). This was because the programmers

intended for isprime to operate with integer arguments. In MAPLE, the result of division
was considered a rational number, and a rational %, and similarly 7.0 and 3.5 x 2, were not
identified with an integer 7. Such programming may appear infelicitous to those adhering to
the nested image: if all the four inputs point at the same number, how come that their outputs
are not the same?! The devotees of the isomorphic image may be more accommodating since

for them all these “7”’s are different numbers a priori. Yet, we do appreciate that the current
version of MAPLE explicates that the input of isprime must be an integer.

Concluding Remark

We started with a question whether the natural 7 is also rational and complex, and
suggested that the answer depends on the metaphoric lens through which one considers
relations between number sets. We hope that the members of the MERGA community will
share our curiosity in the metaphor of transition as a refreshing alternative to the hegemonic
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metaphor of expansion. The nested and isomorphic images underpinning the metaphors may
appear conflicting, but we consider them as complementary viewpoints — one from “above”
and one from “aside” — on the same mathematical structure (see Figure 4). Furthermore, we
believe that, for the learning of mathematics, it is useful for students and teachers to be able
to flexibly switch between the two images.

Naturals o

Integers

Rationals

Reals

Complex

Figure 4. Visualization of relations between number sets.

Note. This paper is an amended version of Kontorovich et al. (2021).
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The study reported here was conceptualised using a theoretical framework that included three
dimensions of engagement; emotional, behavioural, and cognitive, and these were used to
structure the data collection and analysis vis-a-vis learning mathematics outdoors. This
comparative case study involved 34 students from two Year 6 classes at a Queensland state
primary school. The findings indicate that the students were engaged in their mathematics
learning in the outdoor context. However, there was no compelling evidence that suggested
the outdoor environment was any more emotionally, behaviourally, or cognitively engaging
than the indoor context.

The concept of engagement has been a growing concern for researchers, particularly in
mathematics education (Attard, 2012; Chan et al., 2015), where it has been seen as a key
factor in ameliorating low levels of achievement and student boredom (Fredricks et al.,
2004). For this reason, it is important that the concept of engagement be explored in
mathematics education, as low levels of engagement can result in low participation and
achievement (Attard, 2011). Consequently, this has the potential to affect Australia’s
perennial shortage of mathematically literate citizens (Attard, 2011). Engagement is a
multifaceted concept that has been defined along three dimensions: emotional, behavioural,
and cognitive (Fredricks et al., 2004). Researchers have suggested that utilising the outdoors
in mathematics education helps to increase students’ engagement (Fagerstam & Samuelson,
2014; Haji et al., 2017; Young & Marroquin, 2008). It seems there is a growing interest by
researchers to evaluate and compare the efficacy of indoor and outdoor learning
environments. However, it is seldom seen that the effectiveness of outdoor learning is
holistically evaluated through the lens of the engagement dimensions. This study seeks to
determine the effects that outdoor learning has on students’ engagement in mathematics. To
this end, this study will explore outdoor learning vis-a-vis the three dimensions of
engagement: emotional (with aspects of affective engagement), cognitive, and behavioural,
and investigate the engagement of students in relation to indoor and outdoor environments.
In addition, this study will clarify distinctions among the three constructs of engagement and
how they are both individually and holistically identified within the learning context.

Given the apparent gaps in the literature, this study sought to determine the effects that
outdoor learning had on students’ engagement in mathematics. The research question
guiding this study were:

e What sort of engagement (emotional, behavioural, and cognitive) in mathematics
does an outdoor learning environment facilitate?

e In what ways, if any, does student engagement in mathematics differ according
to the learning environment?

2021. In Y. H. Leong, B. Kaur, B. H. Choay, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics
Education: Foundations and Pathways (Proceedings of the 43 annual conference of the Mathematics
Education Research Group of Australasia), pp. 265-272. Singapore: MERGA.
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Theoretical Framework

Emotional engagement is defined as the positive and negative reactions that students
have to their peers, teachers, academics, and school (Fredricks et al., 2004). Skilling (2014)
suggests that when students are emotionally engaged, they demonstrate interest and
enjoyment. Emotional engagement is also commonly labelled as affective engagement by
mathematics education researchers (e.g., Attard, 2011; 2012; Grootenboer & Marshman,
2016), and these researchers frequently come from an educational background and explore
the deeper internal state of engagement. Others, who label it as emotional engagement,
typically come from a psychological background and look at student’s reactions to school
experiences and environments. Behavioural engagement is defined as an individual’s active
participation and involvement in academic and social activities (Attard, 2012). The concept
of participation is inherent to the construct of behavioural engagement (Finn et al., 1995)
with Skilling (2014) and Fredricks et al., (2004), suggesting that students who are
behaviourally engaged actively participate, persist and concentrate, ask questions, and
contribute to class discussions.

