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Preface 

This is a record of the Proceedings of the 43rd annual conference of the Mathematics 
Education Research Group of Australasia (MERGA). The conference was hosted by 
colleagues at the National Institute of Education, Nanyang Technological University, 
Singapore. It was an online conference as there remained restrictions in travel due to the 
COVID-19 pandemic in 2021. The proceedings were published online at the MERGA 
website www.merga.net.au 

The theme of the conference was Excellence in Mathematics Education: Foundations and 
Pathways. This theme was chosen by the conference organising committee to engage the 
research community in deliberations on the foundations and pathways through which facets 
of excellence in mathematics education may be actualised. Two plenary lectures were 
delivered on the theme. The opening and first plenary lecture by Professor Anna Sfard 
focussed on the invisible pitfalls when teaching-learning events are conceptualised as inter-
discursive encounters. Anna concluded with guidance of how teachers and their students can 
benefit from such communicational gaps. The second lecture by Professor Tin Lam Toh 
presented a snapshot of Singapore’s journey towards excellence in mathematics education 
by examining the role of the traditional notion of mathematics competition and other 
competitive activities. The Clements/Foyster lecture was delivered by Professor Vince 
Geiger. The lecture was devoted to the theme of becoming a researcher in mathematics 
education – a fundamental focus for MERGA. The theme of the conference was also 
deliberated on by four panelists during a plenary session. They shared their perspectives on 
excellence in mathematics education and described research they had been involved in 
related to some aspect(s) of excellence in mathematics education. 

In addition, the conference included presentations of symposia, research papers, short 
communications, and a round table that covered a wide range of topics related to 
mathematics education in Australasia and other countries. All symposia and research papers 
were double-blind reviewed by panels of mathematics educators with expertise in the field 
and accepted for publication and presentation or presentation only. All the short 
communications were also reviewed by the organising committee and were either accepted 
for presentation or rejected if they were not research oriented. The published proceedings 
include the plenary papers, symposia papers, research papers, and abstracts of research 
presentations, short communications, and a round table. 

The Editorial Team would like to thank the Review Panel Chairs and all the reviewers for 
their professionalism and effort in reviewing the papers and providing constructive feedback. 
The review process ensured that the high academic standards of the MERGA community are 
upheld. Delegates from Australia, Canada, Fiji, Ireland, Israel, Japan, New Zealand, 
Singapore, South Africa, South Korea, Taiwan, and United Kingdom participated in the 
online conference. This was the first MERGA virtual conference held in the new normal 
brought about by the COVID-19 pandemic that hit the world in December 2019. 

Berinderjeet Kaur (Conference Convenor & Editor) 

Yew Hoong Leong, Ban Heng Choy, Joseph Boon Wooi Yeo, & Sze Looi Chin (Editors) 

http://www.merga.net.au/
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The devil in details: Mathematics teaching and learning  

as managing inter-discursive gaps 

Anna Sfard 
University of Haifa 

<sfard@netvision.net.il> 

Once teaching-learning events are conceptualised as inter-discursive encounters, it becomes 

clear that mathematics classroom talk is rife with invisible pitfalls. There are many types of 

unacknowledged discursive gaps, some of them necessary for learning, and some potentially 

harmful. Such gaps may exist also between the teacher’s intentions and her own habitual 

moves, most of which are too brief and automatic to be controlled. Unknown to the teacher, 

her basic communicational routines may constitute invisible crevices through which the 

prejudice enters the conversation on mathematical objects. In this talk, I argue that if the devil 

is in the finest detail of classroom communication, it is the detail that must be considered in 

the attempts to exorcise the devil. I begin with illustrations of these claims and conclude with 

a reflection on how mathematics teachers may sensitise themselves to discursive pitfalls, how 

they and their students can benefit from those communicational gaps that are likely to 

generate learning, and how they can cope with those divides that hinder the process or infect 

it with unwanted messages. 

Humans, unlike most other species, can exist only as a part of a society. But while our 

very survival may depend on effective interpersonal exchanges, our communication is only 

too prone to failure. Some go so far as to claim that within this context, failure constitutes 

the default option, whereas success should be regarded as almost a miracle (Reddy, 1979).  

Perhaps the most challenging aspect of communicational breakdowns is that they often 

go unnoticed. Paraphrasing Hamlet, one can say that there are more communicational pitfalls 

in heaven and earth than are dreamt of by philosophers or suspected by ordinary people. 

These pitfalls tend to hide in unnoticeable details of interlocutors’ actions. Obviously, people 

trying to reach one another across a hidden communicational gap risk falling to the bottom. 

As blind to the fall as they were to the pitfall, they are likely to leave the exchange with 

unhelpful interpretations of each other’s intentions. At home, it may hurt their relationships; 

in the classroom, it may stymie their learning. In the words of George Bertrand Shaw, “The 

single biggest problem in communication is the illusion that it has taken place”. This paper 

is about guarding ourselves against this illusion by becoming alert to communicational 

pitfalls. 

Some may claim that the existence of certain communicational gaps is inherent to 

learning and thus little can be done against them. Yet, I wish to argue that even when a gap 

is necessary for the further development of mathematical discourse, the importance of our 

awareness to its existence cannot be overstated. Indeed, exposing the gaps is a critical step 

in turning them from obstacles into opportunities for learning. Clearly, being constantly on 

the watch for hidden communicational hurdles will also help in guarding ourselves against 

the adverse impact of those gaps that could be avoided.    

In what follows, I illustrate the claim about the omnipresence of communication gaps 

with examples from mathematics classrooms. With the help of specially designed conceptual 

apparatus, evolving around the vision of learning as a process of routinisation of our actions, 

I zoom into the data and identify seemingly negligible details that may constitute, for better 

or worse, powerful shapers of students’ learning.   
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Communicational gaps 

In the classrooms, the presence of invisible communication pitfall may signal itself by 

puzzling occurrences, for which neither the teacher nor an external observer can provide an 

immediate explanation. The danger of the illusion of communication, however, is at its worst 

when nothing seems unusual and the communicational glitch, although quite real, does not 

manifest itself in a palpable way.  

Consider, for example, the exchange between a teacher and her student, presented in 

Table 1. What happens in this brief episode is so familiar that the claim about the student’s 

initial difficulty as due to any communicational issue is likely to be met with scepticism. 

Indeed, nothing seems surprising that the child who is evidently quite new to the topic of 

fractions has difficulty multiplying a fraction by a whole number. It is also not startling that 

after the teacher’s additional probing (see turns [3] and [5]) and with some effort on the part 

of the student, the proper answer is finally produced ([6]). The teacher summarised saying 

that a bit of effort was all the boy needed to succeed ([7]). In making this statement, she 

implied that the learner was already acquainted with the necessary procedure, but was not 

yet quite proficient in its application and performance.   

Table 1 

Example I: Multiplying by Fraction 

# Speaker What is said What is done 

1 Teacher: So, what is?  Writes ⅓ · 12 

2 Student: ......  

3 Teacher: Try again, one third times twelve  

4 Student: I think.... Don’t know...  

5 Teacher: Once again, one third of twelve  

6 Student: Ahm..... It’s four  

7 Teacher: Great. See, when you think about it, you know 

how to do it! 

 

As unproblematic as this simple account seems to be, at a closer look it leaves an 

important question unanswered. Yes, the child did seem to make an effort. Yet, although he 

clearly tried hard already the first time round, he was able to produce an answer only after 

the teacher’s third attempt. What was it about this third question ([5]) that brought the sudden 

insight? How was this query different from the previous ones ([1], [3])?  Some scrutiny of 

the three instances may suffice to realise that each of the three utterances referred to the 

required operation in its own way:  

1. with the help of the written expression ‘1/3 · 12’ ([1]) 

2. orally, with the expression “one third times twelve” ([3])  

3. orally, with “one third of twelve” ([5]). 

The first two of these renditions that make use of distinctly mathematical symbol ‘·’ and the 

word “times”, that belong to the formal discourse on numbers. The last utterance, which 

speaks about “one third of twelve”, may be a part of the child’s everyday talk and can belong 

to the repertoire also of a person with no access to formal mathematics. The first two 

utterances directed the child to as-yet unfamiliar numerical operation, whereas the third one 

required the everyday action of identifying a familiar part of a whole.  
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The difference between this account and the one offered by the teacher is subtle, may 

even appear negligible, but it is highly consequential. With her vision of the current state of 

the student’s learning, the teacher will likely emphasise the need for fostering the child’s 

procedural proficiency. In contrast, the realisation that the student might had participated in 

a discourse different from her own and that, in result, the task he tried to perform was not 

the one she had in mind will turn her attention to the conceptual side of the story. Building 

on the resulting conceptual interpretation, she may decide to focus on helping the learner to 

see connections between his everyday talk and the mathematical discourse of multiplication.  

In this analysis, I exemplified the way in which we can make ourselves aware of subtle 

communicational issues that, if unrecognised, may lead the teacher to unhelpful pedagogical 

decisions, but if noticed, are likely to give rise to opportunities for significant learning. The 

terms such as ‘discourse’ or ‘task’ have been used in this analysis freely, without a proper 

introduction. The next section provides what is missing. After defining the terms as they are 

to be understood within a discursive theory of learning, I will be able to operationalise the 

notion of communicational gap and instantiate ways in which the risks of such gap can be 

significantly reduced and its potential as an opportunity for learning considerably increased.  

Operationalising the construct of communicational gap  

Mathematics as discourse  

In this paper, the word discourse is used as referring to the special form of 

communication, characteristic of a particular community. The community may be that of 

scientists, chess players or of art theorists. Most relevantly for our present context, it may be 

a community of mathematicians or of mathematics classrooms. Whereas each such 

community is unified by its members common interest, activity or cultural practice, its 

discourse is designed specifically to tell stories with which this activity or practice can be 

usefully mediated.  

Thus, the first characteristic of a discourse that sets this discourse apart from any other 

is its collection of endorsed narratives about this discourse’s focal objects. The adjective 

‘endorsed’ indicates that these narratives are considered by its participants as faithful 

accounts of the state of affairs in the world and thus, as reliable guides for future actions. In 

mathematics, endorsed narratives are about such abstract objects as numbers, sets, geometric 

figures, functions, etc. The communicational tools with the help of which these stories are 

forged and substantiated constitute additional set of characteristics that make the discourse 

distinguishable from other ones. Thus, there is the set of special-purpose keywords pertaining 

to the focal objects and actions of the discourse. In mathematics, these are words such as 

‘number’, ‘function’, ‘triangle’, ‘adding’, ‘differentiating’, etc. Although many of these 

words may be known also from everyday talk, in specialised discourse their use is different 

and defined more strictly. Another special feature of a discourse is the set of special visual 

mediators that help in ensuring the effectiveness of communication. Algebraic symbols and 

graphs are among the most useful mediators of mathematical discourse. Finally, discourses 

are made distinct by their routines, the recurrent ways of performing different kinds of tasks, 

such as, in mathematics, calculating, proving or performing geometric constructions with 

the help of ruler and compass. Some of the routines are algorithmic, some are more of a ‘rule 

of a thumb’. This last characteristic, routine, being particularly relevant to the topic of 

communicational gaps, requires some elaboration. 
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More about routines 

Routine, far from being just an optional way of acting (and a rather boring one, some 

may say, because of its repetitive nature), is what makes us able to act in the first place. 

Indeed, it is thanks to routines that we know how to act whenever we feel expected to do 

something, which is most of the time. In such situation, to react to the prompt in an 

immediate way, the best we can do is to turn to those familiar ways of acting that worked 

for us in the past in a similar situation (or what we consider as such). This, indeed, was what 

the student in Example II was able to do when he eventually found the way to answer the 

interviewer’s question: he recalled what was done when somebody asked the question of the 

form “What is one third of X?”, with X being a set of a certain size (12 items, in this case).  

To operationalise the construct of routine, there is a need for some auxiliary notions. 

Thus, the situation in which a person feel she is obliged to act will be called task-situation. 

Such situation may arise of itself, as is the case when one feels cold or hungry. Task-situation 

may also be created by asking questions. In Example II, this is what the teacher did three 

times, in turns [1], [3] and [5]. Once a person finds herself in a task-situation, she needs to 

decide about her task, that is, about what needs to be done, and about a procedure that suits 

that task. Deliberately or instinctively, this person will probably try to do this by recalling 

precedents. Precedent is any previous task-situations that appears to a person as sufficiently 

similar to the present one to justify doing now what was done then. Given suitable 

precedents, she will see it as her task to act in such a way as to ensure the reoccurrence of 

specific aspects of the precedent task-situation. For instance, while feeling hungry, she will 

probably see it as her task to make the sense of hunger disappear. Her procedure will be the 

prescription for action that, according to her interpretation, guided the previous task 

performer. In hunger instigated task-situation, the procedure may be a walk to a fridge and 

helping herself to some food.  

Once the search for task and procedure is successfully completed, the person is ready to 

act. Note that in most daily task-situations, especially in those with which we are intimately 

familiar, this initial step is intuitive rather than conscious and deliberate, and rarely makes 

us slow down for reflection. We may say that the task-procedure pair resulting from one’s 

search, being a prescription for an emerging pattern, is this person’s routine for dealing with 

the given task-situation. Learning can now be seen as a process of routinisation of our action 

(Lavie et al. 2019). 

Discursive gaps and their sources 

In the light of the above definition, routine is not a free-floating, context-free 

phenomenon. I will now argue that routines depend on task-situations and on their 

interpreters. To put it differently, different people may interpret the same task-situation in 

different ways, ending up with different tasks, to be performed with the help of different 

procedures. To show this, I need to take a closer look at how people decide about tasks and 

procedures.  

On the face of it, the search for routines that would fit particular task-situations appears 

so demanding, it is more likely to fail than succeed. Indeed, we would have little chance to 

succeed in interpreting task-situations if we were to search precedents among all past events, 

from all times and all locations. Fortunately, search spaces tend to shrink considerably the 

moment we enter a specific task-situation. Imperceptibly to ourselves, we react to such a 

situation with a choice of a discourse in which to think about this situation. The subsequent 

search for precedents will be restricted to past situations in which people had recourse to this 
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discourse. With different discourses come different routines, that is, different ways of acting. 

Thus, more often than not, a task-situation created by the mathematics teacher automatically 

directs the students to the discourse of this teacher’s classroom, and to routines that were 

employed there, preferably in the most recent past. And vice versa: task-situation created in 

out-of-school context is likely to direct potential performers to everyday discourse, barring 

them from any other. Indeed, we tend to close ourselves in discourses we associate with a 

given situation and this tendency may account for the phenomenon known as situativity of 

learning (Brown et al., 1989; Lave, 1988), that is, for the fact that most people do not usually 

apply in one context routines they have learned in another. In particular, this maybe the 

reason why mathematics learned in school is, in most cases, practically absent from our daily 

lives.   

It is this tendency for associating situations with discourses that may be responsible for 

the event presented in Table 1, in which the student reacted in different ways to what seemed 

to the teacher as mere repetitions of “the same” question. More generally, considering the 

dependence of our discursive choices on our past experience, it is only understandable that 

people participating in the same conversation would often turn to different discourses. In the 

next section, we use the former example, as well as some other ones, to show that the 

resulting communicational disparities carry both risk and promises, and that making them 

visible may help the teacher to turn the gaps from pitfalls into learning opportunities for her 

students.  

Discursive gaps as opportunities for learning 

The two examples to be presented in this section illustrate the thesis that discursive gaps, 

while constituting a treat to the process of learning, may also be indispensable for the 

development of mathematical discourse. In both these examples, a close analysis will show 

that two people engaged in a conversation with one another may, in fact, be participating in 

different discourses.  

Example I: Opportunity for developing routines by bonding them with other ones 

Back to the example presented in Table 1, I can now present the results of the former 

analysis with the help of the conceptual tools introduced above. Here is the new description: 

the three task-situations created by the teacher’s questions [1], [3], and [5], although 

identical in the eyes of the teacher, were seen as different by the student. More specifically, 

questions [1] and [3] probably sent the child searching for precedents among past classroom 

situations in which a formal algorithm for multiplying fraction by a whole number was used. 

Question [5], on the other hand, might have brought to his mind everyday situations in which 

a conversation was about sharing a certain amount of cookies fairly between three friends. 

The tasks envisioned by the child as a result of these differing choices of discourses and 

precedents were also different: In the first case, he saw it as his job to perform the symbolic 

manipulation he learned in school. In the second case, his task was to find out what would 

be the share of one person if twelve items were distributed evenly between three people. This 

interpretation is summarised in Table 2.  

An important insight about development of routines can be gained from this example. 

At a close look, these two tasks, as well as the resulting procedures, have little in common 

with one another. Yet, those who are well versed in multiplying by fractions and perform 

this operation almost automatically are usually oblivious to the difference between the 

sequences of actions required in these two cases. The long experience with the respective 
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procedures might have blinded them to an interesting phenomenon that transpired very 

clearly from an ongoing PhD research on the development of the discourse on rational 

numbers1. Indeed, oldtimers to that discourse typically do not remember that they were 

probably well acquainted with words such as half, quarter, (one)-third or three-quarters well 

before they knew anything about the formal discourse on fractions. If so, they have also 

forgotten that once upon a time, these basic fraction words did not function for them as 

names of numbers, but were rather labels for some special routines. At that time, “finding a 

third of a pizza” meant not much more than a physical action of cutting the pizza into three 

parts, whereas “giving each of three children a third of the twelve cookies” meant the circular 

action of handing a single cookie to each of the children (usually while saying “one for you, 

and one for you…”), and repeating the action until none of the twelve cookies was left. At 

that time, the expression “1/3· 12” was meaningless. In other words, different rational 

numbers corresponded in the beginning to different procedures used in execution of different 

tasks. It took time until the different tasks consolidated into one, and the different procedures 

became alternative branches of a single algorithm.  

Table 2 

Discourses and routines in Example I 

 The teacher’s interpretation of the 

task-situations created by all her 

utterances  

The student’s interpretation of task-

situation created by the teacher’s 

utterance [5] 

discourse numerical of parts and wholes 

task perform the formal numerical 

calculation 1/3 ·12  

find one third of a set of 12 

procedure Apply the algorithm for 

multiplication of rational numbers 

1. Divide the whole into the 

number of equal parts indicated 

by the name of the part 

2. Take one part 

As argued by Lavie et al. (2019), such bonding2 of several routines and turning them into 

a single one constitutes one of the central mechanisms in the development of discourses. In 

the present case, many other routines that in the eyes of the beginner have little to do with 

the school discourse on fractions will yet be bonded with the formal operation “1/3 · 12” 

before the full-fledged routine for multiplying rational numbers emerges. The process of 

gradual bonding will lead to successive extensions in the applications of the resulting super-

routine known as multiplication of rational numbers. These developments will greatly 

increase the usefulness of the multiplication routine, and with it, that of the whole discourse 

of rational numbers. 

                                                 
1 The research, titled “Development of the discourse on rational numbers” is being conducted these days at the 

University of Haifa by Aya Steiner. Its partial results have been published in Steiner (2018).  
2 This type of bonding, one that happens between different procedures, is sometimes qualified with the 

adjectives horizontal or external so as to be distinguished from the bonding that occurs inside the procedure, 

and is thus known as vertical or inner. 
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Example II: Opportunity for meta-level learning  

In this example, taken from a study on a 7th grade class learning about negative numbers 

(Sfard, 2007), a different type of discursive gap comes to the fore. Before explaining its 

nature and source, let us take a look at classroom events that signalled its existence. 

At the time the event took place, the class has already discussed the multiplication of 

negative numbers by positive numbers, but some students were still questioning the claim 

that the result should be negative. The relevant episode began when the teacher declared that 

she was going to “explain” this fact in a new way. On this occasion, she would also show 

how the product of two negative numbers should be defined. As can be seen in the episode 

presented in Table 3, she decided to derive all this from the multiplication of natural 

numbers, with which the children were already well acquainted.  

Table 3 

Example II: Teacher demonstrates derives multiplication of integers  

# Speaker What is said What is done 

1556a Teacher: Well, I wish to 

explain this 

now in a 

different way. 

Points to [2 · (–3) = –6] 

1556b   Writes on the blackboard the following column of 

equalities: 

   2 · 3 = 6 

2 · 2 = 4 

2 · 1 = 2 

2 · 0 = 0 

2 · (–1) = –2 

2 · (–2) = –4 

2 · (–3) = –6 

While writing, she stops at each line and asks the 

children about the result before actually writing it 

down and stressing that the decrease of 1 in the 

multiplied number decreases the result by 2 

1556c Teacher:  

 

Let us now 

compute (–2) 

times (–3) in a 

similar way. 

As before, writes on the blackboard the following 

column of equalities, stopping at each line and 

asking the children about the result before actually 

writing it down and noting that the decrease of 1 in 

the multiplied number increases the result by 3; this 

rule, she says, must be preserved all along: 

3 · (–3)     = –9 

2 · (–3)     = –6 

1 · (–3)     = –3 

0 · (–3)     =   0 

(–1) · (–3) =  3 

(–2) · (–3) =  6 
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Table 4 shows objections raised by some students in reaction to the teacher’s argument. 

Table 4 

Children’s reactions to teacher’s derivation of the laws of multiplication 

# Speaker What is said 

1557 Shai: I don’t understand why we need all this mess. Is there no simpler rule? 

1559 Sophie:  

 

And if they ask you, for example, how much is (–25) · (–3), will you 

start from zero, do 0 · (–3), and then keep going till you reach (–25) · 

(–3)? 

The students seem to have misinterpreted the teacher’s intentions. The teacher saw it as her 

task to justify the definition of integer multiplication by deriving it from operations on 

natural numbers3. In contrast, the children interpreted the teacher’s performance as a 

presentation of a new algorithm for multiplication, which they then criticized as a rather 

cumbersome method for producing simple endorsed narratives such as (–2) · (–3) = 6 or  

(–25) · (–3) = 75. The nature of the resulting discursive gap is detailed in Table 5.  

Table 5 

Discourses and routines in Example II 

 The teacher’s interpretation of 

her own performance 

Children’s interpretation of the 

teacher’s performance 

discourse of unsigned numbers of integers 

task define “plus times minus”  calculate a product of a positive and 

negative number 

procedure build a list that leads form a known operation (multiplication of two natural 

numbers) to the desired ones (“plus times minus” and “minus times 

minus”) 

Why this difference in the teacher’s and students’ interpretation of the task-situation? One 

explanation is that the children were still captive of the discourse of unsigned numbers. In 

that familiar discourse, numbers and numerical operations constituted a part of the external, 

mind-independent world. Indeed, so far, it was the world that dictated the result of all 

numerical operations, such as 2·3 or 5·½.  In the discourse of signed numbers, in contrast, 

the nature of numeric operations seems to be established in the act of defining, as if by fiat. 

This change is tantamount to passing the power of deciding about what exists and what 

happens in mathematical universe from the external, natural powers – or maybe from the 

God – to humans. As such, it is difficult to accept, and even before that, to conceive.  

Two discourses that differ in their routines for forging and endorsing narratives have 

been called incommensurable (Sfard 2007).4 The transition from the discourse of natural 

                                                 
3 Here, the set of natural numbers is regarded as including zero. The unspoken principle underlying the 

teacher’s argument was that the definition of multiplication of integers would preserve some basic numerical 

laws that held in the realm of numbers so far. 
4 This difference means a change in meta-rules, that is, in the rules that govern the activity of mathematizing. 

Such meta-level change can lead to seemingly contradicting endorsements. And, indeed, the narrative “There 

is a number that is smaller than any other” that held in the discourse on natural numbers is one of the many 

that will have to be abandoned once this discourse is extended to the one on integers. 
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numbers to that of integers is one of several passages to an incommensurable discourse that 

the student will have to make in the process of learning. The learning that takes place during 

these passages has been described as meta-level, so as to signal that in this case, the learning 

involves not just an addition of new narratives, but also a change in how such narratives are  

created and endorsed. A successful meta-level learning closes the discursive gap that spurred 

this learning. This closure does not mean the disappearance of the former discourse – of the 

discourse of natural numbers in the present case. Rather, this old discourse is subsumed in 

the new one and subjected to its differing meta-rules.  

Summary and conclusions: Implications for teaching 

The two cases of discursive gap shown in this section shed much light on processes of 

discourse development. The first of them tells us something about the growth of routines: 

such growth involves turning a number of hitherto unrelated procedures into special cases 

of a single procedure for the execution of different variations of the same task. This means 

that task-situations seen by discursive oldtimers as “the same” (equivalent), may be seen by 

newcomers as different. The second example shows the inevitability of discursive gaps as 

those that spur learning (meta-level learning, in this case) in the first place.  Indeed, every so 

often, further development of mathematical discourse will remain stymied until the students 

confront and overcome a discursive gap: until they face, and reconcile themselves with a 

discourse incommensurable with the one in which they participated so far. In sum, in both 

cases, the gap, far from being just a nuisance, is what spurs the development in the first place. 

As such, it is indispensable for learning.  

Obviously, in cases such as those presented in this section, avoiding the gaps would 

preclude the possibility of learning. As such, it is not an option. Instead, one should try to 

minimize the risks of the gap and optimize its potential benefits. Yet, not only the students, 

but also teachers are rarely aware of discursive gaps such as those described in the two 

examples. It is by making them visible that the teacher may turn potential pitfalls into 

opportunities for learning.  The question of how to do this must be left for another article. 

Discursive gaps as a danger to teaching  

Unlike in the case of discursive gaps that are necessary for students’ learning and thus 

cannot be prevented, the two examples in this section show avoidable gaps that, if left 

unattended, are likely to distort teaching. In both cases, these gaps stem from the teacher’s 

inadvertent participation in a discourse that clashes with her intentions.  

Example III: Involuntary engagement in constructing students’ identities  

While in mathematics classroom, the students and the teachers are supposed to 

mathematize, that is, to participate in a discourse on mathematical objects. Yet, mathematical 

discourse, even when predominant, is rarely the only one. All along the mathematical 

conversation, participants also make statements about themselves and others. Although the 

subjectifying narratives (narratives about people, as opposed to those about mathematical 

objects) produced in the process may not be getting a direct attention, in a longer run that 

may have a considerable impact on the participants’ identities, that is, on the stories they 

believe true about themselves and about others. When it comes to students’ identities, 

particularly influential is the subjectifying activity of the teacher. Although in most cases the 

teacher would probably readily admit that she bears a major responsibility for how her 

students see themselves as learners, she may not be sufficiently alert to those aspects of her 
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classroom performances that constitute the most powerful identity-builders. Indeed, as I will 

now show with the help of an example, the devil may hide in tiniest details of the teacher’s 

actions. The most powerful may be those brief moves that the teacher performs 

automatically, without planning in advance, without explicitly monitoring them at the time 

of performance and without remembering afterwards.  

The example that follows comes from a study devoted to middle school students’ 

extracurricular mathematical activities organized and led by one of the researchers (Heyd-

Metzuyanim & Sfard, 2012). In the case under consideration, a group of four students 

described by their regular mathematics teacher as “good” (having a history of above average 

achievement) attempted to solve a non-standard mathematical problem. After a brief period 

of individual grappling, the participant whom the researchers called Ziv declared that he had 

answered the question, and that he did it in more than one way. Encouraged by the instructor, 

the boy presented one of the solutions. Yet, although Ziv’s account appeared to the 

researchers clear and helpful, it was rejected by his classmates as incomprehensible. 

Explanations by another student, Dan, who also claimed to have a solution, appeared 

confusing and inconclusive. In spite of this, the students who previously complained about 

“not understanding Ziv”, listened to Dan carefully and later claimed to have benefitted from 

his account. This event left the instructor perplexed. She was not able to figure out the reason 

why the students refused to learn from a knowledgeable classmate, but were eager to seek 

help of the one who clearly experienced difficulties not much different from their own. At 

that day, she left the following note in her journal: 

Although nobody seemed to doubt the correctness of Ziv’s solution, no visible effort was made to 

find out what his proposal was all about. Nothing indicated an interest in Ziv’s explanation… On the 

other hand, the students seemed eager to learn from Dan, who himself was struggling for 

understanding, and who offered ideas that seemed too blurred to be truly helpful… Unimpressed by 

[Ziv’s] solution .... the students let the obvious opportunity for learning slip away.” 

It was only in later analyses that the researchers were able to account for what happened. 

While scrutinizing the classroom talk, they noticed a feature of which they were previously 

unaware: an undercurrent of intensive subjectifying was going on within what might appear 

to be just a regular mathematical conversation. If we remained unaware of this fact, it was 

because subjectifying utterances, when interjected into strenuous mathematical debates, tend 

to be ignored. If we were able to do some work on them now, it was because prior to the 

analysis, we systematically extracted them from their context and collected them together in 

a single table. Here, they were segregated according to their authors and to the persons about 

whom they spoke.  

The result was startling. The majority of subjectifying utterances turned out to be about 

Ziv. Whether addressed to him or to another group member, whether made by himself or by 

another participant, these utterances were evidently evoked by the teacher’s decisions and 

moves. Indeed, acting as the conversation coordinator, she never missed an opportunity to 

show her confidence in Ziv’s ability to enlighten his classmates. The teacher expressed this 

belief in many different ways: by repeatedly urging Ziv to present his solutions (“Until now, 

you haven’t told us what you have understood from this question” [266]), by exhorting others 

students to listen (“Dan listen to Ziv now” [383]), and by explicitly assessing Ziv’s superior 

ability to understand the problem (“[Y]ou're the only one who understood [the 

question]”[99]). Through these and similar subjectifying actions the teacher, imperceptibly 

to herself, was gradually building Ziv’s identity as mathematically versed and as the 

discourse leader. In an indirect way, these subjectifying moves identified the rest of the group 

as somehow inferior. Not surprisingly, Ziv’s classmate reacted hostilely, trying to deny the 
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power evidently ceded to Ziv by the instructor. Beginning with angry claims about not 

understanding what he was saying (“You're never understood” [556]), through objections to 

his alleged intention to show his advantage and act as their teacher (see Dan’s exclamation 

“Ziv, you won't be a teacher” [678], and one girl’s complaint to the teacher/researcher: “He 

just… he talks to me like I'm his [little] girl!” [704]). Ziv reciprocated with explicit 

reinforcement for the story of his superiority (see his utterance directed at one of the girls: 

“I’m smarter than you, Idit” [471]). With this mutually aggravated subjectifying ping-pong 

going on and on, and with the identity-building activity high on everybody’s agenda, Ziv 

evidently stood little chance to play the role of the leader.  

The analysis opened the teacher’s eyes to these “identity struggles” and made her aware 

of her own central role in the plot. In hindsight, she expressed her regret: 

[T]he conundrum of the children’s tendency to learn from a less competent classmate ... seems to 

have been solved: the student who could [deal with] the problem was denied the identity of discourse 

leader… I am [now] able to see things of which, in real time, I was [unaware]. Above all, I realized 

that my role in the students’ learning was more harmful than helpful.  [I] took part in [constructing 

Ziv’s identity] just like anybody else in this classroom. In fact, my role in this process was probably 

most central ....  It is therefore even more regrettable that I acted the way I did, constructing students’ 

identities unreflectively, rarely giving my [utterances] a second thought. 

Were this insight gained in real time, the teacher would have probably curbed this 

subjectifying discourse. If the latter did not happen, it was mainly because she clearly 

remained oblivious to the fact that while trying to advance the mathematizing and repeatedly 

encouraging Ziv to share his solutions with the classmates, she was also constructing the 

boy’s first- and third-person identities. She saw herself as preoccupied exclusively with the 

mathematizing discourse, whereas the students perceived her as performing the task of 

telling them who they were, and thus as engaged in subjectifying discourse. These two 

differing visions and the resulting discursive gap are summarized in Table 6. 

Table 6 

Discourses and routines in Example III 

 Teacher (performer) Students (interpreters) 

discourse mathematizing subjectifying  

task scaffolding students’ problem 

solving “by proxy” 

building Ziv’s (and other students’) 

identity 

procedure inviting Ziv to present his solutions, exhorting the class to listen to Ziv, 

evaluating Ziv’s understanding 

Example IV: The danger of modelling a discourse other than intended  

The last example has shown how a gap between the teacher’s own and her students’ 

perception of her discourse may result in the teacher’s involuntary participation in a harmful 

subjectifying activity. In the next example, we will see how a similar discursive gap can lead 

to the teacher’s unconscious support for a wrong type of mathematizing.   

While saying “the wrong type of mathematizing” I mean mathematical discourse 

different in its character from the one the teacher herself intended. Thus, for instance, the 

teacher may believe she is trying to usher her students to explorative mathematizing while, 

in fact, the way she teaches supports ritualistic participation. Indeed, most teachers are likely 

to wish their students to see themselves as engaged in mathematical explorations, that is, in 

the activity of telling potentially useful stories about mathematical objects. As it often 
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happens, however, the teachers’ own way of acting may push their students toward rituals, 

that is, can make the learners believe their task is merely to show a mastery of mathematical 

procedures. In this later case, they feel exempted from worrying about the question of what 

the outcomes of their performances may be good for.  
These differing views of the purpose of mathematizing are rarely introduced to the 

students in the direct manner. Rather, they are signaled by the teacher’s discursive moves, 

especially those finest ones, which are also least noticeable. Among the most effective 

shapers of the students’ interpretations is the teacher’s language. Let me illustrate this claim 

with the example presented in Table 7, in which the teacher who participated in a recent 

study on teaching algebra in high school (Adler & Sfard, 2018) introduces his class to the 

process of solving the quadratic equation (x − 2)(x + 2) = 0.  

Table 7 

Example IV: Solving (𝑥 − 2)(𝑥 + 2) = 0 

# Speaker What was said What was done 

1 Teacher: We want to solve for x. What is 

our 𝑥 equal to?  

Writes: (𝑥 − 2)(𝑥 + 2) = 0 

2 Learners: …… The learners remain silent 

3 Teacher: We are saying any of these 

brackets is equal to 0. 

 

4 Teacher: So we are saying 𝑥 − 2 is equal to 

0… OR… 𝑥 + 2 is equal to 0 

While saying this, I would be 

writing on the board:   

“𝑥 − 2 = 0 or 𝑥 + 2 = 0” 

5 Teacher: And then we transpose them. 𝑥 is 

equal to? 

 

6 Learners: 2… or x is equal to -2  As the learners are saying this, the 

teacher writes on the board:  

“𝑥 = 2 or 𝑥 = −2”  

Let us scrutinize the teacher’s utterances for the objects he is talking about. Note, in 

particular, that the sentences “We want to solve for x” ([1]), “We are saying any of these 

brackets is equal to 0” ([3]), “And then we transpose them” ([5]) speak about people’s actions 

(solve, transpose) with symbols (x, brackets). Within this context, it is justified to claim that 

also numerals such as ‘2’ and propositions such as ‘x=2’ are considered as mere symbols, 

standing for nothing but themselves. This way of speaking supports ritualization, if only 

because of the fact that the result of symbolic manipulations seems to be of no further use 

and thus the performance is the only thing that counts.  

To create a proper opportunity for the kind of learning that the teacher believed himself 

to be promoting, he should have exposed the students to explorative discourse.  He would 

have done better if he reduced talking in terms of symbolic operations and spoke as much as 

possible in terms of mathematical objects, such as numbers or functions.5 Thus, in utterance 

[1], instead of talking about “solving for x”, he could have asked about the relevant relations 

between numbers: “What are the numbers x that, if substituted for x will make the product 

                                                 
5 The difference between symbols and the mathematical objects is that the objects may remain the same while 

symbols change. Thus, the number two remains the same whether we refer to it with the symbol ‘2’ (Arabic 

numeral) or II (Roman numeral), or 16/8.   
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of x+2 and x-2 equal to 0?” Alternatively, he could have inquired about a property of a 

function: “For which numbers x the value of the function y=(x+2)(x-2) is equal to 0?” 

Utterance [3] that speaks about brackets might have been replaced with a proposition on 

numbers: “Any of the numbers x+2 and x-2 must be equal to 0”. Finally, rather than using 

the cryptic verb “transpose”, implying a physical action, such as rearranging symbols, he 

could have said, “We subtract 2 from [the numbers/functions on] both sides of the equation”. 

The common feature of all these replacements is that they define the task by specifying the 

required properties of the outcome. Clearly, this stress on the product signals the legitimacy 

of any procedure that would lead to the required result and as such, ushers the problem solver 

into explorative discourse.  

Many other properties of teachers’ discursive actions are likely to encourage students’ 

ritualistic participation6, but in the present context, I chose to focus on those of them that 

hide in moves so tiny as to being imperceptible either to the students or to the teacher himself. 

The differences between the routines of the explorative discourse the teacher saw himself as 

performing and those of the ritualized discourse his students were likely to perceive are 

summarized in Table 8.   

Table 8 

Discourses and routines in Example IV 

 The teacher performs The students see 

discourse explorative mathematizing ritualized mathematizing 

task demonstrate how to attain 

mathematical outcomes   

demonstrate how to perform 

mathematical procedures 

procedure discuss the required outcome and 

perform a number of procedures that 

lead to this outcome 

perform a single procedure 

repeatedly, giving tips for 

remembering how it should be done 

Summary and conclusions: Why teachers should remain alert to the possibility of 

communicational gaps 

Both examples in this section make a strong case for the teacher’s awareness of the 

possibility of a gap between what she thinks she is doing and what her students actually see. 

This awareness is important because such gaps may mean that what her students learn is not 

what she tried to teach them. More specifically, the teacher may find herself collaborating 

in shaping unwanted, potentially harmful identities, while also introducing the students to 

mathematical discourse she herself does not appreciate. While in the classroom, therefore, 

the teacher must keep in mind that any of her moves may be read by the learners as saying 

something about themselves, if only implicitly; and she has to remember that when it comes 

to the question of what kind of mathematics the learner experiences, the answer is not so 

much in general didactic principles or even in detailed lesson plans, as in the finest details 

of the implementation (Sfard, 2018, p. 124).  

                                                 
6 For instance, the learner’s ideas about the source of mathematical narratives depend, to considerable extent, 

on what the teachers say, and to an even greater extent, on how they say it. Thus, the teacher who frequently 

appeals to the students’ memory, who accepts his role as the ultimate judge of correctness and who rarely has 

recourse to a careful deductive derivation is likely to give rise to the students’ conviction about an arbitrary 

nature of mathematical discourse and of its products.  
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Discursive gaps as the researcher’s opportunities for learning about learning 

Whereas both teachers and students have good reasons to be apprehensive of discursive 

gaps, researchers are more likely to see those gaps as gates to hidden treasures. As could 

already been understood from the first two examples, valuable insights about learning can 

be gained from close analyses of the nature of different discursive gaps and of the 

circumstances that occasion their appearance. In this section, I look at yet another case, in 

which the occurrence of a gap becomes an opportunity for learning about ways in which 

people match task-situations with discourses.  

Example V: Opportunity to learn about student’s ways to choose precedent 

The example to be presented now may help researchers in identifying those aspects of 

task-situations that can be held responsible for students’ choices of discourses in which to 

react to given task-situations. Some relevant insights could already be gained from Example 

I, where the learner was primed by the formulation of the problem, and more specifically, 

by words and symbols such as ‘times’, ‘of’ or multiplication sign. The new example will 

show again that two task-situations considered by one person as defining the same task may 

be seen by another as calling for different routines. This time, however, with the wording of 

the task-generating question remaining constant, the role of precedent-indicators will be 

played by contextual factors. 

The data to be considered now come from a study conducted in two 7th-grade classes, of 

36 students each. The students were presented with the mathematical problem: “Four 

children shared 14 balloons. How many balloons did every child get?" The two classes could 

be considered as indistinguishable in terms of the history of their mathematical learning and 

their achievement, and the only difference between them was that one was asked to solve 

the Balloons problem during mathematics lesson and the other – during a language lesson. 

The results can be seen in Table 9.  

Table 9 

Example V: Students’ responses to the Balloons task 

Response Frequency 

Mathematics 

lesson (N=36) 

Language 

lesson (N=36) 

“3.5” 46% 14% 

“The children got 4 and two others got 3 balloons”  

“Each child got 3 balloons and 2 were left”  
50% 80% 

NA 4% 6% 

As can be seen, the results obtained in the two classes are quite different. During 

mathematics lesson, almost half of the students responded with the non-integer number 3.5 

that could not possibly constitute an answer to the question of the number of balloons. These 

participants clearly identified the task as a “word problem”, the type of problem frequently 

encountered by every mathematics learner. The procedure they used was the one they often 

used in this context: finding and implementing the arithmetic operation that seemed to fit the 

question. In the present case, the division was probably chosen because of the word “sharing” 

appearing in the statement of the problem. In the other class, this improbable response was 

given by the mere 14% of the students. The majority of answers seemed to indicate that here, 
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just like in Example I, the children saw it as their task to perform the everyday routine of fair 

sharing that they often had to perform in their everyday life. Thus, whereas in Example I the 

difference in the choice of discourse and, in result, in the solution routine stemmed from 

lexical differences, in this example the decisive factor was the context in which the question 

was stated. For a summary of this analysis see Table 10. 

Table 10 

Discourses and routines in Example V 

 In mathematics lesson In language lesson 

discourse everyday of school mathematics 

task sharing the balloons fairly between 

children  

perform a learned operation that fits 

the situation 

procedure 1. Give a balloon to each child 

2. Repeat as long as you can  

 

1. Find the most appropriate 

operation (“share” → division) 

2. Perform the operation 

To sum the insight that can be gained from this example, our ability to act in most situations 

in which we find ourselves stems from our tendency to automatically associate each such 

situation with a certain discourse and with its routines. What prompts these association are 

such characteristics of the situation as the physical components of the given space (e.g., a 

typical classroom arrangement) or the identity of the individuals who populate the scene 

(e.g., mathematics teacher). The very exposure to these identifiers may suffice to push us 

into the discourse we encountered under the same or similar circumstances in the past. In 

Example V, the association with mathematical discourse learned at school was brought by 

the students’ awareness of their being in mathematics lesson, maybe even by the very 

presence of the mathematics teacher. If the language lesson did not lead to a similar choice, 

it was simply because mathematical discourse had never been used in this context.  

Example VI: Opportunity for replacing the “deficit model” 

The example that follows shows how the researcher’s unawareness of a discursive gap 

between her and participants of her study may stymie her ability to tell a truly useful story 

of the phenomena she tries to fathom. 

Let us consider the conversation between 4-year old Roni, 4 years and 7 months old 

Eynat, and Roni’s mother, as presented in Table 11. The excerpt is taken from a study on 

children’s numerical thinking conducted years ago by Roni’s mother, who was also the 

beginning researcher, and myself (Sfard & Lavie, 2005). The conversation was held in 

Hebrew (in its English version, presented here, we tried to preserve idiosyncrasies of the 

children’s language). At the time of our investigations, Roni and Eynat were already quite 

proficient in counting and were routinely answering the “How many?” question without a 

glitch. The episode began when the mother presented the girls with two identical opaque 

boxes. Even though the girls they could not see the contents, they knew they boxes contained 

marbles. On the face of it, nothing new can be learned from this example. After all, the first 

thing one usually learns from books and articles about early numerical thinking is that 

“children who know how to count may not use counting to compare sets with respect to 

number” (Nunes & Bryant, 1996, p. 35). Yet, at a closer look, some of Roni’s and Eynat’s 

actions did appear puzzling. If a person was listening to the conversation without seeing the 

boxes, she would have been likely to conclude that the children implemented the task 
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properly: they gave an agreed answer and knew how to justify it in a logical way (see 

utterances [5], [7], [9]). But for those who could actually see what was happening, the girls’ 

decisive responses were difficult to account for. Indeed, why did the children choose a 

particular box? Why did they experience no difficulty in making a joint decision? Why, in 

the end, were they able to respond in a seeming reasonable way to the request for 

substantiation, even though there was no basis for the claims they made about the size of the 

collections?   

Table 11 

Example VI: Where are there more marbles? 

# Speaker What is said What is done 

3a Mother: Right, there are marbles in the boxes. I 

want you to tell me in which box there 

are more marbles 

 

3b Eynat:  Points to the box which is 

closer to her 

3c   Roni:  Points to the same box. 

4 Mother: In this one? How do you know?  

5 Roni: Because this is the biggest than this one. 

It is the most. 

 

6 Mother: Eynat, how do you know?  

7 Eynat: Because… cause it is more huge than 

that. 

 

8 Mother: Yes? Roni, what do you say?  

9 Roni: That this is also more huge than this.  

 

After long deliberations and a scrutiny of children’s actions in this and similar episodes, 

we concluded that it was the language used in the description of the case that produced our 

puzzlement. Indeed, while stating that children do “not use counting to compare sets with 

respect to number” (emphasis added), the researchers attribute to children their own 

interpretation of the question “Where are there more marbles?” If so, there is little wonder 

they view children’s actions as suffering from a certain deficit: the girls did have the 

necessary skill but they were unable or unwilling to use it the way they, the researchers, 

would have used it themselves in the same task-situation. The story of the deficit loses 

grounds, however, when one realizes that Roni and Eynat did not necessarily interpret the 

question “Where are there more?” as requiring quantitative comparison. Indeed, having freed 

oneself from the assumption, one realizes that, perhaps, the children simply tried to choose 

the box that they preferred. As implied by previous studies (see e.g., Walkerdine, 1988), 

rather than interpreting the word ‘more’ as referring to quantitative advantage, they were 

likely to understand it as referring to whatever could count as better, for one reason or 

another. In sum, we understood that there was a gap between the children’s and grownups’ 

visons of the task, and thus between their respective discourses and routines. These 

differences are summarized in Table 12.  
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Table 12 

Discourses and routines in Example VI 

 Interviewer 4 year old children 

discourse quantitative, numerical of choosing for oneself 

task identify the box that has more 

marbles  

choose (together?) the box you 

(both?) prefer  

procedure 1. Count marbles in each box 

2. Compare the last number words 

obtained in B 

Point to, or take, the one you prefer 

(possibly: trying to agree with your 

friend) 

The insight gained in this event had a lasting impact on our later work. From now on, we 

have been avoiding telling stories on what children did not do and, instead, have been 

documenting what they actually did. The sentence “children who know how to count may 

not use counting to compare sets with respect to number” has now been reformulated in our 

reports as “Children who know how to count, when asked ‘Where is there more?’, are likely 

to make a choice without counting”. 

The importance of the lesson that can be learned from this example by both teachers and 

researchers cannot be overestimated. When students seem to err, we tend to assume that the 

error is due to their insufficient mastery of procedures. It occurs to us only rarely, if ever, 

that the apparent mistake may result from a difference between the task the learners try to 

perform and the one intended by the task-setter. Yet, what we saw in this example alerts us 

to the fact that when a routine develops, transformations in the students’ vision of the task 

may be at least as significant as the gradual increase in these students’ mastery of procedures. 

To do their job properly, those who teach and those who investigate learning must bracket 

their own mathematical discourse. They should always try to present the one’s performance    

as it was seen by the performer herself. This is the only way to disrupt the long tradition of 

portraying the learning of mathematics as a process of overcoming lingering deficit. To 

begin picturing learning as a series of creative advancements towards an ever greater 

complexity, the researcher must always remember that the journey to full-fledged 

participation in historically established mathematical discourse involves traversing multiple, 

possibly invisible discursive gaps. 

Summary and conclusions: Wariness of communicational gaps as a protection 

against deficit model of learning 

The two latest examples as well as some of the previous ones make it abundantly clear 

that researchers should embrace discursive gaps as opportunities for their own learning 

rather than just problems to solve. The first of these examples has shown how a recognized 

discursive gap becomes a window to inner workings of the process of learning. Through this 

window we had a close-up at the way people choose precedents to task-situations, and what 

we saw shed light on the phenomenon known as situativity of learning (Brown et al., 1989; 

Greeno, 1997; Lave, 1988). The second example brought a message about some hitherto 

unrecognized pitfalls, in which we often fall as researchers. Here, we saw how our own 

mathematical discourse may blind us to critically important aspects of children’s activity, 

making us oblivious to the mechanisms of discourse development. It warns the researchers 

against relying on their own mathematical discourse while trying to make sense of what 

children are doing.   
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Coda 

In this talk, I joined Wittgenstein in his "battle against the bewitchment of our 

intelligence by means of our language" (Wittgenstein, 1953/1967, p. 47). Diverse ways in 

which language may lead us astray have been illustrated with multiple examples. These 

examples were also used to show how important it is that all the parties to processes of 

teaching and learning, whether participants or observers, are always alert to the possibility 

of discursive gaps. The examples illustrated the claim that some of these gaps are inevitable. 

I argued that these ineluctable discursive discontinuities should be embraced as opportunities 

for learning. Those gaps that do little more than jeopardize learning – and my examples 

imply that these are not any less frequent than the useful ones – can and should be prevented. 

In all the cases, however, the devil hides in the tiniest details of interpersonal communication 

and our first task is to learn how to make the gaps visible. Unknown to the teacher, her basic 

communicational routines may constitute invisible crevices through which the prejudice 

enters the conversation on mathematical objects.  