Cognitive engagement is defined as an individual’s investment in, and acknowledgement
of, the value of learning and their willingness to go above and beyond the minimum
requirements of a task (Attard, 2012). It also refers to the ability to suppress distractions and
to maintain and regulate efforts in sustaining cognitive engagement (Fredricks et al., 2004;
Skilling, 2014). It is critical to acknowledge that these engagement constructs are not isolated
processes occurring within the individual, but rather they are dynamically interrelated and a
shift in one can dramatically influence the others. Therefore, in this article, the dimensions
of engagement are considered holistically as a multifaceted phenomenon.

Attard (2012) suggests that effective mathematical engagement occurs when a student is
enjoying the subject, can easily see the relevance that their work has to their own lives and
future, and can make meaningful mathematical connections between their learning in the
classroom and their learning beyond school environment. Also highlighted in her work is
the significance of choice and creativity in the mathematical learning context, and the
suggestion that, if students are engaged in activities that encourage creativity and that
provide opportunities to make decisions about their learning, their engagement in
mathematics will increase. Motivation concepts are suggested to have significant relevance
and are often synonymous with engagement. Student motivation increases when they are
able to make links between what they are learning, their knowledge, and their inside and
outside classroom experiences (Opitz & Ford, 2014).

The literature frequently suggests that outdoor learning is an effective pedagogical
approach to increase student engagement (Attard, 2012; Fagerstam & Samuelson, 2014; Haji
et al., 2017) and consequently student learning. Outdoor learning can include activities that
take place on the playground, the oval, or the garden, and it has been suggested that students
perform significantly better in outdoor activities than in similar indoor classroom activities
in mathematics (Fagerstam & Samuelson, 2014; Haji et al., 2017). Similarly, it is considered
that exclusively learning mathematics inside the classroom hinders students from fully
understanding mathematical concepts (Haji et al., 2017). There is a diversity of desirable
learning features associated with outdoor learning that can be seen as prompting, and
resulting from, increased levels of student engagement. Taking mathematical lessons outside
adds a new dimension to the learning experience where opportunities for multi-sensory
perceptions are increased (Fagerstam & Blom, 2013).
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Linking conceptualisation of engagement to the effectiveness of outdoor learning

When reviewing the literature on engagement and outdoor learning, clear links can be
made between the two. Table 1 outlines the links between emotional engagement and
outdoor learning theories. Table 2 outlines the links between behavioural engagement and
outdoor learning theories.

Table 1
Linking emotional engagement theories to outdoor learning theories

Emotional Engagement Theories Outdoor Learning Theories

“The element of fun was identified as an “The pupils in this study all described
positive experiences regarding the outdoor
lesson... all of them spontaneously uttered
remarks such as ‘it was fun’”. (p. 68)

(Féagerstam & Blom, 2013)

“Outdoor lessons in outdoor environments
have positive impact on the pupils’ interest
and motivation” (p. 69) (Fagerstam &
Blom, 2013)

element of “good” mathematics lesson” (p.
371) (Attard, 2011)

“When an individual is engaged with
mathematics, he or she has been influenced
by motivation” (p. 10) (Attard, 2012)

Table 2
Linking behavioural engagement theories to outdoor learning theories

Behavioural Engagement Theories

Outdoor Learning Theories

It is emphasised that inherent to the
construct of behavioural engagement is the
concept of participation, which is a crucial
component in achieving positive academic
outcomes (Finn et al., 1995)

Students who are generally reluctant to
participate in mathematics are more likely
to engage in tasks when lesson are taken
outside (Young & Marroquin, 2008)

Behavioural engagement is concerned with
students’ actions such as their “efforts,
persistence, concentration, attention,
asking questions, and contributing to class
discussions” (Fredricks et al., 2004, p. 62)