It would be naïve to think that the uneasy task of detecting and preventing or utilizing 

discursive pitfalls could be implemented without a deliberate effort. Echoing Michael 

Reddy, successful exchange “cannot happen spontaneously or of its own accord” (Reddy, 

1979, p. 296). Remembering that “[h]uman communication will almost always go astray 

unless real energy is expended.” (p. 295), we need to invest as much energy as possible in 

minding even those discursive gaps that at the moment remain invisible.  
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Many pathways towards “Excellence” in Singapore 

 mathematics education 
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This paper presents a snapshot of Singapore’s journey towards excellence in mathematics 

education by examining the role of the traditional notion of mathematics competition and 

other competitive activities. It could be seen using the context of mathematics competition 

that the notion of “excellence” has evolved over time. Excellence as a high standard for 

individuals to achieve or as a set of obstacles for individuals to pit against the norm has been 

gradually broadened to include excellence as an internal goal for an individual to achieve, 

and even excellence as a goal for the mathematics education landscape. 

The Singapore Education System 

Since the independence of Singapore in 1965, developing a robust education system has 

been the focus of the nation. Recognising that Singapore had no hinterland or natural 

resources, the young nation had since been striving towards building an efficient, universal 

education system to fulfil the role of economic development and social cohesion in 

Singapore beginning with the visionary leadership of the prime minister Mr Lee Kwan Yew 

(NTU President, 2015). The importance of education to Singapore has continued to be 

emphasised by the Singapore politicians. In 2001, the then prime minister, Mr Goh Chok 

Tong, during a Teachers’ Day Rally on 31 August acknowledged that the “skills and 

resourcefulness of our people” are pivotal for the nation’s survival.  

The education system in Singapore has been recognized as of a high quality. A speech 

in 1999 by the Education Minister, Teo Chee Hean, that Singapore has “no failing schools, 

only good schools, and very good schools…” (a full speech is provided in Ang, 2006) is a 

testimony to this. Further, the performance of Singapore students in the Trends in 

International Mathematics and Science Study (TIMSS), the largest international comparative 

study of student achievement in the two subjects, and the Programme for International 

Student Assessment (PISA) is among the top of all the participating nations. The students’ 

performance in these two international comparative studies is usually taken among the 

indicators of the quality of a nation’s education system. 

With regard to the performance of the top elite students, Singapore has also performed 

very well in the International Olympiads of the three sciences (Physics, Chemistry and 

Biology) and Informatics (Lee, n.d.). Beginning from 2011, Singapore has also emerged in 

the first ten positions in the International Mathematical Olympiad (IMO), according to the 

information provided in the official website of the IMO.  

The stellar performance of students’ in TIMSS and PISA, and the prestigious Olympiads, 

are signs of the ongoing pursuit of excellence in the Singapore education landscape. The 

term “excellence” is found in the Singapore education documents. For example, the term 

“excellence” is found in the Singapore school management system, which is known as the 

School Excellence Model. Schools are being empowered to develop themselves into 

“excellent schools” based on the appraisal system of the School Excellence Model. Such a 

school appraisal strategy has been shown to have a significant impact on student 

performance (e.g., Huang et al., 2019). To achieve professional excellence among practicing 

teachers, centres of Teaching and Learning Excellence were set up in 2015 to provide them 
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with up-to-date professional development so that practicing teachers bring back to their 

respective schools up-to-date teaching and learning strategies to impact the quality of 

teaching and learning there (Academy of Singapore Teachers, n.d.). Prior to that, within each 

zone in Singapore, a Centre of Excellence for mathematics had been set up as a platform for 

promoting the professional growth of mathematics teachers in that zone (Chua, 2009). 

Singapore’s pursuit of excellence can be understood by the social-cultural context of 

Singapore. The Singapore society has been engineered to embrace “a pragmatic and 

competitive national paradigm grounded in economic rationalism” (Ang, 2006, p. 1). 

Lessons learnt along the road to the nation’s independence and the nation’s vulnerability as 

a nation without resources are two factors that shaped the development of a competitive 

mindset (Cooper, 2001; Lee, 1998 cited in Ang, 2006).  

Much has been done in Singapore beyond the nation’s visible pursuit of “excellence” in 

the Singapore education landscape discussed above. The nation has traversed a long journey 

in shaping its own definition of excellence of education at the various levels of the society. 

With reference to mathematics education in particular, how the notion of “excellence” has 

evolved is discussed in this paper using the illustration of mathematics competition. 

A two-pronged approach to excellence: Grounds up and top down approaches 

The word “excellence” can be roughly understood as “exceptionally good and of superior 

quality” (Lierse, 2018). Based on this notion of excellence, an excellent education system 

refers to one that is exceptionally good and of superior quality. This vague notion of 

excellence in education has been operationalised. According to the European Network of 

Education Councils (EUNEC), excellence in education should transcend the “quality 

control” or even the benchmarking of education systems to identifying, developing and 

intensifying talents within the education system (EUNEC, 2012).  

Two lines of effort in the pursuit of excellence in Singapore mathematics education can 

be discerned: the approach to excellence from (1) the grounds up; and (2) the top down. The 

grounds up approach towards excellence in mathematics includes the efforts by educational 

institutions and professional bodies to identify and develop mathematical talents; the top 

down approach refers to policies that impact the systemic level in achieving excellence. In 

this paper, we focus the discussion primarily on the grounds up approach; and briefly discuss 

the top down approach. A detailed discussion of the latter has been presented in Toh (in 

press), hence will not be further elaborated in this paper.  

The notion of “excellence” in the case of mathematics competitions 

In discussing “excellence” in mathematics, the idea of competitive activities as 

opportunities to pit against the norms (Franks, 1996) is readily forthcoming to the mind. 

Mathematics competition is part of the grounds up approach initiated by the local 

mathematics community. It is recorded that the first national level mathematics competition 

in Singapore emerged prior to its independence in 1956 by the Singapore Mathematical 

Society, which was founded at that time. Note that the first IMO was first launched three 

years after that in 1959 in Romania. Following the launch of the first mathematics 

competition in Singapore and the IMO, various other mathematics competitions at the 

national and school levels have started in the decades that followed. The first mathematics 

competitions were organised for upper secondary and high school students. This age group 

was the target as it was the participating age group of students for the IMO. This 
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corresponded to identifying and nurturing of mathematical talents, and started a systematic 

process of identifying and developing talents for the IMO.  

Subsequently, other competitions were organized for students of younger age groups at 

the primary levels. Not only that, the mathematics competitive activities also scaled out from 

the top elite group of students to the vast majority of the student population. A full 

description of the emergence of various mathematics competitions and their evolution can 

also be found in Toh (in press). Alongside identifying, developing and nurturing 

mathematical talents, the pursuit of excellence in identifying and nurturing talents had also 

broadened to include selecting potential students from other Singapore mainstream schools. 

The evolution of the mathematics competitions in Singapore can be traced to at least three 

phases: (1) identifying and nurturing mathematical talents; (2) popularizing mathematics 

among a wider student population beyond potential competition contestants; and (3) aligning 

to the Singapore mathematics education. 

Phase 1: Identifying and nurturing mathematical talents 

This phase began with the first mathematics competition organized by the Singapore 

Mathematical Society in 1956, to around the early 1990s. In this phase, the key objective of 

identifying and nurturing mathematical talents could be seen as aligning to the selection of 

the best among the mathematical talents to represent the nation in the IMO and other 

prestigious international mathematics competitions. This phase corresponded to the pursuit 

of excellence as reaching the highest possible standard in mathematics. 

Phase 2: Popularizing mathematics among a wider student population beyond 

potential competition contestants 

This phase approximately corresponded to the period from 1990 to 2010. Starting from 

1990, mathematics competition of the primary school students was launched and in 1994, 

the Singapore Mathematics Olympiad (SMO), the most prestigious mathematics competition 

at the national level, launched the Junior Section for lower secondary students in addition to 

the usual Senior Section (for upper secondary students) and Open Section (for the pre-

university students).  

Phase 2 was characterised by the effort of the mathematics community to popularize 

mathematics to a much wider student population, in addition to identifying and nurturing 

mathematical talents. In 1994, in the collection of challenging mathematics problems 

collated from the various interschool and national mathematics competitions published by 

the Singapore Mathematical Society, it was stated that the objective of the collection of 

problems was to “inspire in its readers the desire to learn more about mathematics” 

(Singapore Mathematical Society, 1994, p. ii). Various compilation of competition questions 

for different student levels were subsequently published with the objective to “stimulate 

interest and develop prowess in mathematics among students in the primary schools of 

Singapore” (The Chinese High School, 2003, p. ii), or to “instil a love for and to generate 

interest in Mathematics amongst Primary school students” (National University of Singapore 

High School of Math & Science, 2007, p. i). This phase showed a broadened notion of 

excellence as individualised; reaching an individualised peak of excellence is a worthy goal. 

Phase 3: aligning to the Singapore mathematics education 

The third phase began in the early 2010s, and this phase was characterised by a conscious 

effort of the mathematics communities in aligning the mathematics competition to the school 
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mathematics curriculum, in addition to the objectives of the previous two phases. In the 

preface of the compilation of the past year SMO questions, the compilers commented that 

“We align the SMO more closely to the school curriculum … there will be a considerable 

number of questions in Round 1 [the section that all contestants will attempt] of each section 

which are based on the school curriculum…” (Ku et al., 2016, 2017, 2018, p. ii). The 

mathematics competition questions no longer exclusively contained the extremely 

challenging questions which are beyond the reach of the general student population. A 

considerable number of the mathematics competition questions were based on the 

contemporary school mathematics curriculum, although many of these questions require a 

creative use of the mathematical techniques taught in school mathematics. The subtle 

difference between Phases 2 and 3 is that while both phases saw a similar effort to reach out 

to a wider range of students, there was a visible effort to align to the school mathematics 

curriculum in Phase 3, thereby possibly impacting the classroom mathematics instruction. 

The notion of excellence in this phase has expanded beyond individual peak of excellence, 

to encompass excellence in the teaching and learning processes for all teachers and students. 

Mathematics competition questions beyond competition 

As discussed above, in Phase 3, the link between mathematics competitions and the 

school mathematics curriculum has become explicit. The intention of the local mathematics 

communities to align the prestigious mathematics competitions to the local school 

mathematics syllabuses had enlarged the functions of the mathematics competition 

questions. More competition questions were then made accessible and were being accessed 

by the general student population. A larger student population had then the opportunity to 

challenge themselves with the mathematics competition questions which were within their 

capacity, and to reflect on the school mathematics content that they have learnt.  

Mathematics competition questions have also been valued because of the affordances of 

these items in the preservation of the “old” mathematical techniques within the 

contemporary mathematics syllabuses. These techniques have been de-emphasised in the 

curriculum due to an increased emphasis on technology in the school curriculum (Toh, 

2015). Many of the problems that require these “old” mathematical techniques epitomise a 

high degree of creativity in the use of more delicate mathematical techniques (without 

resorting to technology). This is still relevant to the Singapore mathematics curriculum, 

which emphasises mathematical problem solving.  Illustrations 1 and 2 are exemplars of this 

category of problems, which could serve to motivate more students to acquire creative 

mathematical techniques for the mathematical content which is found in the current 

syllabuses and appreciate the nature and beauty of mathematics. 

Illustration 1: Simplify 144 (√7 + 4√3 + √7 − 4√3). 

(A modified item from a typical genre of the SMO questions on simplifying surds 

without the use of calculating tools) 

Illustration 2: Which of the following numbers is largest? 
(A) √10 − √9 

(B) √20 − √19 

(C) √30 − √29 

(D) √40 − √39 

(E) √50 − √49 

(A modified item from a typical genre of questions on comparing the magnitude of 

surds without the use of calculating tools) 
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The solution of Illustration 1 can be obtained indirectly by considering the square of the 

given expression. A careful application of the rules of surds will result in a perfect square, 

for which the square root of the square number yields the answer. Illustration 2 can be solved 

by considering the process of irrationalising each of the five surdic expressions, and 

comparing the five fractions which have equal numerator. Such problem solving strategies 

which lead to elegant solutions are not stressed in the mainstream curriculum, as the use of 

calculating tools renders such strategies unnecessary. This is further hindered by the 

provision of calculators for all high-stake national mathematics examinations.  

Other competition questions engage the solvers to think more deeply and reflect on the 

usual misconceptions that students have in applying algorithmic procedures (exemplified by 

Illustrations 3 and 4 below).  Such items are atypical of high-stake national examinations. 

Illustration 3 challenges the solver to re-think their usual understanding of solving an 

algebraic equation in relation to the process of like-terms in both sides of an equation. This 

makes them re-think of the equivalence of the two equations, and easily relates to the big 

idea of Equivalence in mathematics. Illustration 4 invites the solver to examine the common 

misconception that √𝑎2 = 𝑎 for all real values of a. The preservation of such items within 

the existing mathematics competitions is an indicator of the effort to emphasise the 

metacognitive aspect of problem solving, which is stressed in the syllabuses.  

 

Illustration 3:   How many real numbers x satisfy the equation 
𝑥2−𝑥−6

𝑥2−7𝑥−1
=

𝑥2−𝑥−6

2𝑥2+𝑥+15
 ? 

(A)  4  (B)  3  (C)  2  (D)  1  (E)  0 

 

Illustration 4: Let a < 0.  Find √𝑎2 + √(1 − 𝑎)2. 

 

(A)  1  (B)   -1  (C)  2a – 1  (D)  1 – 2a (E) None 

 Some mathematicians lament that the mathematics curriculum today is far from the level of 

difficulty of that in the 1980s (e.g., France & Andzans, 2008). The various mathematics 

competitions, with their unofficial “syllabuses” for the competition and the lack of provision 

of allowing calculating devices, serve to preserve many of the elegant mathematical content 

which were otherwise not emphasised in the contemporary syllabuses. With the trend of 

increasing student participation in the various local mathematics competitions, many of these 

mathematical questions with elegant solutions are kept alive but are downplayed in the 

mainstream school curriculum. 

A further step to popularize competition-type of mathematics problems is found in the 

contemporary mathematics textbooks which have been approved by the Singapore Ministry 

of Education (MoE) for schools. Under the paradigm of differentiated instruction, the 

inclusion of tiered practice tasks in the textbooks has resulted in the inclusion of many of 

such competition-type questions. The ready availability of such questions, usually classified 

under the section “challenging questions” (or similar classification of tasks to the same 

effect), is a further step to engage all students to challenge themselves in higher level 

mathematical thinking. This is especially important for the students who might not 

participate in mathematics competitions. 

The notion of excellence in mathematics competition has also expanded to influence 

professional development of mathematics teachers as well. From the author’s first-hand 

experience in working directly with practicing teachers in the Singapore schools in several 

of the teacher professional development activities, many of the challenging mathematics 
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competition questions have provided opportunity for teachers to identify the “blind spots” 

in their own knowledge of mathematics. It is common knowledge that mathematical content 

knowledge which is not frequently tested in the high-stake national exams tends to be out of 

a teacher’s attention. The occurrence of such items in the various mathematics competitions 

could also bring a teacher to reflect on the content essential for classroom teaching. Some of 

these items have been incorporated into professional development courses for teachers.  We 

consider one example in the Singapore Additional Mathematics syllabus using illustration 5 

below, which is an item adapted from a past competition question (year unidentified). This 

item brought out several interesting discussions among the author and some secondary 

school teachers about logarithms. 

 

Illustration 5: Find the value of 92log95 without the use of calculator 

(Adapted from a past year competition question in Singapore 

Mathematical Olympiad) 

 

Although the following rule of logarithm is common knowledge for most students and 

teachers, 

log𝑎 𝑎𝑥 = 𝑥 

this rule is usually understood by most teachers and students in the usual computational sense 

as a procedural rule: 

log𝑎 𝑎𝑥 = 𝑥 log𝑎 𝑎 = 𝑥. 

The following rule, which is a counterpart of the above rule of logarithm, 

𝑎log𝑎𝑥 = 𝑥 

is less well-known among students and teachers. Although both rules involve the 

composition of a function and its inverse (i.e., the exponential function and the logarithmic 

function), the first rule can be easily algorithmised as “shifting the power of a logarithm 

down” while it is recognisably more difficult to proceduralise the second rule. The 

occurrence of items such as Illustration 5 reminds the teachers of the importance of the 

notion of the composition of a function and its inverse, rather than a pure utility of logarithms 

as a tool for conversion to exponential function (Kenny et al., 2013). This is an important 

alert to teachers that the concept of function underpins most mathematical concepts in the 

syllabuses, although explicit knowledge of functions and their composition are not required 

for the national examinations in the secondary school mathematics syllabuses (MoE, 2018). 

Mathematics competition questions and problem solving 

A further stage in utilizing the mathematics competition questions is in adapting them 

for teaching mathematical problem solving to all secondary mathematics students (that is, 

problem solving is not only reserved for the elite few, but for the whole student population). 

As it is well-known, mathematical problem solving is the heart of the Singapore mathematics 

curriculum. In New Zealand, Holton (2010) introduced mathematical problem solving 

processes to IMO students through imparting them the mathematical content knowledge on 

discrete mathematics. Motivated by this approach, a similar effort in mathematics education 

research in Singapore emerged in the late 2000s to the early 2010s. 

The new interpretation of problem solving using the science practical paradigm (i.e. 

problem solving to mathematics is in the same way as science practical to science) in an 

effort to make problem solving accessible for all students, and to illustrate to teachers how 

an authentic problem solving lesson can be enacted in the mathematics classroom. Broadly 

speaking, problem solving lessons in mathematics should be treated as science practical 
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lessons in science, and the role of teachers is to facilitate the students’ experience of the 

entire problem solving process (Toh et al., 2008). This initiative was introduced in 

recognition of the fact that most school mathematics teachers might not have taught students 

problem solving to the true sense of its spirit as proposed by Pólya (1945). This approach to 

teaching problem solving is contrary to many teachers’ usual classroom practice in 

“routinizing the problems” into exercises for the students. 

A detailed discussion on the conceptualisation of the science practical paradigm, 

proposal on how problem solving lessons could be enacted in the mathematics classrooms, 

and the reports of the various experiment schools about their successes and challenges in 

enacting a problem solving lesson have been discussed (Leong et al., 2013; Toh et al., 2008).  

In the problem solving lessons, authentic problems that could highlight the various problem 

solving stages must be selected as the vehicles for teaching problem solving. As such, 

competition questions become suitable choice of questions for the teaching of problem 

solving.  Illustrations 6 and 7 appended below are two exemplars of competition-type 

questions which have been used for teaching authentic problem solving. 

 

Illustration 6:  Find the last digit of 1377. 

 

Illustration 7:  Find the last digit of 19622009 + 20091962. 

 

 The content of the two exemplars above is on Elementary Number Theory, which is not 

taught in the Singapore school mathematics curriculum. As such, these problems will be 

“non-routine” to most students – one of the two criteria to qualify as a “problem” (Toh et 

al., 2008). However, the content of these two questions are easily understandable even for a 

primary school student. Hence, these problems can be used as authentic problems that can 

serve to reinforce and illuminate the various problem solving heuristics, and can “force” 

students to acquire problem solving processes (in this case, looking for patterns and making 

conjectures for illustration 6, and, in addition, looking for sub-goals in illustration 7). In 

short, this type of problems is realistic enough for students to experience authentic problem 

solving by experiencing all the Pólya stages of problem solving.  

 

Mathematics Competitive Activities beyond the Traditional Competition 

Mathematics competitive activities have transcended the confines of the common notion 

of paper-and-pencil tests by the traditionalists. Some talents in mathematics and high-

achieving mathematics students may be more inclined towards other forms of competitive 

mathematics activities, such as collaborative problem solving activities involving real world 

problems, or engaging in authentic mathematics research with professional mathematicians, 

are among the competitive activities that are designed to capture the various talents in 

mathematics. The biennial event of the Singapore International Mathematical Challenge is 

organised to provide opportunity for students to work collaboratively with their peers in 

solving real-world problems by making use of available technological tools and information. 

To develop young research mathematicians, opportunities are provided for students to work 

on mathematics research projects with professional mathematicians beyond their schools. 

The annual Singapore Mathematics Project Festival is a platform for students to showcase 

the fruits of their research to their contemporaries and other mathematicians. More details of 

alternative competitive mathematics activities are described in Toh (in press) and will not be 

elaborated.  
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In an effort to engage an even wider spectrum of students in mathematics competitive 

activities, the Singapore Mathematical Society has initiated a new series of mathematics 

essay competition, an annual event that aims to expose the participating individuals to an 

identified mathematical topic and to encourage the participants to articulate mathematics 

through the exposition on the topic (Singapore Mathematical Society, 2021).  This further 

widens the group of students who might not be inclined to the modes of competitive 

mathematical activities described previously. In addition to sharpening an individual’s 

thinking and reasoning, this activity encourages the participants to communicate 

mathematics precisely, clearly and logically. It is aligned to the latest emphasis in the 

Singapore mathematics curriculum on communication in mathematics (Kaur & Toh, 2012). 

Achieving Excellence at the Systemic Level 

At the systemic level, the pursuit for “excellence” has transcended the notion of a unique 

peak of excellence understood by the traditionalists’ view.  The notion of excellence has now 

been interpreted as the existence of many peaks, and even a peak for each student, in order 

to encompass excellence for every individual. The systemic effort in the pursuit of 

excellence can be seen to be guided by the dual objectives of enabling students of different 

capacities to define and reach their own peak of excellence (Shanmugaratnam, 2006) and, 

“lifting the bottom but not capping achievements and limiting opportunities at the top…” 

(Ong, 2018). 

The notion of not capping achievements and limit opportunities at the top is best 

epitomized by the education system in identifying and nurturing talents in various way, and 

depicts a concerted effort by the MoE in stretching excellence to the fullest potential among 

an individual. The holistically talented students are identified early at the upper primary level 

and offered an opportunity to the Gifted Education Programme within the Singapore 

education programme. This specialized programme for the gifted individuals (defined as 

individuals who form the top 1% of the top performing students) continues to be supported 

by school-based gifted education programme found in selected secondary schools. 

Specialized schools have been set up for students who are specifically talented in a 

specific discipline. In particular, the NUS High School of Science and Mathematics has been 

specifically set up for students who are specifically inclined towards mathematics and 

sciences. In this specialized school, students are not bound by the high-stake national 

examinations at the end of the high school as the scope of the national exams capped the 

learning of the students. In addition, students in this school are given the opportunity to read 

a subject at the undergraduate level and to even do a research project at the higher secondary 

levels. Under the supervision by their teachers or mathematics professors, the research work 

carried out by the student approximates the research work of a professional mathematician. 

Another movement in the Singapore education system to move towards stretching all 

students’ potential to the fullest is the recent introduction of subject-based banding of 

mathematics (and three other subjects), with the ultimate goal of pushing for subject-based 

banding for all subjects at the primary and secondary school education. This movement can 

be seen to be modelled after the pre-university education system in which the students can 

read each academic subject at a level that is suitable for them. Under this opportunity, all 

students will have the opportunity to be stretched in all disciplines according to their capacity 

and inclination. 
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Conclusion 

The journey towards excellence in education is best summarized by the speech of the 

then Minister of Education, Mr Heng Swee Keat, during his interview with the Straits Times 

on 22 August 2015. Mr Heng commented that the pursuit of excellence should be “part of 

Singapore’s DNA”, but stressed the need to “broaden the definition of excellence and to 

recognise everyone for achieving his personal best” (The Straits Times, August 22, 2015). 

Even within mathematics education, it is clearly evident that Singapore is moving towards 

“a mountain range of excellence, not just one peak, to inspire all our young to … climb as 

far as they can.” (Shanmugaratnam, cited in Lee et al., 2008).  
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“Becoming” a researcher in mathematics education 

Vince Geiger 
Institute for Learning Science and Teacher Education 

<vincent.geiger@acu.edu.au> 

As a contribution to the legacy of the Annual Clements/Foyster Lecture, this paper will focus 

on the theme of becoming a researcher in mathematics education – a fundamental endeavour 

for MERGA from its foundation. I use the term becoming in the socio-cultural sense, that is, 

how a person develops in their role as an active member of a community. This participation 

led to the development of an identity – in our circumstance, as mathematics education 

researchers. Thus, the presentation will not be a research lecture in the traditional sense but, 

rather, a personal reflection that maps the lived experience of defining my own research 

program against important junctures of development and a growing sense of becoming within 

the MERGA, and other, communities.  

When invited to present the Clements/Foyster Lecture, my first thought was to talk about 

my research program in the teaching and learning of applications of mathematics – 

numeracy, mathematical modelling, STEM and the role of digital tools in these areas. This 

was perhaps a go-to-first gut reaction, and really, I have already spoken about my research 

in these areas during conferences reaching back to MERGA-16 in 1995. My second thought 

was that the invitation was an incredible honour, as this lecture was initiated “to honour the 

foresight of Ken Clements and John Foyster in founding MERGA” (Galbraith, 2014, p. 38). 

So, the question became, “how could I contribute to this legacy?” Or, to quote David Byrne 

of the Talking Heads: 

And you may say to yourself, “My God! What have I done?” 

… 

And you may ask yourself, “well…how did I get here?” 

The answers to these questions are far from simple. My background is not one that 

predisposes an individual to an academic career and certainly not one that would lead me to 

the position of being one of the few research-only academics in mathematics education. As 

my beloved mother often remarks, “How does a boy from the working class become a 

professor?” My good friend, Tom Lowrie, has described me as an outlier in terms of career 

pathway and academic success (even if moderate success). I am acutely aware, also, that I 

have not done this on my own. There have been many hands holding me up and giants’ 

shoulders on which I have stood. Given this background and the outcome, it occurred to me 

that in seeking to understand how indeed “I got here”, I might be able to provide insights 

that point ways forward for others. 

So, to answer these questions, I had to reflect on my own development as a researcher in 

mathematics education, my own becoming in the Jean Lave sense of the word, in that 

“mainly, people are becoming kinds of persons” (Lave, 1996, p. 157). This becoming spans 

transformations from student to teacher to researcher, in my case, via a circuitous route. In 

developing an analytical narrative of this transformation, I will draw on the approach of 

others who have engaged in the self-study of their own development as mathematics 

educators/researchers, by reflecting on my personal history through the lens of a theoretical 

framework (e.g., Krainer, 2008; Tzur, 2001). Given that my formation has been influenced 

and supported by different communities of teachers and scholars as I stepped into and out of 
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different practices, I will adopt a socio-cultural perspective in describing and analysing the 

development of person-in-practice-in-person (Lerman, 2000). 

Conceptual Framework 

Studies on the origins of consciousness and knowledge acquisition have tended to focus 

on individual cognition and intellectual development. The 1980s, however, saw the 

emergence of theoretical frameworks that placed greater emphasis on the social origins of 

meaning, thinking and reasoning, a movement Steve Lerman referred to as a “turn to the 

social” (Lerman, 2000). The origin of such social theories is generally attributed to 

Vygotsky’s (1978) work on child intellectual development. Central to Vygotsky’s 

perspective on the process of intellectual development is the interaction between the learner 

and a more experienced other working within zones of proximal development (ZPD). The 

ZPD can be conceptualised as a set of possibilities for development that become actualised 

when learners interact with more knowledgeable people, for example teachers, and their 

learning environment. From this perspective, there can be no strict separation of an 

individual from his or her social environment (Luria et al., 1979), with cognitive 

development as an outcome of the process of acquiring culture. Thus, the individual and the 

social must be regarded as complementary elements of a single interacting system (Leont'ev, 

1981). 

An iconic work in socially oriented theories of learning that emerged at this time was 

Jean Lave's Cognition in Practice (1988). In this book, and later work (e.g., Lave, 1996), 

she challenged cognitivism and transfer theory in mathematics learning by identifying 

mathematical practices that were appropriated within professions, trades and everyday 

activities – ways of working and modes of thinking that were far more than the mere 

application of mathematics acquired from formal education. From her perspective, strategies 

and decision making associated with the use of mathematics were situated in, and products 

of, the social milieu in which they were employed.  

Building on this work, Lave and Wenger (1991) describe learning as a form of 

apprenticeship where novices are initiated into a learning community, or community of 

practice, through a process termed legitimate peripheral participation. Experts or more 

knowledgeable peers are responsible for the induction of individuals into the culture of a 

community, including beliefs, values, modes of discourse, and means and methods of 

knowledge creation. Judgments about learning are therefore based on the increased range of 

participation of the learner within the community. Through this participation, an individual 

moves from a novice towards mastery as part of who they are becoming within a community 

of practice. 

A community of practice is an intrinsic condition for the existence of knowledge, not least because it 

provides the interpretive support necessary for making sense of its heritage. Thus, participation in the 

cultural practice in which any knowledge exists is an epistemological principle of learning. The social 

structure of this practice, its power relations, and its conditions for legitimacy define possibilities for 

learning (i.e., for legitimate peripheral participation). (Lave & Wenger, 1991, p. 98) 

From this perspective, knowledge must be understood relationally, between people, 

activity, and social contexts. Becoming is consequently the degree to which a participant 

adopts the values, modes of reasoning and discourse practices of a community of practice. 

This position is, therefore, a direct challenge to the notion that knowledge construction takes 

place by the transfer of decontextualised mental objects from one individual to another. 

Building on his work with Lave, Wenger (1998) extended the notion of becoming to the 

formation of an individual’s identity within a community of practice. As a consequence, an 
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individual’s identity within a community is strongly influenced by their personal affiliation 

with its beliefs, values, modes reasoning and processes of knowledge production.  

Because learning transforms who we are and what we can do, it is an experience of identity. It is not 

just an accumulation of skills and information, but a process of becoming - to become a certain person 

or, conversely, to avoid becoming a certain person. Even the learning that we do entirely by ourselves 

contributes to making us into a specific kind of person. We accumulate skills and information, not in 

the abstract as ends in themselves, but in the service of an identity. (Wenger, 1998, p. 215) 

Thus, the identity an individual establishes within a community of practice is dependent 

on how they act and interact with others – the role they play as part of a community. At the 

same time, this identity is influenced by the community itself and the individual’s sense of 

belonging to a community. The relationship between the individual and the community is 

thus reflexive – one evolving with the other. 

Lerman (2000), in offering a critique of these ideas as they relate to mathematics 

education, raises individuality and agency as issues not fully accommodated in the thinking 

of proponents of situated and social understandings of learning. How, for example, are they 

able to realise their own goals within an existing community of practice? In response to this 

dilemma, he makes the observation that a person’s goals are already aligned with a 

community when they step into a practice because this is the reason they choose to become 

part of a community of practice. This means that not only is the person becoming in the 

practice but that the alignment of goals means that the practice is becoming in the person. 

Consequently, he suggests that the unit of analysis for socially orientated studies in 

mathematics education should be extended to person-in-practice-in-person. 

Since this time, the “social-turn” in mathematics education has been extended to 

incorporate the role of cultural practices, institutional contexts, personal histories, beliefs 

and values in attempting to understand and describe interactions central to teaching and 

learning (Goos, 2014). Valsiner (1997), for instance, reconceptualised Vygotsky’s zone of 

proximal development (ZPD), to include two additional zones that accommodate both the 

influence of social settings and the goals and actions of individuals – the zones of free 

movement (ZFM) and promoted action (ZPA). Within this new construct, the ZPD is a space 

that defines an individual’s potential development, the ZFM was conceived as the ways in 

which an individual is permitted to act within a context, and the ZPA identifies the conditions 

within a situation that promote action. 

While Valsiner’s zone theory was conceived as a theory of child intellectual 

development, others have extended its use as a tool for understanding human development 

in other areas. Goos (2013), for example, has interpreted the notion of development more 

broadly: 

…I take ‘‘development’’ to mean more than the formation of higher mental functions in children; 

instead, it refers to the emergence of new domains of action and thinking and new cultural frameworks 

that organise a person’s social and psychological functioning. (p. 523) 

A broader perspective on Valsiner’s zone theory has underpinned research within 

education including students as learners (e.g., Blanton et al., 2005), teachers as learners (e.g., 

Goos, 2014; Goos & Bennison, 2019;  Geiger et al., 2017) and teachers’ numeracy identities 

(e.g., Bennison, 2015). Goos and Bennison (2019) applied the principles of Valsiner’s zone 

theory to the development of teacher educators, attempting to understand how they learn 

within contexts defined by opportunity and conditions. Through this work, insight was 

developed into how teacher educator identities develop, and how teacher educators’ 

opportunities to learn can be improved. From this perspective, the ZPD represents the 

possibilities for development of teacher educators’ knowledge and beliefs. This includes the 
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knowledge of mathematics and pedagogy for teaching, how new teaching practices are 

learned, and their beliefs about which teaching and learning practices are effective. Within 

the context of teacher educators’ professional environment, the ZFM can be constructed as 

both external constraints and an individual’s own interpretation of related limitations or 

affordances. Such affordance and constraints include curriculum and assessment 

requirements stipulated by professional accreditation authorities, access to teaching 

resources, and the beliefs and expectations of prospective teachers. A teacher educators’ 

ZPD relates to how an individual’s goals and actions can be promoted or inhibited by 

features of their environment or the actions of others, such as their peers or institutional 

leaders. In the case of teacher educators, a ZPA might include academic structures, 

recognised markers of career development and promotion, and access to accomplished 

mentors.  

The ZPD, ZFM and ZPA form a complex that represents the dynamic interaction 

between possibilities and limitations. Teacher educators’ learning is thus the interaction of 

their development potential and their interpretation of opportunities for, and constraints on, 

progressing professional goals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Canalisation of the ZPD 

The influence of the intersection of the ZFM/ZPA (Figure 1), on what it is possible to 

promote within what is permitted, is known as the canalisation of development within the 

ZPD (Blanton et al., 2005; Oerter, 1992). Thus, canalization is how development is shaped 

under the dynamic influence of the ZFM & ZPA. This means that even though there are 

constraints individuals retain agency and are not just passive participants. 

While Goos has referred to the development as teacher education researcher in her 

discussion of how teacher educators learn (e.g., Goos, 2008), and others have described the 

skills and attributes required by educational researchers (e.g., Boaler et al., 2003), there has 

been limited discussion specific to the development of researchers in mathematics 

educations across the span of a career. In the remaining part of this paper, I will attempt to  

provide some insight into this theory/practice gap by drawing on noteworthy junctures of 

my own development (or failure) as a researcher to speculate on how these contributed to 

ZPD 

ZFM ZPA 

Canalisation 
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my understanding of personal and collective history, enculturation, and identity development 

as a researcher. 

Origins 

History precedes us. I was one of five children born into a working-class family in 

Brisbane. My father went to work as a flower boy immediately after finishing primary 

school, eventually finding an apprenticeship as a wood machinist, which he stuck with until 

retirement. My mother left school before the end of Year 6 and worked in a string of jobs 

until finding employment as a seamstress – something she still practices today for friends 

and family. 

For whatever reason, I was good at school mathematics and science. Although they 

weren’t quite sure of the implications, my parents encouraged this interest. I was the only 

child in the street who owned a microscope, a Christmas present during my primary school 

years. I’m sure I took on the role of suburb odd bod, sitting on the footpath studying whatever 

insects I could find to study. My parents’ support came out of an understanding that the 

opportunities in life were afforded by education – my father was determined that all his 

children would complete Year 10! And so we did. I won a Commonwealth Scholarship 

which allowed me to go forward to Year 12, only one of five in my cohort. I was already 

exceeding my fathers’ expectations! I remained good at mathematics, although I wasn’t 

always the best student – there were too many other things to do, cricket, rugby and school 

parties! Towards the end of Year 12, my father had set up a job for me in a bank. This 

sounded fine to me, but a teacher contacted my parents to say I should consider going onto 

university. They weren’t sure. No one in my extensive extended family (my maternal 

grandmother had 13 children) had ever done so and it was about time I started earning my 

keep. The teacher explained that there was a tertiary assistance scheme for those whose 

parents’ combined income was below a particular threshold. We were well below. Always 

supportive, my parents sat me down and asked if I’d like to go to university. “I suppose so” 

I said. And so, I found myself enrolled in a Bachelor of Science in the second intake of the 

newly minted Griffith University.  

I majored in physics and physical chemistry, with widely varying levels of achievement 

across the degree. I didn’t quite get the game of tertiary study at that stage. But university 

provided me with the opportunity to take courses in the philosophy of science, something 

quite exotic for a boy from the working class. I found it fascinating. Seminars revolved 

around types of thinking I had never encountered before – especially discussions about how 

knowledge was generated. In Conjectures and refutations: The growth of scientific 

knowledge, Karl Poppers (1963) argued that knowledge is not simply discovered but 

developed through a process of conjecture and refutation. This set me back on my heels! 

This was followed by Thomas Kuhn’s (1962) Structure of Scientific Revolutions, in which 

he outlined the paradigmatic nature of knowledge creation in science; an epiphany that set 

me on the path of fallibilism for life. 

I had initially entered the course thinking I would complete a dual qualification – a 

Bachelor of Science and a Diploma of Teaching – but I had found the demands of tertiary 

study demanding and did not believe I had the discipline to continue for another year beyond 

the BSc. I completed the qualification and went looking for a job. I spent the next 18 months 

working on the line gangs for Telecom until I was successful with an application for a 

research assistant within the Department of Engineering at the University of Queensland – a 

dream job! 
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While it might be premature to think about the affordances and opportunities at this stage 

of my life, especially in terms of ZPD, ZPA, and ZFM, there are traces of this prism I can 

see from the distance of time. I had an interest in mathematics and scientific study from an 

early age (ZPD), which was supported by my parents, despite their limited educational 

opportunities (ZFM). They also provided me with resources to encourage my mathematical 

and scientific interests (ZPA). My opportunities in education far exceeded those of my 

parents as I was able to continue in school through to Year 12 and then to university 

(ZFM/ZPA complex). From this point, however, my belief that I could not study beyond a 

BSc was a self-imposed ZFM. My way forward was to create a ZPA that saw me on a 

trajectory from my current ZFM, working as a linesman for Telecom, to a role in a university 

that supported the research of others. 

My identity, through this period of my life, was subject to constant change – but who 

was I becoming? I had been successful at school, but the cohort to which I belonged went 

their separate ways after graduation. My participation in academic life at university was not 

to a depth where I felt engaged enough in the community that I wished to continue. Yet, it 

would seem that my goals aligned with research work in universities sufficiently to step into 

a new community within an engineering department. Would this take hold? 

Changing Course – a Teaching Career 

 I enjoyed the work in the Department of Engineering, most of which was focused on the 

building and testing of a wind tunnel. I was able to use a little of my mathematical and 

scientific capabilities but after 18 months and many hours sitting in front of a small, heated 

metal filament used to measure the characteristics of wind flow in the tunnel as part of the 

process of calibration, I began to think that, perhaps, there were more exciting ways to make 

a living. I had a number of friends who had completed their dual qualifications at Griffith 

University and were now teachers. They were enjoying the challenges of the profession, so 

I decided to join them – and enrolled in a Diploma of Education at the University of 

Queensland. During the course I met two people who would be very strong influences on 

my life, Marjorie Carss and Peter Galbraith, both of whom were teaching in the program. 

I was introduced to the idea of pedagogy! I had entered the course believing that teaching 

was only a matter of telling or showing others how to do something. There was apparently 

much more to it! I was intrigued that there might be different approaches to teaching that 

should be implemented depending on the context – there was no single right way, an echo 

of fallibilism. During practicum I became aware of the complexity of the classroom and 

learnt that my best lessons were those that were approached as a problem to solve. I also 

came to understand that documenting what worked and what didn’t (as stipulated by 

Marjorie and Peter), and reflecting on why, made a difference to the success of follow-up 

lessons. Then, before I thought I was ready (but whoever is), I had finished the course and 

been invited onto the staff at the school where I had completed my final practicum. It seems 

that the principal thought I had some potential.  

In those first years, I experienced all the ups and downs that most early career teachers 

encounter. But I slowly established myself within the school as I worked on improving my 

teaching in mathematics, junior science, and physics. I was never left to my own devices as 

I could always depend on teaching colleagues for advice and there was also ongoing contact 

from Marjorie and Peter. It was Marjorie who convinced me to enrol in a Bachelor of 

Educational Studies (BEdSt). I didn’t really know why this was a good thing to do, but 

Marjorie was so sure! After completing the BEdSt, there was a pincer movement from both 
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Marjorie and Peter that resulted in my enrolment in a Master of Educational Studies 

(MEdSt). It helped that all of these courses were free at the time.  

After starting this course, however, I decided to spend some time in Europe – like many 

young Australians. I resigned from my position and headed to England. To make ends meet, 

I took up a supply teaching position at an inner-city London school at the turbulent time of 

school amalgamations. Schools at this place and time could be described as cheerful but 

violent. Students, in the main, came from low-income backgrounds, many with 

dysfunctional families. Few of the parents I met had aspirations for their children’s education 

beyond finishing O-levels. Things were tough, students were difficult to manage, and staff 

were on occasion assaulted. Almost in contrast, the school was well-resourced with the 

quality and range of available teaching materials better than those I had access to in my first 

teaching post. These resources were aimed at developing mathematical competence alone, 

with little attention to how this might be applied to problems in students’ own lives. Without 

engagement, however, little learning was possible. This experience helped me understand 

the outcome of disadvantage. It also convinced me of the need to teach mathematics and 

science in a way that connected with students’ lived experience. 

The European adventure concluded, and I returned to teaching in Australia. My MEdSt 

awaited me. I had formulated the idea for my thesis. 

It would appear my ZPA was oriented towards a life related to learning and a connection 

to research was apparent through my employment as a research assistant in a Department of 

Engineering. Despite working “out-of-field” for a period of time, I was drawn to education, 

initially as a way of making a more interesting living, but I was open to changing the 

direction of my life. My ZFM was fashioned by people who became mentors. They provided 

advice and support that led to my development as a reflective practitioner and further study 

in education. I was fortunate to have the opportunity for further study without the deterrent 

of paying fees. My engagement with a preservice program in education, ongoing 

encouragement from mentors, and experience in the classroom in two different countries 

provided the impetus for ongoing professional learning – related to both my teaching practice 

and further formal education (ZPA). 

I was being drawn into a community that I did not yet fully understand, but my goals 

seemed to be aligning. My identity had changed from that of research assistant to teacher. 

At the same time, a new identity was developing, that of educational researcher, evident in 

my enrolment in a Research Masters program. However, the identities of teacher and 

researcher were separate – teaching was my career and focus, while research was something 

I did out of interest. I was now participating, in a peripheral sense, in two communities of 

practice. Although there were overlaps, there were different modes of meaning making, 

reasoning, and knowledge generation to appropriate and reconcile. I can clearly remember 

being surprised at the differences between discourses as I negotiated my role in these 

different communities. What was my role as person-in-practice-in-person? 

Teacher and Researcher 

After returning to Australia, I was successful in an application for a teaching position in 

a significant city just outside of Brisbane – Ipswich. The school was not unlike that in which 

I had been worked in London, with many families suffering some form of disadvantage. A 

significant number of families were from various trouble spots throughout the world, with 

the students’ parents moving to Australia to give their children a better life. The experience 

only confirmed my conviction that making mathematics relevant to students was key to their 

engagement and success. This time coincided with work on my MEdSt thesis, A study of the 
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mathematical problem-solving behaviours Year 11 students solving application problems, 

with my principal supervisor, Peter Galbraith. In this work I was searching for a way to 

provide students with the type of feedback they needed to improve the way they addressed 

problems in the real world through mathematics – consistent with my belief that students 

needed to find mathematics relevant to their lives. This was also a time of marriage and 

children; the thesis took an age to finish. And I thought I was done with further study!  

It was around this time that Marjorie convinced me to attend my first MERGA 

conference, held in Brisbane in 1993. While I found some aspects of the conference 

interesting, it appeared to be a combative environment where egos were put on display with 

abandon. People argued about what I saw as minor points and few took the time to include 

me in discussions. I decided I would not attend again. An upside of the experience, however, 

was a presentation by a young researcher named Merrilyn Goos. I thought she made some 

sense – and she won an Early Career award as an outcome of the presentation! 

Three years after returning to Australia, I was successful in securing a Head of 

Mathematics position at a new school. Marjorie Carss was also encouraging me to make a 

contribution to the work of mathematics teacher professional associations – first, editor of 

the Queensland Association of Mathematics Teachers (QAMT) journal and eventually 

president. As president of QAMT, I found myself as chair of the steering committee for a 

major national initiative – the National Professional Development Program (NPDP) aimed 

at improving teaching and learning in Australian schools - a daunting experience for 

someone with no experience in leading state-wide initiatives. I was also contributing to state-

wide committees related to curriculum development and assessment. Marjorie continued to 

provide advice about how I should shape my career – and I found myself as president of the 

Australian Association of Mathematics Teachers! There was enough to do. Life was busy 

and I had a clear direction. I thought I had liberated myself from the demands of further 

study…but then I was dragged back again! 

Peter Galbraith rang. He said there was a young researcher he thought I would enjoy 

talking to. At that time, I had developed a somewhat cynical attitude toward educational 

researchers. There had been a number of visits to see what we were doing in our school’s 

Mathematics Department – it had gained some notoriety in the state. They had typically 

harvested data and left, never to be heard of again. This engagement felt like I was putting 

in significant effort with no return. But because it was Peter, I agreed to take a call. Some 

days later, the call came…“Hello, my name is Merrilyn Goos. Peter Galbraith said we should 

talk”. So we did. Merrilyn had begun a PhD study in which she was recruiting secondary 

school teachers for a project in mathematical problem solving and metacognition. Merrilyn 

talked with such enthusiasm about her research that I was convinced (with some reluctance) 

to participate in the study. This began a series of nearly weekly visits from Merrilyn over a 

period of close to three years.   

Merrilyn was different to other researchers I had encountered previously – she was 

genuinely interested in what I had to say, regarding research as a joint venture with teachers 

and not something that was done to them. After observation sessions, Merrilyn was never 

critical, she merely wanted to know why I had taken particular approaches to instruction. I 

had been a reflective practitioner for some time, but this was an extra pair of eyes that helped 

me go deeper into the reasons that underpinned my classroom decision-making. In these 

circumstances, having a researcher in the room was not a burden – it was a serious 

advantage! What I hadn’t realised when agreeing to participate, was that the research was 

part of an ARC award that Peter Galbraith, Merrilyn, and others had secured. This meant 

there were publications to be generated! Consistent with Merrilyn’s approach to 
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researcher/teacher collaboration, I was invited to join the writing team in instances when 

data had been collected from my classroom. Some of this early work (e.g., Goos et al., 2000; 

Goos et al., 2003), related to the affordances and constraints of technology in promoting 

collaborative problem solving, remains some of my most highly cited. 

I have previously described a pincer movement that had saw me return to study and 

research in education. This time Merrilyn had established a foundation on one flank by 

drawing me into her research and co-authorship, while Peter made advances from the other. 

He had been pleased with the quality of my MEdSt and encouraged me to develop a MERGA 

paper and to nominate for the Practical Implications Award (PIA). Peter provided advice 

through rounds of drafting and redrafting, and then off it went. It was successful! Merrilyn 

meanwhile had insisted I co-present with her at the next MERGA conference. It seemed I 

had no choice by this stage, and so I had to find a way there – MERGA 18 held in Darwin 

in 1995. In the PIA paper (Geiger, 1995), I presented a framework for providing feedback 

to students engaging with applications of mathematics to real world problems. The paper I 

presented with Merrilyn (Goos & Geiger, 1995) reported on a case study of metacognitive 

activity and collaborative interactions in a mathematics classroom – my classroom. I can’t 

say I was hooked, but I could see no way out. 

It would seem my ZPD was expanding, firstly though Marjorie’s encouragement to 

become engaged with state-wide and national initiatives through participation in teacher 

professional associations (peripheral participation). At the same time, Merrilyn and Peter 

had opened up possibilities for involvement in educational research. My ZFM was defined 

by access to established and promising researchers and my school was supportive of my 

involvement in their project. I was increasingly becoming involved in communities that 

engaged with national initiatives in teacher professional learning and those that conducted 

research in the teaching and learning of mathematics (ZPA). Marjorie’s, Merrilyn’s and 

Peter’s differing influence, as knowledgeable others, was impacting on my ZFM/ZPA 

complex, guiding me into new ways of becoming. There was a flame and I was the moth. 

Through this time, my identities as a teacher and researcher were being reinforced 

through participation in two different communities of practice. However, other identities 

were emerging through living life, husband and father, and by participation in a new teacher 

professional association community. Marjorie was shaping my ZPA through her 

introduction to the teacher professional development community, with Peter and Merrilyn 

helping to induct me into research – a different ZPA. At this stage, both were within the 

constraints of my ZFM. However, was I being pulled in too many different directions? 