Students are generally willing to take
greater risks when mathematics is taken
outside and are more likely to volunteer to
share their answers and justify their
thinking (Young & Marroquin, 2008)

Also outlined in the literature on engagement is the close connection that behavioural and
cognitive engagement share (Fredricks et al., 2004). As many students are willing to take
greater risks and persist when learning is outside the classroom, it is also probable that
outdoor learning facilitates opportunities for cognitive engagement. A significant component
regarding the effectiveness of outdoor learning in mathematics, labelled the ‘novelty and
variation dimension’, is proposed in Fagerstam and Blom's (2013) study. It is suggested that
since outdoor learning is often a new educational experience for students, this might have a
high impact on students’ positive engagement. In their study, students often regard indoor
learning as boring and monotonous (Fagerstam & Blom, 2013). It can then be proposed that
outdoor learning offers a valued variation to this type of learning.
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Methodology

The methodology for this study was previously presented (see Laird & Grootenboer,
2018), so only a brief outline will be provided here. To establish what effect the
mathematical learning site (outdoors and indoors) has on students’ engagement, a
comparative, collective, case study methodology was used. The study involves the
comparison of two sets of two cases. Both cases were Year 6 classes undertaking
mathematics lessons on the same topic and concept.

The first set of two cases involved the students initially participating in a mathematics
lesson inside the classroom. Following this, they participated in a similar mathematical
lesson outside the classroom (e.g., the playground, oval, or elsewhere on school grounds).
The second set of cases involved the students participating in the same mathematical lesson,
but in the reverse order where they participated in the outside lesson first and then the inside
lesson second. The focus of the lesson, which was introducing students to the ‘order of
operations (“BODMAS”), was determined by the teachers to accord with their mathematics
scope and sequence planning.

For this study, three methods of data collection were used: a simple survey, structured
observations, and document analysis. They relate specifically to the three dimensions of the
theoretical framework as is outlined in Table 3 below.

Table 3
Data collection

Dimensions of Engagement Data Collection Method

Emotional engagement A survey that the students completed at the conclusion of
each lesson.

Behavioural engagement Observations of students participating in the lessons using
an observation framework.

Cognitive engagement Student work samples* collected in each lesson

* The nature of these depended on the lesson focus that the classroom teachers chose

As there were no existing suitable instruments found in the literature, new instruments
were developed using relevant theoretical literature on the nature and features of engagement
in educational settings (see Laird & Grootenboer, 2018).

Findings

Emotional Engagement

The emotional engagement of the students in the study was measured through a post-
lesson survey given to all the participants immediately following both their indoor and
outdoor lessons. It is acknowledged that this instrument is limited in its capacity to measure
emotional engagement; nevertheless, it provides some insights that are useful in considering
engagement in mathematics learning. The first analysis was conducted to see if there were
any statistically significant differences for the whole sample at the item level, and total score,
between the indoor and outdoor lessons. The descriptive statistics are shown in Table 4
below.
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Table 4

Descriptive statistics for emotional engagement indoor and outdoor
N Mean  Std. Deviation
1. I enjoyed the lesson Inside 33 3.88 927
Outside 34 3.94 814
2. | thought the lesson was interesting  Inside 33 3.61 827
Outside 34 3.59 .957
3. I had a lot of fun during the lesson.  Inside 33 3.42 1.146
Outside 34 3.56 .894
4. I would like to do that lesson again. Inside 33 4.06 1.059
Outside 34 3.56 1.019
Total Inside 33 14.97 3.359
Outside 34 14.68 3.082

These results of the t-tests indicated that there were no statistically significant differences
in the students’ emotional engagement between the indoor and outdoor lessons as measured
by the emotional engagement survey. Specifically, the students’ post-lesson responses to
individual items indicated that the outdoor lessons were not perceived as being more
enjoyable, fun or interesting, and there was no distinction in their perception of whether they
would like to do a similar lesson again.

An open question at the end of the survey provided the participants with an opportunity
to express any other thoughts. 23 responded, and in their responses, they were generally
positive about both the inside and outside lessons. Positive responses associated with
emotional engagement (e.g., fun, liked, enjoy) for the indoor lesson were limited (n=7),
whereas there were many more for the outdoor lesson, and several students (n=23) gave
more than one positive response. The words used were often about particular features of the
lesson including “being outside” and also being able to “move around”, with, for example,
one student stating, “I would like to do the lesson again because it was outside and I think
we should do more outside tasks”. Also, students often used positive emotional engagement
terms in regard to being able to work in pairs/groups, the way their teacher taught in this
context, and the lesson generally as a whole. By way of examples, one student responded,
“It was much funner [sic] than the lessons in class and we got to work in pairs or in groups
most of the time. We never get to do that in class”, and another said, “I would like to do the
lesson again because it was outside and I think we should do more outside tasks”.

Behavioural Engagement

The behavioural engagement of students in the study was measured through a
behavioural engagement checklist, which was completed by the lead author during both the
indoor and outdoor lessons. Although it is acknowledged that this instrument is limited in its
capacity to measure behavioural engagement, it does provide some insights that are useful
in considering behavioural engagement in mathematics learning. The resulting data was
multifaceted, nuanced, and intricate, but here only aggregated findings will be presented,
and these will focus on the different phases (see below) of the lesson, and the two learning
sites (i.e., indoor, and outdoor).
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During the lesson observations, three distinctive lesson phases were identified and these
were present in all observed lessons - both inside and outside. The three phases were listening
to the teacher (LT), working as whole class (WC), and individual work (IW). The purpose
of identifying these lesson phases is so that behavioural engagement can be compared vis-a-
vis specific learning phases rather than just time phases. Student engagement was observed
and recorded at 5 minutes intervals. The number recorded represented different levels of
engagement from the students in the class: 1 = None, 2 = Some, 3 = Half, 4 = Most, 5 = All.
The summarised data for behavioural engagement for both classes in both lesson sites is
outlined in Table 5 below (note that LT was barely evident in the data so it is not included)

Table 5
Mean behavioural engagement ratings across lesson phases and lesson sites (n=34)

Lesson Site Active Ask Contribute Persist Display Average
Phase participation questions to class with  strong levels
discussion tasks of
concentration

wWC Outside 4.5 2.3 2.5 4.5 4.3 3.62
Inside 4.4 2.3 2.5 4.4 4.4 3.6

W Outside 4.15 2.75 2 4.2 3.65 3.35
Inside 4.15 3 3 4.2 3.75 3.62

Average Outside 4.325 2.525 2.25 435 3.975 3.485
Inside  4.275 2.65 2.75 4.3 4.075 3.61

These results indicate that there were minor differences between the behavioural
engagement levels of students in the outdoor and indoor setting. Overall, it seems that
students were ‘actively participating’, ‘persisting with tasks’, and ‘displaying strong levels
of concentration’ with similar or the same levels of engagement during outdoor and indoor
lessons. The data for ‘asking questions’ and ‘contributing to class discussion’ showed some
differences indicating that students were engaging with the teacher and the class more in the
indoor setting. When looking at the ‘asking questions’ section of the checklist, there seemed
to be minor differences between the two indicating that students were asking more questions
in the indoor setting. These results indicate that there were minor differences between the
behavioural engagement levels of students in the outdoor and indoor setting while they were
working as a whole class and doing individual work.

Cognitive Engagement

Definitions of cognitive engagement relate it to an individual’s ability to persist when
problem solving, endure in the face of failure, demonstrate highly strategic learning qualities,
and adopt metacognitive strategies to arrange and assess cognition (Zimmerman, 1990). In
this study these were ‘measured’ based on an interpretation of these features that could be
identified in students work samples. The work samples collected provided some evidence of
the students’ levels of cognitive engagement, albeit that it was difficult to clearly identify
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certain features and to attribute them with any certainty to the particular site of the lesson.
With this limitation in mind, in general the students demonstrated evidence of cognitive
engagement when they were given the opportunity to immerse themselves in mathematics
that required a high level of problem solving. This did not seem to occur in any particular
environment - indoor or outdoor, but rather evidence of learning features that indicated high
levels of cognitive engagement were observed only after some form of basic conceptual
understanding was sound. For example, evidence of higher order thinking was found more
in the students’ second lesson work samples on order of operations because by this time they
were able to participate in the more complex tasks. It is acknowledged that the data in this
section is perhaps the least compelling, 