“Now It’s Your Turn” 

Merrilyn finished her PhD. It was a wonderful piece of work and provided the basis for 

articles in the best journals in mathematics education, Educational Studies in Mathematics 

and the Journal for Research in Mathematics Education. She was on her way! Again, I 

thought there was a moment when I could escape, but then Merrilyn asked me for coffee and 

said, “now, it is your turn”. It took a little while to agree but I had very much enjoyed working 

with Peter and Merrilyn, and they convinced me I had something to contribute. And so it 

came to pass, with Peter and Merrilyn as supervisors. Merrilyn continued to come along to 

my classes – the extra eyes were invaluable, and the study began well. After the two years, 

however, things slowed down. The weight of all I had taken on, including the arrival of 

additional offspring, took its toll. No one was ever able to identify the malady, but I had to 

stop both work and study. Through this time, however, support was never far away. I was 

encouraged to do what I could when I could. Slowly I could do more, and eventually, I made 
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my way back to work and to research. I will be forever thankful for the unwavering support 

I received at that time from friends and colleagues. They know who they are. 

The episode lasted for close to 12 months in its severest stage and for close to five years 

in all. I could have walked away at any stage but the connection to ideas and the community 

had become strong. The need to be involved in research was now a part of my identity, and 

so I was drawn back to the practice - person-in-practice-in person – despite the constraints 

of poor health (ZFM). It wasn’t so easy to get away. After the worst, I began to pick up the 

threads of my PhD and I received support to present tentative findings at my first MERGA 

conference after a brief hiatus. I began to understand that involvement in research was now 

a part of who I was and that needed to sit with my love of working with students. These 

separate identities were about to reconcile. It was around this time that Peter retired (2003) 

and Merrilyn took on the responsibility of principal supervisor for my PhD. 

Merrilyn and I have written about our work together during this phase of our 

collaboration (Geiger & Goos, 2006; Goos & Geiger, 2006). These publications took the 

form of a conversation between two different types of researchers where power and authority 

were shared in recognition of different types of expertise. But by now I had fully committed 

to completing my PhD, a very hard thing to do while working in a school – my goals had 

changed as had my way of thinking about mathematics education. Thus, there was a 

developing mismatch between my identity and that of the role of a mathematics coordinator 

within a school.  

A friend sent me an advertisement for a Lecturer B position at Australian Catholic 

University – a relatively new institution that emerged during the transformation of 

institutions of higher education during the Dawkin’s reforms of the early 1990s. I applied 

for the job and was interviewed by Elizabeth Warren and Tom Cooper. To my surprise, I 

was successful. 

The decision to pursue a PhD meant that my ZPD was about to be extended. In time, my 

opportunity to complete was facilitated by a change in working circumstances (ZFM) and 

my own determination to do so (ZPA). Research was about to be part of my responsibilities, 

not just a “hobby”, an essential component of my ZFM, although illness limited my progress 

for a time. Merrilyn’s and Peter’s support were a key influence on my ZFM/ZPA complex 

and identity formation, as this was guided towards further involvement in research, as was 

the formal requirement to conduct research within my new academic position. Co-authorship 

was a particularly influential factor in promoting my progress as a researcher. 

There were further incremental shifts in identity. My more active participation in the 

educational research community was disrupting my singular engagement with my role as a 

teacher. I was now seeking alignment with goals that had changed over time and a new 

community of practice – this had implications for the person-in-practice-in-person – who 

was I and to which practice did I belong? Merrilyn and Peter were helping me bridge into 

the mathematics education community. But at this time, it was still a leap of faith. 

Choosing Something Else – A Mathematics Teacher Educator/Researcher 

Life had changed again. I was now responsible for the preparation of teachers, 

principally in mathematics but also in curriculum and assessment – nine courses as lecturer-

in-charge in a year. The level of regulation was considerably higher than in a school – course 

outlines, advanced and detailed notice of assessments, and accreditation considerations. 

There was a lot to learn, and there was that PhD to finish! Life as a teacher 

educator/researcher was complex.  



Geiger 

39  

I did find a way to complete my PhD (Geiger, 2009) and to write. At first, it was mainly 

conference papers and book chapters – typically collaborations with more experienced 

researchers – but slowly I began to take the lead. It was not always smooth sailing, however, 

with as many rejections as successes in my attempts to publish in high quality outlets. I 

remember being shattered when it took nearly two years for one manuscript to be rejected! 

It has never been published as there were other events that overtook me.  

A period of study-leave in Giessen, Germany, working with Professor Rudolf Straesser 

in 2010, provided the space I needed to focus on academic writing and begin to think about 

funding applications. This was a productive period for publication (4 journal articles and a 

book chapter). The visit to Giessen also established an ongoing research collaboration with 

Rudolf that continues to this day (e.g., Geiger & Straesser, 2015; Geiger, Delzoppo, et al. 

2021).  

Upon returning to Australia, I started attracting additional administrative responsibilities, 

secondary program coordinator and then, deputy Head of School (Research). This 

heightened the challenge of maintaining a research identity as teaching loads, administration 

and research all had to be kept in balance. I made sure that there was at least one writing day 

a week. This did not mean I put less effort into teaching. This was still central, but I had 

started to think about how these two different aspects of my identity could be better 

reconciled. I had begun to think more deeply about the nexus between research and teaching 

and worked with others on a project related to providing technology based support and 

resources to students while on practicum. This project, WebCT as a pedagogical resource 

and communicative tool for use in the professional experience program, was recognised 

nationally via an ALTC Citation in 2009. 

About this time, my Head of School asked me to think more about how to take others 

forward – I think she was suggesting that I should do more than just think about myself! I 

took the advice to heart and applied for a number of internal grant opportunities, including 

others in the applications. One related to the potential of computer algebra systems with 

Merrilyn and Rhonda Faragher (Geiger et al., 2010) and another related to the collaborative 

use by teachers of video stimulated recall techniques to improve numeracy teaching practice 

(e.g., Geiger, Muir, et al., 2016). The first was supported by the Mathematics and Literacy 

Flagship at ACU, which was led by Doug Clark and the second was supported by an 

Education Faculty grant. I was also asked to lead a research support team for members of 

the school of Education in Queensland which provided funding for the engagement of a 

senior researcher in a consultancy role – I asked Robyn Jorgensen. Each of these small grants 

provided an opportunity to gather data, and the mentorship provided by Robyn promoted our 

publication capabilities.  

I also decided to contribute in a more substantial way to the mathematics education 

community via MERGA, and successfully nominated for the role of Secretary on the 

executive (2009-2012). I served under two Presidents – Judy Mousley and Merrilyn Goos. 

My learning during this opportunity was about the scope of activity in which researchers 

could be involved, publication, conferences, development and, of course, leadership in the 

field. 

Further leadership opportunities were also emerging. After a selection process, Doug 

invited me to take up the role of Deputy Director of the Mathematics and Literacy Flagship. 

Through  this period, I continued to work with Merrilyn on a series of projects related to 

improving numeracy teaching practice within schools based on a model for numeracy for 

the 21st Century. The model brought together the dimensions of context, mathematical 

knowledge, dispositions, tools, and an evaluative element, a critical orientation, for the first 
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time (e.g., Goos et al., 2014). Shelley Dole and Anne Bennison worked with us on these 

initial projects which led into a successful ARC Discovery application with Helen Forgasz 

(2012-2015). I learnt much during this time from established researchers in the field about 

managing large projects – how to approach schools for recruiting purposes; how to work 

with education systems as well as teachers in schools, effective practices in data collection 

and achieving as well as analysis. And there were more opportunities to write. Not many 

academics from ACU had been involved in ARC funded research at that time and I was 

determined to take every opportunity to support the project, taking the position that if I 

couldn’t contribute as fully to the study as others on the intellectual plane at that stage, I 

could make up for it with sheer hard work. This program of research has led to significant 

publications as different perspectives on numeracy practice emerged, including the use of 

the numeracy model as a scaffold for planning numeracy lessons across the curriculum 

(Goos et al., 2014); auditing curriculum for numeracy opportunity (Goos et al., 2012), the 

nature of numeracy (Geiger, Goos, & Forgasz, 2015), the design of numeracy tasks (Geiger 

et al., 2014), numeracy readiness of pre-service teachers (Forgasz et al., 2015), role of 

technology in effective numeracy practice (Geiger, Goos, & Dole, 2015; Goos et al., 2013), 

and development of numeracy identity (Bennison, 2015). The model that underpins all of 

this work has received international recognition as a holistic approach to enacting numeracy. 

For example, it has been included as a framework that informed the development of the 

PIAAC Cycle 2 assessment framework: Numeracy (Tout, et al., 2021). It also received a 

MERGA Research Award in 2017. This work is ongoing (e.g., Bennison et al., 2020), with 

further opportunities to explore in this space with good friends and colleagues. 

My ZPD had now changed to accommodate the demands of a mathematics teacher 

educator – teaching, research, and service. The challenges associated with balancing these 

demands provided constraints within my ZFM. Further constraints included the standard 

required for publication in high quality international journals. Involvement with the 

Numeracy Across the Curriculum program, however, as well as mentoring by established 

colleagues and a period of study leave, had canalised my development in research and 

strengthened my connection to relevant communities of practice – strong positive influences 

on my ZPD. The ZFM/ZPA complex, at this time, was enabled by my development as a 

researcher even while meeting the many demands of a teaching/research academic – two 

separate but interrelated communities of practice and associated ZFM/ZPA complexes. The 

deeper enculturation into educational research was transforming my role as novice into fuller 

participation in a national community of practice in mathematics education, and I was taking 

my first steps into the international community. I had also taken steps towards the mentoring 

of others in a research community of practice, shifting my identity from that of complete 

novice towards mastery. Each of these developments were contributing to further 

transformations of my identity – becoming more fully immersed in the research community 

and while maintaining focus on other aspects of who I was professionally. I had now 

developed the belief and confidence that I could be a successful researcher but doing 

everything well was becoming harder, there were only so many hours in a day! 

A Broadening Role in the Mathematics Education Community  

I had another opportunity for study leave at the beginning of 2014. This time I chose to 

visit Gabriele Kaiser from Hamburg University in Germany, Katja Maass in Freiburg, and 

Peter Freid and Jonas Arleback in Linkoping, Sweden. All were part of the mathematical 

modelling community and connected with my research interest in the teaching and learning 

of mathematical applications. These visits resulted in further publications, in the short term 



Geiger 

41  

or over a longer period of time (e.g., Geiger, Ärlebäck, et al., 2016; Maass et al., 2019; Cai 

et al., 2014). 

During this time, I also wrote drafts for ARC DECRA (for early career researchers) and 

Discovery Awards. The former was successful and the later, while receiving encouraging 

reviews, was not supported by the ARC. The focus of the DECRA was an extension of work 

I had been doing with colleagues, this time looking at the processes teachers engaged when 

designing numeracy tasks for implementation across the curriculum. Through this study I 

developed a framework that outlines how numeracy task design takes place through the 

processes of identification or archiving ideas (looking, seeing, noticing), the shaping of a 

task to fit the classroom circumstances in which it was to be implemented, and the 

actualisation of a task in a classroom through a well-considered pedagogical architecture 

(e.g., Geiger, 2016; Goos et al., 2019). This work provoked further thinking about the role 

of the critical aspects of numeracy and how these could be actualised by teachers in the 

classroom through the structure of tasks, measured responsiveness, and forms of questioning 

(e.g., Geiger, 2019).  

Because of the DECRA, I was now being noticed within the university, no one at ACU 

had been successful previously. I was invited to become a member of the newly formed 

Institute for Learning Science and Teacher Education, an initiative aimed squarely at 

establishing research at ACU as world class. I was now a research-only academic. While this 

provided time to think and write, it corresponded with an increasing number of invitations 

to collaborate with others on national projects – the Opening Real Science (2013-2016) 

project led by Joanne Mulligan and supported by a range of colleagues from very different 

backgrounds in mathematics, science, and education (e.g., Geiger et al., 2018), the Building 

an evidence base for national best practice in mathematics education (2015-2016) project, 

sponsored by the Office of the Chief Scientist and led by Rosemary Callingham, in which I 

worked with many good colleagues in mathematics education nationally (Geiger et al., 

2017). There was further success with an international funding application to the Australian 

Universities-German DAAD Joint Research Cooperation Scheme (2017-2018), which 

provided opportunity to work with Jodie Miller and Jill Fielding-Wells as Early Career 

Researchers on a collaborative project with German colleagues from Darmstadt University 

led by Regina Bruder. And then, a revision of a previously unsuccessful ARC Discovery 

application with Gloria Stillman, Jill Brown, Peter Galbraith and Mogens Niss (e.g., Geiger, 

Galbriath, et al., 2021) was awarded funding for 2017-2019. This focus of this project was 

on identifying enablers of mathematical modelling from both the perspectives of instruction 

and learning. Each of these projects provided opportunity to extend ideas within research 

themes I had been working on for some time – quality teaching and learning through a focus 

on task design and implementation, applications of mathematics, and the role of digital tools 

in enhancing instruction. But there was a lot to do! I had learned, through these times that 

the contributions of support staff make a project work. The contributions are sometimes 

downplayed by researchers – at their peril! I had learned that leading research was about 

more than grant capture and publications (although these aspects are important) – it is also 

about leading people – another identity.  

More recently, a collaboration with Sharon Fraser (UTas), Kim Beswick (UNSW) and 

members of the mathematics education community, led to a successful tender for the 

Principals as STEM Leaders project (2018-2020) sponsored by the Department of 

Education, Skills and Employment. An important aspect of the project to date has been a 

framework of capabilities required by principals, teachers, students, the community, and 

researchers to promote positive STEM learning cultures within schools. The development of 
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this framework drew on the dimensions of the model for 21st Century numeracy, instigated 

by Merrilyn and further developed through collaboration with other colleagues over 15 

years. Ideas build on themselves over time. 

Robyn Jorgensen continued as an informal mentor beyond her role as a consultant on the 

research support group in my school, inviting me to put my name forward for a role as 

Associate Editor of the Mathematics Education Research Journal (MERJ). Robyn was the 

Editor-in-Chief. I was flattered but was I good enough?! It was a steep learning curve 

between 2013 and 2018, with a period as Acting Editor-in-Chief. There was much more to 

publication when looking from the other side of the process – managing reviews and 

reviewers, developing consistent feedback across submissions and working on my own 

understanding of what is required in a quality publication. This experience and a maturing 

publication record led to an invitation to act on the Editorial Board of the International 

Journal of Science and Mathematics Education as well as three Guest Editorships of ZDM - 

Mathematics Education. 

Other opportunities for international collaborations were now opening up. I was awarded 

the Giovani Prodi Guest Professorship at Wurzburg University, Germany (2018-2019) from 

an international field of 50 scholars. This experience has been the foundation of an ongoing 

collaboration with Hans-Stephan Siller and his team. My ongoing role is to collaborate with 

Stefan’s team on the internationalisation of their research, in the first instance through 

publication (e.g. Siller et al., under review), leading to funding applications. 

I am currently working with an international team on the Cycle 2 of the Programme for 

the International Assessment of Adult Competencies (e.g., Tout et al., 2021). This work has 

drawn on our numeracy research, and that of others, especially the critical aspects of what it 

means to be an informed and active citizen. I am also working on another international 

project with Iddo Gal (Haifa University, Israel) and an international team including Jill 

Fielding-Wells on the impact of the COVID-19 pandemic on pedagogy in mathematics. And 

then there is the current ARC submission that focuses on critical aspects of mathematical 

thinking, including the role of social justice in mathematics-based decision-making. There 

remain opportunities to research and learn! 

My current ZPD is now one of a mature researcher. I am now a Director of a research 

program within ILSTE, with a focus on STEM Education, and must accommodate all of the 

demands required of leadership. I have a team to mentor and lead, as well as PhD students. 

These create demands on my time that constitute constraints within my ZFM, as well as 

institutional demands that require publications be submitted to only the best journals. 

Increasing involvement in national and international collaborations are now an important 

element of my ZPA. These collaborations include both formal and informal mentoring from 

highly esteemed colleagues (I have been published in ESM, at last, with their support). I 

hope that these collaborations are also having a positive impact on the ZPA of others. My 

ZFM/ZPA complex is now fully directed towards research, with aspirations to excellence. 

This complex also overlaps with those of others in my roles of leader and mentor. I hope I 

am viewed more as an affordance than a constraint! 

I am now fully involved in two research communities of practice: one, a national and 

international related to mathematics education, and the other, related to my Institution. Many 

of the goals are the same, but there are important differences. Each has both affordances and 

constraints to how I participate. I think I have now moved a little beyond novice, but it is up 

to others to decide if I have achieved any sort of mastery. I hope I am now achieving some 

aspect of my goals related to generation of new knowledge and research excellence. At the 

same time, facilitating the fuller participation of others into the mathematics education 
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community is a goal of increasing focus. That is, providing guidance than canalises the 

ZFM/ZPA of others – another change in identity. 

Conclusion 

In their research, Goos and Bennison (2019) have traced the identity trajectory of 

teachers in mathematics education in a manner consistent with Wenger’s (1998) notion of 

identity-as-becoming. In this paper, I have attempted to connect this thinking to that of 

researcher development in mathematics education. Through this narrative, I have described 

a transformation of identity over time as an outcome of my participation in a range of 

communities – student, public servant, teacher, member of teacher professional associations, 

and researcher. Each participation has fostered multiple identities consistent with the 

practices of each community (Wenger, 1998). Entering each new community required 

realignment and an ongoing evaluation of whether my goals remained consistent with those 

of the community. Eventually I have come to participate more in some communities and less 

and others. Crow et al. (2017) have argued that “Key to successfully negotiating our stable 

selves is the reconciliation of the multiple identities which are constructed in these multiple 

communities of practice” (p. 268). This rings true for me as I believe I have retained the 

essence of each of the identities I have assumed through my career in some form, although 

each has come to the fore at different times – a different emphasis for person-in-practice-in-

person.  

So what messages do I have for researchers in mathematics education having 

experienced these different identities? I believe there are six, which I hope are evident in the 

preceding narrative: 

1. Contribute to your research community – they will challenge you to do your best 

work and support you when times are tough. 

2. Work with the best in the field – they will stretch you, bringing you forward into 

fuller participation in the community of mathematics educators. They will also 

let you know when you have more work to do before the next big step. On this 

point I have been lucky.  

3. Lead - don’t stand back waiting to be asked, initiate conversations about potential 

research ventures. Do not be afraid to bring others with you. 

4. Be wary of low hanging fruit – test yourself, aim high in terms of international 

publications, keep applying for funding despite the risk of rejection. Focus on 

quality rather than quantity. 

5. Collaborate – be generous with your time, there will be a point when you need 

to depend on others. 

6. Think nationally and internationally and not just about local demands – there are 

many opportunities out there. 

 

Through this lecture, I hope I have stimulated some thinking about the notion of a 

“reflective” researcher. I have two additional questions: 

1. We readily place the expectation of being “reflective” on teachers. Do we do the 

same when considering the development of researcher identity? 

2. What will be my/your next transformation of identity? 

 

I finish with another quote drawn from culture, this time Andy Warhol.  
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When people are ready to, they change. They never do it before then, and sometimes they die before 

they get around to it. You can't make them change if they don't want to, just like when they do want 

to, you can't stop them. 

How much you wish to change very much depends on you. 
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Aspects of excellence in mathematics education 

Berinderjeet Kaur 
National Institute of Education, Nanyang Technological University, Singapore 
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The theme of the plenary panel is Excellence in Mathematics Education. Taking excellence 

to mean a commitment to bring out the best leads us to view excellence in mathematics 

education as a goal such that teachers, students and curriculum, the three corners of the 

didactical triangle, and their interactions result in the best possible outcomes. Each of the 

four panellists share with us a unique aspect of Excellence in Mathematics Education. 

The theme of this plenary panel is Excellence in Mathematics Education. In the context 

of this panel discussion, excellence in mathematics education is viewed as a commitment 

through means to bring out the best amongst the interactions between teachers, students and 

curriculum, the vertices of the didactic triangle shown in Figure 1.  

 
   Mathematics 

 

 

 

Learner                                 Teacher 

Figure 1.  Didactic triangle (Straesser, 2007, p. 165) 

As noted by Schoenfeld (2012), it is clear that each of the entities in the figure, each of 

the arrows, and the triad denote something of importance. As such excellence is mathematics 

education is multi-faceted. In some ways mathematically powerful classrooms encompass 

all the interactions between mathematics, teachers and students. This is evident in the 

Teaching for Robust Understanding (TRU) framework (Schoenfeld, 2016, p.10) shown in 

Figure 2.  

The Five Dimensions of Mathematically Powerful Classrooms 

The 

Mathematics 

The extent to which the mathematics discussed is focussed and coherent, and to which 

connections between procedures, concepts and contexts (where appropriate) are addressed 

and explained.   

Cognitive 

Demand 

The extent to which classroom interactions create and maintain an environment of 

productive intellectual challenge conducive to students’ mathematical development. 

Access to 

Mathematical 

Content 

The extent to which classroom activity structures invite and support the active engagement 

of all of the students in the classroom with the core mathematics being addressed by the 

class. 

Agency, 

Authority, 

and Identity 

The extent to which students have opportunities to conjecture, explain, make mathematical 

arguments, and build on one another’s ideas, in ways that contribute to their development 

of agency and authority resulting in positive identities as doers of mathematics. 

Formative 

Assessment 

The extent to which the teacher solicits student thinking and subsequent instruction 

responds to those ideas, by building on productive beginnings or addressing emerging 

misunderstandings. 

Figure 2. The five dimensions of mathematically powerful classrooms  

The four panelists were asked to present their perspective on excellence in mathematics 

education and describe research and developmental project (s) that they have been involved 

in related to any aspects of excellence in mathematics education. It is apparent that each of 

them has approached the theme in a unique way. 
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Choy notes that having high expectations and providing strong support to all students, a 

notion of equity, is a necessary constituent for achieving excellence in mathematics 

education (NCTM, 2000). He uses the metaphor of confluences to characterize excellence 

and illuminates how confluences of “Big Things’ such as societal expectations, policy 

formulation and implementation, and ‘Small Things’ such as classroom practices – teachers 

juggling the balance between developing procedural fluency and conceptual understanding 

in their instructional practice whilst ensuring that students have adequate practice for 

examinations orchestrate in tandem in Singapore thereby resulting in excellence in 

mathematics education at the systemic level. 

Kwon whilst unpacking the complexity of the term excellence draws on all the three 

vertices of the didactic triangle and opines that excellence in mathematics education is best 

described in terms of research-based curriculum development, research-based teaching 

practices, and professional development of mathematics educators. She draws on her 

research projects: Inquiry Oriented Differential Equations (IO-DE) curriculum development 

project; Inquiry-Oriented teacher Actions (IOTA) research-based teaching practices project; 

and Community-Based Teacher Professional Development Model a professional 

development project to illuminate the three aspects of excellence in mathematics education.  

Attard notes that while we continually strive for excellence in mathematics education 

this strive comes with challenges. She illuminates how the current COVID-19 pandemic has 

highlighted the many variances in technology-infused mathematics teaching due to 

influences such as school context, community support, school commitment to technology 

use and school culture. Adopting a holistic model of technology integration she notes that 

clarity regarding contextual affordances and constraints may assist teachers in their planning      

of mathematics teaching and learning thereby facilitating pursuit of excellence in 

mathematics education. 

Tan proposes a framework for teaching excellence in mathematics. In the context of 

undergraduate mathematics, the framework encompasses four aspects namely module 

learning outcomes, lesson plan, teaching nodes and motivational strategies. Tan notes that 

although the learning component rests on students’ initiatives, there are several aspects of 

the learning process that teachers can facilitate.  

It is apparent from the four panelists presentations that a framework like that of TRU by 

Schoenfeld could provide a more holistic lens when considering excellence in mathematics 

education from both the perspectives of educators and researchers. This would allow for 

deeper understandings of the inter-relationships of the vertices of the didactic triangle. 

Following the presentations by the four panelists, it is hoped that the questions posed by the 

conference participants will illuminate other facets of excellence in mathematics too. Lastly, 

we hope the panel discussion will ignite conversations that would continue beyond the 

session during the conference. 
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Excellence in mathematics education: Influences on the effective 

use of technology in primary classrooms 
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The current COVID-19 pandemic has highlighted the many variances in technology-infused 

mathematics teaching due to influences such as school context, community support, school 

commitment to technology use, and school culture. These elements have a significant impact 

on how teachers plan to use technology in mathematics classrooms. In this brief paper I 

provide a snapshot of findings from a larger study to highlight some of the variances found 

in four case studies across three different primary schools. 

While we continually strive for excellence in mathematics education, we also continue 

to face challenges. The forced school shutdowns experienced by many countries during 2020 

caused by the COVID-19 pandemic forced many teachers to shift to more technology-

infused practices. This highlighted the critical role that technology plays in contemporary 

mathematics education and the need to understand more about the influence of school 

context, culture, community, and commitment on technology use in classroom practice. In 

this brief paper I share some insights from four case studies conducted in primary classrooms 

within three Australian schools to illustrate the abovementioned influences on technology 

integration in mathematics classrooms. I do this through the lens of a holistic model of 

technology integration, the Technology Integration Pyramid (Mathematics) (TIP(M)). The 

TIP(M) emerged from a larger study conducted across 10 Australian classrooms ranging 

from early childhood through to senior secondary (Attard & Holmes, 2020a, 2020b). The 

TIP(M) considers the influences on technology integration at a school level, along with the 

critical considerations for effective technology use within mathematics classrooms. In this 

paper I provide a snapshot of the complex influences across four case studies in relation to 

the teachers’ effective implementation of technology-infused mathematics lessons.  

A Model for Technology Use in Primary Mathematics Classrooms 

There are several frameworks that attempt to describe the types of knowledge required 

to integrate technology into teaching and learning. For example, the widely cited TPACK 

framework (Koehler & Mishra, 2009) provides a model of a professional knowledge 

construct, and according to Krauskopf et al. (2018), potentially provides a richness to 

teaching conversations, providing a theoretical vocabulary to help understand the required 

pedagogical considerations of technology integration (Koh, 2018). However, there are 

limitations to the TPACK framework. Although it is helpful in identifying specific 

knowledge domains for technology integration, TPACK is regarded as a pedagogically 

neutral model (Bower, 2017). The framework makes no suggestions about specific 

technologies and pedagogies that would be appropriate for mathematics, nor does it consider 

the importance of student engagement, which is a particular concern within the discipline of 

mathematics education. While TPACK provides an acknowledgement of school contexts, it 

does not provide insight into the complex contextual elements that may influence task 

design, teacher practice and student learning, and does not consider the variety of barriers 

and dilemmas that are typical to technology integration, such as a lack of technical support 
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or issues of access. Arguably, these issues influence how technology-infused teaching plays 

out in individual classrooms. 

The Technology Integration Pyramid (Mathematics) (TIP(M)) (Figure 1) (Attard & 

Holmes, 2020b) emerged from existing frameworks and the findings of the broader study 

from which this paper is drawn. TIP(M) is conceptualised as a three-dimensional model to 

illustrate the connections and inter-related elements within it that teachers should consider 

when planning for the use of any technology, regardless of device, software, access and 

school context. The purpose of TIP(M) is to assist in future-proofing technology-infused 

teaching and learning as new technologies continue to emerge. It presents a holistic means 

of understanding the parameters within which teachers operate and a recognition that student 

engagement with mathematics is a critical element for learning to occur in contemporary 

classrooms. In this paper, a sample of findings from four case studies of teachers considered 

to be effective users of technology in mathematics education is used to illustrate the 

variances and complexities that influence technology-infused mathematics teaching across 

different schools. 

 

Figure 1. Technology Integration Pyramid (Mathematics) (Attard & Holmes, 2020b) 

Methodology 

To assist in understanding how the influences described on the base of the TIP(M) 

evolved, a brief overview of the methodology employed in the larger study is provided. A 

qualitative multiple case study approach was utilised. Each case consisted of a classroom 

teacher, one member of the school leadership team, and a focus group of five or six students. 

Cases were identified through a process of purposive sampling. The case studies were 

conducted in a mixture of public and private schools and represented a range of socio-

economic and geographic areas.  

Participants 

Case study teachers were identified through professional networks as teachers who are 

considered by their peers as effective and innovative users of technology. While the three 
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schools (two case study teachers taught at the same school) were located in metropolitan 

areas, they differed significantly in terms of size, socio-economic status, access to 

technology, and school support for technology integration. School leaders were identified as 

those who had a formal leadership role. Students participating in focus groups were selected 

by their teachers as a representative sample of the case study teachers’ students. Where 

possible, students were chosen to represent a mixture of gender, ability, and attitudes towards 

mathematics.  Students below Grade 3 did not participate in focus groups. 

Data Collection and Analysis 

Data collected from the case study teacher included classroom observations, lesson 

plans, and interviews. Students participated in a focus group discussion and the nominated 

school leader participated in an interview. Data drawn from interviews and focus group 

discussions were audio recorded and transcribed verbatim. Observations were video 

recorded. Data analysis was conducted in alignment with the components of the TIP(M). To 

do this, all relevant data from interviews and focus group discussions from each of the case 

studies were collated to provide collective responses to the research question. Field notes 

and observations were used to support further analysis. For a more detailed description of 

the larger study, its methodology and findings, see Attard and Holmes (2020a, 2020b). 

The Influences on Effective Technology Use 

The three school settings examined in this paper varied in context with two being 

government schools and the other a very well-resourced independent school. The 

independent school (Case A) utilised a whole-school approach to technology integration, 

ensuring a one-to-one iPad ratio and providing professional development for teachers, 

largely in-situ, allowing for a highly contextualised approach. The teachers were expected 

to consistently reflect on the proposed purpose when thinking about using a new 

technological tool or app. Teachers in this school were actively encouraged to limit the 

number of apps used during teaching, only adding new ones when there was a clear 

pedagogical purpose for doing so. 

In contrast, the government school in two cases (B and C) had a different approach for 

the early years (K-2) and the primary years (3-6). All students in Years 3 to 6 were required 

to have their own iPad which the school facilitated through an Apple purchase plan. Students 

in the lower years had a small number of iPads to share in the classroom, but the teachers of 

these years were perceived as being more sceptical about the value of technology for 

learning. Rather than taking a whole-school approach, the technology divide in this school 

between older and younger students was quite embedded and unlikely to change with current 

teaching staff. In Case D, a whole school approach was not yet in place due to the school 

being new, yet there was still an ethos of encouragement of technology use, albeit through a 

"trial and error” method, rather than through an agreed systematic approach.When the Bring 

Your Own Device (BYOD) iPad plan was introduced for Years 3 to 6, the school in Cases 

B and C faced considerable backlash from parents, concerned about how the technology 

might change the teaching and learning practices. The school then increased communication 

with parents to ensure that support for the technology was present at home as well as at 

school. Interestingly such concerns were not raised at the independent school where even 

very young learners were expected to have their own devices.  

Despite significant differences in levels of support and access, the teachers at all schools 

saw the benefit of using technology in the mathematics classroom to shift the focus from 
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learning content to developing conceptual understanding and mathematical reasoning. They 

recognised increased opportunities for students to explore mathematics content and to 

communicate their mathematical understanding in a variety of modes using digital cameras, 

audio and video recording, and screen capture. In Cases A, B, and C, Google Sheets was 

used for learning about data and Beebots and/or Spheros were used to enhance spatial 

reasoning through basic programming. Cases A, B and C used a learning management 

system (OneNote, SeeSaw) as a means of tracking student progress and to share student work 

with parents. Kahoot was employed in all schools to check on student progress both from 

the teachers’ perspectives and as a means for students to gain immediate feedback on their 

understanding.  

In all observed lessons there was evidence of high levels of student engagement because 

of how teachers utilised the tools at hand. The technology was used seamlessly with few 

technical difficulties, regardless of constraints posed by some school contexts and 

communities. While the influences at each school varied, each teacher was able to find ways 

of using the available technologies in effective and meaningful ways.  

Arguably, some of the influences such as system policies, school funding, and provision 

of professional development are beyond the individual teachers’ control. Others, such as 

individual teacher beliefs about technology, their willingness to innovate and the depth of 

their pedagogical content knowledge can be somewhat controlled and influenced by the 

teacher. An understanding the four categories of influence (context, culture, community and 

commitment) within a teacher’s school will help to understand the possibilities for effective 

technology-infused mathematics education within each unique and individual context. 

Further, clarity regarding contextual affordances and constraints will assist teachers in the 

planning of mathematics teaching and learning and contribute to the pursuit of excellence in 

mathematics education. 
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Excellence in mathematics education is often linked with high performance in international 

achievement tests such as TIMSS. In this short paper, I broaden the notion of excellence by 

considering how the different aspects of mathematics education come together instead of 

only focusing on what these aspects are. Using confluence as a metaphor to describe 

excellence, I examine Singapore’s excellence in mathematics education by showing how the 

“big things” of education such as societal expectations, policy formulation and 

implementation, and how the “small things” of classroom practices—scheme of work, tasks 

(especially typical problems), and examinations—flow together towards the same vision of 

ambitious teaching articulated by the Singapore Mathematics Curriculum Framework. 

Excellence—from the Latin word excellere, meaning surpass—is multi-faceted. In 

mathematics education, excellence is often associated with high performance in international 

achievement tests such as TIMSS and PISA. Achieving top performance in these tests has 

been likened to obtaining medals in the “Olympics” of education (Leung, 2014) and 

declining performance over the years in these achievement tests has triggered calls in various 

countries to reform mathematics education (Gerritsen, 2021). However, I believe most 

mathematics educators would see performance in these international benchmark tests as a 

very narrow interpretation of excellence. Examining the notion of excellence in mathematics 

education may require us to investigate a myriad of educational components operating 

together in diverse contexts. In this paper, I use the metaphor of confluences—where two or 

more rivers, each with their own flow and paths, meet to form a bigger river—to characterise 

excellence. I view the notion of excellence in mathematics education as the coming together 

or flowing together of different educational aspects at a single purpose: to provide all our 

students with quality mathematical learning experiences so that they are supported to 

achieve the desired learning outcomes. 

  Having high expectations and providing strong support to all students relates to the 

notion of equity, a necessary ingredient for achieving excellence in mathematics education 

(NCTM, 2000).  There are two aspects of confluences here. First, there is a directed flow of 

policies, initiatives, and practices towards the same goal of providing high quality learning 

experiences for all. Second, there is a coming together of different understandings about the 

main elements of an excellent mathematics education, namely curriculum, teaching, 

learning, assessment, and technology. The idea is not to have a single understanding about 

what or how to teach. Rather, the aim is to achieve a balance point in which our different 

understandings about mathematics teaching and learning are compatible. In practical terms, 

this means that the educational policies, initiatives, and practices are in sync with the purpose 

of providing high quality learning experiences for all. Hence, finding the balance point and 

getting the policies, initiatives, and practices to “flow” in sync are the key levers to 

excellence. Seeing excellence in mathematics education as confluences therefore positions 

excellence as a journey and not merely a destination. In the rest of the paper, I will illustrate 

this idea of seeing excellence as confluences through the Singapore experience in 

mathematics education. 
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Confluences of ‘Big Things’ 

I begin by looking at the confluences of key elements of an excellent mathematics 

education. To that end, the principles for school mathematics, as proposed by the National 

Council of Teachers of Mathematics (NCTM), serves as a good reference point. According 

to NCTM (2000), the following six principles are fundamental to achieving excellence in 

mathematics education: equity, curriculum, teaching, learning, assessment, and technology 

(NCTM, 2000, pp. 12–24). On the surface, it is hard to imagine why anyone would have 

issues with these principles but the “math wars” in the US suggests otherwise. On one side, 

traditional mathematics advocates emphasise the importance of mastering procedures (back 

to basics) and use of more teacher-directed teaching approaches such as direct instruction; 

on the other side, reform mathematics advocates emphasise the importance of developing 

conceptual understanding via the use of more student-centric approaches such as inquiry-

based teaching. These “wars” are not unique to the US and different versions of these wars 

are still “fought” in various countries (Chernoff, 2019; Yoon et al., 2021). I find these wars 

unproductive because the polarising language used in these discourses promotes a “winner 

takes all” notion of what excellence in mathematics education means.  

Avoiding these extreme positions, excellence in mathematics education can be 

characterised by the confluences of societal expectations, policy formulation, and 

implementation. In other words, the actions of the policy makers, school leaders, teachers, 

students, parents, and mathematics educators should flow together towards a clearly 

articulated vision of mathematics education. Flowing together towards a common vision 

does not necessarily mean having a one-size-fits-all approach to teaching and learning. 

Rather, the idea is that different policies, initiatives, and practices, which may differ in their 

epistemological foundations, are directed at achieving the same vision. Such a notion allows 

for a balancing of different pedagogical and curricular positions. Singapore, widely 

acknowledged for its excellence in mathematics education, is an example of this confluence.   

In Singapore, we place a high premium on education and there is a high expectation for 

every child to do their best in education. All schools are well-funded and there is a high 

expectation for the professionalism of teachers and their quality of teaching. The Ministry 

of Education in Singapore, the governing body responsible for policy formulation and 

implementation, are largely made up of teachers. There is one teacher training institute 

responsible for pre-service teacher education to ensure consistently high-quality teacher 

education.  All these environmental factors come together to lay the groundwork for 

Singapore’s excellence in mathematics education. 

Singapore’s mathematics education and assessment, from primary school to pre-

university, is guided by the Singapore Mathematics Curriculum Framework (SMCF) since 

1990. This framework focuses on developing students’ competencies in mathematical 

problem solving, supported by five-interrelated components (Ministry of Education-

Singapore, 2018): understanding concepts, proficiency in skills, competencies in processes, 

positive attitudes for mathematics, and metacognition (p. 10). It is interesting to note that 

most, if not all, of Singapore’s curricular policies and initiatives, including the SMCF, take 

ideas from all over the world to be adapted to the Singapore’s context. Perhaps, it is 

Singapore’s pragmatic approach that has enabled these different ideas to come together as a 

coherent curricular intent (Tay et al., 2019).  

As detailed by Lee et al. (2019), the SMCF guides how different national policies such 

as National Education, ICT Masterplan, and more recently, 21st Century Competencies are 

implemented through the intended mathematics curriculum. Changes in policies are 

appropriately integrated within the mathematics curriculum while keeping an eye on the 
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goals articulated by the framework. Hence, changes to the national curriculum, pedagogical 

approaches, assessment emphases, textbooks, curricular materials, and even school-based 

curricular innovations are all introduced in reference to this framework. In addition, 

communication on these changes is carefully orchestrated to ensure consistent and coherent 

messaging and schools have some autonomy to implement these ideas in different ways. 

This ensures that the curriculum goes beyond a collection of activities and initiatives to a 

more connected and coherent focus on mathematics and its implementation, which may be 

uneven at times, is moving in the same direction. These confluences of different policies, 

initiatives, and practices at the ambitious goals of mathematics teaching have improved the 

state of Singapore’s mathematics education over the years.  

Confluences of ‘Small Things’ 

Despite the seemingly eclectic mesh of ideas for our intended curriculum, one of the 

keys to Singapore’s excellence in mathematics education lies in the recognition that effective 

teaching can take a variety of forms (Kilpatrick et al., 2001). This is evident from how 

mathematics teachers comprehend and transform the intended curriculum into instruction 

(Shulman, 1987). Each school interprets the curriculum documents and translates the 

intended curriculum into implementable schemes of work, detailing the selection and 

sequencing of content as well as the pedagogical approaches tailored to their students. 

Singapore teachers use a variety of teacher-centric and student-centric approaches in 

their teaching while juggling the balance between developing procedural fluency and 

conceptual understanding (Leong & Kaur, 2019). For example, the prevalent use of typical 

problems or textbook-type questions in mathematics classroom in Singapore, particularly 

how these problems are selected, adapted, and implemented deserves more attention (Cheng 

et al., 2021; Choy & Dindyal, 2018, 2021). In particular, Choy and Dindyal (2021) described 

how a competent secondary school teacher in Singapore noticed the affordances of typical 

problems and orchestrated a productive discussion around them, similar to the five practices 

proposed by Smith and Stein (2011). While Smith and Stein (2011) highlights the 

importance of using a rich task to orchestrate such discussions, Choy and Dindyal highlights 

the possibility of using typical problems for mathematically productive discussions.  

Similarly, Choy (2020) described how a beginning primary mathematics teacher 

orchestrated a discussion around the seemingly simple question: 0.8 × 4. These examples 

amongst others (see Cheng et al., 2021) suggest there is something interesting going on at 

the classroom level. These teachers’ practices cannot be simply classified as traditional 

teaching or reform-based teaching because these labels do not capture the complexity of their 

practices (Leong & Kaur, 2019). Instead, what these teachers have done is to create high-

quality mathematical learning experiences for their students in ways that honour both 

conceptual and procedural fluency (Choy & Dindyal, 2021). More importantly, these 

practices are not unusual in Singapore. Based on a large-scale study on the enactment of the 

Singapore mathematics curriculum (Kaur et al., 2019), the researchers highlight that there is 

a prevalent and skilful use of such problems both for mastery and concept development, with 

many of these classrooms said to be mathematically productive. 

This is despite the commonly held perception that our mathematics education is 

predominantly focused on high-stake examinations. What is often neglected is that these 

examinations do not simply test students on their procedural fluency, but they are designed 

to assess whether students understand and apply mathematical concepts to different 

problems in different contexts. Hence, teachers tend to maintain a strategic approach to 
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teaching mathematics, balancing the need for conceptual and procedural fluency as 

stipulated by the SMCF. 

In this short paper, I have tried to paint a landscape of Singapore mathematics education 

by showing how the “big things” of education, such as societal expectations, policy 

formulation and implementation, and how the “small things” of classroom practices—

scheme of work, tasks (especially typical problems), and examinations—flow together 

towards the same vision of ambitious teaching articulated by the SMCF. The picture is one 

of many different rivers, both big and small, coming together at different points to flow 

towards the sea, which forms part of the larger water cycle. It is not so much the features of 

mathematics education that makes it excellent. Rather, it is the confluences of these big and 

small pieces of mathematics education that generate the supportive environment to empower 

teachers in their work to enhance students’ learning experiences and achievements.   
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This paper provides an overview of my research projects that are part of collaborative 

research program seeking to illustrate the complexity of excellence in mathematics 

education. The aim of the first two projects were to the theoretical and empirical grounding 

for an innovative approach in differential equations called the Inquiry Oriented Differential 

Equations (IO-DE) project. The aim of the third project was to provide a model of 

professional development of mathematics teachers in South Korea. 

The concept of excellence in mathematics education is one of the most elusive in the 

educational literature. Writers often use the term excellence and assume their readers know 

what it means. Dictionaries give such definitions as “the quality of being excellent”, “an 

excellent or valuable quality”, and the “quality of being outstanding or extremely good”. 

Thus, arriving at a simple definition is a challenging matter. However, excellence in 

mathematics education can be described in terms of research-based curriculum development, 

research-based teaching practices, and professional development. I would like to describe 

my research project in related to three aspects of excellence in mathematics education.   

Inquiry Oriented Differential Equations (IO-DE) project  

The Inquiry-Orientated Differential Equations (IO-DE) project is an example of a 

collaborative effort between mathematics educators and mathematicians that seeks to 

explore the prospects and possibilities for improving undergraduate mathematics education, 

using differential equations as a case example (Kwon, 2002). In this section, I highlight the 

theoretical background for the IO-DE project and a summary of quantitative and qualitative 

studies of the IO-DE project on student learning and how teachers create and sustain an 

inquiry-oriented learning environment.  

While there are clear calls for inquiry in both science and mathematics classrooms, what 

exactly characterizes an inquiry-oriented classroom is less clear. To clarify the nature of 

inquiry-oriented classrooms and to provide a more comprehensive perspective on the 

complexity of teaching and learning, Rasmussen and Kwon (2007) characterize inquiry in 

terms of both student activity and teacher activity. In particular, students learn new 

mathematics by inquiry, which involves solving novel problems, debating mathematical 

solutions, posing and following up on conjectures, and explaining and justifying one’s 

thinking. The first function that student inquiry serves is to learn new mathematics by 

engaging in genuine argumentation. The second function that student inquiry serves is to 

empower learners to see themselves as capable of re-inventing mathematics and to see 

mathematics itself as a human activity. On the other hand, teachers also engage in inquiry. 

Teacher inquiry centres on inquiring into their students’ mathematical thinking and 

reasoning. Teacher inquiry into student thinking serves three functions. First, it enables 

teachers to interpret how their students build mathematical ideas. Second, it provides an 

opportunity for teachers to learn something new about particular mathematical ideas in light 

of student thinking. Third, it better positions teachers to follow up on students’ thinking by 

posing new questions and tasks. 
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Accomplishing these three goals was facilitated by conducting research in three related 

strands: (1) adaptation of an innovative instructional design approach at the undergraduate 

level; (2) systematic study of student thinking as they build ideas and teacher knowledge to 

support students’ re-invention; and (3) careful attention to the social production of meaning 

and student identity. These three strands do not represent a linear progression in our research. 

We conducted research in these three strands concurrently and view the strands as 

complementary.  

The implications of the IO-DE project are threefold. First, based on the results of the 

pre-test and the delayed post-test (Kwon, 2005; Rasmussen et al., 2006), the IO-DE students 

from each of the four institutions outperformed traditionally taught comparison students on 

the post-test. This result was true for both males and females and for high and low achieving 

students. This result demonstrates that this instructional approach can be applicable to 

university mathematics. Secondly and more importantly, the instructional methods and 

curriculum design approach guided by Realistic Mathematics Education (RME) framework 

are applicable to promoting student learning in all mathematics classrooms (Kwon, 2002). 

Thirdly, the IO-DE project can provide a model for how it is that teachers create and sustain 

inquiry-oriented learning environments in which students gain mathematical power and 

sophistication. 

Since Rasmussen and Kwon (2007) reported their work on Inquiry-Oriented Differential 

Equations (IO-DE) class, Inquiry-Oriented Instruction(IOI) has been widely used in the field 

in which researchers applied IOI in other content areas such as linear algebra (Wawro et al., 

2012), scaled up curricular materials for IOI in abstract algebra courses (Larsen et al., 2013), 

and theorized principles for enacting IOI in practice (Kuster et al., 2018). IO-DE project 

exemplify a research-driven reform in instructional practices of excellence in mathematics 

education that have been led by the field of research in university mathematics education  

Inquiry-Oriented Teacher Actions (IOTA) Project 

In the past decades the K-16 mathematics education community has strived to improve 

the teaching and learning of mathematics via a concerted effort to develop innovative 

curriculum, to train more effective and knowledgeable teachers, to better understand how 

students build mathematical ideas, and to better understand how teachers create and sustain 

mathematics classrooms in which students learn mathematics in powerful and deep ways. 

Much progress has been made in terms of curriculum development and building models of 

students’ mathematical learning. Much less progress has been made, however, in 

understanding how it is that teachers create and sustain classroom learning environments in 

which students build robust relational understandings of mathematics and develop desirable 

dispositions and attitudes towards knowing and doing mathematics. Indeed, past research as 

well as our experiences with undergraduate mathematics teachers demonstrates that it is 

quite difficult for teachers to develop and sustain such classroom learning environments. 

Models of how teachers accomplish this task would contribute both theoretically to the 

literature on teaching and practically to professional development efforts. 

 The goal of the Inquiry-Oriented Teacher Actions (IOTA) Project is to develop a model 

for how it is that teachers create and sustain inquiry-oriented learning environments in which 

students gain mathematical power and sophistication. In particular, we focus on 

characterizing teachers’ discursive moves in inquiry-oriented classrooms. We use an 

innovative approach to differential equations, referred to as the IO-DE project as a case 

example.  
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We define inquiry-oriented learning environments as those classrooms that have two 

distinguishing features. First, regarding student activity, students routinely explain and 

justify their thinking and listen to and attempt to make sense of others’ ideas. That is, students 

engage in genuine argumentation as they build mathematical ideas. Regarding teacher 

activity, teachers routinely inquire into how it is that students are thinking about the 

mathematics. In other words, teachers are continually attempting to understand their 

students’ mathematical reasoning. Such understanding contributes to their decisions about 

how to proceed to advance their mathematical agenda. 

As a start to define discursive moves, we operationalize discursive moves in terms of the 

following three types of teacher actions: Teacher Questioning, Teacher Revoicing, and 

Teacher Telling. We leave open the possibility that our analysis will reveal other types of 

discursive moves. In addition, these discursive moves are intended to include verbal 

utterances as well as their kinaesthetic actions, such as gestures. 

Kwon et al. (2008) detail four different functions of the teacher’s revoicing in an inquiry-

oriented classroom, because it is one of the discursive strategies that often occurs in the 

teaching of mathematics, but which has received limited attention in mathematics education 

research at the undergraduate level. Our analysis shows that a teacher’s revoicing can 

constitute a major repertoire of his or her discursive moves and carries out critical functions 

in the context of mathematics practice in class. For example, one function of revoicing 

identified was that of a binder – in which the teacher’s revoicing created a context for 

students to bring up and align themselves with diverse mathematical positions – which 

supported the discursive, social process of negotiating meaning. Theoretically, these 

pedagogical moves were related to the instructional design theory of RME (Rasmussen & 

Kwon, 2007) and Vygotsky’s notion of culture tool. Pragmatically, these moves provide 

strategies for others who wish to create mathematical discursive communities to support 

students’ evolving mathematical reasoning.  

A Community-Based Teacher Professional Development Model  

Kwon et al. (2014) introduced a conceptual framework and practices, yield by research, 

into a teacher professional development program focusing on teacher community for 

mathematics teachers to increase professionalism. Conceptually, it was distinguished from 

the other training programs in terms of the participants, curriculum and methods. The teacher 

communities consisting of three or four teachers from the same school, as well as a mentor 

and sub-mentor, master, or professional teachers with professional expertise and executive 

capability. The curriculum of our program includes some process practicing and reflecting 

of teachers’ communities on their own classes. The program’s structure required active 

participation. Through our program, the teachers improved their teaching competency. Also, 

the operational ability of the teacher learning communities was improved. A teaching and 

learning community culture had been formed in each school, which showed that the 

community could continue even though the PD was no longer being conducted at the school 

operated even after our program was over. In the past, teachers avoided opening up their 

classrooms for others to observe, as this was previously regarded as a form of teacher 

evaluation in Korean classroom culture. However, the teachers who participated in the 

program now offered to open up their classrooms for other teaching community members, 

and saw this as an opportunity to contribute to improving the teaching competency of the 

community.  

The ultimate purpose of the community-based mathematics teachers PD program that 

was developed by this research is to support continuous development of teachers’ 
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professionalism through training, where professionalism of mathematics teachers is regarded 

as a factor enhancing their ability to improve their lessons and help students’ learning. To 

this end, rather than transferring all responsibilities to individual teachers, their 

professionalism was enhanced by growth through collaboration and reflection within the 

teachers’ community.  

The concept and procedural model of the training program developed by this research 

may be modified to suit the needs of course subjects other than mathematics, so that the 

model can be applied to the operation of PD programs for these other subjects. This 

systematic PD program will facilitate sustainable development of teachers’ professionalism 

as teacher-researcher, the spread of community among teachers, and the enhancement of 

teachers’ capability to implement the learning material, thereby creating positive change in 

mathematics education. In fact, inspired by these positive effects, the Korea Foundation for 

the Advancement of Science and Creativity (KOFAC) is implementing our PD program 

model in its PD program for elementary school teachers to foster mathematics classes based 

on storytelling.  

Final Words 

How can we inspire leaners to excel? To achieve excellent learning outcomes, we need 

excellent teachers. These projects discussed in this paper provide models towards excellence 

in teacher education. It is clear that these models need to be investigated in more depth, both 

as research topics and innovative practices.  
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A framework for teaching excellence in the context of  
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In this paper, I propose a framework for teaching excellence in mathematics, particularly in 

the context of universities. The framework encompasses four aspects: module learning 

outcomes, lesson plan, teaching modes, and motivational strategies. Through this framework, 

I will share with readers my view on various aspects that a math teacher should pay attention 

in order to excel in his or her teaching.  

Regardless of subjects and levels, education is made up of three components: curriculum, 

teaching and learning. In the university context, the curriculum of a program is typically 

developed at the departmental level; the teaching is delivered by the lecturers, instructors or 

teaching assistants; and the learning comes from the students. Although the three 

components are acted upon by three distinct groups of people, they are clearly inter-related 

(Figure 1). This three-way structure is similar at the school level. In the Singapore local 

school context, the curriculum is developed by the Ministry of Education. 

 

Figure 1. Three components of mathematics education 

Generally speaking, as long as it aligns with the university’s educational direction, the 

department has the liberty to develop the curriculum for its program independently. This 

includes the program requirement, structure and study plan. The department also looks at the 

syllabus and prerequisites of individual modules. The component that I will be focusing on 

is Teaching, in particular at the module level. 

A Framework for Teaching Excellence 

The lecturer, who is usually also the module coordinator, needs to define the module 

learning outcomes (MLO) based on the syllabus. Guided by the learning outcomes, the 

lecturer will proceed to design the module. This entails coming up with the lesson plan and 

deciding on the teaching and assessment modes.  At a micro level, the lecturer and the TA 

can also do the same for every single class he or she conducts. 

Although the learning component mainly comes from the students’ own initiative, there 

are various aspects that the teachers can facilitate the learning process. Other than 

transmitting the knowledge and assessing the students, teachers can engage the students by 

asking questions and providing feedback to them. Another important aspect that I will 

elaborate is to come up with strategies to motivate student learning. 
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I would like to propose a Framework for Teaching Excellence (Figure 2) at the module 

level. The framework takes the form of a pyramid. At the tip of the pyramid is the module 

learning outcomes (MLO), which is the ultimate goal that every module should thrive to 

achieve. The other three layers of the pyramid which contribute to reaching the MLOs are 

having a sound lesson plan, adopting teaching mode that will engage the students, and 

coming up with effective strategies that motivate student learning. 

 

Figure 2. Framework for Teaching Excellence 

Module Learning Outcomes (MLO) 

All good teaching should come with a set of learning outcomes that are clearly articulated 

and communicated to the students. Good MLO should not just narrowly focus on the 

concepts within the syllabus that students are expected to learn. It should also include other 

higher order learning, such as applying the concepts within and outside the module, 

integrating the concepts within the module, and seeing connection of the concepts beyond 

the module. The teacher should then develop and design the module with the MLO in mind.  

Lesson planning 

The bottom line in the module design is to have a lesson plan. Lesson planning is 

generally quite straightforward – as long as it is aligned with the MLO. A sound lesson plan 

is comprehensive and has more than just a list of the topics to be covered for each lesson. It 

should be supplemented with in-class and outside classroom activities that enhance student 

learning. For example, a good teacher will pay attention to the difficulties that students have 

and address them adequately by allocating more time to illustrate with additional examples 

or the use of analogies to illuminate the concepts. On the other hand, easier concepts or 

topics can be left as assignment for students to read on their own. Teachers should also 

surface common mistakes, misconceptions, and other pitfalls among the students. Though it 

is more direct for the teachers to highlight them to the students, it is more effective to design 

some examples or problems for students to self-discover their own mistakes. Furthermore, 

assessments should be an integrated part of the lesson plan. Other than the traditional 

summative assessments, like tests and examinations, formative assessments in the form of 

quizzes, assignment, and group work can also be introduced to gauge students’ 

understanding of the concepts and to make the lesson more interactive. 

Teaching modes 

There are several modes of teaching that teachers may choose to adopt, ranging from the 

traditional face-to-face (F2F) “lecture + tutorial” format, to blended-learning, to flipped-

classrooms – which teaching mode to adopt depends on the nature of the classroom activities. 

Due to Covid-19 restrictions, many F2F classes have been converted to online classes, 

MLO

Motivational strategies

Engaging teaching modes

Sound lesson plan
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typically delivered through video-conferencing platforms (e.g., Zoom, Microsoft Teams). 

The module coordinator should also take into consideration the students’ level of 

understanding of mathematics, class size, and nature of the modules, together with other 

constraints, when choosing the appropriate mode of teaching. The question is not about 

whether flipped classroom is better than traditional lecture – it is about whether a teaching 

mode can effectively engage the students with the intended lesson plan.  

The key word is “engaging”. If most students in a class are highly motivated or high-

ability students, the teacher may consider replacing live lectures with fully flipped classes. 

The students can be challenged to read the notes or textbook independently. This should be 

complemented with some interactive activities such as discussion or seminar-styled sessions. 

On the other hand, if a class mainly consists of students with weak mathematical foundation, 

for example a bridging course, then an interactive F2F class may be more suitable to gauge 

the students’ understanding and to provide instant clarification. More commonly, there are 

students with diverse aptitude and backgrounds in the class, typically found in foundational 

courses like calculus or linear algebra. The lecturer can consider a hybrid mode in this case. 

One approach is to prepare lecture materials (can be in the form of pre-recorded videos) for 

the students to read or view in advance. This is then followed by F2F sessions for the lecturer 

to further elaborate on the more difficult concepts. Such sessions can be made optional just 

for the weaker students. Nevertheless, if a teacher can find the right balance to engage all 

the students in class regardless of their backgrounds, such sessions can also be made 

compulsory if they help to meet the MLO. A lecturer should also take into consideration the 

short attention span of the new generation of students when choosing their teaching modes. 

Motivational strategies 

To complete the puzzle of excellent teaching, learning must take place among the 

students. As much as we hope that all students will be self-motivated with their learning, the 

reality suggests otherwise. No matter how hard a teacher tries to explain the concepts, if the 

students are not motivated to take the learning seriously, the MLO will not be met. It is 

therefore essential for good teachers to develop some strategies to motivate student learning. 

We are mainly concerned about two groups of students: the first group are those that are 

not motivated and typically only study near the exam date; and the second group are 

motivated solely by the exam grades. For the first group of students, it is definitely 

undesirable for them to cramp the learning of mathematics within a few days. There are 

diverse reasons for their behaviour. For some, this may be caused by not being able to follow 

the class or not seeing the relevance of the module. For others, they may be simply 

unimpressed with the teaching, while some are simply not interested. The teacher should 

identify the more common reasons and come up with appropriate strategies to address them. 

Giving support, encouragement, and feedback to the students will definitely help. Rewarding 

with points for constant work can also be an effective strategy.  

The second group of students can be very hardworking. Some may even approach the 

teachers for more exercise problems or past year papers to practice. The concern here is 

superficial and rote learning. The lecturers could guide the students to see the big idea and 

provide them with the insights. They could also advise students to slow down and do some 

reflections and analysis of their own works instead of rushing through as many problems as 

they can. Once the students are enlightened, they will become genuine learners and will be 

motivated to go deeper to explore the subject.   
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The Framework for Teaching Excellence in Action 

I shall now illustrate the Framework for Teaching Excellence in action with an example 

from the NUS mathematics program (Figure 3). In the university program, most modules are 

inter-related by prerequisite trees:  

 

Figure 3. An example of a prerequisite tree 

The module MA1101R (Linear Algebra) is the prerequisite for the two level 2000 modules 

MA2101 and MA2214, which in turn are prerequisites of some other level 3000 modules. In 

other words, the lecturer teaching MA3201 may assume his students already know the 

concepts taught in MA1101R and MA2101. However, it is rather common to hear colleagues 

lamenting about their students being clueless about concepts that they were supposed to learn 

in the prerequisites. We are quick to blame the students. They learned the module and they 

passed the exam, but they are not able to apply or connect what they have learned beyond 

the module. The lecturers who teach those prerequisite modules could also reflect on how to 

address such issues.  

Using the Framework for Teaching Excellence, a lecturer can make it explicit to include 

in the MLO that require students to “apply the concepts beyond the module”. This serves as 

a message for the students to see the larger objective of the module. But more importantly, 

by making this learning outcome visible, it also reminds the lecturer to design the module 

with this end goal in mind. Conscious effort can be made to build in some class activities or 

assessments in the lesson plan. For example, a mini group project with the task to look for 

some applications of the concepts that are not found in the module. Through appropriate 

teaching mode, the lecturer can convey the message in his or her instructions. In particular, 

to serve as a motivation, the lecturer may give a preview of how some of the concepts will 

be relevant in future courses. 

The above example illustrates the importance of MLO in the framework to guide the 

module design. The example also suggest how to formulate higher order learning outcomes 

beyond the topics to be covered. 

Concluding Remarks 

I have briefly discussed some aspects of good practices in teaching excellence, mainly 

for mathematics education. An excellent math teacher needs not be someone who is 

charismatic and eloquent. He or she must be one who is sincere in the teaching and willing 

to put in time and effort in crafting the MLO, designing the module, as well as motivating 

and supporting student learning. 
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The Enactment Project is a Programmatic Research Project funded by the Ministry of 

Education, Singapore, and administered through the Office of Educational Research, 

National Institute of Education, Nanyang Technological University. The project began in 

2016 and its aim is to study the enactment of the Singapore mathematics curriculum across 

the whole spectrum of secondary schools within the jurisdiction. There were two phases in 

the project: the first involved in-depth examination of 30 experienced and competent 

mathematics to draw out characteristics of their practices; in the second phase, we study the 

extent of these characteristics through a survey of 677 mathematics teachers. A symposium 

was organised in MERGA 42 in 2019 where the foundational elements of this project were 

presented; we would like to share more findings of this project in this year’s conference. 

 

Paper 1: Berinderjeet Kaur Models of mathematics teaching practice in Singapore 

secondary schools 

This paper revisits the models of mathematics teaching practice that were proposed by 

earlier researchers of the Singapore mathematics classrooms: Traditional Instruction (TI), 

Direct Instruction (DI), and Teaching for Understanding (TfU). The data from the survey in 

this project point to hybridisation of these models. 

Paper 2: Tin Lam Toh An experienced and competent teacher’s instructional practice for 

normal technical students: A case study  

This paper presents a case of how an experienced and competent teacher engaged 

mathematics “low-attainers” in the learning of mathematics in a way that was responsive to 

their learning needs while upholding the ambitious goal of helping them acquire relational 

understanding of mathematical concepts. 

 

Paper 3: Joseph Boon Wooi Yeo Imbuement of desired attitudes by experienced and 

competent Singapore secondary mathematics teachers 

One of the components of the Singapore Pentagonal curricular framework is “Attitude”. 

This paper presents findings of a survey that point to specific strategies used by Singapore 

mathematics teacher to imbue positive attitude towards mathematics in their students. 
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Paper 4: Yew Hoong Leong & Lu Pien Cheng Singapore mathematics teachers’ design of 

instructional materials 

Case studies based on the data in Phase 1 of the project revealed that the teachers crafted 

their own instructional materials based on modifications of reference materials. This paper 

summarises some of the moves teachers adopted when designing instructional materials for 

their lessons. 
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Models of mathematics teaching practice in Singapore 

secondary schools 

Berinderjeet Kaur 
National Institute of Education, Nanyang Technological University 

<berinderjeet.kaur@nie.edu.sg> 

A model of instruction is a set of strategies that guide teachers in their instructional practice. 

The purpose of this paper is to dispel the myth that mathematics teaching in Singapore 

schools is all about drill and practice, as perceived of many Asian systems. This paper draws 

on data of a large project that examined the enactment of school mathematics curriculum in 

Singapore secondary schools. Based on the teaching practices of 30 experienced and 

competent teachers, a survey was constructed and administered to 677 teachers. The data 

from the survey showed that teachers go well beyond traditional forms of instruction in their 

teaching practices in Singapore secondary schools.  

Leung (2001) noted that in East Asian mathematics classrooms  

Instruction is very much teacher dominated and student involvement minimal. … [Teaching is] 

usually conducted in whole group settings, with relatively large class sizes. … [There is] virtually no 

group work or activities, and memorization of mathematics is stressed … [and] students are required 

to learn by rote. … [Students are] required to engage in ample practice of mathematical skills, mostly 

without thorough understanding. (Leung, 2001, pp. 35–36).  

Hogan et al. (2013) examined the instructional practices of Grade 9 mathematics teachers 

and found that several models of instruction were prevalent in the practices. All of which 

had the goal of mastery and examination preparation. In a synthesis of past mathematics 

classroom studies done in Singapore, Kaur (2017) conjectured that instructional practices 

for mathematics in Singapore classrooms, based on the data of the study by Hogan et al. 

(2013) and the Learners Perspective Study carried out in Singapore (Kaur, 2009), cannot be 

considered either Eastern or Western but a coherent combination of both. Basis of the claim 

is that: i) Traditional Instruction (TI) provides the foundation of the instructional order, and 

ii) Direct Instruction (DI) builds on TI practices and extends and refines the instructional 

repertoire. While Teaching for Understanding/ Co-regulated Learning Strategies 

(TfU/CRLS) practices build on TI and DI practices and extend the instructional repertoire 

even further in ways that focus on developing student understanding and student-directed 

learning. The study reported in this paper further illuminates models of teaching practices of 

mathematics teachers in Singapore secondary schools. 

The Study 

The study reported in this paper is part of a larger project, details of which are available 

elsewhere (Kaur et al., 2018; Toh et al., 2019). A study of mathematics lessons enacted by 

30 experienced and competent mathematics teachers in Singapore secondary schools 

revealed that teacher and student actions from three main models of instruction were guiding 

teachers in their instructional practice. We elaborate the models and provide examples of 

teacher and student actions that were observed in the lessons of the experienced and 

competent teachers (which are marked *) as well as those that were not but were included in 

the survey.  For actions that are marked * we also indicate the respective courses of study 

which are Integrated Programme (IP), Express Course (EX), Normal (Academic) Course 
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(NA) and Normal (Technical) Course (NT) where the actions were observed. The IP is for 

the mathematically able students and the NT is for the least able ones.  

Traditional Instruction (TI) 

A method of instruction that is teacher-centred, rather than learner-centred, in which the 

focus is on rote-learning and memorisation. In the context of Asian classrooms it is often 

associated with drill and practice (Biggs & Watkins, 2001; Hogan et al., 2013; Leung, 2006). 

There were altogether 13 TI teacher actions, and examples of two such actions are as follows:  

 

Teacher – 

• *asking students direct questions to stimulate students’ recall of past knowledge / 

check for understanding of concepts being developed in the lesson (EX, NA) 

• *providing students with sufficient questions from textbooks / workbooks / other 

sources to practise so as to develop procedural fluency (EX, NA, NT) 

Direct Instruction (DI) 

A method of instruction that involves an explicit step-by-step strategy, often teacher-

centred, with checks for mastery of procedural or conceptual knowledge (Hattie, 2003; 

Hogan et al., 2013; Good & Brophy, 2003). There were altogether nine teacher actions and 

two student actions and examples of two each are as follows: 

 

Teacher – 

• *using the “I do, We do, You do” strategy, i.e. 

o Demonstrating how to apply a concept / carry out a skill on the board [I do] 

o Demonstrating again the same using another similar example but with inputs from 

students [We do] 

o Asking the students to do a similar question by themselves [You do] (EX, NA, 

NT) 

• *explaining what exemplary solutions of mathematics problems must contain (logical 

steps and clear statements and / or how marks are given for such work during 

examinations) (IP, EX, NA) 

Students – 

• *asking questions when they do not understand (IP, EX, NA, NT) 

• *practising a similar problem after the teacher has shown them how to do a similar one 

on the board (IP, EX, NA, NT) 

Teaching for Understanding (TfU)  

A method of instruction that places student learning at the core. Teacher facilitates, 

monitors and regulates student learning through student-centred approaches (Hogan et al., 

2013; Good & Brophy, 2003; Perkins, 1993). There were 13 teacher actions and 15 student 

actions, and examples of two each are as follows: 

Teacher – 

• *focusing on mathematical vocabulary (such as equations, expressions) to help 

students build mathematical concepts (IP, EX, NA, NT) 

• *providing collective feedback to whole class for common mistakes and 

misconceptions related to in-class work and homework (IP, EX, NA, NT) 
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Students – 

• *explaining how their solutions or how their answers are obtained (IP, EX, NA, NT) 

• *discussing and helping each other while doing individual seatwork (IP, EX, NA, NT) 

The Survey 

The survey had three parts. The first part had 60 items (36 describing teacher actions and 

another 24 describing student actions). Amongst these items were the seven items on TI, 11 

items on DI and 28 items on TfU. In the survey, teachers were asked to reflect on their 

lessons for a course (IP, EX, NA or NT) they were teaching, and respond to the items 

indicating the frequency of their actions on a Likert Scale of 1 (Never/Rarely) to 4 

(Mostly/Always). 691 teachers completed the survey. In the preliminary screening of the 

data, some responses were removed as they did not meet the requirements of the survey. The 

data of 677 teachers were used for subsequent analyses. Forty percent of the teachers were 

male while 60 % were female and this was representative of the demographic of the teacher 

population in secondary schools which were 36 % males and 64 % females (MOE, 2018). 

In addition, the representation by course of study, almost 65% for the IP and EX, and 35% 

for the NA and NT courses was also coherent with the demographic of the student population 

in secondary schools which was 64% and 36% respectively for the IP and EX and NA and 

NT courses (MOE, 2018). Forty-five percent of the teachers had more than three but less 

than 10 years of mathematics teaching experience while the rest 55% had more than 10 years 

of the same experience.   

What models of instruction guide mathematics teaching in the classrooms of 

mathematics teachers in Singapore secondary schools, in general? 

Table 1 

Means of the three models of instruction  

 

Course of Study 

Mean+ 

Model of Instruction 

TI DI TfU 

All (n=677) 2.78 3.11 2.86 

Integrated Programme (IP) (n=58) 2.42 3.07 3.00 

Express (EX) (n=380) 2.78 3.10 2.88 

Normal (Academic) (NA) (n=151) 2.81 3.10 2.77 

Normal (Technical) (NT) (n=88) 2.94 3.17 2.85 

+maximum = 4; minimum = 1. 

Table 1 shows that teachers appear to draw on teaching moves from all the three models of 

instruction, though with differing emphasis to enact their lessons. Direct Instruction appears 

to be the dominant model that teachers draw on in all the four courses of study. In the NA 

and NT classes, Direct Instruction and Traditional Instruction are apparently more prevalent 

whilst in the IP and EX classes Direct Instruction and Teaching for Understanding are 

apparently more prevalent. We next examined the survey items for each course of study that 

had a mean greater than 3 and a standard deviation of less than or equal to 0.7. The following 

teaching/learning actions were found to be common across all the four courses of study. 



Kaur 

70 

• Teacher providing students with sufficient questions from textbooks / workbooks / 

other sources to practise so as to develop procedural fluency 

• Students asking questions when they do not understand 

• Teacher walking around the class and providing students with between-desk 

instruction (i.e. help them with their difficulties) when they are doing their work at 

their desks 

• Teacher walking around the class noting student work that teacher would draw on to 

provide the class feedback during whole class review 

• Teacher only progressing to the next objective of the lesson when he/she is confident 

that students have grasped the one before 

• Teacher providing feedback to individuals for in-class work and homework to serve 

as information and diagnosis so that students can correct their errors and improve 

• Teacher providing collective feedback to whole class for common mistakes and 

misconceptions related to in-class work and homework 

• Teacher focusing on mathematical vocabulary (such as factorise, solve) to help 

students adopt the correct skills needed to work on mathematical tasks 

• Students explaining how their solutions or their answers are obtained 

We conclude that the model of instruction that mathematics teachers in Singapore secondary 

schools adopt is a hybrid one comprising TI, DI and TfU. This finding lends to strengthen 

our earlier conjecture that mathematics instruction in Singapore secondary schools is neither 

Eastern nor Western but a coherent combination of both, i.e. a hybridisation of TI, DI and 

TfU. 

References 

Biggs, J. & Walkins, D. (2001). Teaching the Chinese learner: Psychological and pedagogical perspectives. 

Hong Kong: The University of Hong Kong, Comparative Education Research Centre. 

Good, T. L. & Brophy, J. E. (2003). Looking in classrooms. New York: Allyn & Bacon. 

Hattie, J. (2003, October). Teachers make a difference: What is the research evidence? Distinguishing expert 

teachers from novice and experienced teacher. Paper presented at the Building Teacher Quality: What 

does the research tell us ACER Research Conference, Melbourne, Australia. 

Hogan, D., Chan, M., Rahim, R., Kwek, D., Aye, K.M., Loo, S.C., Sheng, Y. Z., & Luo, W. (2013). Assessment 

and the logic of instructional practice in Secondary 3 English and mathematics classrooms in Singapore. 

Review of Education, 1, 57-106. 

Kaur, B. (2009). Characteristics of good mathematics teaching in Singapore Grade 8 classrooms: A 

juxtaposition of teachers’ practice and students’ perception. ZDM Mathematics Education, 41, 333-347. 

Kaur, B. (2017). Mathematics classroom studies: Multiple lenses and perspectives. In Kaiser, G. (Ed.), 

Proceedings of the 13th International Congress on Mathematical Education (ICME 13) (pp 45 – 61). 

Cham, Switzerland: Springer Open. 

Kaur, B., Tay, E. G., Toh, T. L., Leong, Y. H. & Lee, N. H. (2018). A study of school mathematics curriculum 

enacted by competent teachers in Singapore secondary schools. Mathematics Education Research Journal, 

30(1), 103-116.  

Leung, F.K.S. (2001). In search of an East Asian identity in mathematics education. Educational Studies in 

Mathematics, 47(1), 35-41. 

Leung, F.K.S. (2006). Mathematics education in East Asia and the West: Does culture matter? In F. K. S. 

Leung, K-D. Graf & F. Lopez-Real (Eds.) Mathematics education in different cultural traditions: A 

comparative study of East Asia and the West (pp. 21–46). New York: Springer. 

Ministry of Education. (2018). Education statistics digest 2018. Singapore: Ministry of Education. 

Perkins, D. (1993). Teaching for understanding. American Educator, 17(3), pp. 8, 28–35. 

Toh, T. L., Kaur, B., Tay, E. G., Lee, N. H. & Leong, Y. H. (2019, July). A study of school mathematics 

curriculum enacted by teachers in Singapore secondary schools. In G. Hine, S. Blackley, & A. Cooke 

(Eds.), Mathematics Education Research Impacting Practice (Proceedings of the 42nd annual conference 

of the Mathematics Education Research Group of Australasia) (pp. 82-85). Perth: MERGA.



 

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics 

Education: Foundations and Pathways (Proceedings of the 43rd annual conference of the Mathematics 

Education Research Group of Australasia), pp. 71-74. Singapore: MERGA. 

An experienced and competent teacher’s instructional practice for 

normal technical students: A case study  

Tin Lam Toh 
National Institute of Education, Nanyang Technological University 

<tinlam.toh@nie.edu.sg> 

This paper presents a case study of an experienced and competent mathematics teacher’s 

classroom instructional practice in a Normal Technical Mathematics course.  The topic that 

was observed was Volume and Surface Area of a Pyramid, a subtopic within the mensuration 

topic in Secondary Two syllabus. The teacher used a video clip on the Egyptian Pyramids to 

integrate students’ prior knowledge on pyramids, which raised their attention on the topic.  

This was followed by engaging the students in hands-on activity to understand the formulae.    

The case study is part of the larger research project on enactment of the curriculum in 

the mathematics classroom as reported by this symposium.  

Low Attaining Students 

Studies have shown that low attaining students are generally visual and kinaesthetic 

learners (e.g. Amir & Subramaniam, 2007; Rayneri & Gerber, 2003). The mainstream 

education programmes worldwide are usually more theory-based than skill-based with 

ample hands-on opportunity for individual learners (Glass, 2003). Therefore, it is not at all 

surprising that this dissonance puts the low attaining students, who usually learn best through 

visual and physical engagement, at a disadvantage in the education system. 

Low attaining students generally have little interest in academic subjects. They lack 

focus during lessons, have short attention span and hence tend to be restless in classes (Lui 

et al., 2009). Thus, typical teacher-centric teaching approaches might not be most 

appropriate for them. Myron and Keith (2007) stressed that in order for teachers to be more 

successful in working with the low attaining students, they must be more cognizant of the 

various learning styles of their students and attempt different teaching approaches for 

different groups of students. 

Normal Technical Students in Mathematics 

Singapore mathematics teachers are genuinely concerned about the performance in 

mathematics among the Normal Technical students (Toh & Lui, 2014).  This concern is not 

unfounded as many of the Normal Technical mathematics students exhibit many of the 

characteristics of low attainers (Toh & Kaur, 2019).   

Studies have also shown that Singapore teachers are not passively using traditional 

instructional materials and resource for teaching Normal Technical students. As the students’ 

difficulties with mathematics and reasons for their lack of interest in the subject are various, 

teachers’ effort to reach out to this group of students is also diverse. In addition to honing 

their pedagogical skills in the classrooms, teachers are also actively adapting less 

conventional instructional approaches and developing unconventional instructional material 

to address the learning needs of this group of students (Toh & Lui, 2014).  

To have a first-hand glimpse into how mathematics lessons are conducted by a 

experienced and competent teacher in a typical Normal Technical class, the author 

(hereafter, first person pronoun) followed through one such identified teacher’s lessons for 

two weeks on teaching a subtopic of mensuration in a Secondary Two Normal Technical 
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mathematics class in a Singapore mainstream school. A few striking observations that were 

made will be reported in this paper. 

Method 

All the lessons that were observed in this study, the teacher interview, and the student 

interviews were video-recorded and transcribed. The video-recording, adapting the 

Complementary Accounts Methodology of Clarke (1998, 2001), used three video cameras 

to focus on: (1) the classroom as seen from the teacher’s perspective; (2) the activity of two 

particular students in each lesson; and (3) the classroom from the perspective of an observer 

at the back of the classroom. 

The teacher, Lucy-Marianne (pseudonym), was identified as an experienced and 

competent mathematics teacher by the mathematics education community. She was a Senior 

Teacher in her school, in her mid-forties at the time of our study, had more than ten years of 

experience teaching in the school and had been teaching mathematics in Express, Normal 

Academic and Normal Technical stream for more than fifteen years at the time when this 

study was conducted.  In a discussion with her during the teacher interview, she expressed 

her passion in teaching the group of low attaining students. According to Lucy-Marianne, 

this group of students “deserved our attention more”. She was trained to teach both 

Mathematics and Computer Applications. 

Observation and Discussion 

In unpacking teacher Lucy-Marianne’s pedagogical practices from the entire set of 

video-recordings of her lessons, a very skilful scaffolding sequence to facilitate her students 

in understanding a complex concept was visible:  

1. she first elicited her students’ prior knowledge related to the concept;  

2. she aroused her students’ interest about the concept;  

3. she built on their induced interest to further develop the mathematics concept; 

4. she engaged her students in hands-on activities to “derive” the formula; and  

5. she gave students ample opportunity to practise the application of the formulae. 

During the teacher interview, she revealed that this was the constant sequence in teaching 

the other mathematical topics as well as to her Normal Technical students. 

Eliciting students’ prior knowledge 

Her teaching of the subtopic on surface area and volume of a pyramid is the focus here. 

She built on her students’ prior knowledge selectively for her lesson development, as 

illustrated by a portion of the dialogue below. Letters T and S denote the teacher and student 

participant. 

 
Dialogue Commentary 

(after housekeeping matter)  

T: Now let’s move on to volume of pyramid – uh no, 

surface of pyramid [first]. OK by the way, let me 

introduce the word “pyramid”. What is [a] pyramid? 

Teacher elicited her students’ prior knowledge on 

pyramid. 

S: A 3D. 

T OK It’s a 3-dimensional object... A pyramid is no longer 

flat [tapped the table],it’s no longer flat [tapped 

whiteboard], but it’s a 3-dimensional object. But what 

does it look like and how does it look like…? 

Teacher responded to a student’s use of the term 3D 

(3 dimensional) by distinguishing between 3D and 2D 

objects (prior to this lesson, the students learnt 

mensuration of circle – a 2D object). 

S: Cone. 
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T: It looks something like a cone. Oh, OK... “Looks 

something like” doesn’t mean it’s exactly the same.  So 

later we are going to learn cone, today let’s talk about 

pyramid. Anyone can describe pyramid? 

Teacher was careful to acknowledge the response that 

a pyramid looks something like a cone, but did not 

want to elaborate the concept of cone to avoid 

confusing the students (mensuration of a cone would 

be the next subtopic).  

 ::::::::::::  

S: Huh? Oh triangle.  

Teacher elicited the responses of “triangle” and 

“square” from the students about their knowledge of 

pyramid. However, teacher did not further elaborate 

that the bases of pyramids can be made of other 

shapes at this juncture. 

T: Thank you … they (two students) are right... There are 

triangles on pyramids. So this is a pyramid like what you 

see in Egypt. Now, if I were to look from top down, 

what do you think is on the ground? What shape? 

S: I know, a square. 

Arousing students’ interest and curiosity in the concept. 

 Teacher Lucy-Marianne skilfully related the geometrical figure of a pyramid to the 

Egyptian Pyramids at Giza. She discussed the historical function of the Egyptian Pyramids 

after showing a short video clip selected from YouTube about the Egyptian Pyramids. The 

content of the video clip raised students’ awareness of mathematics in the real world; this is 

aligned to the Ministry of Education (MOE)’s desire to “prepare its citizens for a productive 

life in the 21st century” (MOE, 2012, p. 2). The selected video covered the students’ 

responses:  the sides of the pyramids (consisting of triangles), the plan view of the pyramids 

(squares), the dimensions and the historical functions of the pyramids. The use of videos in 

education is particularly useful for low attaining students, as it has the ability to reduce their 

cognitive load and facilitate their understanding of abstract concepts (Han & Toh, 2019) 

Reinforcing the concept of the lateral side faces of a pyramid.  

Teacher Lucy-Marianne emphasized the sides and base of a pyramid from different 

angles and by decomposing a three-dimensional pyramid into two-dimensional parts. 

Teacher Lucy-Marianne next used a worksheet (Figure 1) to reinforce the identification of 

the sides. Here, she unravelled the next part of the “truth” that the base of a pyramid is not 

necessarily a square or rectangle. She introduced pyramids with various polygonal bases. 

This was also the first time she insisted on the precise mathematics terminologies (lateral 

sides and base of a pyramid) illustrated in the dialogue below Figure 1.  

 

Figure 1. A portion of the worksheet used by Lucy-Marianne in introducing the faces of a pyramid 

T:  I want you to look at the word, the lateral side faces are? The word ‘lateral’ means side. Side means 

lateral. So the side faces are what kind of shape?  … I will like to introduce a word, the flat base 

water missile, I call it ‘polygon’. Polygon means it can be 3 sides, 4 sides, 5 sides, 6 sides, 7, 8, etc.  

Deriving the procedure for calculating the total surface area of a pyramid. 

The video clip and the identification the various parts of the pyramid led to the 

calculation of the surface area of a pyramid by considering the nets of a pyramid. She 

engaged her students in deriving the formulae using a hands-on approach by engaging them 
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to cut up a pyramid into its nets to identify the total surface area of a pyramid as the sum of 

the areas of the polygons in its corresponding net. This “experimental derivation” was 

observed in her lessons throughout this subtopic. In determining the volume of a pyramid in 

the succeeding subtopic, Lucy-Marianne conducted a “laboratory lesson” to demonstrate the 

relation between the volume of a pyramid and its related prism. The topic mensuration at the 

secondary level can be taught either in a very procedural manner, or one that engages the 

students with hands-on activities as proposed by Lim-Teo and Ng (2008). Teacher Lucy-

Marianne had chosen the latter to better match the needs of her students.  

Ample opportunity to practice. As in other observation of the Singapore classrooms, 

teacher Lucy-Marianne designed her worksheets to give sufficient structured and guided 

practice for her students. This will not be elaborated in this paper. 

Conclusion 

This is an episode of teaching mathematics to Normal Technical students by an 

experienced and competent teacher. While the teacher was cognizant of the importance of 

maintaining the rigor of the mathematics curriculum even for the low attaining students, the 

teacher was also skilful in engaging her students in activating their prior knowledge, exciting 

them with the mathematics in the real-world, and chunking up big group of mathematical 

content into manageable bites for her students. The teacher strove to develop in her students 

a relational understanding of the mathematical concepts through appropriate student 

engagement, while using video clip and storytelling to excite her students in the 

mathematical concepts. The lesson was evidence of her attempt at striking a balance between 

developing her students’ cognitive and affective aspects of learning. 
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Imbuement of desired attitudes by experienced and competent 

Singapore secondary mathematics teachers 

Joseph Boon Wooi Yeo 
National Institute of Education, Nanyang Technological University 

<josephbw.yeo@nie.edu.sg> 

This paper reports how 30 experienced and competent Singapore secondary mathematics 

teachers attempted to imbue desired attitudes in their students and some possible factors that 

might have influenced the teachers’ choice of instructional approaches. It was found from 

the analysis of lesson observations of these teachers that most of those teaching lower-ability 

students tended to build their students’ confidence and perseverance, while those teaching 

higher-ability students were more inclined to help their students appreciate the relevance of 

mathematics. Only a minority of the teachers tried to make lessons fun by using mathematics-

related resources or telling non-mathematics-related jokes. It was also discovered from the 

teacher interviews that two factors appeared to influence the teachers’ choice of the types of 

positive attitudes to develop in their students: the abilities of their students and the beliefs of 

the teachers on what mathematics is. 

Most research on the affective domain in mathematics education focuses on finding out 

students’ existing attitudes and their effect on other variables such as test performance 

(Aiken, 1970; Leder & Forgasz, 2006; McLeod, 1992), and students’ and teachers’ beliefs 

(Leder et al., 2002; Maa & Schlöglmann, 2009; Pepin & Roesken-Winter, 2015). In 

Singapore, research studies on affective variables also follow the international trend (e.g. 

Kay, 2003; Ng-Gan, 1987; Tan, 2011) and there are few intervention studies on changing 

students’ attitudes (Yeo, 2018; Yeo et al., 2019). 

This paper reports how some mathematics teachers attempted to imbue desired attitudes 

among their students as part of a programmatic research study on how 30 experienced and 

competent Singapore teachers enacted the secondary school mathematics curriculum. In the 

Mathematics Framework for the Singapore school curriculum (Ministry of Education, 1990; 

2012), attitudes is one of the main components, consisting of beliefs, interest, appreciation, 

confidence and perseverance. It is beyond the scope of the research to study whether or how 

the teachers tried to affirm or change their students’ beliefs about mathematics. Instead, this 

paper will report how most of these 30 teachers attempted to instil confidence in their 

students, encourage them to persevere, help them to appreciate mathematics and make 

lessons fun to interest them. 

Methodology 

In the programmatic research, 30 experienced and competent teachers were videoed 

teaching a topic for two to three weeks to find out how they implemented the curriculum. 

For the purpose of this project, an experienced and competent teacher was one who had 

taught the same course of study for a minimum of five years, and was recognized by the 

school or school cluster as a competent teacher who had developed an effective approach of 

teaching mathematics. There are four courses of study in Singapore secondary schools: 

Integrated Programme (IP), Express, Normal (Academic) (NA) and Normal (Technical) 

(NT). In general, the abilities of the students decrease from IP to Express to NA and then to 

NT. For each lesson, two different focus students were also videoed to observe how they 

responded during the lesson and how they did the mathematics tasks. 
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Each teacher was also interviewed four times: once before the first lesson, twice at 

appropriate junctures during the series of lessons and the last time after the last lesson. The 

purpose of the teacher interviews was to find out more about how and why the teachers had 

chosen to enact the curriculum in the ways observed during their lessons. At the end of each 

lesson, the two focus students were also interviewed separately to find out their reactions to 

the lesson and how much they had learnt. For more details on the data collection, the reader 

can refer to Toh et al. (2019). 

This paper only reports on one aspect of the curriculum enactment: the imbuement of 

desired attitudes in the students. To analyse the data, the 211 lessons of the 30 teachers were 

examined to pick up episodes of the teachers trying to cultivate positive attitudes in the 

classroom. These episodes were then classified according to the sub-components of attitudes 

in the Mathematics Framework described earlier. The transcripts of the teacher and student 

interviews were also analysed to triangulate the data obtained from the lesson observations. 

Findings and Discussion 

Table 1 on the following page shows the number (and percentage) of the 30 teachers in 

the four courses of study who attempted to imbue desired attitudes in their students using 

the respective instructional strategies. For each of the first three sub-categories of 

confidence, perseverance and appreciation, the teachers mainly utilised one instructional 

approach as shown in the table; while for the last sub-category of interest, the teachers 

generally employed two pedagogical strategies: using mathematics-related resources and/or 

telling non-mathematics-related stories or jokes. Some teachers also tried to develop more 

than one type of desired attitude. 

From Table 1, we observed that most of the teachers (26 out of 30, or 86.7%) had tried 

to imbue desired attitudes in their students. Their foci were mainly in the areas of building 

students’ confidence in doing mathematics by starting with tasks that students could do 

before progressing to more difficult tasks (20 out of 30, or 66.7%), followed by encouraging 

the class to persevere and to do well in mathematics (15 out of 30, or 50%). Of lower 

priorities were helping students appreciate the relevance of mathematics by showing real-

life examples and/or applications (11 out of 30, or 36.7%) and making lessons fun to arouse 

the interest of their students (6 out of 30, or 20%). What was not shown in the table was that 

slightly more teachers (4 teachers) made lessons interesting by telling non-mathematics-

related stories or jokes than those (3 teachers) who did this by using mathematics-related 

resources, including a teacher who did both. 

On closer inspection, across the four courses of study, it is observed that all the teachers 

teaching the NT and NA courses (which are for lower-ability students) and 8 out of the 10 

Express teachers (i.e. 80%) had attempted to develop desired attitudes in their students, but 

only two of the four IP teachers (i.e. 50%) had done the same. For the NT, NA and Express 

classes, most of the teachers focused on building students’ confidence and encouraging the 

class to persevere, followed by helping students appreciate the relevance of mathematics and 

making lessons interesting. But for the IP course of study (which is for higher-ability 

students), the focus of the teachers was more on helping students appreciate the relevance of 

mathematics. In fact, only one of the four IP teachers had tried to encourage her class to 

persevere on only one occasion in all her seven one-hour lessons that were observed over 

more than two weeks, i.e. encouraging their students did not seem to be a high priority among 

IP teachers. 
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Table 1 

Instructional Strategies for Imbuing Desired Attitudes in Students 

 Number (and Percentage) of Teachers 

Instructional Approach IP 

(n = 4) 

EX 

(n = 10) 

NA 

(n = 8) 

NT 

(n = 8) 

Total 

(N = 30) 

Building students’ confidence in 

doing mathematics by starting with 

tasks that students can do before 

progressing to more difficult tasks 

0 

(0%) 

6 

(60%) 

8 

(100%) 

6 

(75%) 

20 

(66.7%) 

Encouraging the class to persevere 

and to do well in mathematics. 

1 

(25%) 

5 

(50%) 

5 

(62.5%) 

4 

(50%) 

15 

(50%) 

Helping students appreciate the 

relevance of mathematics by 

showing real-life examples and/or 

applications 

2 

(50%) 

2 

(20%) 

4 

(50%) 

3 

(37.5%) 

11 

(36.7%) 

Making lessons interesting by using 

mathematics-related resources and/or 

telling non-mathematics-related 

stories 

0 

(0%) 

2 

(20%) 

2 

(25%) 

2 

(25%) 

6 

(20%) 

Attempting to imbue any desired 

attitudes in students 

2 

(50%) 

8 

(80%) 

8 

(100%) 

8 

(100%) 

26 

(86.7%) 

 

From the above analysis, it seems that one factor that might have influenced the teachers’ 

instructional strategies in imbuing what sub-category of desired attitudes is the abilities of 

the students whom they were teaching in their respective course of study: for lower-ability 

students, their teachers focused on building their confidence and encouraging them to 

persevere, but for higher-ability students, their teachers were more inclined to help them 

appreciate the relevance of mathematics. This is further confirmed by interviews with the 

teachers. For example, a teacher said that her type of students needed motivation to solve 

more difficult mathematical problems and so she used an amusing video to provide the link 

to real life and to entice her class to solve the problems. The following shows part of a 

transcript of an interview with the teacher. 

 

Interviewer: So what is your purpose for showing them this video? 

Teacher: It’s actually to entice them to be interested in doing mathematics because … when 

you keep on practising and they don’t see how it can be linked, it is very difficult. 

So we want to see, eh, ancient times people are already using Pythagoras’ theorem 

... Because, my class, I think they need this kind of motivation, because some of 

them will fall into a world of their own very easily. So we wanted them to … entice 

them to this kind of thing … so after this, what they will do is, the king [from the 

video] has a series of problems, so they will try to solve the king’s problems by 

Pythagoras’ theorem. 

 

Another factor that might have influenced the teachers’ instructional approaches in 

cultivating which kind of positive attitudes is the beliefs of the teachers. For example, a 

teacher encouraged his students to try to score at least a few marks for a difficult exam-type 

question because he revealed during an interview that he believed that mathematics was 
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about resilience and so he was attempting to convince his class not to give up on such 

examination questions. 

Conclusion 

The study has shown how some experienced and competent teachers in Singapore 

attempted to imbue desired attitudes in their students. They focused mainly on building their 

lower-ability students’ confidence and perseverance, while helping higher-ability students 

appreciate the relevance of mathematics. The least priority among the teachers was making 

lessons interesting. An implication for local teachers is maybe they should emulate the 

examples of the experienced and competent teachers in developing confidence, perseverance 

and appreciation in their students (if they are not already doing so), but at the same time, 

they could perhaps pay more attention to arousing in their students interest in mathematics. 

A possible area for future research is to study whether the students had developed the desired 

attitudes under the instructional strategies adopted by the teachers. 
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This paper reports on one aspect of a bigger project: teachers’ design of instructional 

materials. We found a number of design moves used by the teachers in our study. In this 

paper, we report three of them: Making things explicit, making connections, and re-

sequencing practice examples.  

This paper focuses on one major component of the project which examined the 

enactment of the Singapore mathematics curriculum in the Secondary Schools: the design 

and use of instructional materials by the teachers. We define instructional materials to be 

classroom-ready materials that teachers incorporate into their lessons for students’ direct 

access for their learning. We make a distinction between instructional materials (IM) and 

reference materials (RM). The latter are resources (including textbooks) which teachers refer 

to while planning for lessons; the former are the actual materials that are brought into their 

classrooms for use in their mathematics instruction. For most teachers which were the 

subjects of our study, their instructional materials differ substantially from their reference 

materials – it is this ‘transformational space’ that is an area of interest to us. For the rest of 

this paper, we will briefly describe a few such transformational moves as illustrated by some 

teachers in our study and their underlying intentions. 

Transform Move 1: Making things explicit 

The fuller version in the examination of this move is in Leong et al. (2019). We provide 

a brief description here. This move is illustrated by Teacher Teck Kim. Repeatedly, in the 

interviews with him, he mentioned “making explicit” as a major goal in the design of 

instructional materials. That is, in selecting and modifying from RM (mainly the textbook 

subscribed by the school), he considered some of the contents as displayed in the textbook 

not sufficiently clear to the students; in crafting the IM, he was thus consciously governed 

by the principle of making the mathematical content more explicit to the students. 

Figure 1 shows an example of such an explication deliberated by Teacher Teck Kim. He 

made the following adaptations (among others): (i) ln the RM, the textual explanation of 

column vectors was located at a section that was separate from the vector diagram. in Teck 

Kim’s IM, he merged the textual mode into the visual representation of column vectors. Not 

only was the label of (−3
4
) placed beside the drawn vector, the explanation of translation of “-

3” and “4” was also summarily fused into the diagram. This merging of representational 

modes was the way in which Teck Kim made explicit—in this case the links among the 

drawn vector, the column vector notation, and the translational significance. (ii) The two 

examples in the RM were  (2
3
) and (−1

−4
). The two examples in Teck Kim’s notes were  (−3

4
) 

and (−3
−4

)[the latter is not shown in Figure 1 due to space constraints]. Apart from the fact that 

the magnitudes of these vectors yielded an integer value, not a surd, and thus potentially 

reduce computational complexity so that the focus was on the definition and method of 

obtaining the magnitude, the choice of (−3
4
) and  (−3

−4
) shows a one-component variation only 

in the translation in the y-direction, allowing the teacher to focus students’ attention on the 
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translational significance when “4” is replaced with “-4”, thus highlighting the need to attend 

carefully to signs. In other words, Teck Kim re-worked the examples to make explicit critical 

ideas (perhaps, even potential student mistakes) which may have otherwise been unnoticed 

by the students. (iii) [Not shown in Figure 1] The task implicit in the RM required students’ 

to “write” the given drawn vector in column vector notation; the task in Teck Kim’s IM [not 

shown in Figure 1] required students to do the reverse: to “draw” vector given its column 

vector notation. He made explicit by filling a gap in the textbook. In this case, the gap was 

the skill of drawing vectors. 

 
 

Figure 1. Making explicit from reference materials to instructional materials 

Transform Move 2: Making connections 

We illustrate this move by drawing upon the IM of Teacher Siew Ong. The phrase 

“making connections” – and similar phrases – occur frequently in her talk during our 

interview sessions with her. This move is particularly significant as connection-making in 

instructional work is highlighted as desirable in Singapore’s official documents: 

“connections refer to the ability to see and make linkages among mathematical ideas …” 

(Ministry of Education, 2012, p. 15, emphasis added).  

The context was the method of “completing the square”. The RM presents an 

“investigative task” consisting of a table with four columns entitled (from left to right): 

“Quadratic Expression”, “Number that must be added to complete the square”, “Half the 

coefficient of x”, “Quadratic expression in the form (𝑥 + 𝑎)2 − 𝑏”. An example as a row 

entry was then given for “x2 + 2x” in the first column, “12 = 1” in the second column, “
2

2
=

1” in the third column, and the algebraic working to obtain (𝑥 + 1)2 − 1 in the last column. 

Other blank rows were given in the table below this first entry to provide working space for 

other samples of algebraic expressions of the form x2 + px. 

The IM designed by Teacher Siew Ong was an adaptation of the RM. She retained the 

four columns and kept largely to the titles of the first and the fourth columns (the ‘beginning 

form’ and the ‘targeted complete square form’). She renamed the middle two columns as 

“Geometric representation” (second column) and “Term to be added” (third column). Figure 

2 shows how the entry in the second column looks like for the same example of x2 + 2x. 

Different from the RM, she intended to help students connect “square” in “completing 

the square” to a “geometric square”. There is thus a deliberate design decision to draw 

students’ attention to intermodal links – between the algebraic mode and the geometric mode 

of representation. The geometric square provided a more natural motivation and hint as to 

Reference Material Instructional Material 

Explicit 
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what value need “to be added” (language of Column 3) within the perforated small square 

to “complete the (geometric) square”. This shift of focus rendered the step in Column 3 of 

the RM (“half the coefficient …”) unnecessary as it would have become more intuitive from 

the geometric mode of representation within the context of forming a geometric square. [As 

an aside, the algebraic working in Column 4 now takes on a different function: it is not 

merely an algebraic procedure to complete; it is a static record (algebraically) of what 

happens dynamically over the entries in the last three columns. This further strengthens the 

algebraic-geometric connection]. 

 

Figure 2. Geometric representation of x2 + 2x to set up for completing the square 

In addition, to set up this way of thinking by students, that is, to view a quadratic 

expression as ‘almost a square’, she designed a prior page (not found in RM) where numbers 

(more accessible to students initially than algebraic expressions) were also represented 

geometrically as almost a square. As an example, 120 where written as 121 – 1 = 112 – 1. 

This was also represented geometrically as a square of side 11 with a tiny square of 12 at the 

corner snipped off. This additional preamble that she designed revealed her deliberate effort 

at connection in at least these ways: (i) intermodal connections not only between algebraic 

and geometric representations, but also numerical to algebraic and geometric; (ii) conceptual 

connections – she recognised that students had prior familiarity with numerical perfect 

squares such as 121 = 112. She drew from this prior conception to connect it to their other 

prior familiar imagery of geometric squares. These were then linked and further developed 

into ‘almost square’ in anticipation of connecting to the method of completing the square. In 

other words, she connected concepts by developing tightly from earlier concepts. 

Transform Move 3: Re-sequencing practice examples 

The details for this move can be found in Leong et al. (In press). As in the first move, 

we provide here a brief description. The teacher we studied for this move was Teacher Beng 

Choon. She designed the IM for the purpose of helping students gain proficiency with some 

‘rules’ within the topic of differentiation. For the purpose of this paper, we restrict our 

consideration to the ‘formula’ of  
𝑑

𝑑𝑥
(𝑥𝑛) = 𝑛𝑥𝑛−1. 

In her case, we were unsure as to the specific RM she relied upon most. Being an 

experienced teacher for many years, she could not specify a particular textbook she adapted 

from as her IM had evolved throughout the years over many rounds. For the purpose of this 

discussion, we referred to one common textbook to serve as a comparison to the examples 

she sequenced for this same section immediately after the introduction of the formula. The 

textbook provided three examples for application of this formula in this order: 
1

𝑥2
, √𝑥, and 

1. The examples that appeared in Beng Choon’s IM were: x3, 5, 
1

𝑥
, and √𝑥. Figure 3 provides 

a summary of what she wrote on the board for each item and how she explained the 
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procedure to obtain the final answer. Her main goal was to help students recognise the form 

xn so that they can apply the formula correctly. As such, she needed to vary the form – so 

that they can ‘see’ how surface forms that do not initially look like xn can be re-written in 

such a form for correct use of the formula. At the same time, she was cognizant that students 

did not get discouraged by difficulties and so she proceeded gradually from simpler cases 

of the form. A brief chronology: She started with x3 as it is most recognisable as xn. The 

switch to “5” was deliberate as she wanted to draw students away from fixation of formula-

application; rather, they can think graphically and connect to differentiation as “finding 

gradient”. The third and the fourth items show progressive complexity in recognising and 

rewriting into the form. 

 

(a) 𝑥3 
apply 

formula 
3𝑥2     

(b)   5 gesture hor. line 
find 

gradient 
     0   

(c) 
1

𝑥
 rewrite 𝑥−1 

apply 

formula 
−𝑥−2 rewrite −

1

𝑥2
 

(d) √𝑥 rewrite 
𝑥
1
2 

apply 

formula 

1

2
𝑥−

1
2 rewrite 

1

2√𝑥
 

Figure 3. Summary of the procedures explained for each item by Teacher Beng Choon 

Discussion 

Clearly, these moves as described are not exhaustive nor are they unrelated. A cursory 

reflection would reveal that a teacher who wishes to adopt such moves may do so in an 

integrated way for the same activity – that is, making things explicit, making connections, 

and re-sequencing of practice examples can be applied concurrently. The purpose, however, 

of this article is to illustrate examples of each of these moves as they were adopted by the 

teachers in our study. This paper highlights that Singapore secondary mathematics teachers 

do not merely ‘teach from the textbook’; rather, they make intentional moves to adapt the 

reference materials in ways that fit their instructional purposes which are largely ‘sound’ 

both from a theoretical perspective and in terms of concurrence to policy mandates. Often, 

these moves are elusive to a casual observer. The results of this study reminds us as 

researchers that we should avoid the simple route of pigeonholing pedagogical enactments 

based on cursory observations. 
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This symposium discusses the use of strengths approaches in early childhood 

mathematics education. Strengths approaches can be conceptualised as educational practices 

that recognise, and utilise, children’s strengths. Strengths approaches originate in the social 

work sector, but are growing in recognition in early childhood education. This symposium 

considers how strengths approaches might be adopted in early childhood mathematics 

education, specifically, encouraging pedagogical approaches that recognise, and build upon, 

young children’s strengths in mathematics. This symposium presents theorisation and a case 

illustration of how strengths approaches can be meaningfully utilised in early childhood 

settings in order to enhance mathematical learning opportunities for young children. The 

symposium addresses three aspects: (1) Overview of strengths approaches; (2) Application 

of strengths approaches; and (3) Leadership to promote strengths approaches; illustrated 

within the context of early childhood mathematics education. 

 

The symposium format is as follows: 

 

Chair: Amy MacDonald 

 

Paper 1: Fiona Collins & Angela Fenton An introduction to the strengths approach 

 

Paper 2: Amy MacDonald & Steve Murphy A strengths approach to birth-to-3 mathematics 

education: The case of Banjo Childcare Centre 

 

Paper 3: Matt Sexton & Joce Nuttall Leadership of strengths-based approaches for early 

years mathematics education: Using CHAT as a framework for educational leaders’ 

professional learning leadership 

 

Discussants: James Russo & Toby Russo
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This paper provides a foundation for the Research Symposium, “Strengths Approaches in 

Early Childhood Mathematics Education” by providing an overview of the development of 

strengths-based approaches in social work and education. A framework, adapted from the 

Strengths Approach (McCashen, 2017), for applying a strengths-based approach in early 

childhood mathematics education is introduced. 

An Overview of Strengths-Based Approaches 

Strengths-based approaches, originally developed in social work practice and 

psychology (Glicken, 2004; Saleebey, 1996; Seligman, 1990), are gaining momentum as 

practitioners see applications in other human service fields such as education and health care 

(Pulla, 2017). Globally, there is a growing expectation that professionals working with 

children in their early years will adopt strengths-based approaches “to support the access and 

participation of all children and families, especially those with complex needs” (Fenton et 

al., 2015, p. 29). Furthermore, the Belonging, Being & Becoming: Early Years Learning 

Framework for Australia (EYLF) states that “in order to engage children actively in learning, 

educators identify children’s strengths and interests” (DEEWR, 2009, p. 9) and extends this 

by explaining that “early childhood educators who are committed to equity believe in all 

children’s capacities to succeed, regardless of diverse circumstances and abilities” 

(DEEWR, 2009, p.13). This paper provides an overview of strength-based approaches and 

then suggests a specific framework, adapted from the Strengths Approach (McCashen, 

2017), for applying a strengths-based approach to support children in the early years in their 

learning of mathematics. 

The development of strengths-based approaches in the 1980s and 1990s, alongside 

narrative therapies and solution-focused therapies, involved an entirely different approach 

to be adopted by professionals in human service practice (McCashen, 2017). Previously, 

therapy was pathology focused, where people and their problems were categorised according 

to diagnoses, behaviours and/or problems (McCashen, 2017); the focus was very much on 

what was wrong and as such has since been referred to as a deficit model. Later models 

shifted focus towards the specific circumstances of the client and the organisations around 

them available for support; the therapist was viewed as the “expert” and tasked with “fixing” 

the client in order to allow them to overcome their problem and return to a “normal” life 

(McCashen, 2017). However, these models raised concerns of imparting “power over” 

clients (McCashen, 2017, p. 54). In contrast, strength-based approaches are centred on the 

belief that all human beings are individuals who possess strengths, are experts of their own 

circumstances, and have the capacity for change if they are provided with opportunities and 

access to appropriate resources (Glicken, 2004; McCashen, 2017; Saleebey, 2009). Saleebey 

(2009, p. 97) states that “almost anything can be considered a strength under certain 

conditions,” whilst McCashen (2017) goes further and defines strengths as  

anything people have that helps them to achieve, to overcome problems, to build on things that are 

already positive, to learn, grow, and be fulfilled. Strengths can be understood in terms of personal 

qualities – positive characteristics and things that people are good at. Strengths include people’s skills 

and capacities, their aspirations and values and the resources in their environment. (p. 33) 
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In education contexts, strengths-based approaches can also present an alternate point of 

view (Fenton, 2013) that is in contrast to a deficits view of learning, where emphasis is 

placed on ‘gaps’ in a child’s knowledge and/or skills, or identified learning problems, such 

as a focus on children with learning disabilities (see Harry & Klingner, 2007).  For example, 

educators working from a deficit model design learning experiences to help children 

remediate “gaps” in knowledge and/or model skills which are not evident. MacDonald 

(2018) warns that adopting a deficit view of a child’s mathematical capacity can lead to a 

perpetual cycle of negative expectations, which can lead to opportunities for mathematical 

learning being blocked, which can contribute to negative mathematical learning experiences, 

ultimately resulting in disempowerment.  

Instead, strengths-based approaches require practitioners to look at “individuals, 

families, and communities … in light of their capacities, talents, competencies, possibilities, 

visions, values, and hopes” (Saleebey, 1996, p. 297). In essence, strengths approaches within 

education are student-centred, and focussed on measuring children’s strengths, catering for 

individual children’s needs, collaboration, and the deliberate application and intentional 

development of children’s strengths (Lopez & Louis, 2009). Mathematics educators working 

with a strengths approach will focus on what mathematics children can do, as well as the 

opportunities and resources available to assist in the development of their strengths and 

capacities to meet identified learning goals. MacDonald (2018) described this process as a 

competency cycle, “a process of creating positive expectations and opening the way for the 

development of new competencies” (p. 144). 

Whilst strengths approaches are being encouraged in early childhood education, a 

number of critiques of this philosophy have also been expressed, including: that it is simply 

another way of describing being positive, and/or a way of reframing deficits through 

ignoring or denying real problems (Saleebey, 1996). The strengths approach has also been 

criticised for being “overly simplistic and superficial” (Glicken, 2004, p. 14) and for being 

an ideological theology (Epstein, 2012). Glicken (2004) cautions strengths practitioners 

about the complexity of discovering and applying strengths and warns that it can be a time 

consuming process. Furthermore, there is the potential for educators and children to adopt 

fixed mindsets if practice is limited merely to the identification and affirmation of strengths, 

without the nurturing and development of new talents (Lopez & Louis, 2009). 

An Introduction to the Strengths Approach 

Building on the foundations of strengths perspectives’ origins in the United States, the 

Strengths Approach, was developed further in Australia by St. Luke’s, a social services 

organisation based in Bendigo, Victoria, as a philosophy for collaborating with others in an 

effort to achieve a positive transformation (McCashen, 2017). St. Luke’s sought to develop 

practice-based principles to guide their practical work with children and families. The 

approach “encourages the identification of resources and the use of challenges, as they occur, 

to create resilience and aptitude when working with issues” (Fenton et al., 2016, p. 46). A 

number of principles guided the development of the Strengths Approach, including: the 

dignity and capabilities of each person as their own change agent; the ability of each person 

to enact their own strengths and capabilities; the identification and mobilisation of resources 

to support development; and a collaborative sharing of power between all stakeholders 

(McCashen, 2017). 

The Strengths Approach is a framework for practice that encompasses reflection, 

learning, planning, action and review. It is important to emphasise that the Strengths 

Approach not only looks at the positives. In fact, the approach generally starts from clearly 
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exploring a challenge, complex issue or need. The Column Approach (McCashen, 2017) is 

provided as a scaffold for applying a Strengths Approach in five steps. Practitioners are 

encouraged to consider with all stakeholders: (i) What is the challenge here? (ii) What is the 

ultimate goal/vision? (iii) What existing strengths and capacities can we utilise? (iv) What 

extra resources are available? (v) With the previous steps in mind – what is our plan of 

action? A table version of the Column Approach (Table 1) can be used by educators, to assist 

children in their early years to develop their mathematical knowledge, skills and 

understanding.  

Table 1 

The Column Approach* 

Stories and 

issues 

The picture of 

the future 

Strengths and 

capacities  

Other resources Plans and steps 

Ask questions 

that invite 

children to share 

their 

mathematical 

stories and 

enable them to 

clarify the 

challenges, such 

as: 

• What’s the 

mathematical 

challenge or 

problem? 

• What’s 

happening here?  

• What are you 

trying to do? 

• What have you 

discovered? 

• Have you solved 

a problem, or 

overcome a 

challenge like 

this before? If 

so, can you tell 

me about it? 

Ask questions that 

help children 

explore their 

mathematical 

aspirations, 

dreams, interests 

and goals, such as: 

• What do you 

want to know/be 

able to do?  

• What do you 

want to 

discover?  

• Why do you 

want to 

overcome this 

mathematical 

challenge/solve 

this 

mathematical 

problem?  

• What do you 

need to know? 

• What will 

solving this 

allow you to do? 

• What are you 

interested in?  

Ask children 

questions that help 

them  explore their 

strengths, as well 

as their 

mathematical 

capacities such as: 

• What are you 

good at?  

• What do you 

like doing?  

• What do the 

special people in 

your life think 

you are good at?  

• What were you 

thinking about 

when this 

happened?  

• What do you 

know that might 

be helpful here? 

• What have you 

done in the past 

when you have 

experienced 

similar 

mathematical 

challenges / 

problems? 

Ask questions that 

help children to 

identify resources 

that might help 

them reach their 

mathematical 

goals, such as:  

• Who else might 

be able to help?  

• What other 

skills or 

resources might 

be helpful? 

• What have 

people done 

already that has 

helped? 

• Who or what 

has been helpful 

in the past when 

you have had 

mathematical 

challenges / 

problems like 

this? 

Ask questions that 

help children to 

specify steps 

towards the 

achievement of 

their mathematical 

goals, such as: 

• What are you 

going to do 

next?  

• What 

information will 

you use?  

• What skills and 

strengths will 

you use?  

• Who will help? 

How will they 

help?  

• What resources 

will you use?  

• When will it be 

done? 

* Adapted from McCashen (2017) and MacDonald (2018). 

Implications 

The Column Approach provides a “mind map” (McCashen, 2017, p. 97) for working 

with children to help them: develop a narrative of their opportunities for learning in 

mathematics; identify their mathematical hopes and dreams; consider their strengths and 

mathematical capacities; identify resources that are available to them; and map out a way for 

them to move forward. It is also recommended that a proactive first step for educators is to 
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identify what they do well (for example pedagogical approaches, resource development, 

leadership etc.) and ensure that they continually model and refine these strengths as they 

work with children to help them recognise and utilise their own strengths in the learning 

process and environment (Lopez & Louis, 2009). In this way, drawing on its social service 

and psychological origins, and particularly guided with a Column Approach, the Strengths 

Approach can be a practical collaborative framework for acknowledging children’s 

mathematical curiosity and challenges, honouring their existing mathematical knowledge, 

and importantly drawing on their strengths and mathematical capacities as their learning 

develops. 
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This paper contributes to the Research Symposium, “Strengths approaches in early 

childhood mathematics education” by providing an illustration of how an early childhood 

centre adopts a strengths approach to mathematics education for birth to three-year-old 

children. A case illustration is drawn from a current Australian Research Council-funded 

study focusing on mathematics education for children under three years of age. The case is 

analysed and described using a five-step strengths-based framework. 

Introduction 

It is well-established that young children, prior to starting school, are capable of 

engaging with a range of mathematical ideas (Gervasoni & Perry, 2015; MacDonald & 

Carmichael, 2018). However, most of this research has focused on children aged four years 

and older, with birth to three mathematics education receiving very little attention 

(MacDonald & Murphy, 2019). However, a current Australian Research Council-funded 

study being conducted by the lead author of this paper is addressing this dearth of research 

through a national study of mathematics education for children aged under three years. As 

part of the larger study, case studies of birth to three education settings are being conducted 

in order to examine mathematics education opportunities afforded to very young children, 

and the beliefs and practices of their educators which influence these opportunities. Drawing 

from the larger study, this paper presents a case illustration of the birth to three learning 

environment at Banjo Childcare Centre (pseudonym), a long day care service located in 

regional New South Wales (NSW), Australia. Six early childhood educators and 17 children 

participated in the case study, and the children ranged from 13 to 40 months in age. The 

authors of this paper spent two days in the site, gathering data in the forms of continuous 

video recordings; video and photographic observations; documents such as learning stories 

and daily reflections; and anecdotes from educators. This case has been selected as it 

illustrates how a strengths approach to mathematics education can help an early childhood 

service overcome a range of challenges and barriers, and utilise their unique strengths and 

resources in order to provide high-quality mathematics education for very young children. 

In the case illustration that follows, we apply the Column Approach as described by Collins 

and Fenton (under review) (Paper 1 in this Symposium) in order to analyse how Banjo 

Childcare Centre are taking a strengths-based approach to mathematics education for the 

birth-to-three-year-olds in their centre. The case is structured according to the five-step 

framework, namely: (i) Stories and issues; (ii) The picture of the future; (iii) Strengths and 

capacities; (iv) Other resources; and (v) Plans and steps. 

The Case of Banjo Childcare Centre 

Stories and Issues 

As noted in Paper 1 in this symposium (Collins & Fenton), a strengths approach does 

not only focus on the positives; rather, the use of the approach generally starts from clearly 
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exploring a challenge, complex issue, or need. Banjo Childcare Centre, and the community 

it serves, experience a range of challenges and complex circumstances. The service has a 

maximum of 50 approved places; however, at the time of this study, only 42 of these places 

were filled. The community receives a relatively low score on the Socio-Economic Indexes 

for Areas (SIEFA) - 869 compared to the NSW average of 1001. This score indicated a 

disadvantaged socio-economic position characterised by attributes such as low income, low 

educational attainment, and high unemployment (Australian Bureau of Statistics, 2011). 

According to the 2018 Australian Early Development Census (AEDC; Commonwealth of 

Australia, 2019), 38.1% of children in this community are developmentally-vulnerable on 

one or more AEDC domains; a figure nearly double the NSW average (19.9%). Moreover, 

23.8% of children are developmentally-vulnerable on two or more domains, compared to the 

NSW average of 9.6%. The centre itself experiences challenges in the current early 

childhood reform climate, receiving a 2018 National Quality Standard (NQS; Australian 

Children’s Education and Care Quality Authority, 2019) rating of “Meeting” the NQS, a 

decline from their 2013 rating of “Exceeding” the NQS.  

The Picture of the Future 

The data presented above paint a deficits-focused picture of Banjo Childcare Centre and 

their community. However, these data are not how they see themselves nor the future they 

see for their children. The centre’s handbook states that educators “maintain a high level of 

professionalism through working together, supporting each other and continuously 

expanding [their] knowledge base”, that educators are “confident in children’s ability to 

learn” and that they “encourage the children to develop a positive attitude towards learning”. 

This positive picture of the future extends to mathematics learning at the centre. While not 

explicitly articulated, a strengths-based picture of the future is communicated in various 

ways. The importance of mathematics is highlighted through displays and explicit weekly 

reporting focussed on mathematics learning. There is an expectation that children at the 

centre, including very young children, can engage in sophisticated mathematical activities. 

Records showed in one week children three years old and younger were engaged in various 

activities that involved measuring height and volume, additive thinking, and counting using 

Wiradjuri words (the local Indigenous language). Analogue clocks were displayed alongside 

daily events in the toddler’s room (see Figure 1). Collectively, this evidence suggests the 

Centre pictures a future where their children are capable and confident users of mathematics. 

Strengths and Capacities 

The centre’s handbook makes explicit that educators respond to the strengths and 

capacities of the children to guide learning and teaching. The handbook states that educators 

use their observations of children “to develop an educational play based program”. Further, 

“children are given the chance to make decisions, experiment, and explore with a wide range 

of activities.” This philosophy was evident in the way educators responded to children’s 

strengths and capacities through their play in order to engage them in mathematical 

activities. Counting was regularly introduced to children’s activities; for example, ball 

bounces being tallied, and the time before a jump counted. Measuring concepts were 

incorporated into play, such as big and small when kicking a football, fast and slow when 

bike riding, tall and taller when measuring each other’s heights, and volumes when cooking. 

Locating language was built into children’s play; for example, when children were playing 

on a pretend horse (see Figure 2) an educator led a discussion of who was in front, on, and 
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under. Educators helped children develop plans and procedures associated with their games. 

In one instance, two children were endeavouring to untangle a ball on a rope, with one up 

the tree and one underneath, and another child playing nearby accidentally impeding the 

task. An educator supported the children in a complex series of actions to safely and 

successfully free the ball.   

  

Figure 1. Clock display in toddler’s room. Figure 2. Pretend horse using saddles and pipe. 

Not only did educators notice and capitalise on children’s strengths and interests as they 

presented during play, but they deliberately shaped the learning environment so that these 

mathematical learning opportunities regularly arose. The physical environment was spatially 

challenging, with winding and intersecting paths, objects of various heights, and spaces of 

irregular form (see Figure 3). These spaces encouraged children to problem pose and engage 

in mathematical activity. Further, the learning culture supported children to fully exploit 

these spaces to exercise their strengths and capacities. Educators did little to structure play, 

allowing children to structure their own play opportunities. For example, the play space 

included a rope and pulley system attached to a tree. It was only once a small group of 

children were engaged in play that involved getting buckets of bark high into the branches 

did an educator join to discuss alternate ways of using the ropes to move the buckets higher. 

A culture of permitting risk also supported children to fully engage in this complex learning 

environment. Rather than discouraging tree climbing, objects were deliberately placed to 

facilitate it. Similarly, when a group of children were jumping from objects in the yard, the 

educator nearby did not restrict the activity, but rather supervised and engaged in discussion 

about the height of objects and the size of the jump. 

 

Figure 3. Spatially complex learning environment. 
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Other Resources 

Banjo Childcare Centre, and its community, does not have significant financial 

resources. Despite this, they have been able to create a rich environment to facilitate 

mathematical learning through resourceful behaviours that are both strategic and 

opportunistic. Reclaimed, recycled and repurposed objects make up the play spaces, 

including tyres of various sizes, wooden pallets, restored old play equipment, and items such 

as the pipe and saddle described earlier (see Figures 2 and 3). The centre also makes excellent 

use of the resources of its local community to enhance children’s engagement and learning. 

In particular, Wiradjuri culture—the culture of the traditional owners of the land where the 

centre is located—is strongly represented in the displays and practices of the centre, and, as 

previously mentioned, the Birth to Three program includes the use of Wiradjuri language in 

mathematical activities.  

Plans and Steps 

As noted, Banjo Childcare Centre works with a community facing complex issues, and 

has limited financial resources with which to do this work. The centre adopts a strengths 

orientation in their aims and planning for the future, including their approaches to 

mathematics learning experiences for their birth-to-three-year-olds. Children are empowered 

mathematically through a “secure environment with opportunities for risk-taking and self-

regulation” (Centre Handbook). Educators are trusted to constantly develop mathematics 

education programs “through reflective practice and our commitment to training” (Centre 

Handbook). Mathematics learning is deliberately and explicitly included in documentation 

such as programs, learning stories, and classroom displays, thus highlighting the value 

placed on mathematics education within the Birth to Three program. 

Summary 

This brief case illustration has highlighted how an early childhood service experiencing 

challenging circumstances uses a strengths approach to provide a quality mathematics 

education program for children aged birth to three years. Educators draw on community 

strengths and their own resourcefulness in order to create a learning environment that 

encourages birth-to-three-year-olds to pose and solve mathematical problems, engage with 

complex spatial environments, utilise number and measurement concepts in meaningful 

ways, and use mathematical language and representations to add meaning to everyday 

routines and activities. 
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We present a model that employs cultural-historical activity theory (CHAT) concepts to 

inform research with designated Educational Leaders in early years settings. We theorise 

practice change in early years mathematics education in terms of motive objects of activity 

and mediation by cultural tools. We show how CHAT can be used to lead development of a 

strengths-based approach to support young children’s early mathematics education through 

systematic professional learning activity. Our overarching aim is to understand how 

educational leadership in early learning spaces can be reimagined, drawing on CHAT to 

theorise this under-researched area of mathematics leadership in early learning settings.  

In this MERGA symposium paper, we present a model that employs concepts from 

cultural-historical activity theory (CHAT) to inform research and learning opportunities 

with designated Educational Leaders in early years settings. We show how the model can be 

used to lead a strengths-based approach (e.g., Fenton et al., 2016) to support young children’s 

mathematics education. Our overarching aim is to understand how educational leadership in 

early learning spaces can be reimagined, drawing on CHAT to theorise this under-researched 

area of mathematics leadership in early learning settings. This reimagining and expansion of 

work sees Education Leaders lead enactment of strength-based approaches for early years 

mathematics education through on-site professional learning.  

Culturally and historically, there have been limited expectations for mathematics 

education in early childhood programs (for children aged from birth to five years), relative 

to the focus on mathematics in the early years of schooling (for children aged from five to 

eight years). The work of Piaget has long influenced thinking about children’s learning in 

early years education, with a focus on discovery learning of mathematical thinking (Stipek, 

2013). This situation has been compounded by early years educators’ underestimation of 

young children’s capacity to think mathematically and misunderstandings about how young 

children come to understand mathematical ideas. Many educators hold negative affective 

responses to mathematics in general (Knaus, 2017; Moss et al., 2016; Stipek, 2013), and they 

also tend to have limited understanding of mathematical content knowledge (MCK), 

particularly understanding mathematical concepts and terms (Knaus, 2017). 

The position of Educational Leader has been mandatory in all early childhood services 

in Australia since 2012. This policy move aims to improve program quality through the 

leadership of suitably qualified staff who foster changes in pedagogical practice. In Aotearoa 

New Zealand, there is no such mandatory position, possibly because the proportion of 

degree-qualified staff in the sector is higher than in Australia. In this paper, we position 

Educational Leaders as mathematics professional learning leaders who direct their 

leadership activity towards developing colleagues’ mathematics teaching practice using 

strength-based approaches. We show how this leadership-of-learning process can be 

researched through CHAT concepts.  
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Theorising Leadership as a Research and Learning Opportunity 

We argue for the explanatory power of CHAT for researching and transforming long-

standing workplace practices, such as the historical neglect of mathematics in early years 

education. Professional learning can enhance educators’ knowledge and practices for 

mathematics education, including their dispositions and expectations for young children’s 

mathematical learning (Perry & MacDonald, 2015). We are concerned specifically with 

professional learning focused on strengths-based approaches for mathematics education with 

young children, including the use of documentation associated with those approaches 

(Fenton et al., 2016). We suggest that that documentation, including the concepts and 

practices of strength-based approaches, offer new cultural tools to inform professional 

learning in early years settings. These offer opportunities for educators to work on new 

motive objects focused on young children’s mathematics learning. In this sense, we believe 

that research and learning opportunities lie in expanding the work of designated Educational 

Leaders to identify as mathematics professional learning leaders in their work sites. 

We draw on three core concepts of CHAT: motive object of activity, cultural tools, and 

mediation. CHAT understands all human activity as object-oriented (Kaptelinin, 2005); that 

is, psychological and practical activity are simultaneously drawn forward by attention to 

collaborative tasks (motive objects of activity) that result in desired outcomes (Engeström, 

2015). This differs from dominant understandings of motivation, which see it as an 

individual and internal force of will. We use the well-known triangular representation of 

collaborative activity (Figure 1) to show how subjects of the activity system (designated 

Educational Leaders) are motivated to enhance teaching practices of their colleagues. The 

Educational Leaders’ motive object of activity is the development of mathematics teaching 

practices. The desired outcome is quality mathematics education for young children.  

This relationship between Subject and Object is mediated by valued cultural tools. The 

mediating function of cultural tools is due to culturally-specific meanings that inhere in those 

tools. Buttons, for example, are mostly associated with clothing, but in early years education, 

another contextually-specific meaning inheres in a box of buttons: the pedagogical 

opportunity they offer to teach higher-order concepts (e.g., classification & subitising). 

 

Figure 1. Representation of the Educational Leaders’ mathematics professional learning activity system. 
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 Children’s Strengths as a Temporary Motive Object of Activity for 

Educational Leaders as Mathematics Professional Learning Facilitators  

A way for researchers to use these CHAT concepts and to understand changes in the 

professional work of Educational Leaders is to address and transform long-standing practices 

that have impeded mathematics education in early years learning spaces (Knaus, 2017; Moss 

et al., 2016; Stipek, 2013). This could be achieved by using the example of ‘children’s 

strengths’ as a cultural tool that Educational Leaders can deliberately reposition as a 

temporary motive object of activity. Cultural tools do not become effective components of 

practical and psychological activity without deliberate efforts to understand and expand the 

meanings that inhere within them. A key “move” for Educational Leaders in early years 

education therefore is to make the definition, identification, and valuing of children’s 

strengths a temporary focus in their work with colleagues (i.e., a temporary motive object of 

the collaborative professional learning activity they are leading).  

Without this critical first stage of meaning-making in professional learning, the capacity 

to mobilise any new concept in the context of teaching practice, including strengths-based 

pedagogical activity, will be severely limited. Once children’s strengths takes on a stabilised 

meaning across early years educators’ conceptualisation of young children’s learning, 

pedagogical strategies for applying strengths-based approaches can become the next 

temporary object of activity in an ongoing sequence of professional development focused on 

a series of related motive objects. Educational Leaders therefore have a critical role in 

progressively introducing new and more complex cultural tools to support educators’ 

professional learning of strength-based approaches. For example, in Figure 1, we included 

mathematical content knowledge (MCK), pedagogical content knowledge (PCK), and 

resources (both in the classroom and for professional learning) as further cultural tools (and 

therefore potential temporary motive objects for professional learning) in the mathematics 

professional learning leadership activity of Educational Leaders. As noted earlier, early years 

educators may not feel adequately knowledgeable or disposed toward mathematics 

pedagogy due to their own limited mathematical knowledge (Knaus, 2017). Their own 

internalisation of specific mathematics concepts may therefore be a critical temporary 

motive object of professional learning leadership activity to support educators’ confidence 

in teaching mathematics to young children. 

In the context of this symposium, the “column approach” described by Collins and 

Fenton (Paper 1 in this symposium) offers a key cultural tool to enhance the PCK of early 

years educators. A temporary focus on the use of this tool has been shown to effectively 

foster the uptake of strengths-based approaches (Fenton et al., 2016). According to our 

conceptualisation, we suggest this success is due to the new meanings the column approach 

makes available to mediate early years mathematics pedagogical practice. 

Educational Leaders can employ a variety of approaches in directing colleagues’ 

psychological and practical activity toward new cultural tools as temporary motive objects. 

These strategies include providing reading materials, practice development through action 

research, collaborative design-based research activities, or through the practice methodology 

developed within CHAT, known as Developmental Work Research (DWR) (Virkkunen & 

Newnham, 2013). Strengths of DWR include its incorporation of simultaneous research and 

learning activities, allowing researchers to track shifts in meanings and practices at close 

hand, and its emphasis on the volitional action of the research participants to solve practical 

problems found in their work (Sannino, 2015). This would prove to be helpful in expanding 

the work of Educational Leaders to include mathematics professional learning leadership.   
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Conclusion 

Given the insights from Fenton et al. (2016) and MacDonald and Murphy (Paper 2 in 

this symposium) regarding early childhood educators’ use of strengths-based approaches for 

mathematics education in early years settings, a research focus on the role of the Educational 

Leader in these settings is timely. Strategies to expand their work activity as mathematics 

professional learning leaders who can mobilise concepts, practices, and documentation of 

strengths-based approaches as motive objects of activity is one way of fostering mathematics 

education in early years settings. CHAT and DWR methodology have been shown to 

transform sedimented practices in early education (e.g., Nuttall, 2013) and is effective in 

expanding Educational Leaders’ work (Nuttall et al., 2016).  

However, this work has not hitherto focused on young children’s mathematics 

development or educators’ mathematics education knowledge, practices, and dispositions. 

We suggest that interventions informed by CHAT and DWR offer researchers and 

Educational Leaders the opportunity to conceptualise new, expanded work activity together 

for the professional learning leadership of strengths-based approaches for early mathematics 

education. Such a conceptualisation draws on the role of motive objects, specifically the 

adoption of new cultural tools that support the development of educators’ understanding and 

use of strengths-based approaches for mathematics education. This would be a significant 

shift in the cultural and historical norms of early years mathematics education, but one that 

appears necessary if sedimented practices related to mathematics education in the early years 

are to be transformed. This research and learning opportunity, concerning the professional 

learning leadership of strength-based approaches, might be the investment that Stipek (2013) 

called for in evolving mathematics education practice in early years settings.  
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This symposium reports on recent developments for Let’s Count, the preschool 

mathematics program implemented across Australia since 2010 by The Smith Family, a 

national, independent children's charity helping disadvantaged Australians to get the most 

out of their education, so they can create better futures for themselves. Let’s Count is an 

early mathematics program that has been designed to assist educators in early childhood 

contexts to work in partnership with parents and other family members to promote positive 

mathematical experiences for young children (3-5 years). The program aims to foster 

opportunities for children to engage with the mathematics encountered as part of their 

everyday lives, talk about it, document it, and explore it in ways that are fun and relevant to 

them. The success of Let’s Count has been reported many times at MERGA conferences, 

including the Beth Southwell Practical Implications Award paper in 2016. 

The papers presented in the symposium will build on the success of Let’s Count by 

considering a number of recent initiatives in delivery and scaling up of the project in order 

to make it available to a more extensive set of participants across Australia and 

internationally. Based on a series of program evaluations, the three papers in the symposium 

will consider delivery methods beyond the usual face-to-face workshop presentations to 

early childhood educators and will anticipate future developments as Let’s Count undergoes 

a program revision during 2020-2021.  

The proposed symposium program is as follows. 

Introduction to Let’s Count (Bob Perry) – 5 minutes 

Paper 1: Ann Gervasoni & Anne Roche Let’s Count in an online environment 

Paper 2: Amy MacDonald & Paige Lee Let’s Count in early childhood teacher education  

Paper 3: Sue Dockett & Bob Perry Let’s Count and community professionals  

Discussant – Wendy Field, Head, Programs and Policy, The Smith Family - 10 minutes 

Questions and Discussion 

The symposium will be chaired by Bob Perry and there will be ample time for discussion 

and questions. 
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Let’s Count Online is a new e-learning approach to delivering Let’s Count professional 

learning. It was evaluated in 2018. The findings suggest that the e-learning platform was 

successful, and that the outcomes for educators were similar to those achieved by participants 

using the face-to-face workshop professional learning model. Several key differences in 

outcomes were noted, and these inform recommendations for refining Let’s Count Online. 

Introduction 

Let’s Count (Gervasoni & Perry, 2017) is an early mathematics program that assists 

educators, in early childhood contexts, to work in partnership with parents and other family 

members to promote positive mathematical experiences for young children. Professional 

learning associated with Let’s Count was first offered for educators in 2010 using a face-to-

face workshop learning environment and between session activities and investigations. 

Following the positive evaluation of Let’s Count, (Gervasoni & Perry, 2015a, 2015b; Perry 

et al., 2016), The Smith Family received Federal Government support to make Let’s Count 

available to more communities across Australia. It was then decided to develop and pilot a 

complementary e-learning professional learning approach, Let’s Count Online, with the 

capacity to reach more educators across Australia.  

An important goal when developing Let’s Count Online was maintaining the successful 

outcomes achieved through the original face-to face professional learning model. For this 

reason, Let’s Count Online was evaluated in 2018 to determine the extent to which the 

outcomes achieved by educators who participated in the Let’s Count Online course were 

similar to or varied from the outcomes achieved by educators who participated in the face-

to-face model during the Let’s Count longitudinal evaluation (Gervasoni & Perry, 2015a, 

2015b; Perry et al., 2016). It was anticipated that the evaluation findings would assist The 

Smith Family to determine the effectiveness of the Let’s Count Online platform for 

delivering the professional learning underpinning the Let’s Count initiative for families. The 

evaluation also sought to gain insight about participants’ experiences of the e-learning 

platform, and its effectiveness, so as to recommend any improvements for the Let’s Count 

Online Course. The evaluation method and findings are presented in this paper, along with 

recommendations for further developing Let’s Count Online. 

Evaluation Method 

The Let’s Count Online evaluation used a mixed methods approach, drawing on both 

quantitative and qualitative approaches. Data were collected through online surveys, and 

telephone interviews with participants. The design of the surveys and interview schedules 

were informed by the instruments used in the Let’s Count Longitudinal Evaluation 

(Gervasoni & Perry, 2015a) to enable valid comparisons to be made between the participant 

outcomes for the two program delivery formats.  

All those who registered for Let’s Count Online during the 2018 evaluation period 

(n=814) were invited to participate in the evaluation and complete two online surveys – one 

prior to commencement of the Let’s Count Online course (Time 1) and two weeks after 
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completion of the course (Time 2). The Time 1 (T1) survey was completed by 207 

participants and the Time 2 (T2) survey by 60 participants. Thirty-three participants 

completed both surveys. Participants were drawn from every state and territory in Australia. 

Telephone interviews with seven case-study participants took place twice – two weeks after 

the commencement of the e-learning course and two weeks after its completion. The duration 

of the course was approximately 8 weeks and took place at a time of participants’ choosing. 

Qualitative and quantitative data from the surveys were used in conjunction with 

interview data to provide a picture of any changes in the respondents’ reported attitudes to 

mathematics and mathematical pedagogies, and the effectiveness of the e-learning platform 

for professional learning. Data from the Let’s Count Online Evaluation were compared with 

findings from the Let’s Count Longitudinal Evaluation (Gervasoni & Perry, 2015a) to 

determine whether the outcomes for participants varied in respect to their mathematics 

dispositions, skills, and levels of confidence in developing children’s mathematical 

knowledge. Data were also analysed to determine how Let’s Count Online might be 

improved to deliver the Let’s Count professional learning program more effectively. 

Key Findings 

A summary of the key evaluation findings is presented below. Of particular interest are 

comparisons between educators’ dispositions, skills and confidence; their attitudes to a range 

of teaching strategies; and their engagement with the professional learning models. 

Dispositions, Skills and Confidence of Educators 

With respect to educators’ attitudes to mathematics (either increasing or decreasing) 

between T1 and T2 surveys, the findings showed that these were similar for most statements 

for both the online and face-to-face cohorts. For example, for both programs at T2 there was 

an increase in the proportion of participants who believed mathematics is something that I 

do every day, and their liking of maths. Also, the Let’s Count Online participants’ confidence 

in developing children’s mathematical knowledge increased more than for the face-to-face 

course participants, however, their confidence was lower overall.  

Educators’ Attitudes to a Range of Mathematical Teaching Strategies 

At both T1 and T2, educators were presented with 24 statements about a range of 

mathematical teaching strategies and asked to indicate whether they agreed or disagreed on 

a five-point Likert scale. For 15 of the 24 statements, the initial and final percentages, as 

well as the change in percentage, are relatively similar between participants in the two 

programs. In contrast, for some statements there was a reduction in the proportion of 

educators in the face-to-face program who indicated that they agreed with the statement from 

T1 to T2, but this proportion increased for the online course participants. These statements 

suggest that the online course appeared to have promoted, for some participants, pedagogies 

that were more school like or traditional, than did the face-to-face course. These trends are 

reflected in the increased ‘schoolification’ of much of early childhood education (Moss, 

2013), but are not well-aligned to approaches recommended for mathematics education in 

the early years. Illustrative statements were:  

It is important that children represent their mathematics through the use of conventional symbols. 

Workbooks and worksheets are essential in learning and teaching mathematics in early years settings. 
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It is important that the experience of Let’s Count Online is strongly aligned with the 

theoretical underpinnings of Let’s Count, early childhood approaches to learning and 

teaching, including those espoused by the Early Years Learning Framework for Australia 

(Department of Education, Employment and Workplace Relations [DEEWR], 2009), and 

reform approaches to mathematics education. The findings suggest that this is mostly, but 

not always true, of Let’s Count Online. 

A key focus of Let’s Count is engagement between educators and family members 

centred on children’s mathematics learning. In the T2 survey, Let’s Count Online 

participants rated their engagement with a set of teacher practices before and after Let’s 

Count Online. They reported lower levels of ‘talking about children’s mathematics learning 

with family members’ or ‘building on the mathematics that family members tell them children 

are using at home’ prior to the program, (means of 4.4 and 4.1 out of 10 respectively). The 

mean rating for these practices after Let’s Count Online was 7.0 and 6.9 respectively. This 

suggests that the course prompted an increase in both practices, but these activities were less 

common for some.  

Comparison Between Let’s Count Online and Face-to-Face 

Interview data indicated that there was not as much accountability for participants’ 

engagement and learning in the online course compared with the face-to-face model. This 

was possibly due to the different level of accountability for the between session tasks 

embedded in Let’s Count Online, compared to the Family Gatherings Report required of the 

face-to-face participants. In the face-to-face model, participants presented the outcomes of 

family engagement strategies to other participants and received feedback and inspiration 

from the experiences of colleagues, and from the course facilitators. They also discussed 

their observations of children’s mathematics learning during the period between workshops, 

and had the opportunity for this learning to be extended through the guidance of facilitators. 

This learning opportunity was not included in the Let’s Count Online model. 

The findings also suggest that there was a lesser understanding of the aims of Let’s Count 

developed by Let’s Count Online participants. Interview data suggested that the course was 

more likely to reinforce the pedagogical practices that the educators were already using, 

rather than stimulating new pedagogical practices. Also, the Let’s Count mantra of Notice, 

Explore, and Talk About Mathematics was less a feature of Let’s Count Online participants’ 

reflections in the interviews and survey data than for face-to-face participants.  

Low Level of Difficulty for Let’s Count Online 

The findings suggest that the same level of professional and academic rigour may not be 

afforded by the Let’s Count Online learning environment compared with the face-to-face 

workshop environment. This view was reinforced by one participant stating that Let’s Count 

Online did not reach the level of challenge he was seeking for his staff, and another who 

explained that Let’s Count Online was the sort of course she could complete while watching 

TV with her family. Perhaps the online course is more characterised by passive engagement 

with the intended learning opportunities than active engagement. Possible strategies to 

increase the level of difficulty and active engagement for participants may include providing 

a Let’s Count Online facilitator who can provide online or real-time feedback, or the 

opportunity to complete the course in workplace groups to promote discussion and feedback.  
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Conclusion and Recommendations 

Overall, the findings from the Let’s Count Online evaluation suggest that the e-learning 

platform was successful for delivering professional learning for educators associated with 

the Let’s Count program. The participants in the evaluation were very positive about Let’s 

Count Online, and many appreciated the chance to access the professional learning when 

opportunities for the face-to-face workshops were not available in their region. However, 

some educators endured technical issues and a lack of online support for rectifying these. 

There were some important differences noted when comparing the Let’s Count Online 

professional learning model with the face-to-face model. For example, the reported low level 

of difficulty, passive engagement and lack of accountability for learning reported by some 

Let’s Count Online participants suggests that the Let’s Count Online course may benefit 

from some further development.  

The following recommendations provide direction for how Let’s Count Online may be 

refined and strengthened to better assist educators meet the aims of Let’s Count. 

1. Develop opportunities for feedback associated with the learning activities embedded 

in Let’s Count Online. This may include a facilitator to provide online or real-time 

feedback, or the opportunity for participants to complete the course in groups within 

a workplace or early years setting, with a leader in each setting to facilitate discussion 

about the professional learning, and monitor and support engagements with parents, 

and observations about children’s mathematics use, language and learning. 

2. Review the Let’s Count Online content and materials to identify and alleviate any 

dissonance with the theoretical underpinnings of Let’s Count. 

3. Ensure that any refinement of the Let’s Count Online course includes: 

a. Sustained emphasis on the Let’s Count mantra – notice, explore and talk about 

mathematics in everyday contexts. 

b. Strategies to sustain educator/parent communication across an entire year of 

implementation. 

c. A prominent, actively monitored help-line, including email and phone support. 
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In 2011, the Let’s Count professional learning program was developed into an elective 

distance education subject offered at Charles Sturt University. The resulting subject, 

EMC101: Let’s Count, has been offered every year since 2012, and has to date been 

completed by 796 students. This paper details the subject design and provides enrolment and 

evaluation data that attest to the success of the subject. 

History and Development 

In 2011, the first author was contracted by The Smith Family to develop the Let’s Count 

program into a distance education subject at Charles Sturt University, as a means of 

sustaining the Let’s Count initiative and achieving a wider impact on the early childhood 

field (MacDonald, 2015). The subject EMC101: Let’s Count has been offered at Charles 

Sturt University since mid-2012, and is primarily offered as an elective in the Bachelor of 

Education (Birth to Five Years) degree program. It is also available as an elective in a 

number of other degree programs across the University, and is available for single subject 

study, independent of a degree program. The authors of this paper have both been Subject 

Coordinators of EMC101, and have been responsible for teaching, developing, and 

evaluating the subject. 

Subject Design 

EMC101: Let’s Count is designed to be an elective subject that brings together pedagogy 

and practice. The subject provides a link between the workplace or community of the student 

and their professional practice. The subject is designed so that a series of six modules deliver 

the content, which is supported by current literature, anecdotes, reflective discussion 

questions, and practical examples. The modules provide various ways for students to engage 

with the content and critically reflect on their pedagogy and practice in relation to young 

children noticing, talking about and exploring mathematics in everyday situations. Key 

examples are provided, and students can use discussion forums and text-based chat sessions 

to engage with the modules and associated activities as well as their peers and tutors. After 

the modules have been delivered, the Let’s Count program ideas are put into practice through 

two assessment items: (1) Family Gatherings; and (2) Learning Stories. 

Family gatherings 

For assessment item 1, students are required to plan, implement and reflect on a Family 

Gathering, and present this using Microsoft PowerPoint©. This assignment is a workplace 

or community-based assessment item, where students actively engage with families in their 

setting to support them to notice, talk about and explore maths in everyday situations with 

their children. The Family Gathering can be organised and run in any way that suits students 

and the families with whom they collaborate. Family Gatherings have taken many forms, 

and each session new and inventive ways are explored by students. Examples include: using 

private social media groups, email, early years communications apps; individual face-to-face 

meetings; larger group information sessions; casual conversations during pick up and drop 
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off times; home visits, park play sessions, excursions; and often, a mixture of some of the 

above. Students are encouraged to consider the context of their families as well as their own 

context during the planning of their Family Gathering, and also to be flexible and responsive 

to the needs of the families they work with, as well as their own circumstances. There is no 

one ‘right’ way to complete their gathering; the aim is simply to support families to notice, 

talk about and explore maths with their children.  

At the end of the session, after assessment item (2) has been submitted, students are 

invited to share their Family Gathering presentation with their peers. Students who consent 

to this, have unmarked and de-identified versions of their presentations uploaded by the 

Subject Coordinator to a showcase location in the learning management system, and all 

students are able to access and view these presentations. On average, between five and ten 

students per session opt to share their work with their peers; however, many more view the 

presentations. Once some are uploaded, it is not uncommon for other students to email with 

permission to share theirs, after seeing the value in the showcase. Interestingly, students who 

received all variation of grades opt to share their work.  

Learning stories  

For assessment item (2), students are required to write three short learning stories as well 

as present a 1,000-word statement on the role of learning stories in early childhood 

mathematics education, including assessment and communication with families. The 

learning stories can be taken from the Family Gathering or from additional observations of 

children that were involved in the Family Gathering. Students are required to include 

information on the context, an analysis of the mathematical learning that occurred, as well 

as provide meaningful feedback and suggestions to the child and family, and suggest ways 

they plan to support the child as the educator. The statement requires students to critically 

consider the role of learning stories in early childhood mathematics education. Students are 

asked to specifically consider learning stories as a form of communication with families, as 

well as a method of mathematics assessment. 

Enrolment Data 

EMC101 has to date been completed by 796 students. Charles Sturt University offers 

three sessions of study per year: Session 30 (for example, titled 201630), which runs March-

June; Session 60, which runs July-October; and Session 90, which runs November-February, 

including the Christmas-New Year period. The subject was first offered in 201260, and was 

offered in all three sessions of study until 2018, at which point a change in the BEd (Birth to 

Five) course structure reduced the subject offerings to the 30 and 90 sessions only. Figure 1 

displays the enrolment patterns for EMC101 across the nine years for which it has been 

offered. The student numbers displayed represent the number of students who completed the 

subject in each session. As can be seen in Figure 1, enrolments have consistently trended 

upwards across the years of offering the subject. Dips are evident in the summer session 

offerings, as one might expect. Unsurprisingly, the majority of enrolments are drawn from 

the BEd (Birth to Five) program. The subject also consistently attracts enrolments from the 

Bachelor of Educational Studies degree program; a program servicing students who are 

pursuing careers in, for example, community education or classroom support. However, it is 

interesting to note the participation from a range of other degree programs including 

Bachelor of Arts, Bachelor of Accounting, and Bachelor of Science. Anecdotal evidence 

indicates that students from these diverse degrees are attracted to the subject because it 
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develops their skills in working with children and families, as well as communicating 

mathematical ideas. 

 

 

Figure 1. Enrolment pattern for EMC101 2012 - 2019 

Evaluation Data 

Subjects at Charles Sturt University are formally evaluated through a Subject Experience 

Survey (SES), which is completed by students in all subjects across the university. The 

survey consists of 21 compulsory core items (18 Likert scale items and three short response 

items) as well as a number of optional items at the Subject Coordinator’s discretion (Charles 

Sturt University, 2020). EMC101 consistently achieves SES scores which are both very high 

(>4 on a 5-point scale) and higher than the School mean. Example SES data from three recent 

offerings is presented in Table 1. 
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The learning activities in this subject created 

opportunities for me to learn from my peers. 

3.8 3.7 4.0 3.5 4.1 3.7 

This subject incorporated study of current 

content. 

4.3 4.1 4.3 4.1 4.4 4.2 

The assessment tasks in this subject helped 

me to learn effectively. 

4.4 3.9 4.3 4.0 4.4 4.0 

I could see a clear connection between the 

learning outcomes, learning activities and 

the assessment tasks in this subject. 

4.3 4.1 4.3 4.1 4.5 4.1 

The learning activities enabled me to judge 

the quality of my own work. 

4.3 3.7 4.3 3.7 4.2 4.1 

The learning activities in this subject 

extended my knowledge. 

4.4 4.0 4.3 4.0 4.4 4.1 

 In addition to the SES data, the subject has been evaluated through a small-scale research 

evaluation. Past EMC101 students were invited to participate in an email interview about 

their experiences in the subject (MacDonald, 2015). Eighteen educators participated in the 

evaluation and all reported positive experiences in the subject, evident through comments 

such as the following: 

I’m not confident with maths but after undertaking the course I felt I benefitted as well as the children. 

It gave me the confidence to implement more ‘maths’ type activities and to talk confidently about 

maths [Stephanie, VIC]. 

I’ve learned so much from this subject and it deepened my knowledge in maths. I can understand 

maths better through children’s play and I discovered that I can ‘see’ mathematics all around me every 

day [Apple, Brunei Darussalem]. 

I enjoyed doing the learning stories, in particular giving advice to the parents on how they can extend 

on mathematics learning at home. I encourage parents to be more hands on in their child’s learning 

and recognise that they are the number one teachers of their child [Carissa, NSW]. 

Through working on such projects with children and families as equal partners we are enabled to 

share and celebrate children’s learning. The family I worked with were clearly proud of the child’s 

numeracy understanding and thinking. The child was seen as competent by all and her family 

expressed an intention to further extend on her numeracy learning in their everyday lives [Sarah, 

NSW]. 

Conclusion 

It appears that the translation of the Let’s Count program to a university subject has been 

a successful endeavour. The elective subject consistently has a high participation rate, with 

796 students completing the subject to date. The subject consistently performs well on 

formal subject evaluation surveys. Moreover, it can be seen from the research evaluation 

that students find the subject valuable for developing their confidence in mathematics, their 

ability to identify mathematics in children’s everyday lives, and their skills in 

communicating with families around their children’s mathematics learning. 
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The Let’s Count Community Professional Pilot 2019 took place in six sites across three states 

(New South Wales, Queensland and South Australia). The aim of the pilot program was to 

implement the Let’s Count face-to-face program for the first time with a group of people who 

work with young children and their families but who are not trained early years educators 

working within early childhood education and care centres. This paper reports on the 

evaluation of the pilot program with specific emphasis on expanding the reach of Let’s Count 

whilst maintaining its integrity and outcomes. 

The authors were commissioned by The Smith Family to undertake an evaluation of the 

Let’s Count Community Professional Pilot 2019. The aim of the evaluation was to ascertain 

the effectiveness of face-to-face implementation of the Let’s Count program in mixed groups 

of early years trained, centre-based educators and other community professionals. Data were 

generated using surveys before and after the training sessions and telephone conversations 

after each of these sessions. Seventy-nine participants and six facilitators or program 

coordinators were involved in at least one aspect of the evaluation. 

Background 

Since 2010, the Let’s Count program in mathematics has supported centre-based early 

childhood educators using a face-to-face professional learning model in geographical sites 

across Australia consisting of two workshop days with approximately 4-6 weeks between 

the workshops. In 2019, The Smith Family specifically targeted these community 

professionals when mixed groups of early childhood educators and such community 

professionals undertook face-to-face Let’s Count program sessions together and engaged in 

the between-sessions requirements of the program in their own workplaces. The Let’s Count 

program and its impact on early childhood educators, young children and their families has 

been well documented (Gervasoni & Perry, 2017; Gervasoni et al., 2016; Perry et al., 2016; 

Perry & MacDonald, 2015). This paper reports on the evaluation of the Let’s Count 

Community Professionals Pilot 2019. The research questions for the evaluation are listed in 

the Results section of the paper. 

Methodology 

The Community Professionals Pilot 2019 was undertaken in six sites across three states 

(two sites in each of NSW, Queensland and South Australia). The evaluation used multiple 

methods involving both qualitative and quantitative approaches.  

Both authors were present for the first session of each group in order to meet participants 

and undertake preliminary surveys and background discussion with all participants, Let’s 

Count facilitators and Program Coordinators willing to be involved in the evaluation. As 

well, participants were asked if they would undertake the follow-up activities in the 

evaluation – two telephone conversations – one between the two program sessions and one 

approximately three weeks after the second session - and post-Session 2 online surveys. No 

child data were generated in this evaluation. 
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The numbers of participants in the Community Professionals Pilot 2019 and the 

evaluation are provided in Table 1. The community professionals came from many different 

backgrounds and endeavours including education (other than early childhood); social work; 

library and information science; business administration; aged care; sports coaching; 

sociolinguistics; music therapy; and law. There were paid and volunteer workers from 

libraries, playgroups, HIPPY (Hippy Australia, n.d.) and other community support groups. 

Table 1  

Participation in data generation  

Participant Type Data Generation Approach 

Early Childhood 

Educator (E) 

Community 

Professional 

(CP) 

Survey 1 Survey 2 Conversation 1 Conversation 2 

44 35 44 E, 33 CP 12 E, 13 CP 14 E, 11 CP 7 E, 7 CP 

Results and Discussion 

Only a summary of the results can be provided here. This is done by answering each of 

the research questions, with a particular emphasis on the responses of the community 

professionals. 

What were the community professionals’ expectations of the program? 

Many of the community professionals who participated in the Let’s Count Community 

Professionals Pilot 2019 knew little about what to expect from the program before Session 

1. All of the community professionals anticipated that the ‘mixed’ model would be of benefit 

to them as they would be learning alongside experienced early childhood educators. Some 

wondered whether they would be able to ‘keep up’ with the early childhood educators and 

some brought long-held reticence about their own abilities both to do mathematics 

themselves and to facilitate young children’s learning of mathematics. There was no 

indication from the early childhood educators that they experienced any difficulties arising 

from the presence of the community professionals.  

Great networking. Great experience. A big thing was that ideas bounced off each other. (CP) 

There were no disadvantages [with the mixed group]. It was great to have different ideas, read about 

some, and get some ideas not out of long day care such as ways to give different ideas at home. 

Opportunity to think outside the box and give us new ideas. No problems, only advantages with 

community professionals group. It opened up my eyes. (E) 

It was great to see the different perspectives of the community professionals, especially perspectives 

on what parents are doing and thinking when the community professionals go to family homes. We 

can’t do that. It was great to see what they’re doing – they often don’t have a lot of resources, so must 

use basic things at home. (E) 

What did the community professionals see as the benefits of engaging with Let’s 

Count to themselves and their organisations? 

Many of the community professionals have not only learned a great deal about 

facilitating young children’s learning of mathematics from their experiences in Let’s Count 

but have also used this knowledge in their own contexts. Many of them have different links 

with the families of the children with whom they interact than early childhood educators 

typically have, and these strong links have encouraged their use of Let’s Count. Contexts 
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such as HIPPY, playgroups, library-based experiences, music therapy and several 

volunteering opportunities with children and families who have complex support needs have 

facilitated interactions around mathematics learning for children and families. Many of the 

community professionals now see that they can be leaders in their organisations around the 

establishment of effective practices in mathematics education.  

It went really well and was an opportunity for us to grow and expand on what we learnt. It was a great 

starting point for young people’s programs in the library.  

Let’s Count provided opportunities to think about what we could do and what is possible in our 

environment. It provided space and opportunity to brainstorm and hear about what other places are 

doing re talking with families about numeracy concepts and to reflect on what we are doing and what 

we can do as a team. 

I will add Let’s Count to the programs I am already involved in, including neighbourhood networks 

and refugee and migrant hubs. 

What do community professionals see as the benefits of engaging with Let’s Count 

to the children and families of their communities? 

Being able to provide children and families who do not access centre-based early 

childhood education with appropriate, interesting and play-based mathematical experiences 

was seen as a major benefit of the community professionals’ engagement with Let’s Count. 

Many of the community professionals who participated in the Let’s Count Community 

Professionals Pilot 2019 also enjoyed the opportunity to be involved in group professional 

development and in the recognition that the group gave them for their own work in the early 

childhood space. 

This is valuable work because the focus is on parent engagement. It is important to influence a number 

of areas as not all children attend early childhood education centres. Let’s Count has a place targeting 

and promoting needs of working with children and families in whatever context. 

I liked the diversity of the group, across different learning environments. I enjoyed meeting people 

and seeing how Let’s Count really helped across the programs, from very young children to 

Kindergarten aged 3-5. Learning about how people integrate maths with very young children as well 

was interesting. It made you think outside the square, more than about your own little environment. 

You can learn so much from each other. It is important to be aware of other groups and programs in 

your community. 

In what ways did the early years trained educators experience the Let’s Count 

program sessions? 

As for the community professionals, early childhood educators participating in the Let’s 

Count Community Professionals Pilot 2019 were very satisfied with the ‘mixed group’ 

model. They were particularly grateful for the diversity of perspectives which the community 

professionals brought to the training sessions and for the variety of approaches they adopted 

in using Let’s Count in their contexts. Many of the early childhood educators praised the 

ways in which some community professionals were able to interact with both children and 

families and wished for the same flexibility in their own settings. Many early childhood 

educators recognised that the Let’s Count program was not ‘rocket science’ and, in some 

cases, reinforced and extended current practice while others were grateful for the ‘reminder’ 

about what was possible. 

Different perspectives were an advantage. We are supporting all children, not all of them are at early 

childhood education centres. A lot of children are at home not attending early childhood education 
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centres but may go to library, so we can reach more children and families. We all learn from each 

other and there were some really good ideas. We are here for all children and the whole community.  

Did the pilot work? Really well. Some non-educators apologised when presenting, but we thought 

they brought different perspectives that were very helpful. They made us think about different ways 

and about how they engage with different contexts, it added a new dimension. It was really good. I 

would encourage everybody to take the opportunity to do Let’s Count training. 

Librarians do it differently. They have parents there, can share parent information and have games 

out for parents to try. All groups should be mixed. It is much more beneficial with community 

professionals than just early childhood educators. All [participants] took something different away 

from the training.   

Let’s Count is applicable to all working with children and families. 

Conclusion 

The ‘mixed group’ model of the Let’s Count training program where early childhood 

educators and community professionals undertake the program together has worked well for 

all involved. There have been real benefits to early childhood educator participants in that 

they have seen different ways for interacting with children and families and different ways 

of facilitating the mathematics development of young children than they would have been 

exposed to in a more homogenous group of participants. Community professionals have not 

only learned that mathematics learning can be incorporated into their core work but also that 

they can do this with minimal disruption to their programs. All participants have indicated 

that they really valued the opportunities to network with other professionals from across 

their communities who are also committed to the education and wellbeing of children and 

families. A number of participants have indicated that they would like to see the community 

professionals model as the norm in terms of face-to-face Let’s Count training and this 

recommendation has been accepted by The Smith Family. 
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In this third consecutive MERGA symposium focused on young children’s drawings, 

three separate groups of researchers discuss the benefits and issues of using drawings as a 

source of data in their studies. Although drawings are ubiquitous in early years classrooms 

and in studies of children’s learning, there is no comprehensive framework for analysing 

children’s drawings in mathematical contexts. The overarching purpose of these 

symposiums has been to explore the qualitative methods that researchers have developed in 

their distinct projects and advance our critical perspectives on interpreting drawings and 

understanding the role they can play in children’s learning of mathematics. 

Broadly, the researchers view drawings as an external representation of mathematical 

concepts, mathematical thinking, or perceptions of mathematical contexts. Typically, 

researchers trust that children’s drawings express to some extent the developing internal 

systems of the child, including the affective domain. In studying the interplay between 

children’s internal and external representations, researchers must grapple with the 

ambiguities of interpreting representational drawing, as explained in quotation below. 

“Internal systems, … include students' personal symbolization constructs and assignments of meaning 

to mathematical notations, as well as their natural language, their visual imagery and spatial 

representation, their problem-solving strategies and heuristics, and (very important) their affect in 

relation to mathematics. The interaction between internal and external representation is fundamental 

to effective teaching and learning. Whatever meanings and interpretations the teacher may bring to 

an external representation, it is the nature of the student's developing internal representation that must 

remain of primary interest.” (Goldin & Shteingold, 2001, p.2).  

In this symposium, as well as sharing results from recent research, the authors reflect on 

some of the issues and affordances in studying children’s drawings with a mathematical eye. 
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In the context of a multiplicative problem, our study investigated young children’s ability to 

visualise and draw equal groups. This paper reports the results obtained from 18 Australian 

children in their first year of school (age 5-6 years). The task 12 Little Ducks, taught by their 

classroom teacher, provoked children to visualise and to draw different solutions. Fifteen 

children (83%) could identify and create equal groups via drawings; eight of these children 

(44%) could also quantify the number of groups that were formed. These findings show that 

some young children can visualise multiplicative situations and can communicate their 

reasoning of equal group situations through drawing.  

The accepted wisdom of earlier research was that the intuitive pathway for children to 

multiplication is through repeated addition (Anghileri, 1989). Research reported by Sullivan 

et al. (2001) showed a relatively large cognitive step for children to move from using models 

with counting to abstract multiplication. These authors recommended that the teaching of 

multiplication require children of 5-8 years of age to imagine objects as well as model with 

objects.  

The theoretical framework of this research is a social constructivist theory of learning 

which holds that meaning is created between individuals through their interactions (Ernest, 

1991). The mathematical content was framed by the research literature related to problem 

solving with children, early multiplication and division, and children’s drawings. The ability 

to solve problems is a fundamental life skill and develops naturally through experiences, 

conversations and imagination (Cheeseman, 2018). The perceived importance of problem 

solving stimulates educators to look for authentic problem-solving situations in which 

children behave as mathematicians (Baroody, 2000). The task reported in this paper is one 

such non-routine mathematical problem.  

Multiplicative thinking involves making two kinds of relations: the many-to-one 

correspondence between the three units of one and the one unit of three (Clark & Kamii 

1996). Doing so requires an ability to form visual images of composite unit structures and is 

fundamental to multiplicative thinking (Sullivan et al., 2001). Young children are only able 

to abstract this notion of a composite unit when they have constructed meaning in their own 

minds (Bobis, 2008). In order to determine children’s meaning of groups, this study used 

children’s drawings as a research tool, and to potentially be a “window into the mind of a 

child” (Woleck, 2001, p. 215). Children were asked to draw a picture of what they were 

visualising and to describe their thinking as they solved the problem. Materials and 

modelling were used only when a child was unable to solve the problem (Sullivan et al., 

2001). We conjectured that many children make mental images and visualise quantities when 

situations provoke them to do so. Our challenge was to create a context that would elicit 

children’s thinking, and to interpret and understand what children imagine. The research 

question we set out to answer was: How do children’s drawings, explanations and actions 

reveal the ways they visualise group structures? 
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Method 

A teaching experiment methodology was used to explore and explain students’ 

mathematical actions and thoughts about recognising and making equal groups. As 

researchers we wanted to experience, first-hand, students’ mathematical learning and 

reasoning (Steffe & Thompson, 2000). The study included the four basic elements of 

teaching experiment methodology. The “teaching episode” in this case, a sequence of five 

consecutive days of mathematics lessons in one school with a class of 5-6 year-olds in their 

first year of school. Three researchers witnessed the teaching and video-recorded each 

lesson.  

The exploratory teaching was undertaken by Sarah (fourth author). While not privy to 

the team’s design of learning contexts, she contributed to the theoretical framing of the study, 

and was conversant with the purpose of the research. Sarah was familiar with the Launch, 

Explore, and Summarise lesson structure (Lappan, & Phillips, 2009), and she believed that 

children should not be shown possible solution strategies before they attempt a task. The 

research team noted that the lesson content was beyond the intended curriculum and would 

present conceptual challenges for 5-6-year-olds, as would the exploratory teaching. Analysis 

of the children’s mathematical thinking was based on their drawings, mathematical language 

and actions, and on the researchers’ theoretical interpretation of events in accordance with a 

teaching experiment methodology. We closely observed children’s interactions to infer their 

thinking about multiplication as seeing “groups of groups”. 

Participants were 21 children (13 girls and 8 boys) from a primary school in a large rural 

city of Victoria, Australia. The mean age was 5 years and 6 months. Sarah’s class provided 

a convenience sample for investigating our research question. The results are from the 18 

children who were present on the day. We devised lessons as contexts in which 5-6 year-old 

children could be stimulated to recognise and create equal groups and to quantify those 

groups. One lesson, Twelve Little Ducks, is the setting for the results presented here. Sarah 

was given a lesson outline and encouraged to implement the ideas in any way that she felt 

suited her children. The problem was originally written as: Can you make 12 little ducks into 

equal groups? Can you do it a different way? Draw or write what you did. To introduce the 

task to her children, Sarah told a story: 

In order not to lose any of her ducklings the mother duck put them into some groups that were the 

same. She put them into equal groups, because it was easy for her to see that she still had her 12 baby 

ducks. Can you make a picture in your head of those 12 little ducklings? The mother duck put them 

into groups with the same number of ducks in each group. I wonder what groups she put them into … 

I would like you to draw a picture of what is in your head (video transcript). 

Sarah chose not to show a picture of ducks or to model the problem with materials, she 

explained that it might interfere with children’s thinking. She was keen to learn what her 

children could imagine without objects - in a context her children would understand. Sarah 

was conscious of the challenge of the task’s mathematical vocabulary as her diary showed: 

These children have not heard the term “equal groups” from me at school at all until today. I did say 

“the same number in each group” but I didn’t go into great detail about what I meant by equal groups.  

These pedagogical decisions deliberately created a challenging for 5-6 year-olds. Blocks 

were not provided initially but a child was offered blocks when it was apparent that s/he 

could not begin to solve the problem.  

Data were collected from two fixed video cameras, three tablet cameras operated by the 

observer-researchers recording children working or in conversation with an adult. 

Subsequently, photographs of work in progress, children’s finished work samples, classroom 
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observations, and the video and photographic data were closely examined and interrogated. 

Data analysis began with each university researcher describing in detail what they observed 

soon after the lesson. In this way, we built a shared understanding of the events in the 

classroom. Each child’s work sample was examined. Tentative categories of responses were 

proposed and iteratively tested to refine category definitions.  

Findings 

Analysis of the work samples together with our observations, conversations with the 

children, and video evidence revealed that three distinct categories of thinking could be 

described in terms of demonstrated multiplicative thinking. 

Evident - could simultaneously quantify objects in groups and enumerate the groups 

as new units 

Eight children (44%) produced 12 ducks by drawing and 

simultaneously creating equal groups. The ducks in their drawing 

were located in identifiable groups, indicating that they had 

perceived or imagined such groups before drawing the ducks. Elise 

drew two groups of six, circled each group and labelled her 

drawing, “2 groop 6” (sic) (Figure 1). She could make equal groups 

and quantify the groups. It appears Elise had determined the group 

size prior to drawing her solution because the ducks are drawn in 

equal rows. 

 

Figure 1. Elise’s first solution 

Partial - having some awareness of the quantity of each group but not the number 

of groups shown 

 

Figure 2. Georgie’s first solution. 

Six children (33%) were categorised as having “partial” 

understanding because they made equal groups but were not 

able to quantify the number of groups. Georgie drew three 

groups of four ducks (Fig 2), and when asked about her groups 

she said: 
Georgie:  There are four here, and four there and four there. 

(Pointing to each group.) 

Teacher:  How many groups of four have you got? 

Georgie:  Twelve. 

Teacher:  Twelve altogether. How many groups of four? 

Georgie:  Um, I’m not sure yet.  

Emergent - unable to find a solution – even with 12 cubes to model the problem 

The four children (22%) who we described as emergent 

thinkers had several observed misunderstandings. For example, 

Conrad was unable to make six groups of two, from his drawing. 

It appears that Conrad did not have a solution in mind when 

drawing the 12 ducks as they were not drawn in identifiable 

clusters or rows. The random arrangement may have contributed 

to the difficulty of circling groups of two.  Other emergent 

thinkers were unable to make equal groups in their drawings or 

when provided blocks to do so. 
 

Figure 3. Conrad’s drawing  
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To Conclude 

We investigated whether children could visualise and construct equal groups and 

recognise the composite units they formed. Our research question was answered. Some 

children can imagine and draw equal group structures and in doing so recognize composite 

units. Some children can also enumerate the composite units. More than 80% of the children 

in the present study exhibited early multiplicative thinking. Children seemed to have 

intuitive understandings of equal group structures based on their experiences because they 

came to the problem we posed without any prior formal instruction about equal groups. This 

finding is novel - we have found no studies that have reported similar results with 5-6 year-

old children. 

Children communicated their visualisation of equal group situations through their 

drawings and elaborated their meaning with verbal descriptions and gestures. Such drawings 

of visualisations represent abstract thinking and call into question the accepted view of the 

way early multiplication typically develops via direct modelling to partial modelling, then 

to thinking abstractly (e.g., Anghileri, 1989).  

We argue that it is productive to require young children to abstract problems earlier. 

Requiring visualisation together with drawings is an alternative approach to direct 

modelling. We acknowledge this is a small study and the results are only indicative of the 

ability of young children to visualise multiplicative situations. Further research might 

investigate other provocations that elicit children’s thinking about multiplication. Children’s 

drawings of their mathematical reasoning are fascinating and the intuitive understandings 

that young children develop about aspects of multiplication are worthy of detailed 

examination.  
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In sharing solutions of mathematical tasks, students may use various modes of representation 

such as: language (oral/written), numerical and symbolic, or drawings (pictures, diagrams or 

markings). In this paper we explore the potential of student drawings to provide evidence of 

mathematical fluency. Examples of young students’ (5-8 years old) solutions to mathematical 

tasks are examined through the lens of drawing representations. The investigation suggested 

that students’ drawings are valuable data when analysing work samples for evidence of 

mathematical fluency alongside other representations.  

Drawn representations are a window into students’ thinking and are worthwhile to 

explore in a mathematical context. Cai and Lester (2005) assert that representations not only 

help students make sense of mathematical problems but allow for communication of thinking 

to others. Bakar et al. (2016) agree that students use drawings to share solutions and suggest 

that “drawing was a translation from other types of representations, used [by students] to 

confirm and explain their answers” (p. 92). Within Way’s (2018) research she utilised 

drawing to “reveal the variety in … drawings, and to explore similarities and differences 

across the age range” (p. 98). There exists an important transitional point during the early 

years of schooling for students between drawing (personal expression) and mathematical 

representation (function and purpose) (Bakar et al., 2016; Way, 2018). These representations 

require further analysis in observing students’ mathematical fluency.  

Data reported on in this paper is part of a larger research project (Cartwright, 2019) 

investigating students’ characteristics of mathematical fluency and teachers’ noticing of 

fluency. Within the study, many students produced drawings in their written work to convey 

their mathematical understanding in solving tasks. The drawings, as a mode of 

representation, became a vital aspect of analysis when observing a students’ mathematical 

fluency. The purpose of this paper is to build on the drawing representational analysis 

conducted by Way (2018). In-depth analysis of the drawing work samples addresses the 

following research question: How can students’ drawing representations provide evidence 

of their mathematical fluency? 

Method 

For the analysis, 39 Kindergarten to Grade 3 work samples were selected from schools 

involved in the research study. All students responded to the same problem: The farmer saw 

16 legs in the field. How many animals might he have seen? 

To analyse the drawings, previously researched drawing categories (Bakar et al., 2016; 

Way, 2018) pertaining to students’ development of drawings within a mathematical context 

were employed. The drawing types pictographic and iconic (Bakar et al., 2016) were used 

to initially sort the data. Bakar et al. (2016) define drawing as pictographic “if it has realistic 
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depictions of the objects stated in the problem” and iconic drawing as containing “only 

simple lines and shapes to embody the intended objects” (p. 89). Cartwright’s (2019) 

mathematical fluency characteristics were then used as an additional lens through which to 

view the drawings. Four fluency characteristics were used as deductive analysis categories: 

use of other representations (numerical or symbolic), correct process or solution, multiple 

solutions, and efficient strategy. Following the characteristics analysis, data were ordered 

into a developmental sequence based on Way’s (2018) drawing categories: picture, partial 

story, partition and solution.  

Findings 

Overall, 17 students (44%) used pictographic representations, 14 used iconic (36%), and 

8 used no drawn representations (20%). Interestingly, a few students used both pictographic 

and iconic representations. During analysis it was necessary to split the iconic category 

further as a distinct difference between the way students used shapes and lines emerged. 

Instead of using shapes and lines to represent the animal or its legs, students used lines and 

circles to cordon off solutions. Some students also used lines, arrows, or circling to connect 

numerical solutions to symbolic or language representations (see Figure 1). The new 

category was named iconic (as organisers) to distinguish between the two uses of iconic 

drawings: in place of a picture, or as part of explaining the mathematical process. 

The second level of analysis took the sorted work samples (pictorial features) and 

analysed the data using Cartwright’s (2019) mathematical fluency characteristics. All 

Kindergarten students (N=6) used pictographic representations. Most students also included 

a numerical representation. One sample included multiple solutions and the majority of 

students were able to use an efficient strategy to count the legs (see Figure 2). Most students 

obtained the correct number of legs (16) but did not mention the number of animals.  

 

 

Figure 1. Example of using lines and circling to 

organise solution 

Figure 2. Kindergarten example of counting by ones 

The Grade 1 samples have not been reported on in this paper as there were only three 

work samples, not enough to make significant statements. For Grade 2 (N=22) twenty of the 

students included a numerical representation to support their process or solution. Students 

used pictographic and iconic drawing types, however, there were significant differences in 

the mathematical features across the samples. One significant difference was the use of 

symbolic representation. Almost all students who used no drawings included symbols. 

Whereas only a few students who drew pictographic or iconic representations used symbols. 

Another significant difference was with solutions and types of efficient strategies. Most 

students who used pictographic representations did not produce multiple solutions and 
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showed no strategy or an additive strategy. Compared with students who drew iconic 

representations or no drawings where multiple solutions and higher strategies 

(multiplicative) were observed. All but one Grade 3 sample (N=8) used numerical 

representations and six included symbolic representations as well. Most students recorded a 

correct process and solution and the majority of students used multiplicative strategies. Of 

the students who drew pictographic representations, none produced multiple solutions. 

Students who drew iconic representations or used no drawings were able to produce multiple 

solutions, often using their knowledge of number patterns to find different combinations.  

Way’s (2018) developmental sequence was used in analysing both pictorial and 

mathematical features of the work samples. Levels (described in Table 2 and illustrated in 

Figure 3) were adapted as the analysis progressed. 

Table 2.  

Developmental Sequence of Mathematical Drawings (Adapted from Way, 2018) 

Level  No. Level description 

1. Scribble 0 Incoherent, no representation of the mathematical story  

2. Picture 2 Shows pictures from the story problem (i.e. animal, farm) but no 

numerical labels or symbolic representations attached 

3. Emergent Story -  

incorrect process/ solution 

2 Shows pictures or iconic representations of the story and includes 

numerical values. No correct mathematical process or solution are visible. 

4. Partial Story - errors 

with process or solution 

7 Uses pictures or iconic representations and numerical values to show 

process of solving the problem. Correct process but incorrect/incomplete 

solution. Or correct solution with incomplete/incorrect process. 

5. Partition and Solution 7 Uses pictures or iconic representations and numerical values during the 

process. Shows a correct solution.  

6. Advanced Partition and 

Solution 

13 Uses pictures or iconic representations and numerical values during the 

process. May include multiple solutions or patterns to find solutions. 

N=31 (students who did not use drawings have not been included within this analysis) 

     

Level 2 Level 3 Level 4 Level 5 Level 6 

Figure 3. Illustrations of mathematical drawing levels 

The use of a developmental sequence was beneficial when analysing the mathematical 

fluency features. For example, both Ellen and Daniel (Figures 4 and 5) used pictographic 

representations and in the initial analysis were grouped together. However, once these 

student samples were analysed using the developmental sequence of drawing levels, 

differences in their use of the representations appeared. Ellen used pictographic and iconic 

representations in an advanced way compared to Daniel. She labelled her pictures 

numerically which aligned to her cumulative count by fours. Ellen also drew lines to explain 

her partitioning of 16 into eights, then fours to describe her process. Although Daniel used a 

correct process and found a correct solution, his pictographic and numerical representations 

were separate. It is unclear if Daniel made a connection between the animals’ legs and his 
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count of four. Both samples show characteristics at Level 5: Partition and solution. 

However, if we see the drawings along a continuum of development, Ellen’s would be placed 

higher. 

 

 
 

Figure 4. Ellen’s work sample Figure 5. Daniel’s work sample 

Discussion and Conclusion  

It was clear that drawing ability by itself did not always correspond to a student’s 

mathematical understanding. However, students who made direct links between drawings, 

numerical, and symbolic representations, showed a higher level of mathematical fluency. 

The findings suggest that there are both affordances and issues with utilising students’ 

drawings to analyse their mathematical fluency. One benefit was that drawings were a visual 

depiction of students’ mathematical strategies. The way students grouped animal legs or 

drew arrays assisted in deciding if students were applying additive or multiplicative thinking, 

especially when the symbolic representations were not present. Some impacting factors 

emerged. Drawing ability was an issue for students unable to draw animals appropriately, 

i.e. incorrect number of legs. For students who drew pictographic representations time was 

a factor. The time it took to draw the animals resulted in only one solution being found, 

whereas students who used iconic representations generally found multiple solutions. Future 

research could explore iconic drawing further, specifically when students created array 

structures, and could be aligned to Mulligan and Mitchelmore’s (2013) levels of Awareness 

of Mathematical Pattern and Structure (AMPS). Iconic representations revealed students’ 

knowledge of number structure and provided scaffolding to efficiently solve the task. 
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Ascertaining young children’s attitudes towards mathematics has its challenges. 

Methodologically, limitations exist regarding the type of research techniques that can be 

employed. The use of children’s drawings as a data source has both methodological 

affordances and issues. The study was conducted with 106 children in Years 2 and 3 from 

three South Australian primary schools. This paper identifies some of the methodological 

affordances and issues of using children’s drawings to ascertain and describe their attitudes 

towards mathematics. 

For Vygotsky, a “young child’s creative forces are concentrated on drawing not by 

chance, but because it is precisely drawing that provides the child with the opportunity to 

most easily express what concerns him at this stage” (Vygotsky, 2004, p. 43). Children’s 

drawings act as a list or “graphical narration” about what a child is portraying (Vygotsky, 

2004, p. 77). Numerous researchers have used children’s drawings in the mathematics 

domain. However, few researchers have used children’s drawings to ascertain and describe 

young children’s attitudes towards mathematics. Bobis and Way (2018) state that 

“representations are an integral part of learning mathematics” (p. 56) and while these authors 

refer to representations primarily from a conceptual and working mathematically 

perspective, children representations of themselves are ubiquitous in their drawings. This 

research connects the ubiquitous nature of children’s drawings of themselves with 

mathematics education by asking children to draw themselves “doing mathematics” as a 

means of ascertaining their attitudes towards mathematics.  

The use of children’s drawings is an innovative approach to ascertain an individual’s 

attitude which moves away from traditional research methods such as attitudinal 

questionnaires. The use of children’s drawings provides several affordances that traditional 

research methods do not allow, including providing a method to children to voice their 

attitudes which can then describe the nature of their attitudes in depth. Conversely, the 

innovative nature of this research raises several issues related to the interpretation and 

analyses of children’s drawings. This paper examines some of the affordances and issues of 

using children’s drawings to ascertain young children’s attitudes towards mathematics. 

The purpose of this study was to investigate the attitudes of young Australian children 

in Years 2 and 3 have towards mathematics. This investigation answered the broad question: 

What are the range and nature of attitudes young children exhibit towards mathematics, in 

both lesson and non-lesson contexts? It is essential to distinguish between the range and 

nature of young children’s attitudes towards mathematics. In this paper, a distinction has 

been made to ensure clarity around the two words.  Additionally, the words ‘nature’ and 

‘range’ have often used interchangeably, but both describe specific aspects of this research. 

The range refers to the scope or extent of young children’s attitudes towards mathematics, 

providing a broad view of the issue. The nature of attitude is descriptive, providing the basic 
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qualities, structure, and the essence of individual attributes of children’s attitudes towards 

mathematics. In other words, the nuances or fine-grain view of attitudes.  

Method 

This paper discusses findings from the non-lesson context where children drew a picture 

of themselves doing mathematics, provided a written description of their drawing and 

participated in a semi-structured interview. One hundred and six children, aged between 7 

and 9 years of age, participated in a mixed-method research design where children’s 

drawings started a conversation about their attitudes towards mathematics.  

Utilising the work of Bachman et al. (2016) the prompt “Draw yourself doing 

mathematics” was given to participants on an A3 piece of paper. The researcher read a 

prompt (see Quane et al., 2019) to children with no time limit given to children to produce 

their drawing. Children provided a written description of their drawing and then participated 

in a semi-structured interview. Using the three research techniques is viewed as 

“complementary methods” to “understand children’s lived experiences” (Macdonald, 2009, 

p. 48). The generated data from the three research techniques was analysed using a modified 

version Three Dimensional Model of Attitude (TMA) (Zan & Di Martino, 2007). The 

original TMA framework comprised of three aspects of attitude: an emotional dimension; a 

vision of mathematics; and perceived competence. In the discussion below we take up the 

methodological affordances of using children’s drawings in terms of TMA, in the course of 

our research. 

Findings and Discussion 

The use of children’s drawings was effective in identifying the range and describing the 

nature of young children’s attitudes towards mathematics. However, while the use of 

children’s drawing as a research technique has benefits, it raises some issues. In this 

discussion, the affordances and issues pertaining to the use of children’s drawings is 

reviewed.  

Attitude is a multi-dimensional construct (Zan & Di Martino, 2007) that can be complex 

to unpack. Any research method employed to ascertain attitudes towards mathematics needs 

to disentangle the different strands of this complexity. That is, the use of children’s drawings 

as a research tool needs to be sensitive to the multi-faceted nature of the construct in 

question, namely attitude. Additionally, data about attitudes towards mathematics has to 

capture the dynamic interplay between the dimensions of attitudes.  

Drawings constitute an accessible vehicle for communication, expressing what is 

important for the child. Unlike surveys, drawings are open-ended, expressive and are child-

centred tasks (Stiles et al., 2008). Stiles and colleagues (2008), found that "attitudes towards 

mathematics expressed in drawings significantly correlated with attitudes expressed in the 

TIMSS [The International Mathematics and Science Study] statements about mathematics" 

(p. 1) and are "superior to the TIMSS statements" (p.13).  

Drawing affords children to express what is important to them in a medium that they feel 

comfortable. Further, children could express a variety of emotions, as shown in Figures 1 – 

3. Children articulated connections between the emotions that they expressed to specific 

mathematical topics and their perceived competence in mathematics.  

The second dimension of attitude is children’s vision of mathematics (Di Martino & Zan, 

2011). For this research, children’s vision of mathematics was characterised by the topics, 

tasks, and processes that they depicted and described as well as their value and appreciation. 
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The use of children’s drawings provided insights into children’s vision of mathematics in 

terms of how children depicted the mathematics that they were doing. The drawings show 

the interconnectedness of the three dimensions of attitude with children indicating their 

emotion and self-concept. Figures 4 – 6 show the mathematical topics and the children’s 

representations of these topics. Further data from the non-lesson context provided insight 

into children’s perceived competence, particularly their mathematical mindset and self-

concept. For example, C16 (Figure 1) indicated that she hated mathematics, finds it hard but 

wants to try “make friends” indicating she has a low perceived competence in mathematics. 

 

 
Figure 1. C16; female, negative 

attitude 

 
Figure 2. B8; male, neutral attitude 

 
Figure 3. A25; female, positive 

attitude 

 

Figure 4. A13; male, extremely 

positive attitude 

 

Figure 5. B45; male, positive 

attitude 

 
Figure 6. C6; male, positive attitude 

 

Lowenfeld and Brittam (1964) were instrumental in describing the developmental nature 

of children’s drawings. In so doing, these authors drew attention to the principle of 

‘deviation’ as a means for children to emphasise, exaggerate or omit pictorial elements. It is 

important to note how an observer views these three principles. Lowenfeld and Brittam 

(1964) cautioned the observer of a drawing regarding making incorrect judgments about a 

child’s intention of using disproportional elements within a drawing. Correct judgements 

and interpretations can only be made by asking the child about their drawing to understand 

the reasons for using disproportionally or drew a particular object. When children have used 

the three types of deviations, the child has drawn what is real, significant, and relevant to 

them (Lowenfeld & Brittam, 1964).  

The principle of deviation is seen in A25’s drawing (Figure 3), where she has emphasised 

the background of her drawing. The child explained that she loved patterns. The emphasis 

that the child placed on her rainbow background would not have been realised without asking 

the child open-ended questions about her drawing. The background in A25’s drawing 

consumed A25’s attention and focus including her responses to the interview questions. 

Understanding the importance A25 has placed on the background was required to minimise 

the potential for the generation data that may have been unreliable. Asking the child about 

the other elements within her drawing and other open-ended questions such as “what is 

maths?” provided indicators for all three dimensions of her attitude.    
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A second emerging issue with using children’s drawings as a research technique is the 

interpretation. The following example illustrates the potential for misinterpretation. Two 

boys have used the same colour for their face, but the reasons for their colour choice is very 

different. B17 (Figure 7) has chosen the colour as he believes it reflects his skin colour. B42 

(Figure 8) has chosen the colour to show that he is feeling frustrated. Examining the drawings 

in isolation from the other data sources may produce very different conclusions. It is only 

when the child is asked about what they have drawn and why they have chosen to draw it in 

the way that they have, do we truly understand the meaning in their drawings.  

 

Figure 7: B17; male, extremely positive attitude 

 

Figure 8: B42; male, neutral attitude 

Conclusion  

The use of ‘Draw yourself doing mathematics’ elicits children’s drawings that were 

personal stories about their complex relationship with mathematics revealing their attitude 

towards mathematics. The process of drawing was a means for children to feel comfortable 

sharing their thoughts in a familiar manner (Macdonald, 2013). Children were given the time 

to “comprehensively explain the intended meanings of their drawings through extended 

conversations and further questioning” (Macdonald, 2013, p. 72). An affordance not offered 

in quantitative measures. Children’s written responses complemented the visual and verbal 

accounts adding further insights into what was important to them.  By providing children 

multiple opportunities to share their thoughts about mathematics, rich narratives were told 

about individual attitudes towards mathematics.   

In conclusion, our experiences thus far showed that there are challenges in using 

drawings particularly in unpacking the developmental aspects of attitude. On balance, 

however, the affordances outweigh the hindrances in deploying the technique. The 

affordances of using children’s drawings can be summarised as giving children the freedom 

to choose what they depict and how they portray themselves. For children’s drawings to be 

understood by adults, Anning and Ring (2004) offer the following: “We need a society that 

can listen to children and recognise that perhaps their drawings may tell us much more about 

childhood than we ever imagined” (p 125). 
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With the increased workplace demand for STEM specialists, and the trend in capable students 

opting out of higher levels of secondary mathematics, the psychological influences on 

mathematics subject choice are important issues to explore. Expectancy-value theory is used 

to examine the factors influencing such achievement choices. In the present study, as part of 

a larger programme of research on mathematics subject choice, we sought to validate self-

report measures of students’ expectancies for success, values, and perceived costs associated 

with participation in mathematics. Confirmatory factor analysis supported the hypothesised 

factor structure, with the measures displaying acceptable levels of internal consistency.  

The growing demand for specialist STEM practitioners is undercut by a decline in 

participation in sciences and advanced mathematics in school and university (Australian 

Government Department of Education and Training, 2016), and an associated labour 

shortage in these fields. In the final two years of secondary education, a trend exists in which 

talented and capable students are turning away from the more rigorous calculus-based 

mathematics courses. In the state of New South Wales, Australia, there has been a decline 

from 34 to 22 percent of students opting for these higher-level courses over the past two 

decades (Jaremus et al., 2018). The calculus-based courses of study available to Australian 

students are Advanced Mathematics (previously known as Mathematics), Extension 1 and 

Extension 2 mathematics, and these courses lay the groundwork for meeting the challenges 

of many tertiary STEM pathways. Not completing adequate levels of high school 

mathematics preparation is associated with attrition from undergraduate STEM majors, with 

students being almost twice as likely to fail certain first-year science units if they did not 

complete a calculus-based mathematics course in secondary school (Nicholas et al., 2015).  

It is important, therefore, to explore the antecedents of students making choices either 

for or away from participation in higher levels of upper secondary mathematics. Why are 

students, especially girls, increasingly dissuaded from choosing calculus level mathematics? 

What are the psychological influences on this choice? If we had a better understanding of 

these factors, might we be able to increase participation in these courses through levers in 

the middle school experience and the curriculum?  

The current research investigates motivations for pursuing mathematics subjects in 

senior secondary school, with a focus on examining gender differences in motivational 

influences. The Expectancy-Value Theory (EVT) is drawn on as the guiding theoretical 

framework (Eccles et al., 1983; Wigfield & Eccles, 2000), being one of the most 

comprehensive frameworks for studying the psychological and contextual factors 

influencing individual and gender differences in achievement choices (Wigfield & Eccles, 

2000). This theory has been used extensively to examine the short-term and long-term 

motivations and achievement outcomes in a variety of achievement domains. 
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Research into student motivations using the EVT has predominantly been quantitative 

longitudinal variable-centred studies tracking changes in positive motivations throughout 

school, and their contributions to achievement-behaviour. These positive aspects of 

motivations are broken into the student’s expectancy for success (perceived competence or 

self-concept) and their valuing of mathematics in the forms of utility value (perceived 

usefulness), attainment value (importance of doing well) and intrinsic value (inherent 

interest, a similar concept to intrinsic motivation). Historically, few studies have 

incorporated the negative “cost” component of the theory into empirical analyses. Cost refers 

to the perceived drawbacks of engaging in an activity and has been defined as the negative 

consequences derived from participating in an activity, such as perceived difficulties, fear of 

failure and loss of valued alternative activities (Wigfield, 1994). In more recent years, a fast-

growing literature has begun to focus on measuring cost as a multidimensional construct 

(e.g., Barron & Hulleman, 2015; Battle & Wigfield, 2003; Chen & Liu, 2009; Chiang et al., 

2011; Conley, 2012; Flake et al., 2015; Perez, et al., 2014; Watkinson et al., 2005).  

The ongoing study extends this work by focusing on the influence of this negative cost 

factor in relation to the motivation of high school mathematics students, to further explore 

its associated effects on mathematics-related academic choices. The results of 500 survey 

responses collected from Year 10 students in New South Wales are analysed to derive 

motivational profiles of students with similar beliefs in their levels of expectancy for success, 

the values they hold for mathematics, and the costs they associate with this subject. A latent 

profile analysis will be conducted to identify and classify clusters of individuals with similar 

beliefs based on patterns of categorical responses, followed by interviews of students with 

high-cost profiles in an attempt to capture a further understanding of their experiences, the 

complexity of the interrelated influences on their motivation, and their influences on their 

choice in mathematics studies.  

This paper presents initial results of the quantitative analyses assessing the construct 

validity and reliability of hypothesised constructs. It provides the groundwork for subsequent 

intended research exploring gendered relationships between and among the various 

motivational profiles, as well as their relationship to achievement background, language 

background, dependency on selective schools, coeducational/single-sex learning 

environments, amongst other educational contexts. These further factors will be explored 

through both quantitative and qualitative research components to follow. Results from this 

study can help provide information for school-teachers in understanding factors affecting 

student motivation and the types of classroom experiences and programs that may help shift 

students into more favourable motivational profiles, so students may be more likely to persist 

with a level of mathematics commensurate with their ability. 

Method 

Participants 

Survey data were collected from 521 Year 10 students from 10 high schools in the 

Sydney metropolitan area. Data were gathered from participants at a critical decision point 

in relation to subject choice: students completed the surveys after having submitted their 

subject selection forms, and so were able to report their chosen level of mathematics for Year 

11. All students in the Year 10 cohort were invited to participate and were given paper 

consent forms to be signed by parents or guardians and themselves. Their teachers were 

asked to remind students to return forms to maximise returns from each school.  
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New South Wales secondary school contexts vary significantly in demographic 

characteristics, numeracy performance, and level of participation in senior mathematics. The 

current study’s sample includes a range of coeducational and single sex schools, 

comprehensive and selective schools. Some of this complexity was reduced by only 

including government schools (none from the Catholic or private sector), and by employing 

strategic sampling of schools. Participating schools were matched for socio-economic status 

to minimise its influence as a confounding variable, measured by the Index of Community 

Socio-Educational Advantage (ICSEA). This index is calculated based on student-level data 

on a raft of factors including family background, parental level of education, and remoteness 

of the school (Australian Curriculum and Assessment and Reporting Authority, 2018). The 

participating schools’ mean ICSEA was 1082 (SD = 78.33), above the sector-wide mean 

ICSEA value of 1000 (SD = 100). Three schools were academically selective, seven were 

coeducational, two were girls-only and one was boys-only.  

Instrument 

The survey instrument first collected information on school attributes, including subject 

preferences and academic aspirations. The questions that followed gathered information on 

the level of mathematics the students had chosen for their final two years of high school and 

how they believed that it matched with their ability level (“Was this level of mathematics 

higher than/the same as/lower than what you believe you’re capable of?”). There were also 

three open-ended short-answer questions eliciting students’ reasons for their choice in level 

of mathematics. Follow-up interviews in the second qualitative part of this study will further 

clarify student responses to these questions.  

This section was followed by 31 items gathering students’ perceived expectancy and 

value (utility, attainment, intrinsic) beliefs, which were sourced from Eccles’ Expectancy 

Value measures (Eccles, 2005; Eccles & Wigfield, 1995), with grammatical and 

contextualising modifications for the Australian sample developed and psychometrically 

validated in Australia (see Watt, 2004). Examples of some items are: “How well do you 

expect to do in your next maths task?” to measure expectancy for success or self-efficacy, 

“How useful do you think maths is in the everyday world?” to tap on utility value, “Being 

someone who is good at maths is important to me” to tap on attainment value, and “How 

enjoyable do you find maths?” to tap on intrinsic value.  

The items measuring the dimensions of cost, including effort cost, outside effort cost, 

loss of valued alternatives cost, and emotional cost, were based on Flake et al.’s (2015) 

comprehensive scale validation study, with “this class” replaced by “mathematics”. 

Examples of items were “I worry too much about mathematics” to tap on emotional cost, 

“Mathematics requires me to give up too many other activities I value” to tap on loss of 

valued alternatives, “Because of the all the other demands on my time, I don’t have enough 

time for mathematics” to tap on outside effort cost, and “Mathematics demands too much of 

my time” to tap on task effort cost. Each expectancy, value, and cost item was rated on a 7-

point Likert scale from 1 (not at all) to 7 (extremely). A question at the end of the 

questionnaire elicited student interest in participating in a short, individual, semi-structured 

interview early in the following year to further explore quantitative results and how subject 

choice are shaped by the various interrelated and interacting facets of motivation. For a copy 

of the full survey please contact the first author via email. 
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Procedure 

Surveys were conducted in class, online via the Qualtrics survey platform, and were led 

by the students’ normal classroom teacher. Respondents (N = 21) who provided insincere 

responses (e.g. pattern drawing, string responses) were excluded from the analyses. Missing 

data were rare as the online format of the survey ensured that important questions could not 

be skipped; however, respondents who exited the survey without completing it were also 

excluded from the analyses. The final sample consisted of 500 students (239 boys, 250 girls, 

11 other, mean age = 15.69, SD = 0.77).  

Confirmatory factor analysis (CFA) was used to assess the dimensionality of latent 

constructs using Mplus 6.12 (Muthén and Muthén 2004). Multivariate normality is a key 

assumption of a range of multivariate statistical methods, including CFA (Kline, 2016). 

Mardia’s (1970) test indicated the data were multivariate non-normal. To account for this, 

robust maximum likelihood estimation of covariance matrices was used, as this procedure is 

less sensitive than other estimation methods to violations of the normality assumption 

(Boomsma & Hoogland, 2001). Each of the latent motivation constructs of expectancies, 

values and costs were analysed for fit, with their corresponding 3 to 6 items as indicators for 

their assigned latent constructs.  

To assess the reliability of survey measures, McDonald’s (1999) omega was used as an 

estimate of internal consistency. There has been increasing criticism of the use of Cronbach’s 

alpha in behavioural science research due to some of its untenable assumptions. Some of 

these assumptions include the requirement that each indicator variable contributes equally 

to the factor (tau-equivalence), and that error variances must be uncorrelated (Dunn et al., 

2013). McDonald’s omega takes into account the strength of association between items, as 

Cronbach’s alpha’s failure to do so may overestimate the reliability of results (Dunn et al., 

2013). These initial procedures will ensure the consistency, validity and reliability of the 

latent constructs measured for the purposes of this study. 

Results and Discussion  

Confirmatory factor analysis confirmed that the eight-factor model of motivation to be a 

good fit to the data. Model fit was evaluated using recommendations by Kline (2016) and 

Marsh et al. (2004), focusing on the Comparative Fit Index (CFI), Tucker-Lewis Index 

(TLI), the root mean squared error of approximation (RMSEA), and the standardised root 

mean squared residual (SRMR). By these recommendations, RMSEA values at less than 

0.08 are considered acceptable fit and values less than 0.05 are considered excellent fit 

(Marsh et al., 1996). For the CFI, values at or greater than 0.95 are taken to reflect excellent 

fit to the data (McDonald & Marsh, 1990). Cut-off values close to 0.95 for TLI; close to 0.08 

for SRMR (Hu & Bentler, 1999) are considered acceptable fit.  

The present eight-factor model showed an acceptable fit for each of the constructs  

(χ2 = 788.76, df = 437, CFI = 0.964, TLI = 0.959, RMSEA = 0.040, SRMR = 0.042). Table 

1 presents factor loading ranges of items against the hypothesised latent constructs, as well 

as descriptive statistics, reliability (using estimates of McDonald’s omega). Where single 

item indicators (e.g. Gender, NESB, Co-educational/Single-sex school, 

Comprehensive/selective school, NAPLAN achievement) were used, the variance of these 

indicators was fixed at one, and standard deviation fixed at zero. For each sub-dimension, 

estimates of reliability using McDonald’s omega ranged from 0.87 to 0.93, which indicates 

a high degree of internal consistency for all scales; factor loadings were strong (> .60), 
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indicating items were suitably measuring hypothesised constructs. Descriptive statistics, 

McDonald’s omega measures of reliability are also provided in Table 1. 

Table 1  

Descriptive statistics, reliability using McDonald’s omega, confirmatory factor analysis 

factor loadings and measurement errors for each subconstruct 

 Mean SD Skewness Kurtosis McDonald’s 

 

CFA Factor 

Loading 

Range 

Mean 

Residuals 

Expectancies  4.91 1.32 – 0.77 0.57 0.93 0.88 – 0.92 0.01 

Intrinsic 

value 

4.39 1.63 – 0.56 – 0.19 0.93 0.89 – 0.94 0.01 

Attainment 

value 

4.62 1.55 – 0.42 – 0.66 0.87 0.83 – 0.84 0.02 

Utility value 5.02 1.37 – 0.45 – 0.53 0.89 0.84 – 0.89 0.02 

Task effort 

cost  

4.08 1.36 – 0.01 – 0.40 0.89 0.63 – 0.82 0.02 

Outside 

effort cost  

3.83 1.43 0.20 – 0.47 0.92 0.81 – 0.88 0.02 

Loss of 

valued 

alternatives  

3.48 1.41 0.22 – 0.23 0.88 0.74 – 0.85 0.02 

Emotional 

cost  

4.17 1.52 – 0.06 – 0.70 0.92 0.60 – 0.88 0.02 

 

A correlational analysis showed that each measure of cost was negatively correlated to 

each of the positive subconstructs of motivation, which was to be expected. Some cost 

subscales were found to be highly correlated with one another, for instance, the correlation 

between task effort cost and emotional cost being 0.87. This level of correlation is not ideal, 

as a correlation of 1 means that the constructs are indistinguishable. The scale development 

study from which the current survey is based (Flake et al., 2015) found similar correlations 

in their initial analyses into measuring and operationalising the “cost” component for 

motivation. Their confirmatory factor analyses provided the strongest support for the four-

factor solution of cost.  

However, Flake et al. (2015) also found that the higher order factor model, which 

included a general unidimensional cost factor, also provided a good fit to the data. They 

argued that although the four-factor solution provided four highly-correlated dimensions, it 

showed adequate reliability and model fit, and a further correlational study revealed that the 

four cost factors had different relationships to the other positive motivation factors. This 

particular scale development study was conducted in a tertiary calculus setting with a smaller 

cohort (N = 228), which may explain the discrepancy between those results and the ones 

produced in the current secondary setting. Flake et al. suggested that future research should 

investigate the empirical structure of cost within different groups of students in different 

contexts to see how their findings might replicate across educational settings. The current 

study provided one such further context and showed that the cost factors also displayed high 

levels of multi-collinearity. Table 2 presents a latent correlation matrix for the constructs 

under analysis. 
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Table 2 

Latent factor correlations for Expectancy, Values and Costs perceptions 

 EXP IV AV UV TEC OEC LOVA EMC 

EXP –        

IV 0.66 –       

AV 0.65 0.80 –      

UV 0.37 0.57 0.68 –     

TEC – 0.39 – 0.55 – 0.42 – 0.35 –    

OEC – 0.41 – 0.46 – 0.37 – 0.28 0.80 –   

LOVA  – 0.35 – 0.43 – 0.32 – 0.29 0.86 0.82 –  

EMC  – 0.51 – 0.63 – 0.46 – 0.31 0.87 0.72 0.73 – 

Note. All correlation coefficients are statistically significant at the p < 0.001 level. EXP = expectancy for 

success, IV = intrinsic value, AV = attainment value, UV = utility value, TEC = task effort cost, OEC = outside 

effort cost, LOVA = loss of valued alternatives, EMC = emotional cost.  

Correlations between the expectancies and values dimensions echoed that of comparable 

previous studies of secondary students’ mathematics motivations using EVT (e.g. Watt, 

2004). The highest correlation between these positive factors were between intrinsic value 

and attainment value (r = 0.80), followed by correlations between utility value and 

attainment value (r = 0.68) and between expectancy for success and intrinsic value (r = 0.66). 

In the current sample, although the correlations between the cost constructs were found to 

be high, the model also had a good level of fit and the cost sub-constructs were found to be 

differentially related to expectancies for success and values. Interestingly, emotional cost 

was related to intrinsic value more than any other cost component, which brings up the 

question of how emotional cost and the psychological cost of failure impacts on high school 

students’ intrinsic valuing for mathematics. This question, along with others, will be further 

explored in the subsequent interview study with a subset of the survey participants. 

Conclusion 

The factorial structure of the underlying constructs was validated using CFA, with the 

measurement model confirmed to be valid and ready to be used for further analyses on 

relationships between the latent variables. High degrees of internal consistency showed that 

the items were reliable in measuring the constructs they were designed to measure. The fit 

indices were adequate, which was expected because the expectancy and value scales have 

undergone rigorous scale validation through multiple studies, across many year groups and 

in a variety of subject contexts. However, the cost scales displayed a level of multi-

collinearity, and were problematic in some pairs of sub-constructs having a higher level of 

correlation. As the particular scale development study was conducted in a tertiary calculus 

setting with a smaller cohort, further work needs to be done examining the construct and 

dimensionality of the cost factor in the secondary context.  

The present study provides a foundation for subsequent intended research linking 

students’ mathematics motivational profiles with their school contexts and choice of 
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mathematics course. The next steps in analyses include conducting a latent profile analysis 

to explore how students hold multiple motivational beliefs simultaneously to make decisions 

on persisting with difficult mathematics subjects, rather than examining the isolated effects 

of single variables. Previous work on motivational profiles have shown different profiles to 

be differentially related to persistence outcomes (Perez et al., 2014; Watt et al., 2019). 

Studies of cost have repeatedly shown that the theorised dimensions of cost contribute 

differentially to student motivations and have suggested that future research should seek to 

understand the sources of cost.  

Without an understanding of how costs interact with the other expectancy and value 

components, and by excluding it from the EVT framework, research findings about 

motivational influences may be compromised. An imbalanced value-cost relationship may 

hinder motivation, so the planned interviews will seek to understand the experiences of 

students to gather the reasons and sources for the costs they perceive. “What could teachers 

do to optimise student motivation if they knew students were experiencing high cost?” was 

a question that Flake et al. (2015) posed in their study, and highlighted that it is a question 

that remains unanswered. The ongoing study aims to contribute to the literature on how the 

components of expectancy, value, and cost influence student motivation in the context of 

high school mathematics.  
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We report on the use of a data-gathering task requiring preservice primary teachers to ‘graph’ 

their emerging relationships with mathematics. A cultural-historical activity approach was 

used to analyse data from nine final year preservice primary teachers to reveal what and how 

key events in their lives helped shape their current mathematical identities. Oscillations 

between “high” and “low” points in their relationships with mathematics was a feature of 

participants’ graphs regardless of their current mathematical identities. Combined with semi-

structured interviews, the graphing task is posited as a valuable method for researchers and 

practitioners to explore mathematics-related identity.  

The development of a positive mathematical identity is considered critical to student 

learning because of its potential to influence career and higher education aspirations (Black 

et al., 2010). Selecting a mathematics-related career is not just about being academically 

successful in mathematics, it is also determined by how a person identifies with mathematics 

as a discipline (Sfard & Prusak, 2005). It is therefore unsurprising that the development of a 

healthy student identity with mathematics is considered of major importance to achieving 

current goals for the Australian government’s mathematics and science related education 

agenda (Australia Government, 2015). Research indicates that teachers’ personal identities 

with a particular discipline can profoundly influence how they teach that discipline and 

position their students to learn it (Leatham & Hill, 2010; Reay & Wiliam, 1999). 

Unfortunately, it is well established that many primary teachers have not experienced healthy 

relationships with mathematics as students (Maasepp & Bobis, 2014), making it difficult to 

nurture positive identities in their own students. Such a situation can be detrimental to 

primary students’ long-term decisions to undertake further study in mathematics areas as 

early negative experiences can have enduring negative influences on students’ achievements 

and aspirations in those disciplines (Black et al., 2010). 

Numerous researchers have studied preservice primary teachers’ mathematics-related 

identities, often with the intention of better understanding the personal experiences that 

shape certain identities (Darragh, 2016). Studying identity is problematic due to its 

complexity—commonly conceptualized as dynamic, multidimensional and formed through 

a blend of personal characteristics and long-term socio-cultural experiences. Such 

complexity has raised questions about the capacity of researchers to provide an adequate 

measure of mathematical identity (Kaspersen et al., 2017). With this challenge in mind, we 

sought to explore the mathematical experiences of primary preservice teachers (PSTs) that 

helped shape their current mathematics-related identities. Additionally, the merits of a 

relatively novel task that required participants to graph the high and low points in their 

relationship with mathematics was explored. We conclude the paper by advocating the 

graphing task as a valuable qualitative strategy for researchers and teacher educators to 

understand the experiences and conditions under which mathematical identities develop.  
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Defining Identity 

Definitions of identity vary from those who consider it to be how individuals are 

perceived by themselves and others (Grootenboer et al., 2006) to those who emphasise the 

socio-cultural context in which individuals act (Kaspersen et al., 2017). However, Sfard and 

Prusak (2005) conceptualized identity as discourse comprising endorsable stories or 

narratives about ‘who one is’ independent from one’s actions (Kaasila et al., 2005). No 

matter how it is defined, researchers generally conceptualize identity as a multidimensional 

construct, combining elements such as knowledge, beliefs, attitudes, emotions, confidence 

and dispositions that influence how individuals view themselves and are viewed by others 

(Beauchamp & Thomas, 2009; Kaasila et al., 2012). In essence, we see identity as relational 

by nature, incorporating both cognitive and affective aspects (Kaasila et al., 2012; Leatham 

& Hill, 2010) and is dynamic in nature in that an individual’s identity is considered to be 

constantly shifting as a result of social interactions. More specifically, in the current study, 

we use Lutovac and Kaasila’s (2019) term ‘mathematics-related’ identity because it 

encompasses all aspects of a preservice teacher’s identity related to mathematics. 

Preservice teachers’ mathematical-related identities can be influenced by their socio-

cultural backgrounds. A study by Watkins and Noble (2008) involving 35 Year 3 students 

from different ethnic backgrounds revealed that Chinese parents had higher expectations for 

their children’s achievements than their Anglo and Pasifika peers. Such cultural background 

influences could impact the developing identities of young children in either positive or 

negative ways. Socio-cultural factors that can potentially influence identity go beyond 

ethnicity to include a range of family, religious, educational and socio-economic background 

elements. 

Theoretical Perspective 

Studies that are framed in cultural-historical activity theory (CHAT) view identity as 

essentially a social experience, whereby the context must be considered when interpreting 

an individual’s activity or responses (Engeström, 2001). In this study, we were interested in 

primary PST’s shifting relationship with mathematics (the context) over time (historical) and 

how they responded (the activity) to salient events (socio-cultural) in their lives. 

The mathematics-related identities that PSTs develop as students via various socio-

cultural contexts can not only influence the actions that they take regarding their own 

relationship with mathematics but those of their future students (Maasepp & Bobis, 2014). 

Thus, it is of utmost importance that primary PSTs not only develop healthy mathematics-

related identities, but that mathematics educators can easily assess information about their 

PST’s identities to ensure adequate interventions might take place.  

Research Design 

While most investigations adopt a qualitative tradition to explore mathematics-related 

identity (e.g. Black et al., 2010; Darragh, 2016), some quantitative studies exist (Kaspersen 

et al., 2017). Given an aim of this study was to gain a deep understanding of the socio-

cultural experiences of prospective primary teachers, we adopted qualitative methods 

including a reflective task to elicit the historical information we needed. Hence, a second 

aim of our study was to explore the merits of a qualitative identity task that encourages 

individuals to graphically represent the high and low points in their relationship with 

mathematics over their life experiences. The identity graphing task, accompanied by an 

individual semi-structured interview, is appropriate for studies adopting a cultural-historical 
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approach given its capacity to capture reflective insights into the impact of past events that 

may not have been obvious to PSTs when they occurred. The research questions addressed 

were: 

1. What experiences in the lives of prospective primary teachers do they report as 

influencing their emerging identities with mathematics?  

2. To what extent can an identity ‘graphing’ task provide information about the socio-

cultural and historical contexts in which mathematical identities are shaped?  

Setting and Participants 

All prospective primary teachers (N = 96) enrolled in the final year of a four-year 

Bachelor of Education program (B.Ed. Primary) at a large university located in an Australian 

state capital were invited to participate in the study. Nine PSTs (six female, three male) aged 

20-24 agreed to participate. Background data were collected at the start of the interview for 

all participants and are summarized in Table 1. All participants completed mathematics in 

their final year of secondary school and were born and schooled in Australia. Four PSTs had 

Asian born parent(s).  

Table 1  

Background Details of the Nine Participants 

Participant 

Pseudonym 

Parents’ Birth 

Country 

Level of Mathematics completed in Year 12 (final 

year of secondary school) 

Abigail Both Australian Intermediate 

Arthur 
Mother UK 

Father Hong Kong 
Intermediate 

Angela Both Sri Lankan Advanced 

Brenda  Both South Korean Advanced 

Benjamin Both Australian Intermediate 

Blake Both Australian Lowest Level 

Charlotte Both Australian Lowest Level 

Celeste Both Australian Lowest Level 

Caitlyn  Both Chinese Intermediate 

 

In this paper we report detailed findings for two of the PSTs to illustrate the capacity of 

the identity graphing task. However, we draw upon data from all nine participants when 

referring to common themes. Brenda and Caitlyn were selected for closer focus due to the 

clarity of annotations on their identity graphs and because the end-point on their graphs (their 

relationship with mathematics as they perceived it at the time of this study) were very 

different, despite sharing some similar socio-cultural experiences. 



Bobis, Nguyen and McMaster 

134 

Data Collection Tasks, Procedure and Analysis 

The introductory phase of the interview involved questions intended to gather 

information on PST’s family backgrounds, schooling and involvement in mathematics study. 

The second phase comprised an identity graphing task. The ‘Me and Mathematics’ 

instrument developed by Lewis (2013) was adapted to gain a visual representation of each 

PST’s relationship with mathematics. This instrument was modified to specifically capture 

how PSTs’ mathematical identities had been shaped by their past experiences. Participants 

were asked to reflect upon their memories (as far back as they could recall) and involvement 

with mathematics that they felt helped shape their current relationship with the discipline. 

They were then provided with a A4 sheet of paper containing a pre-drawn horizontal and 

vertical axis. The horizontal axis was labelled “key events that have shaped my identity with 

mathematics” and the vertical axis was labelled “degree of enjoyment/dislike/confidence/ 

anxiety”. Participants used a black pen to construct a line graph representing the high and 

low points in their ‘relationship’ with mathematics and then annotated it with a different 

coloured pen to describe the nature of each experience.  

In the final phase of the interview and immediately after drawing their identity graphs, 

participants were questioned to clarify reasons for turning points in their graphs. Our focus 

here, is on those turning points. In particular, we wanted to gain a better understanding of 

the socio-cultural aspects underpinning such key events and of PSTs’ behavioural, cognitive 

and affective responses to them. The open-ended questioning offered in-built flexibility 

during data collection as it encouraged PSTs to comfortably share their stories, eliciting 

‘how’ and ‘why’ they possessed certain mathematics-related identities (Neuman, 2013). 

Blending the strengths of identity graphing and semi-structured interviews improved data 

validity as the focus for the data collected was specified, and the participant role in the data 

generation process was increased (Tashakkori & Teddlie, 2010).  

Individual interviews were audio recorded and transcribed to assist with analysis. Data 

from the interviews and the identity graphs were combined for analysis to provide a wholistic 

picture of each PST’s data. An across case thematic analysis was conducted involving Braun 

and Clarke’s (2006) six phases—data familiarisation, generation of initial codes, search for 

themes, review and defining themes, and report production. Given our interest in primary 

PSTs’ shifting relationships with mathematics from both a cultural and historical 

perspective, initial coding adopted the major theme of culture which was soon divided to the 

subthemes of ethnicity-culture, family-culture, and school/classroom-culture as analysis of 

data proceeded. 

Results and Discussion 

Thematic analysis involving all nine participants revealed that cultural expectations, 

parental and teacher influences were among the key factors that shaped PSTs’ mathematics-

related identities. A notable feature common to all identity graphs, was the oscillations 

between “high” and “low” points in PSTs’ relationships with mathematics throughout their 

lives. This characteristic oscillation occurred regardless of whether they perceived their 

current mathematics-related identity in a positive or negative light. These graphic 

representations affirm conceptualisations of identity as a dynamic construct that is constantly 

shifting. Moreover, just one event has the potential to instigate a downward or upward 

trajectory in mathematics-related identity formation. Of interest was the nature of events that 

could influence trajectory changes and why some PSTs could experience similar events to 

others but develop very different mathematical identities. It is reassuring to note that a 
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downward trending relationship with mathematics can be reversed with the right 

combination of socio-cultural experiences. We now restrict our presentation and discussion 

of data to Brenda (Figure 1) and Caitlyn (Figure 2).  

Brenda and Caitlyn both expressed the view that their Asian heritage greatly influenced 

their mathematics-related identity formation as they were growing up. Brenda, who went to 

a selective high school, reflected: “If I told someone who was not Asian that I did 3-Unit 

maths, they wouldn’t be surprised … . Non-Asian students would be surprised if they did 

perform better than I did.” While the stereotype assumption that “Asian students are good at 

mathematics and non-Asian students are not” in both PSTs’ schooling experiences was 

prevalent, they responded differently. On inspection of her graph, it is clear that Brenda 

considered her earliest relationship with mathematics as quite positive (the first high point 

in Figure 1). It was recalled in terms of her academic performance relative to her peers. She 

used a different coloured pen (blue) to record each memory referencing her parents and 

family – successive comments pertaining to family appear at the two lowest points on her 

graph. Brenda eventually opted to take advanced mathematics for her final years of 

secondary school and despite some low points associated with poor test scores in Year 11 

(as represented in Figure 1 at the fifth turning point), managed “through effort” to improve. 

 

 

Figure 1. Brenda’s identity graph 

The same stereotype had a negative impact on Caitlyn. In early high school, she wanted 

to maintain the expectation that Asians are good at mathematics but when she achieved 

poorly in Years 9 and 10 (as represented in Figure 2 by the dip between Years 7 and 9/10), 

she actually felt “proud not fitting into that Asian stereotype”. She also stopped caring or 

“trying” to do well in mathematics, believing she had already failed the Asian expectation. 
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Resistance to the Asian stereotype image by Caitlyn had a lasting impact on her relationship 

with mathematics, continuing into her B.Ed. program and contributed to her resultant 

“indifferent” attitude toward mathematics.  

 

Figure 2. Caitlyn’s identity graph 

Brenda’s Korean parents placed significant pressure on her to perform well in 

mathematics. She shared that her parents “put a lot of emphasis on maths” and that “other 

subjects weren’t considered” as important. Brenda experienced reduced self-confidence in 

mathematics, as illustrated by the dip between Year 10 and 12 (Figure 1). A relaxing of 

parental pressure to achieve in university mathematics was one of the factors that Brenda 

attributed to regaining enjoyment in mathematics during her preservice program. Similarly, 

Caitlyn’s parents, particularly her father, applied a great deal of pressure to perform well in 

mathematics and attributed her ‘less than expected’ performance to the belief that “boys are 

naturally better at maths”. Caitlyn indicated that once her parents concluded that she was not 

going to achieve the level they expected of her, she stopped trying to improve and became 

content to be “indifferent” to mathematics (see final down-turn in Figure 2). Sadly, such 

indifference can be detrimental to her ability to nurture positive relationships with 

mathematics by her future primary students.  

Mathematics teachers and friendship groups were also substantially involved in shaping 

PSTs’ mathematical identities. For example, Caitlyn attributed her upward slopes and peaks 

on her identity graph to the “better”, “kind and amazing” mathematics teachers she had late 

in high school and to the influence of “studious friends” in her first year of high school. 

Similarly, Brenda considered her positive experience of mathematics teaching in first year 

university as the reason for a spike in her interest and enjoyment of mathematics—a 
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relationship that steadily increased to her final year of the program (as represented by the 

final two turning points in Figure 1). 

Conclusion 

The identity graphs revealed that a range of socio-cultural experiences, including cultural 

stereotypes, parental expectations, peer pressure, school culture, teacher expertise and 

teacher empathy had the potential to shape PSTs’ personal views of and attitudes towards 

mathematics, resulting in different mathematics-related identities. The semi-structured 

interviews were critical to the interpretation of the reasons underlying individual PST’s 

responses to each critical experience. 

In this paper we have shown how personal mathematics-related identities can be elicited 

from primary PSTs using a simple graphing task and interpreted via a cultural-historical 

activity perspective. We posit the graphing task as a valuable qualitative method for 

researchers and teacher educators to understand the experiences and conditions under which 

mathematics-related identities develop. Combined with a semi-structured interview, the task 

encourages participants to provide rich descriptions of past experiences and reasons as to 

how/why they were considered influential in the formation of their mathematics-related 

identities. Such information can assist mentoring processes to help prospective teachers 

reflect upon identity formation and the experiences that can positively shape the 

mathematics-related identities of their future primary students. 
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This paper reports on two teachers’ perceptions as part of a project examining the learning 

that took place when 9 and 10-year-old children used ScratchMaths in their programme. The 

project used design-based methodology, which incorporated video-recorded classroom 

excerpts, teacher interviews, and teacher analysis and review of their practice. The teachers 

identified the students’ problem solving, collaborating using explicit mathematical and 

coding language, and being cognitively engaged. They also recognized that their own practice 

evolved into a more faciliatory role, while their understanding of coding processes grew 

through learning beside, and through, their students. 

In 2020, the new Digital Technology Curriculum (DTC) became a mandatory part of the 

New Zealand (NZ) Curriculum but research indicates that NZ teachers and schools will find 

adopting and implementing DTC challenging. This is because it encompasses proficiencies 

such as coding that are outside the expertise and experience of many NZ primary teachers’ 

current understanding of digital technologies (Crow et al., 2019; ERO, 2019). Crow et al. 

(2019) indicated a gap in the availability of resources that are specifically situated in 

curriculum contexts, which would practically assist engagement with coding. They also 

advocated that teachers and schools develop unique implementations. This paper reports on 

a small research project that examined teacher practice with coding through the use, 

evaluation and adaption of University College London’s ScratchMaths resources, and the 

associated student learning. The project also aimed to enhance teachers’ coding and 

computational thinking-based pedagogies and student learning while simultaneously 

addressing the limited resources available for teaching coding in NZ.  

Some NZ research has evaluated similar curriculum implementation at high-school level 

(Johnson et al., 2017) and international research has examined some aspects of DTC (e.g., 

Falkner et al., 2014; Johnson et al., 2014). However, none of this research specifically 

examined the affordances and implementation of DTC in the NZ primary-school context. 

There has been very little research on the use and influence of coding in NZ schools, hence 

the implementation of the DTC would benefit from being analysed by a collaborative 

partnership of teachers and researchers, as teachers consider how, when and where it will 

best be integrated into existing classroom practice, and explore how to support student 

learning.  

Scratch is a free-to-use graphical programming environment that provides opportunities 

for creative problem-solving. It is a media-rich digital environment that utilizes a building 

block command structure to manipulate graphic, audio, and video aspects (Peppler & Kafai, 

2006). Studies have shown its potential for developing computational and mathematical 

thinking in an integrated way, particularly in geometry and algebraic thinking (Calder, 

2018). ScratchMaths aims to integrate computing and mathematical thinking effectively. 

Mathematics is used as a context and gives purpose for developing computational thinking, 

while the process of coding, particularly with ScratchMaths, is identified as being influential 

on the development of mathematical thinking (Benton et al., 2018) and the understanding of 

mathematical ideas such as algorithms and the 360 degree turn (Benton et al., 2017). 
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However, the ScratchMaths resources, while well-tested and effective resources, are 

structured, with small incremental steps to be undertaken by students individually, whereas 

in NZ learning is seen as a more collaborative, creative process (Ministry of Education, 

2007). The project examined how the ScratchMaths resources might evolve to be more 

conducive for learning in the NZ context. For instance, the development of collaborative 

student-led projects in Scratch (e.g., Calder, 2018), which might also emerge with 

ScratchMaths, would be conducive to collaborative problem solving.  

Collaborative Problem Solving 

In the consideration of collaborative problem solving, collaborative learning is first 

discussed, together with its potential to improve learning and understanding. Ways that 

collaboration supports learning when digital technologies are used and the influence of both 

in facilitating problem solving are next briefly identified. The connection between 

collaborative problem solving, the use of digital technologies, thinking, and student 

engagement is then considered. Collaborative learning occurs when two or more students 

are engaged in an activity, interacting with each other and learning together (Dillenbourg, 

1999). This perspective of learning in mathematics repositions learning more as participation 

in a social practice then as an acquisitional process (e.g., Cobb & Bowers, 1999; Sfard, 

1998). Educational collaboration associated with problem solving has been connected to 

academic success. For example, Mercer and Sams (2006) showed how students collaborating 

while engaged in an online task produced enhanced learning outcomes in mathematics. Other 

studies have illustrated how the collaborative use of digital technologies can support students 

in developing more flexible approaches to problem solving (e.g., Mercier & Higgins, 2013).  

Mercer and Littleton’s (2007) definition of collaborative learning goes beyond the 

sharing of ideas and task coordination to “reciprocity, mutuality and the continual 

(re)negotiation of meaning” (p. 23). Collaborative learning in line with this definition 

involves the utilization of individual understandings and expertise, with the collaborative 

interaction influencing the thinking of at least one participant in the interaction, even if there 

is only a minor adaption, coupled with a repositioning of the learners’ perspective and 

understanding. When students work collaboratively on a task there is frequently a 

coordinated approach to the sense making and the approach taken when engaging with the 

task. The joint coordination of a task enables students to communicate and negotiate in order 

to support decision-making (Zurita & Nussbaum, 2004), and, as such, they are involved in 

“a coordinated joint commitment to a shared goal” (Mercer & Littleton, 2007, p.23). 

In general, digital technologies can enable opportunities to explore and organize data or 

mathematical phenomena in ways that might facilitate mathematical thinking, and to see 

patterns and trends more quickly in mathematical situations that might otherwise be too 

complex to do so. With coding, this offers potential to learn through the iterative process of 

engagement with the coding process, and reflection on the output that the coding generates. 

The coder can try something and instantaneously identify the effects of the new coding, 

enabling them to generalize coding attributes and refine their approach. With a visual 

environment such as Scratch, where the coding and output screen sit side by side, these 

relationships are even more easily identified (Calder, 2018).  

Computational thinking can be considered a collection of problem-solving skills that 

relate to principles of computer science (Curzon et al., 2009). At times, computer science 

involves creating applications to solve real-life problems using computational thinking, an 

analytical, computing approach for problem solving, modeling situations and designing 

systems (Wing, 2006). Abstraction, allied with logical thinking, innovation, and creativity, 
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is considered central to the constitution of computational thinking (Wing, 2006). These 

elements also resonate with mathematical thinking and problem solving in mathematics. 

ScratchMaths appeared to be an engaging and relatively easy to use space for problem 

solving.  

Research has indicated that students become more engaged when using digital 

technologies, with enhanced mathematical learning also evident (e.g., Attard & Curry, 2012; 

Bray & Tangney, 2015; Pierce & Ball, 2009). In educational settings, engagement is 

recognized as more than the student being interested or participating positively, but as a 

complex, eclectic relationship between the student and classroom work (Fredricks, et al., 

2004). They perceived it as being multi-faceted and operating at cognitive, affective and 

behavioral levels.  With regards to using mobile technologies in the process of learning 

mathematics, Attard (2018) concluded that they do improve student engagement at 

operative, cognitive, and affective levels.  

Additionally, studies have indicated that Scratch was an effective medium for 

encouraging communication and collaboration (e.g., Calder, 2010, 2018). This paper 

considers teachers’ observations and perspectives of the students’ problem solving, 

collaboration and engagement as they undertook coding tasks using ScratchMaths. 

Research Methodology and Design 

Using a design-based research methodology, with the teachers as co-researchers, the 

project examined two teachers and their 9 and 10-year-old students’ use of the ScratchMaths 

resources. This methodology, designed by and for educators, endeavours to enhance the 

impact and implementation of educational research into improved classroom practice (e.g., 

Anderson & Shattuck, 2012). It can illuminate the challenges of implementation, the 

processes involved, and the associated pedagogical and administrative elements (Anderson 

& Shattuck, 2012). Design research necessarily comprises multiple cycles, which involve a 

number of different design and research activities. Nieveen and Folmer (2013) divide these 

activities into three distinct phases: the preliminary research phase; the prototyping or 

development phase; and the summative evaluation phase. These three phases, involving the 

teachers and including videoing of their classes, were implemented through iterations of use, 

reflection and modification of the resources and the associated pedagogy. 

The research design was also aligned with teacher and researcher co-inquiry whereby 

the university researchers and practicing teachers work as co-researchers and co-learners 

(Hennessy, 2014). Allied to this was an emphasis on collaborative knowledge building. The 

research design was based on a transformational partnership arrangement that aims to 

generate new professional knowledge for both academic researchers and teachers 

(Groundwater-Smith et al., 2013).  

The ScratchMaths resources identified by the teachers to use initially were from module 

one and included: Moving, turning and stamping, and creating circular rose patterns. The 

ScratchMaths resources and existing projects were used as starting points for the lessons, 

with the “unplugged” activities also incorporated into the sessions. Some of these class 

sessions and individual groups working on the tasks were video recorded. There were two 

iterations of the review and design process with videoing of classes each time, followed by 

co-researcher meetings to examine the classroom practice. One element of these meetings 

was the analysis of classroom video recordings. Discussions in the meetings were recorded, 

as were the teacher interviews.       
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The research question related to this paper was: In what ways might the use of coding 

embedded within a mathematics curriculum context, influence teacher practice and 

children’s coding and mathematics engagement?   

Results and Discussion 

The paper reports on teachers’ perceptions of how using ScratchMaths facilitated the 

learning process in four key areas: problem solving, collaboration, mathematical thinking 

and the teachers’ pedagogical approach. The teachers consistently commented on how using 

ScratchMaths fostered a problem-solving approach as the students found solutions to 

unfamiliar problems in mathematical contexts, through a variety of approaches. For 

example: 

Annie: The children were problem solving, risk taking and learning from failure 

Marama: It’s massive (problem solving). For some activities there are no instructions for how to get 

them from there to there, they just had to work it out. 

The students use of ScratchMaths within the problem-solving process at times led to 

enhanced engagement. The process of debugging code was a particular aspect that some 

students became immersed in. This is a part of computational thinking that involves 

reviewing the code through trialing and when it didn’t produce the desired output, 

collaboratively problem-solving possible solutions. It might also involve the output 

unexpectedly stopping or going into continuous loops. While the aspect of debugging was 

highlighted by the teachers at times, usually students were self-motivated with this process 

through wanting the script to be consistent with their expectations of the output. Marama 

commented on the student engagement consequential of the debugging process: 

There would not be many things that would have them that focused on what they’re doing so intensely. 

They would be doing debugging the whole time. 

The teachers identified that the students not only appeared more cognitively engaged but 

that the process facilitated enjoyment and a sense of fun.  

Marama: They’re having a laugh as well you know...  it’s not all serious... even though it’s heavy duty 

problem solving. They’re having fun, they’re smiling and enjoying working with each other 

too. 

Marama: Well, it’s not quiet in our classroom but it’s not off task noise, it is completely on task noise. 

It’s talking about what they are doing and it’s excited talk. 

The students interacted with each other in a relatively natural, seamless manner as they 

explored potential solutions and then collaborated to make their codes more efficient. As 

they worked to design the scripts and subsequently make the codes more efficient, they 

shared ideas and potential solutions using language that used coding terminology, or was 

related to the mathematical or coding processes that they were discussing. The teachers noted 

this in the interviews. For instance, Annie indicated how the collaboration fostered their 

shared understanding of language, and hence from her perspective, their mathematical and 

computational thinking: 

Annie: It supported students’ learning through communicating with friends, problem solving, 

increasing their mathematical knowledge and mathematical and coding language, bringing 

that all into the norm of how we can talk about coding. 

Annie: So, then we can look at different ways of how children create a script to get to an end product 

and look at just simplifying the script.   
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Marama identified instances when students found efficient ways to code that were valued 

by other students, enhancing their mana (respect) within the class. Sometimes this wasn’t 

the students who were usually perceived as being more capable in mathematics so it 

readjusted those perceptions. 

Marama: There are kids that are capable but then someone quietly just comes up with this really 

simple code to do something that someone else has taken a long time to do and they think 

they’re good so it’s kind of just levelled everyone out 

This also indicated how using ScratchMaths facilitated collaboration. Collaborative 

learning can be perceived as going beyond the sharing of ideas and task coordination to the 

ongoing negotiation of perspectives and meanings (Mercer & Littleton, 2007). Collaborative 

learning in line with this definition was identified: 

Annie: So, it gives a context for social interaction to happen where they’re learning to code and 

learning maths. 

Marama: They’re definitely getting extended in their maths but also that social side of it, working 

together collaboratively like that and not... someone not (always) taking a lead role, they’re 

all in different roles all the time, sometimes they’re teachers, sometimes they’re learners. 

While the ongoing negotiation and evolving perspectives are indicated here, this also 

indicates that the students’ roles were flexible and contingent on their personal, and the 

group’s understandings. Observational data also suggested that there was contestation of 

ideas during the collaborative work. Not only did the students interact through the ongoing 

dialogue as they problem solved to find solutions, students did at times became leaders of 

learning. 

Marama: One of the girls solved this thing that really no-one else was managing to do and she 

managed to crack it. Well the whole class was whoosh over there, so that’s fantastic that 

she’s having to explain it and off they go all excited. 

Much of their work involved mathematical thinking. Further, the interview data revealed 

that at this later stage, for one teacher, the activity focused on the mathematics to begin the 

task. So, the coding in some instances was a way to enact the mathematical ideas. This was 

the perception of one of the teachers: 

Annie: It’s the maths first and then the coding. 

After several weeks they decided to make the work with ScratchMaths an integral part 

of their mathematics programme, so one of the classes usual mathematics sessions became 

the session using ScratchMaths. The teachers also found that the mathematical thinking 

related to both concepts and processes arose more naturally within the ScratchMaths 

activities. For instance: 

Annie: I think because maybe the opportunities with this program and what it’s actually focused on 

with the angles and the measurement side and the negative numbers – we’ve been going 

through this for three terms so it’s that continual weekly learning of that that’s probably 

been more cemented than what it could have been if we had been teaching it in isolation. 

While the teachers made the mathematical thinking explicit to the students by referring 

directly to the mathematics and using mathematical language, some of the mathematics 

emerged through attempting to solve and accomplish the tasks, and the collaboration on the 

coding aspects. In this way, some of the mathematical thinking and learning was more 

incidental as the need arose, and outside the usual curriculum level for that age group. 

Annie: It was just-in-time learning around the maths concepts. The use of angles was very in-depth. 

They used negative numbers, degree turns and always mathematical language. 
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For instance, negative numbers were not part of the curriculum for this particular age 

group. In a later discussion they identified some of the other mathematical thinking that 

occurred: Relationships, exploring variations, precision with language, methodical thinking, 

and strategies for problem solving. Their spatial awareness, understanding of angles, and 

positioning sense through the use of coordinates, were all engaged to varying degrees. There 

was also evidence of relational thinking as the students made links between their input, the 

actions that occurred on screen, and the effect of specific variations of size in coding 

procedures. They discussed how the students came to conclusions and gave explanations of 

what they had done.  

The fourth aspect reported here is the teachers’ pedagogical approach, which varied from 

their usual approach when teaching mathematics. 

Marama: I don’t know that I need to know everything. Most of the time it’s the kids that are the ones 

that solve things. They are learning off each other a lot more, they’re going to each other a 

lot more, they’re talking a lot more. 

Annie: The classroom approach is to explore, but the mathematics and coding objectives are 

explicit. At times (we) start with ScratchMaths for say, angles. There is a purposeful context 

for the learning. 

Marama: The teachers’ role is facilitating learning – actively scaffolding processes and content. 

The teachers were consistent in their belief that positive student learning had occurred and 

also regarding students’ collaboration and engagement when problem solving. They 

articulated their personal learning regarding coding processes, while acknowledging that 

their role in the classroom had evolved. 

Conclusions 

Although findings are presented as four separate aspects, they were mutually-influential 

elements that the teachers perceived had contributed to student engagement and learning. 

The work with ScratchMaths simultaneously influenced teacher practice, moving them 

towards a more faciliatory approach and greater understanding of coding processes. The 

students’ mathematical thinking and learning in coding were tied to their solving of both 

mathematical and coding problems, while the explicit language of both contributed to the 

communication of processes, concepts and solutions. Students at times became leaders of 

the learning.  

Much of the conceptual understanding and thinking related to the Geometry and 

Measurement strand of the NZ curriculum, in particular, angles and spatial perception. 

However, the process the participants undertook more directly facilitated mathematical 

thinking through the creative problem-solving process it evoked, and the development of 

logic and reasoning as they responded to the various forms of feedback. 

While the findings were limited by the size of the project and the particular context in 

which they were enacted, they nevertheless give insights into the ways learning in both 

mathematics and coding might be enhanced through the ScratchMaths resources. The 

research is ongoing, with more schools and a broader range of classes and teachers now 

involved, and there is still analysis of the data to be completed, but further research into a 

broader range of contexts and some assessment and analysis of students’ mathematical and 

computational thinking is anticipated and will give clearer, more comprehensive insights. 
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When mathematics teachers plan lessons, they interact with curriculum materials in various 

ways. In this paper, we draw on Brown’s (2009) Design Capacity for Enactment framework 

to explore the practice of adapting curriculum materials in the case of a Singapore secondary 

mathematics teacher. Problems from the textbook used and the worksheets she crafted were 

compared to determine how she adapted the content. Video-recordings of the lessons and 

post-lesson interviews were used to clarify how her personal teacher resources contributed 

to her design decisions. The findings suggest that her seemingly casual use of problems from 

the textbook are in fact unique variations of adapting curriculum materials. 

Singapore’s success in large international studies (e.g., TIMSS, PISA, etc.) has left many 

nations curious to learn about its pedagogical practices. However, a common assumption is 

that Singapore teachers predominantly employ a “drill and practice” approach and are 

reluctant to deviate from curriculum materials (e.g., printed textbooks, workbooks) to meet 

the specific needs of their students (Toh et al., 2019). Despite this, Leong et al. (2018) 

demonstrated that such was not the case for Singapore secondary mathematics teacher, Teck 

Kim, who created worksheets by modifying content from a textbook for “making things 

explicit” (p. 47). His modifications included: (i) filling in gaps in the content he felt were 

fundamental; (ii) linking different representations to deepen students’ understanding; and 

(iii) highlighting ideas he deemed critical. In light of this, we argue that a key feature to 

Singapore teachers’ practices, which may generally go unnoticed, is their transformative use 

of curriculum materials in planning instruction tailored for their students. In this paper, we 

explore another case of a Singapore secondary mathematics teacher, Mrs Fung (pseudonym), 

who demonstrated another way to adapt curriculum materials that was different from Teck 

Kim when she crafted trigonometry worksheets using a textbook for her lessons. To do so, 

we utilise Brown’s (2009) Design Capacity for Enactment (DCE) framework to explore the 

adapting process and to answer the question: How does Mrs Fung, an experienced and 

competent mathematics teacher in Singapore, adapt curriculum materials to design 

worksheets? 

Theoretical Underpinnings 

Teachers’ use of curriculum materials has been conceptualised in many ways. For 

instance, Shulman (1987) broadly described teachers’ interactions with textbooks as 

pedagogical reasoning and actions, which involves comprehension, transformation, and 

instruction, informed by their knowledge and understanding of the text. For Sherin and 

Drake (2009), these interactions were referred to as reading, evaluating, and adapting, which 

drew on teachers’ curriculum strategies. For Amador et al. (2017), these interactions 
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involved a set of skills, known as curriculum noticing, in which teachers attend to the 

materials, interpret what they attended to, and decide how to respond (e.g., to include or omit 

a problem). Likewise, Brown and Edelson (2003) described this as a teachers’ pedagogical 

design capacity (PDC), their ability to “perceive and mobilize resources in order to craft 

instructional contexts” (p. 13). First, teachers perceive and interpret curriculum resources, 

then they evaluate their potential to achieve instructional goals, and finally these evaluations 

inform their decisions for teaching. To demonstrate the factors involved when teachers 

interact with curriculum materials, Brown (2009) proposed the Design Capacity for 

Enactment (DCE) framework. The framework is composed of two types of resources: 

curriculum resources and teacher resources. Curriculum resources are physical objects and 

their representations (e.g., manipulatives), the representation of tasks (e.g., instructions for 

teachers, structure of lesson), and representations of concepts (e.g., models, descriptions of 

concepts). Teacher resources include the teacher’s goals and beliefs, their subject matter 

knowledge, and their pedagogical content knowledge.  

Brown (2009) characterised teachers’ interactions by considering the varying degrees of 

responsibility shared between the curriculum and teacher resources. On one end of the scale, 

teachers can offload their responsibility as designers of the lesson and instead choose to rely 

primarily on the curriculum resources (e.g., teaching in direct alignment with the textbook). 

On the other end of the scale, teachers can improvise by predominantly relying on their own 

resources. According to Brown, improvisations are typically spontaneous and occur due to 

unexpected events, such as realising students held fundamental misconceptions about a 

related concept. As a result, a conscientious teacher may deviate from the textbook to address 

these misconceptions by generating their own content. Lastly, an intermediate of the two 

processes is when teachers adapt the curriculum materials. By sharing the responsibility to 

design between the curriculum and teacher resources, teachers can use content in a textbook 

as inspiration for instruction. For example, instead of directly using an example given in the 

textbook, the teacher could generate a similar example by changing the context and figures, 

thereby applying their own subject matter and pedagogical content knowledge to ensure the 

lesson goals are still achieved. 

The DCE framework has also been used by Amador (2016) to describe teachers’ 

approaches to lesson planning in relation to their consideration for students’ thinking. Three 

planning themes emerged from the study: (i) adapting in response to students’ understanding 

(e.g., editing exercises to highlight features that students had neglected in the previous 

lesson); (ii) producing competence in students’ procedural fluency (e.g., frequently 

including in-class quizzes to demonstrate ability to solve); and (iii) regulating content to 

ensure students keep up with the curricular pace, regardless of students’ progress (e.g., 

strictly following the school syllabus, maintaining the same lesson structure). 

In the context of Singapore, the teaching practices and supposed curriculum are often 

perceived by those outside of Singapore as overwhelmingly aimed at producing and 

regulating. Thus, students would rarely have opportunities to engage in “genuine” problem 

solving experiences that would be more conducive to their knowledge growth, such as 

experiencing productive struggle (Schoenfeld, 2017; Henningsen & Stein, 1997). Instead of 

adapting or improvising materials to accommodate students’ needs (e.g., to stretch their 

thinking), Singapore teachers are believed to be offloading responsibility to the curriculum 

resources which aligns with more traditional teacher-centred practices (Toh et al., 2019). In 

the context of the aforementioned teacher, Teck Kim, Leong et al. (2018) reported that he 

purposely adapted content from the textbook by changing the representations and improvised 

his own self-created tasks. This brought us to wonder, how does Mrs Fung, an experienced 
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and competent teacher similar to Teck Kim, negotiate curriculum resources and her teacher 

resources to inform her decisions in adapting curriculum materials? To what extent are her 

goals achieved through her decisions? 

Methods 

The data presented was taken from a larger project, which explored the distinctive 

instructional practices enacted by Singapore mathematics teachers. Mrs Fung had taught 

secondary mathematics for over 10 years and had been recognised by the local professional 

community as being an effective mathematics teacher. The class that Mrs Fung taught was 

a Year 9 class, which comprised students who scored between the 25th to 60th percentiles in 

the nationwide Primary School Leaving Examinations (PSLE) at Year 6. Mrs Fung was 

selected as the subject of the study after the first author, a non-native to Singapore, observed 

her unique implementation of personally authored worksheets to teach introductory 

trigonometry in place of the textbook, Discovering Mathematics 3B Normal Academic 

(Chow et al., 2015a). The trigonometry unit consisted of seven lessons between 30-60 min 

in duration. In this paper, we discuss Lesson 6 of the trigonometry unit. 

Three sources of data are presented in this paper. The first are the physical materials that 

Mrs Fung used and created. This includes one worksheet (Worksheet 6.4) crafted by Mrs 

Fung, and the curriculum materials she drew on for the design of her worksheet – Section 

6.4 from the textbook (Chow et al., 2015a) and the teachers’ guide (Chow et al., 2015b). The 

second source of data is a video-recording of the post-lesson interview conducted with Mrs 

Fung after Lesson 6, which discussed her goals and the events of the lesson. Some prompts 

that were used in the interview were: 

• What were your goals for the lesson? 

• Do you think you have achieved your goals that you have set out to achieve? How 

were the goals achieved? 

• What is the most ambitious or challenging thing you did in the lesson? 

The third source of data is a video-recording of Lesson 6 when Mrs Fung implemented 

Worksheet 6.4, where a researcher took a non-participant observer approach.  

Data analysis was conducted over three phases. In the first phase, the problems from 

Section 6.4 (Chow et al., 2015a) were categorised according to the mathematical processes 

required to solve them (e.g., insert an auxiliary line, two-step calculations). The model 

examples from the teachers’ guide (Chow et al., 2015b) were also consulted to confirm these 

were the expected solving methods.  

In the second phase, the categories found from Section 6.4 were applied to the questions 

in Worksheet 6.4 to determine if Mrs Fung had offloaded, adapted, or improvised from the 

textbook. This included two levels of comparison: item-to-item and set-to-set. On the item-

to-item level, the categories were used to determine if Mrs Fung had offloaded, adapted or 

improvised the content in her worksheet. On the set-to-set level, the structure of the 

worksheet and its contents as a set were compared with the entire of Section 6.4 to determine 

similarities and differences in sequencing. The usefulness of this dual-level of analysis will 

be made clearer in the next section of this paper. 

In the final stage of the analysis, the post-lesson interview and video-recording of Mrs 

Fung’s enactment of the lesson were used to triangulate the decisions she made to offload, 

adapt, or improvise. We focus on her discussions about her lesson goals and beliefs which 

impacted her design decisions. 



Chin, Choy and Leong 

150 

Findings and Discussion 

Before implementing Worksheet 6.4, Mrs Fung played an introductory video for the students 

in the lesson to demonstrate how trigonometry could be used to solve contextual problems. 

Subsequently, she began implementing Worksheet 6.4 and asked the students to complete 

the first question by themselves. If time permitted, students would consult with their peers 

seated nearby, typically to check if their solutions were comparable. Mrs Fung neither 

encouraged nor discouraged students to share ideas with their peers but always requested 

that they initially attempt the problems by themselves. After the solution for the question 

was discussed by Mrs Fung, the class moved onto the next problem in a similar process. 

Prior to Worksheet 6.4 within the Trigonometry unit, the students had encountered and 

solved problems using the Theorem of Pythagoras, learnt how to determine if a triangle was 

right-angled, and applied trigonometric ratios to triangles with acute angles to find unknown 

sides and angles. In the teachers’ guide to the textbook (Chow et al., 2015b), the primary 

learning objective of Section 6.4 was to “apply the trigonometric ratios to solve some real-

life problems” (p. 10). The analysis of Section 6.4 and comparison with the model solutions 

given in the teachers’ guide resulted in three categorisations of problems: (A) insert an 

auxiliary line to solve an angle/length; (B) two-step calculations to find an unknown length; 

and (C) two-step calculations to find an unknown angle (see Table 1 for examples). Four 

worked examples (one of Type A and C, two of Type B) were first presented in Section 6.4, 

then a similar problem was subsequently provided for each of the corresponding worked 

examples for students to attempt. Afterwards, 19 exercise problems were given to be used 

by students for further practice. 

Table 1 

Summary of categories of problems from Section 6.4 in Chow et al. (2015a) 

Type Process Order in Examples 

TB WS 

A Insert an auxiliary 

line to solve an 

angle/length 

1 2 (A1) - See Figure 2 for full problem. 

 

B Two-step 

calculation to find 

an unknown 

angle/length 

2 3 (B1) - AB and CD are two buildings on 

level ground BD … Find the 

height of AB. 

 

  3 4 (B2) - The diagrams show the cross-

section of a shed ABCD … The 

roof AD is 3m long … Find the 

height of the wall.  

  5 1 (B3) - B shows a bird flying above a 

point A on the horizontal ground, 

AD … Find the height of the bird 

above the ground. 

 

C Two-step 

calculation to find 

an unknown angle 

4 - (C1) - In the diagram, ADC is a 

straight road. Town B is 13km 

away from A … Find the size of 

∠BCD  

Note. The table does not include the complete list of problems from the textbook, only those relevant to the 

ones utilised by Mrs Fung. TB = Section 6.4 in textbook (Chow et al., 2015a), WS = Worksheet 6.4 
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In comparison, at the item-to-item level, Worksheet 6.4 consisted of four problems that 

were identical to four problems seen in Section 6.4. The representations of the problems 

were not altered by Mrs Fung in her worksheets, which would therefore suggest that she had 

offloaded her responsibility to design questions solely onto the curriculum resources and did 

not adapt or improvise in her Worksheet 6.4. In other words, Mrs Fung had copied the 

instructions and diagrams directly from Section 6.4 and did not include any modified or self-

designed content.  

When comparing the two resources at a set-to-set level, it was evident that Mrs Fung had 

adapted from Section 6.4 to design Worksheet 6.4 by omitting and resequencing specific 

content. Firstly, Mrs Fung had only provided questions to students and did not provide any 

worked examples. Although the specific reasons for this omission were not explicitly 

discussed, Mrs Fung made several statements during the lesson and interview about how 

students had attempted similar problems before without the real-life context and that she 

wanted them to first attempt the problems individually. For the first question (B3), she 

provided students with “five minutes to try out on your own”. Then she told the students, 

“instead of telling me, most of you are already quite good with your TOA CAH SOH. Try 

to read the content first, then they give you the diagram”. As she roamed around the 

classroom, she prompted those students who appeared to have difficulty getting started to 

“just give [the problem] a go”, to identify the appropriate sides and the relevant angles, and 

reiterated that she would like everyone to attempt the questions individually first before 

sharing or asking for help from neighbouring students. As she began to check their answers, 

she asked a student, “Shane, you saw [another student’s] second part or you already know? 

You already know or after you seen his? You saw his, then you realized [what to do]?” She 

continued to prompt students individually who appeared to be stuck but never told them the 

solution. From these instances, it would suggest that one of Mrs Fung’s goals was for 

students to learn to make sense of questions independently by drawing on their existing 

knowledge. By omitting the worked examples, students would be more likely to engage in 

the type of thinking that is typically expected in problem-solving activities (Henningsen & 

Stein, 1997) and experience some moments of struggle in solving these typical textbook 

problems. 

Secondly, adaptations can be seen when comparing the sequence of problems. While 

Section 6.4 had presented questions A1-B1-B2-C1-B3 in this order along with worked 

examples preceding each question, Mrs Fung had chosen to present questions in the order of 

B3-A1-B1-B2 (Table 1). Aside from the absence of C1 in Worksheet 6.4, which was not 

addressed by Mrs Fung in the interview or the lesson, Mrs Fung had moved B3 to be the first 

question. As previously stated, Mrs Fung had begun the lesson with a short introductory 

video that provided scenarios for when trigonometry would be used in real life. In her post-

lesson interview, she expressed that she wanted to show students the video to help them get 

a sense of “what is application of trigonometry about”. As they had only ever encountered 

contextless problems, she was concerned that they would have language difficulties which 

would hinder their ability to understand and attempt the problems. In relation to her goal, 

Mrs Fung’s awareness of her students’ abilities and their previous understandings 

contributed to her decision of the first problem she chose. The example in the video and B3 

involved similar representation of tasks and diagrams (Figure 1), and thus it would be 

productive to choose B3 as an introduction to solving applications in trigonometry if students 

were to initially try to solve the problem by themselves. Although B3 was offloaded from 

the textbook at the item-to-item level, when examining the differences at a set-to-set level, 

Mrs Fung’s resequencing of questions demonstrated an adaptation of the textbook. This 
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adaptation was influenced by the representation for B3 and Mrs Fung’s teacher resources, 

namely her pedagogical content knowledge and her goals to develop students’ sense of how 

trigonometry is applied. 

 

  
(a) Example from introductory video (b) First question (B3) in Worksheet 6.4 

Figure 1. Initial example and question given in Lesson 6 

  After most of the class successfully solved B3, Mrs Fung forewarned the students that 

the next problem, Al (Figure 2), would not be as “straightforward”. In her post-lesson 

interview, she noted that her goal was for students to be able to solve problems involving 

two triangles but that she had anticipated that A1 would be the most challenging problem 

for her students - “majority of them don't know how to approach this question”. As there 

were no worked examples of similar problems provided, nor had she included any problems 

that required adding an additional line to bisect the isosceles triangle in any of her other 

worksheets, it was unlikely that her students had encountered such a problem before and 

would know to draw the auxiliary line. Although she had intended to provide a hint for 

students, she wanted to “let them struggle a bit” first, suggesting that she held the belief that 

experiencing struggle was worthwhile and important for learning mathematics. In choosing 

to specifically include A1, Mrs Fung’s decision was intended to provide an opportunity for 

students to grapple with the problem in search of a way to approach it, thereby deepening 

their skills and understanding of solving trigonometry problems with two triangles. Despite 

the appearance that her inclusion of A1 was merely an offload of Section 6.4, Mrs Fung’s 

interview suggests this was a deliberate decision for both providing an opportunity for 

students to struggle and a resequencing with a consideration for students’ learning 

progression.  

 

Figure 2. Question A1 in Worksheet 6.4, taken from (Chow et al., 2015a, p. 21) 

Mrs Fung’s goals and underlying beliefs which informed the decisions she made in 

offloading and adapting from the textbook can be described as an attempt to facilitate 

opportunities for productive struggle (Schoenfeld, 2017). As the worksheet became the main 

resource used in the lesson, to a large extent it replaced the textbook – a resource that would 

have an abundance of worked examples and hints that would have been useful for students. 

By omitting worked examples and asking her students to make sense of the problems 
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individually before providing guidance, Mrs Fung’s adaptation through omission afforded 

students the opportunity to try several methods and to learn from those that did not work, 

rather than replicating a solution method from a worked example. 

Secondly, while using an introductory video and B3 could ease students into solving 

application problems, Mrs Fung immediately followed B3 with A1 – a problem she was 

aware would cause some confusion. Mrs Fung discussed her concerns in the interview about 

ensuring students could eventually manage to solve the problem, but still insisted that 

students make an effort to think about how to approach the problem in the lesson. The 

selection and sequencing of A1 had the potential to cause students to become discouraged, 

especially those who had previously solved B1 easily and were now completely unaware of 

how to even approach A1. However, the nature of these adaptations also allowed her to act 

as a guide to coach students as she roamed around the room and supported students 

experiencing struggle. In comparison to the American teachers in Henningsen and Stein’s 

(1997) study who avoided moments where students might experience struggle – despite 

knowing that they may be beneficial for learning, Mrs Fung actively tried to create these 

opportunities. 

The use of the dual level of analysis prompted further investigation of Mrs Fung’s use 

of the curriculum resources that was not accounted for by the DCE framework (Brown, 

2009). Similar to Teck Kim from the study conducted by Leong et al. (2018), at first glance 

Mrs Fung’s worksheet appeared to adhere with the previously mentioned assumption that 

Singapore mathematics teachers simply offload their responsibility to tailor content to meet 

students’ needs, and instead select and use standard questions to develop procedural solving 

methods. At an item-to-item level, Mrs Fung’s offloading of problems seemed to be 

consistent with this assumption. However, by examining Mrs Fung’s worksheet on a set-to-

set level, Mrs Fung’s worksheet could be understood as a product of her interpretation of the  

curriculum resources and appropriation of the content with respect to her knowledge of her 

students’ needs. She adapted from the textbook by omitting worked examples and re-

sequenced problems, while also essentially replacing the need for the textbook during 

instruction. While Teck Kim adapted a textbook to create a worksheet to make concepts 

explicit to his students, Mrs Fung adapted the nature and sequencing of the textbook to 

facilitate students’ exploration in solving. This study of Mrs Fung provides yet another step 

in the ongoing work of unpacking the complexities involved in Singapore teachers’ design 

of instructional materials. 

Concluding Remarks 

The phenomena of teachers adapting curriculum materials is complex. At present, 

existing frameworks on teachers’ curriculum use do not seem to fully capture what goes on 

through the materials teachers create and the invisible process of deciding how to adapt. 

Namely, while the DCE framework differentiates teachers’ interactions with curriculum 

materials as offloads, adaptations, and improvisations, it does not address the potential for 

different grain-sizes of offloads, adaptations and improvisations. In this paper, Mrs Fung’s 

interactions with the materials for designing her lessons were analysed on two levels which 

illuminated the different ways that she adapted from the textbook. From Mrs Fung’s 

discussion of her lesson goals and observations of her enactment, her desire for students to 

grapple with problems and attempt to solve them independently were facilitated by these 

adaptations. 

A limitation of the study is that the findings stem from secondary data gathered from a 

larger research project which focused on teachers’ instruction, rather than their design of 
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instructional materials. Hence, the inferences which were made about her design decisions 

are restricted to the limited data available.  

The case of Mrs Fung hopes to contribute to dispelling misconceptions about Singapore 

teachers’ practices. In addition to Teck Kim, our findings suggest that when Singapore 

teachers interact with curriculum materials to design lessons, there’s often more to the 

process than meets the eye. However, we also get the sense that we are just scratching the 

surface on what is an extremely complex phenomenon where several resources are all 

simultaneously involved. Furthermore, we propose that for Teck Kim and Mrs Fung, 

adaptations do not merely stop once the worksheets are created. Instead, they undergo an 

additional round of adaptations during instruction in response to students’ reactions to the 

worksheets. Future research should aim to examine the implications of additional rounds of 

adaptations in comparison to a single round of adaptation. 
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Despite recent calls to adopt practice-embedded approaches to teacher professional learning, 

how teachers learn from their practice is not clear. What really matters is not the type of 

professional learning activities, but how teachers engage with them. In this paper, we position 

learning from teaching as a dialogic process involving teachers’ pedagogical reasoning and 

actions. In particular, we present a case of an experienced teacher, Mr. Robert, who was part 

of a primary school’s mathematics professional learning team (PLT) to describe how he 

learned to teach differently, and how he taught differently to learn for a series of lessons on 

division. The findings reiterate the complexity of teacher learning and suggest possible 

implications for mathematics teacher professional development.   

There have been recent calls to incorporate collaborative inquiry-based approaches 

embedded in teachers’ practices to improve the teaching of mathematics. This has led to the 

adoption of collaborative professional learning activities such as video clubs (van Es & 

Sherin, 2002), Lesson Studies (Clea Fernandez & Yoshida, 2004), and collaborative lesson 

research (Takahashi & McDougal, 2016). However, it would be “wishful thinking” to expect 

that teachers would learn just because they gather “to talk about practice” (Bryk, 2009, p. 

599). In Singapore, while there is extensive support for teachers to engage in learning 

communities for the purpose of working collaboratively to learn and improve their teaching, 

it is unclear whether and how teachers learn from these activities (Hairon & Dimmock, 

2012). What really matters, therefore, is not the kind of professional development activities, 

but rather how teachers engage with these activities (Choy & Dindyal, 2019; Fernandez, et 

al., 2003). As claimed by Sherin (2002), learning from teaching occurs when teachers have 

opportunities to negotiate among three aspects of their teacher knowledge: understanding of 

mathematics, curriculum materials, and knowledge of how students learn. In this paper, we 

refer to Sherin’s (2002) metaphor of teaching as learning to examine how a primary 

mathematics teacher, Mr. Robert, learned from his teaching through a dialogic process 

involving pedagogical reasoning and action (Shulman, 1987) as he worked with his 

colleagues on a series of lessons to teach division for Primary Three pupils (aged 9). The 

paper is framed by the following question: How does a primary mathematics teacher learn 

from his own teaching via his participation in a professional learning team? 

Theoretical Considerations 

Following Shulman (1987), we see that teaching “begins with an act of reason” and 

“continues with a process of reasoning” to culminate in a series of pedagogical actions, and 

“is then thought about some more until the process can begin again” (p. 13). In other words, 

with the aim of improving teaching, teachers need to learn to use their knowledge base for 

teaching to provide justifications for their instructional decisions through a process of 

mailto:josephbw.yeo@nie.edu.sg
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pedagogical reasoning. This process involves taking what one understands about content and 

“making it ready for effective instruction” (Shulman, 1987, p. 14), through a cycle of 

activities involving comprehension, transformation, instruction, evaluation, and reflection 

leading to new comprehension. According to Shulman (1987), comprehension refers to how 

teaching first involves understanding the content and purpose. When possible, teachers 

should comprehend what they teach in different ways and relate these ideas to other ideas 

within and beyond the subject. The key distinctive of a teacher’s work lies in how a teacher 

transforms his or her content knowledge into “forms that are pedagogically powerful and yet 

adaptive to the variations in ability and background presented by the students” (Shulman, 

1987, p. 15). Transforming this knowledge involves preparation, representation, 

instructional selections, adaptations of these representations and tailoring the representations 

to specific students’ profiles. Although comprehension and transformation can occur at any 

time during teaching, Shulman (1987, p. 18) sees these two processes as “prospective”, 

occurring before instruction, an “enactive” performance in the classrooms. Moving on to a 

more retrospective process, Shulman highlights evaluation as the means to assess students’ 

understanding and to provide feedback. But it is through reflection, by which a teacher looks 

back at the instructional processes and experiences, that a teacher learns from his or her 

experiences. This learning is encapsulated in the process of new comprehension where 

teachers have a better understanding of teaching and learning.  

Shulman highlighted that new comprehension does not necessarily follow through from 

reflection. This explains that some teachers learn from their teaching experiences, while 

others do not. Hence, we argue that new comprehension of content, student learning, and 

teaching actions occurs when a teacher has a shift of attention, gaining awareness of new 

possibilities in teaching and learning (Mason, 2002), or simply when a teacher notice critical 

aspects of teaching and learning. These new insights expand the teacher’s current cluster of 

resources, orientations, and goals (Schoenfeld, 2011), which in turn becomes the base from 

which the teacher make sense of instruction. Moreover, as Choy (2016) has highlighted, 

productive noticing can take place during planning, instruction, and reviewing of lessons. 

Consequently, new comprehension can occur during any of the activities of Shulman’s 

model of pedagogical reasoning and action.  

 

Figure 1. Adapted Model of Pedagogical Reasoning and Action. 

Building on ideas from both Shulman (1987) and Schoenfeld (2011), we developed an 

adapted model of pedagogical reasoning and action to highlight the dialogic processes 

involved when learning from teaching. The strength of Schoenfeld’s ideas lie in the fact that 

teaching is goal-directed, rests on a set of resources, and driven by a teacher’s orientations. 

The orientations aspect is quite important as it explains why some teachers loop back to do 

happily what they have been used to doing and in doing so, submit to the exigencies of the 

context. Thus, in the model above, we show that teaching starts with some prior resources, 
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orientations and goals (ROG) and some initial comprehension. The teacher then transforms 

the initial comprehended ideas into a form suitable for teaching the students. The iterative 

and cyclical processes of transformation, actual instruction and assessment of learning feed 

forward to the reflection of the teacher (to different extents for different teachers). This 

process leads to some new comprehension, which may or may not lead to a new expanded 

set of ROGs and the cycle repeats. What this adapted model affords us is the opportunity to 

capture the complexity of the dialogic processes involved when teachers learn from their 

practice. On one hand, teachers comprehend new ideas about content and teaching to apply 

them in their instruction. On the other hand, they learn new ideas as they apply their new 

comprehension in their instruction. We shall now illustrate the dialogic nature of a teacher’s 

learning from teaching through the example of Mr. Robert, who learned and applied new 

ideas about division as part a professional learning team. 

Methods 

The data presented in this paper were collected as part of a larger project which aims to 

develop the proof of concept for a new professional learning model for mathematics 

teachers. Drawing on current theoretical perspectives of teacher noticing (Dindyal, et al., 

2021; Fernandez & Choy, 2019), we conceptualized professional learning sessions where 

teachers would have opportunities, in the context of a community of inquiry (Jaworski, 

2006), to work and co-learn with us by: 

1. Focusing on unpacking the mathematics in the curriculum documents; 

2. Investigating how a topic may be unpacked in terms of a sequence of lessons, and a 

lesson as a sequence of tasks; 

3. Teaching a sequence of lessons as part of a unit; 

4. Observing and reflecting upon a sequence of lessons; 

5. Articulating their learning from the observations; and  

6. Suggesting possible changes to the sequence of lessons and tasks based on their 

learning. 

 

As highlighted by Jaworski (2006), sustainability is often an issue with communities of 

practice and learning. To ensure sustainability and feasibility, we co-designed protocols to 

guide each professional learning session as teachers worked together to plan and teach a unit 

of work. As each session lasted about an hour and so, it was crucial that we built in specific 

focus for each session to facilitate more productive discussions. We also provided teachers 

access to relevant research and practice-based articles when requested, as well as templates 

to facilitate teachers’ inquiry processes. Data collected include voice and video recordings 

of the discussion during the sessions, photographs of lesson artifacts such as lesson plans, 

discussion notes, and when available, samples of students’ work. 

In this paper, we report how Mr. Robert, an experienced primary mathematics teacher 

from Eunoia Primary School (pseudonyms), perceived and harnessed affordances as he 

worked with a team of nine other teachers to discuss the teaching of long division to Primary 

Three pupils (aged 9). The sessions were facilitated by a Lead Teacher, Ms. Mandy, who 

had extensive experience teaching in the primary school. We were present at the sessions as 

knowledgeable others to share new ideas for teaching. We did not insist that the teachers 

adopt any particular idea that we had shared. Instead, we left all the instructional decisions 

to them because we wanted to investigate their decision-making processes. The vignettes 

described here were developed from data collected from four discussion sessions and a video 
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recording of a short 20-minute segment of Mr. Robert’s teaching. The voice recordings of 

the discussion sessions were parsed for segments related to discussions on the teaching and 

learning of long division. Notable episodes involving mathematically significant moments 

were marked for further analysis. Irrelevant incidents such as logistics and administrative 

matters were discarded. The marked segments were reviewed, and initially coded for 

processes related to our adapted model of pedagogical reasoning and action (See Figure 1). 

The reviewed segments were then transcribed before they were coded using a “thematic 

approach” (Bryman, 2012, p. 578) to highlight aspects of how Mr. Robert learned from his 

practice. We acknowledge that it is difficult to distinguish Mr. Robert’s learning from the 

learning achieved by other teachers. Here, we assume that Mr. Robert, as an individual, can 

learn from his own teaching experiences, the ideas and experiences shared by his colleagues, 

as well as ideas we, as the research team, had shared with him. This corresponds to what 

Mason (2002) terms as the three worlds of experiences.  

By Teaching We Learn: A Dialogic Process 

Findings developed from our data suggest a dialogic process by which Mr. Robert had 

learned from his practice. First, we claim that he learned some new ideas about teaching 

division during the PLT discussions that offer opportunities to teach differently. Second, we 

propose that he taught differently by trying out some of the ideas learned, which in turn give 

rise to new comprehension. We will now describe vignettes of teachers’ learning, focusing 

on Mr. Robert to highlight the dialogic process of learning from teaching.  

Learning to Teach Differently  

For the first two sessions, we worked with the teachers to unpack mathematical ideas 

related to division using the components of school mathematics as proposed by Backhouse 

et al. (1992), namely concepts, conventions, results, techniques, and processes. All the 

teachers were cognisant of the quotative and partitive notions of division and were fluent in 

performing the long division algorithm. They were also familiar with the key terms such as 

quotient, remainder, and divisor but not the term dividend. More specifically, they seemed 

to see quotient and remainder as part the answer to a division problem. For example, they 

would write 82  4 = 20R2, seeing 20 as the quotient and 2 as the remainder being the answer 

to 82  4. They did not think of other expressions that give the “same answer” as problematic. 

For instance, when we highlighted that 62  3 = 20R2, the teachers did not notice any issues 

with the notation. The usual way of writing the answer as “20R2” suggests that 82  4 is 

equal to 62  3. It appeared that the teachers did not notice this until we pointed out the issue 

to them. To highlight that the relationship between dividend, quotient, divisor, and 

remainder, we introduced the following “new equation”: 

 

Dividend = Divisor  Quotient + Remainder 

 

For the teachers, this was something new and so we highlighted the relationship between 

division and multiplication, e.g., 20  4 = 5 is related to 20 = 4  5. More importantly, the 

equation involving dividend, quotient, divisor, and remainder was linked to how division 

can be demonstrated through manipulative, “splitting” the number into two or more 

components, and the long division algorithm. As an example, we showed how 82  4 can be 

visualised as distributing 80 items into 4 equal groups, with 20 items in each group; or seen 

as 80 + 2, which can be rewritten as 4  20 + 2; and the long division which gives the quotient 
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20 and a remainder of 2 when 82 is divided by 4 (See Figure 2). The sharing of these new 

ideas provided opportunities for teachers to engage in comprehending the content and 

transforming their new-found knowledge to usable forms. 

 

Figure 2. Snapshot of our sharing as documented on the whiteboard. 

Teaching Differently to Learn 

This “new” equation which highlighted the relationships between dividend, quotient, 

divisor, and remainder was taken up by Mr. Robert who tried to use this idea for his own 

teaching (Turn 15): 

 
15. Mr. Robert  I tried in my class, in fact I introduce in my class last week the quotient 

… like something like 9 = 4 + remainder something, you know the 

remainder thing? For the equation thing we did last week.   

16. Ms. Mandy  Dividend = Quotient  divisor + remainder.   

17. Teachers  [inaudible] remainder theorem.  

18. Mr. Robert  We did that last week. We could get the simple ones. But how you 

translate this to the long division working, it’s still a disconnect.  

19. Researcher Yea. So, they could get this, they can understand this kind of thing …  

20. Teachers  Small numbers [inaudible]  

21. Mr. Robert  2 digits they can get, 3 digits they are gone.  

22. Researcher Ok, so they could get 2 digits but not 3 digits.  

23. Mr. Robert  Maybe at the start we just started with 2-digit number. In fact, once it 

goes beyond 20, they are a bit lost already.  

 

Mr Robert’s use of the “new equation” highlights how new ideas shared or discussed 

during PLTs can open up new opportunities to teach differently. As Mr. Robert 

comprehended these ideas for himself and transformed them into a sequence of examples 

involving 9, some 2-digit numbers, and even 3-digit numbers for his instruction (Turns 15, 

21, and 23), he also began to be more aware of his students’ thinking (Turns 18 and 21). He 

was able to assess that his students may be confused when the numbers went beyond 20. 

However, it was his reflection about the possible disconnect between this “new equation” 
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and the long division algorithm that opened up new threads of discussion and possibly 

opportunities to acquire new comprehension during the PLT.  

Cycles of Learning to Teach Differently and Teaching Differently to Learn 

Here, we begin to see how Mr. Robert’s pedagogical reasoning and action had afforded 

opportunities for him to learn to teach differently. In the discussion that followed, we 

explored with teachers how students could make sense of division problems using different 

methods. For example, for 48  3, students can do repeated addition: 3 + 3 + 3 + … = 48; or 

they can do repeated subtraction: 48 − 3 − 3 − 3 − … = 0. Students can also do skip counting: 

3, 6, 9, …, 48; or reverse skip counting: 48, 45, 42, …, 0, amongst others. We also introduced 

the different chunking strategies (Putten et al., 2005), or what others refer to as partial 

quotients (Takker & Subramaniam, 2018), before we linked these informal strategies to the 

long division algorithm. For example, for 78 divided by 3, students may think of 3  10 = 

30 and they will subtract 30 from 78 to give 48. Then they may subtract another 30 from 48 

to give 18, and 18 divided by 3 is 6. Therefore, the answer is 10 + 10 + 6 = 26. This can be 

presented in this manner: 

 

        6 

      10         10 + 10 + 6 = 36 

      10  

3 ) 78 

  − 30 

     48 

  − 30 

     18 

  − 18 

       0 

 

Mr. Robert then explored and used these ideas in his own teaching. As seen from the 

snapshots taken from the video snippet of his lesson (see Figure 3), we see how he had 

tailored some of the ideas for his students. Although Mr. Robert decided not to write the 

“new equation” explicitly, he used the ideas to go through some of the informal division 

strategies with his students. Mr. Robert’s decision to use the “7R1” notation could be in part 

due to how all the approved textbooks present the answers.  

 

 

Figure 3. Snapshot of Mr. Robert’s lesson to demonstrate informal strategies. 
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Figure 4. Snapshot of Mr. Robert’s lesson to demonstrate the chunking strategy. 

In another snapshot (see Figure 4), we see Mr. Robert demonstrating the chunking 

strategy (Putten et al., 2005) for his students. As seen from Figure 4, he used different colours 

to denote the different place values to make it clearer for his students. This use of colours 

was inspired by one of his colleagues in the same PLT who shared how the use of colours 

helped his students to grasp the importance of place value to understand long division. Here, 

Mr. Robert demonstrated the importance of learning new ideas from his colleagues and 

trying these ideas to see if they work. As we examine Mr. Robert’s teaching and learning, 

we begin to gain insights into how he had learned from unpacking the mathematics, his 

colleagues, and knowledgeable others to be aware of different possibilities for teaching. But 

we also see how he had actually tried to teach differently in order to learn from his own 

teaching by assessing his students’ understanding and reflecting upon the lesson. 

Discussion 

It was clear to us that the teachers in the PLT, including Mr. Robert, struggled with these 

ideas initially. However, it was also clear to us that teachers began to scrutinise these new 

mathematical ideas about division and explored the possibility of incorporating these ideas 

for their teaching. In other words, we argue that professional discussions involving 

experiences from different people, which focused on making connections between 

mathematics and pedagogy, have the potential for teachers to learn to teach differently. 

Nevertheless, for teachers’ practices to change, it is necessary for them to try out these new 

ideas, as Mr. Robert had done, and reflect on their teaching to gain new insights. That is, for 

teachers to learn from their practice, it is necessary for them to learn about new ideas to teach 

differently and teach differently to learn these new ideas.  

What Shulman (1987) implied in his model of pedagogical reasoning and action is that 

teachers can learn from their own teaching, or the idea of docendo discimus—by teaching, 

we learn. This idea aligns with the current notions of professional learning, which involve 

some form of job-embedded teaching inquiry activities, such as Lesson Study. However, 

implementing such teaching inquiry activities may be challenging due to time and resource 

constraints. There is a place and time for more elaborate teaching inquiry as part of a 

teacher’s professional learning. But, what about the possibility of a teacher learning from his 

or her own teaching on a day-to-day basis? If we were to examine the processes of 

pedagogical reasoning and action, it became apparent that the model revolves around a 

teacher’s day-to-day teaching activities. Hence, we propose two fundamental shifts in our 

thinking about professional learning. First, we see every teaching moment as an opportunity 

for professional learning. Second, we see pedagogical reasoning as the primary mechanism 
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to effect changes in pedagogical actions, and eventually changes in one’s system of 

resources, orientations, and goals. As exemplified by Mr. Robert, every moment in teaching 

can provide affordances for teachers to learn from their own practice.  
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Using interviews with non-examples to assess reasoning 

 in F-2 classrooms 
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The University of Melbourne 
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The development of mathematical reasoning is a key proficiency for mathematics within the 

Australian Curriculum. However, reasoning can be difficult for teachers to assess, 

particularly with pen and paper tests. In this study, interview tasks were designed across three 

curriculum areas at three different levels to assess student reasoning through the use of 

examples and non-examples. Non-examples can be used to assist in building boundaries and 

deepening conceptual understanding. Through the interview, teacher and student dialogue 

can help students to demonstrate reasoning and clarify concepts through explanation and 

justification.  

This paper examines the use of task-based clinical interviews to assess reasoning in the 

early years of school. The development of mathematical reasoning is considered a key 

proficiency within the Mathematics Learning Area of the Australian Curriculum and is 

described as a facility for “logical thought and actions” with “increasing sophistication” 

(Australian Curriculum Assessment and Reporting Authority, [ACARA] 2018a). This may 

be demonstrated, in part, through a student’s ability to compare and contrast ideas, explain 

their thinking and justify conclusions made. In partnership with and addressed through the 

learning area foci of the Australian Curriculum are the General Capabilities, including 

Critical and Creative Thinking. Within this capability, students develop capacity to 

“generate and evaluate knowledge” and “clarify concepts and ideas”, through “thinking 

broadly and deeply” and using reason and logic (ACARA, 2018b). These definitions are 

aligned to Kilpatrick’s (2001) description of adaptive reasoning, where students think 

logically about conceptual relationships, reflect on their learning and justify their work. As 

an essential part of the curriculum, responsibility for assessing reasoning and critical 

thinking lies with the teacher.  

Assessing students’ capacity to demonstrate reasoning in mathematics can be 

challenging for teachers (Herbert et al., 2015).  Formal, written pen-and-paper tests can be 

difficult for F-2 students (Foundation, the first year of school - Year 2) to complete. It has 

been established that this form of assessment may not accurately reflect students’ conceptual 

understanding (Clements & Ellerton, 1995) and presents challenges to students at this level 

due to the reading and writing skills required, in light of the students’ own developing 

literacy skills (Clarke, et al., 2006). One-to-one task-based interviews which are grounded 

in research are more effective at revealing students’ conceptual understanding as well as 

their thinking and reasoning. For the purposes of eliciting and demonstrating mathematical 

thinking, interviews are well suited to early-years students (Cheeseman & Clarke, 2007). It 

is through the dialogue that happens between the teacher and the student that the student’s 

reasoning becomes evident. 

Task based interviews using non-examples, such as the ‘triangles task’ in the Early 

Numeracy Research Project, allow students to reason through justification (Horne, 2003). 

Similarly, Clements’ (1998) discussion of interview tasks using examples and non-examples 

of 2D shapes, demonstrated that they allow students, through comparing and contrasting, to 

focus on the essential attributes of the shapes and promote critical thinking. Examples in 

mathematics generally fall into two categories: examples of a concept; or examples of the 
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application of a procedure. Within these categories, examples can take the form of ‘generic 

example’, ‘counter-example’ or ‘non-example’. Non-examples can help to clarify 

understanding by sharpening distinctions and deepening understanding of mathematical 

ideas (Bills et al., 2006). They provide an opportunity to reveal student thinking, and for 

students to apply reasoning and formulate justifications for why an example is correct or 

incorrect (Cavey & Kinzel, 2015). Teachers using non examples can assess students’ 

conceptual understanding and reasoning using interview tasks designed to reveal 

misconceptions. 

Methodology 

Task-based clinical interviews were used to assess the reasoning of three students, at 

three different curriculum levels and in three different content areas. Task-based interviews 

were chosen for their utility as they are a valued tool for revealing student thinking, 

particularly for students in the early years of school (Clarke et al., 2006). Students are able 

to use discussion as a means of revealing understanding and therefore reading levels are not 

an issue (Bobis et al., 2005). Task-based interviews have developed from a background of 

Piagetian and Vygotskian theory, understanding that learning occurs in a social context. The 

interview process is centred around the dialogue which takes place between the child and 

the researcher, and the role of language is central to this. The researcher asks probing 

questions and the child clarifies meaning through explanation (Hunting, 1997).  

Tasks were designed in consideration of research, including the development of 

conceptual understanding and common misconceptions, with one task for each level, at 

Foundation (number recognition, matching quantities and numerals to ‘seven’), Level 1 

(Counting on and counting back for early addition), and Level 2 (fractions, identifying 

‘quarters’, demonstrating understanding of equal parts in a continuous model and fractions 

in a discrete model). Tasks were created with examples and non-examples for each content 

area, to expose conflicts in understanding which can arise through misconceptions (Zazkis 

& Chernoff, 2008). With non-examples, students can dismiss concepts that do not fit with 

their conceptual understanding however the dialogue within an interview can challenge this 

notion. Non-examples were intentionally included because they can be used to clarify 

boundaries for a concept, or where a procedure may not be applied, or fails to get a correct 

answer (Bills et al., 2006).  

“Kye”, aged five, “Cara”, aged seven, and “Oliver”, aged eight, (pseudonyms) attended 

an urban government school, where the need for assessing reasoning had been identified as 

an area for improvement within the school. The students were interviewed on site in a 

meeting room. Tasks were conducted with each student individually, and instructions, or 

questions were read to the students by the researcher. The students were then asked to explain 

their answers and why they had chosen (or not chosen) each answer. Each interview took 

approximately 10-15 minutes. The researcher recorded each answer and students’ use of 

reasoning and justification were analysed from their responses 

Tasks 

Task 1 

Task 1 (Figure 1) is a Foundation level task about number recognition. The Australian 

Curriculum lists the content descriptor for this as: “Connect number names, numerals and 

quantities, including zero, initially up to 10 and then beyond (ACMNA002)” (ACARA, 
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2018a). Key concepts for this task include Gelman and Gallistel’s Counting Principles 

(1978) which state that meaningful counting relies on children knowing how to count and 

what to count. How to count includes: the one-to-one principle, where each item is counted 

only once, and assigned to a number as it is counted; the stable-order principle, where the 

number names are always used in the same fixed order; and the cardinal principle, where the 

last number counted or named is the total of the collection. What to count, relies on 

understanding the abstraction principle where anything can be counted including where the 

items in a collection are different, and the order-irrelevance principle where objects can be 

counted in any order. 

 

Figure 1. Foundation task 

This task required the student to circle all the representations that showed ‘seven’. 

Images chosen to represent familiar objects for Foundation students include: tens frames, 

counters, fingers, and common objects, as well as numerals. The types of images were 

chosen to reflect the counting principles, which are necessary for conceptual understanding. 

All items assess cardinality and the stable order principle. In addition, the cutlery assesses 

the abstraction principle, and the cupcakes and counters in a circle assess one-to one 

correspondence and order-irrelevance. The tens frames images assess order-irrelevance and 

could demonstrate knowledge of combining and partitioning (Clarke et al., 2006). Non-

examples include the numeral ’1’, with extra ‘tails’ which could be mistaken by small 

children as the numeral ‘7’. The counters arranged in a circle represent ‘six’ but could be 

counted incorrectly by a student who is not able to create a start and end point for their 

counting. One set of tens frames and one set of hands are non-examples, displaying ‘eight’.  

Task 2 

Task 2 (seen in Figure 3) is a Level 1 task about early addition and subtraction strategies 

of counting on and counting back. The Australian Curriculum (ACARA, 2018a) lists the 

content descriptor for this as: “Represent and solve simple addition and subtraction problems 

using a range of strategies including counting on, partitioning and rearranging parts 

(ACMNA015)”. Research used to construct the task focused on counting stages (Steffe et 

al., 1983), particularly those at the initial number sequence stage or counting in verbal unit 
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items. Students at this level are able to hold a number in their head and have a conceptual 

understanding of the quantity that the number represents. Students are then able to count on 

a given amount of numbers to find a total. (See for example the top left column of Figure 3). 

This is a complex cognitive task requiring that the child understands the relationship between 

the symbolic representation of the task, as well as its relationship to process, numeration and 

quantity (Boulton-Lewis & Tait, 1994).  

The first question demonstrates both a correct method, (top left column of Figure 3), and 

a common misconception for students who learn counting on as a process, (top right column 

of Figure 3). These students count on, but include the last number stated, lacking the 

conceptual understanding of the requirements of the task. Question two addresses counting 

back, which is often more challenging for children than counting forward (Steffe et al., 

1988). A number line is provided for support, with the non-example showing a common 

misconception where the child counts marks on the number line, (top number line in Figure 

3), and a correct example where a child draws ‘jumps’ on a number line, demonstrating 

counting back, (bottom number line in Figure 3). 

Task 3 

Task 3 (as seen in Figure 4) is a Level 2 task about fraction representations of quarters. 

The Australian Curriculum lists the content descriptor for this as: “Recognise and interpret 

common uses of halves, quarters and eighths of shapes and collections (ACMNA033)” 

(ACARA, 2018a). Key concepts for this task include the relationship between the numerical 

representation of a fraction and models to represent this. Due to the frequent use of ‘pie’ 

representations in the teaching of fractions, students can misunderstand the representation of 

a fraction in terms of a whole, particularly in a discrete model (Gould, 2005).  

Representations of examples in the task include continuous and discrete models, equal 

parts, different shaped wholes, and an equivalent fraction. Common misconceptions for 

students include the understanding of equal parts in diagrams, and the relationship between 

wholes and parts of wholes, particularly in discrete items (Gould, 2005). Non-examples in 

this task include non-equal parts, images that represent one fifth in discrete and continuous 

models, and a whole that has been divided into quarters.   

Results and Discussion 

Task 1 

Foundation student “Kye” completed the number identification task (Figure 2) and was 

immediately able to identify the numeral ‘7’ as correct and the numeral ‘1’ as incorrect, 

stating, “It’s not seven, because it’s a one”. He then counted the seven fingers correctly, 

demonstrating one-to-one matching (Gelman & Gallistel, 1978) as he counted each finger. 

Kye counted the cupcakes as seven, again counting them with one-to-one deliberate 

matching, touching each cupcake as he counted. When drawing around the cupcakes, he 

recounted, drawing a line past each cupcake as he counted, resulting in an unusual ‘circling’ 

of the items. He then counted the bottom right ten frame (Figure 2) once and circled it. Kye 

once again relied on one-to-one matching, and did not demonstrate more complex 

understanding of number, which could perhaps have demonstrated part-part-whole number 

knowledge (Clarke et al., 2006), such as ‘5 and 2’, or ‘three empty spaces’. he then counted 

the second set of fingers as eight fingers and said he wasn’t going to circle it, because it was 

eight fingers.  
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Kye had great difficulty counting the cutlery. He began counting and stopped halfway 

through and went back to the start twice. On the third attempt he said he was going to count 

them “carefully”. He proceeded to count each item very slowly, but again stopped. He then 

said, “I’m going to count them at the bottom, and use my pencil”. Kye counted the handle 

of each item, placing a pencil dot on the end of each cutlery item to count seven items. He 

then repeated the process before circling the items. The cutlery, demonstrating the 

abstraction principle (Gelman & Gallistel, 1978), were an obstacle that prevented Kye 

counting the items. His strategy was to count the items at the bottom, where the items were 

all the same.  Kye also had difficulty counting the six dots in a circle and did not have a 

clearly identified beginning and end point for his counting. Kye counted seven dots, 

recounting his initial dot at the end, and immediately and confidently circled the group.  

 

Figure 2. Kye’s response to Task 1 

Kye counted the final ten frame as eight and then started to circle the ten frame. He was 

asked, “How many did you say there were?” and responded, “Eight”. He was then asked 

which ones he was circling, and he said, “the sevens” After discussion he decided he would 

recount the items. He recounted the dots, placing a cross on each to count eight and said he 

wouldn’t circle them because there were eight and not seven. Kye was able to demonstrate 

one-to-one counting and some of the counting principles. His reasoning demonstrated an 

ability to justify why he believed something was correct. His critical thinking skills were 

used in his ability to adapt his counting skills with the cutlery counting to enable him to 

effectively count the items.  

Task 2 

Year 1 student “Cara” completed the addition and subtraction task (Figure 3). Cara was 

able to correctly answer both questions in the task, but interestingly only able to demonstrate 

reasoning in one part of the interview. In the addition question, Cara wrote her answer clearly 

stating that the incorrect answer was wrong “...you don’t count the number your (sic) on.” 
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When questioned, Cara said, “you already have 7, you don’t need to count it again, you have 

to count on the next number”. Cara has demonstrated a correct understanding of the 

procedure for counting on (Boulton-Lewis & Tait, 1994). She has also demonstrated an 

ability to think logically about the relationship between the concept of addition and the 

example and non-example provided (Kilpatrick, 2001). Cara has justified why one answer 

was correct, and why another was incorrect.  

 

Figure 3. Cara’s response to Task 2 

In the subtraction question, although Cara was able to answer the problem correctly, she 

was unable to demonstrate reasoning. When questioned on what she meant by “counted back 

properley (sic)”, she said, “That’s the way you’re supposed to do it.” On further prompting, 

she continued to talk about the “right way”. This was a procedural approach and her response 

demonstrated that Cara had a ‘rule’ for using a number line; however, she did not have a 

conceptual understanding of why this method was successful. Her inability to justify her 

response, or why the other answer was incorrect, revealed that although she could identify 

the correct solution, she could not articulate her mathematical reasoning. 

Task 3 

Year 2 student “Oliver” completed the fraction task (Figure 4). Oliver was able to 

demonstrate understanding of quarters in both a discrete and continuous fraction model 

(Gould, 2005). The task does not show discrete fractions with items of different sizes, which 

should be added to the task for future interviews. Oliver was able to articulate the reasons he 

provided to justify what was and what was not a representation of a quarter, including the 

need for equal sized parts in a continuous fraction model. He was able to clarify from the 

non-examples of fifths, what a quarter was: “This has five bits, but a quarter is one out of 
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four”, and “There’s five people, not four, so it can’t be a quarter. It’s a fifth.” The non-

examples sharpened his interpretation of quarters (Cavey & Kinzel, 2015).  

   

Figure 4. Oliver’s response to Task 3 and interview notes 

Logical reasoning is evident in Oliver’s identification of two-eighths as a quarter. “It’s a 

quarter if you include both the purple bits, there’s four lots of 1, 2 – 1, 2, 1, 2, 1, 2, 1, 2. So, 

two is a quarter in that scenario”. His justification and explanation of his ideas is a 

demonstration of clear reasoning and his current conceptual understanding (Kilpatrick, 

2001). Interestingly, Oliver stated that the pizza showed a quarter as all the quarters were 

even. The interviewer said, “When I look at the pizza, I see four quarters, because they’re 

all the same.” Oliver responded, “You know, I think you’re right, they are all the same.” 

Initially the non-example had been dismissed by the student; however, the interview exposed 

this conflict in understanding, and enabled Oliver to more clearly clarify his understanding 

and create new boundaries for the concept of a quarter (Bills et al., 2006).  

Conclusion 

Although this was a small-scale study, only assessing one child within each identified 

concept, some conclusions can be drawn. Using examples and non-examples in a task-based 

interview situation allowed a teacher researcher to clarify conceptual understanding of three 

students, within specific topics of the mathematics curriculum area. The tasks required 

students to identify correct and incorrect examples of concepts and to justify their responses, 

in order to demonstrate mathematical reasoning. A task-based interview assessment allows 

for dialogue between the teacher and the student, to clarify the student’s thinking, and 

provides an opportunity for the individual student to articulate conceptual understanding. 

Prompting questions from the interviewer can be used to seek explanations, with reasoning 
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and justification from the student; however, this relies on the pedagogical content knowledge 

of the assessor. Therefore, the need for carefully planned, research-based tasks is essential 

to the effectiveness of an assessment such as this, and can be useful to teachers, promoting 

the assessment of reasoning, rather than just assessment of a procedure, or ability to follow 

a ‘rule’. This enables the teacher, as the assessor, to gain a deeper knowledge of the 

conceptual understanding of the student. The potential for a larger study, with a wider range 

of students, could be considered to better understand the possibilities of using task-based 

interviews to assess reasoning in a wider range of mathematical concepts. 

References 

Australian Curriculum Assessment and Reporting Authority (ACARA). (2018a). Australian Curriculum: 

Mathematics, Version 8.4, 26 October, 2018. Sydney, NSW: ACARA. 

Australian Curriculum Assessment and Reporting Authority (ACARA). (2018b). Australian Curriculum: 

General capabilities: Critical and creative thinking, Version 8.4, 26 October, 2018. Sydney, NSW: 

ACARA. 

Bills, L., Dreyfus, T., Mason, J., Tsamir, P., Watson, A., & Zaslavsky, O. (2006). Exemplification in 

mathematics education. In J. Novotna, H. Moraova, M. Kratka, & N. Stehlikova, N. (Eds.): Proceedings 

of the 30th Conference of the International Group for the Psychology of Mathematics Education, Prague. 

Bobis, J., Clarke, B., Clarke, D., Thomas, G., Wright, R. B., Young-Loveridge, J., & Gould, P. (2005). 

Supporting Teachers in the Development of Young Children’s Mathematical Thinking: Three Large Scale 

Cases. Mathematics Education Research Journal, 16(3), 27-57.  

Boulton-Lewis, G. M., & Tait, K. (1994). Young children's representations and strategies for addition. British 

journal of educational psychology, 64, 231-242.  

Cavey, L. O., & Kinzel, M. T. (2015). A refinement of Michener’s example classification. In T.G. Bartell, K. 

N. Bieda, R. T. Putnam, K. Bradfield, & H. Dominguez, (Eds.), Proceedings of the 37th annual meeting 

of the North American Chapter of the International Group for the Psychology of Mathematics Education, 

East Lansing, Michigan. 

Cheeseman, J., & Clarke, B. (2007). Young children’s accounts of their mathematical thinking. In J. Watson, 

& K. Beswick, K. (Eds.), Mathematics: Essential research: Essential practice: Proceedings of the 30th 

annual conference of the Mathematics Education Research Group of Australasia, Hobart. 

Clarke, B., Clarke, D., & Cheeseman, J. (2006). The mathematical knowledge and understanding young 

children bring to school. Mathematics Education Research Journal, 18(1), 78-102.  

Clements, M. A. K., & Ellerton, N. F. (1995). Assessing the effectiveness of pencil-and-paper tests for school 

mathematics. In B. Atweh, & S. Flavel, (Eds.), MERGA 18: Galtha: Proceedings of the 18th annual 

conference of the Mathematics Education Research Group of Australasia, Darwin, NT. 

Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number. Cambridge, Massachusetts: 

Harvard University Press. 

Gould, P. (2005). Really broken numbers. Australian Primary Mathematics Classroom, 10(3), 4-10.  

Herbert, S., Vale, C., Bragg, L. A., Loong, E., & Widjaja, W. (2015). A framework for primary teachers’ 

perceptions of mathematical reasoning. International Journal of Educational Research, 74, 26-37.  

Horne, M. (2003). Properties of shape. Australian Primary Mathematics Classroom, 8(2), 8-13.  

Hunting, R. P. (1997). Clinical interview methods in mathematics education research and practice. Journal of 

Mathematical Behaviour, 16(2), 145-165.  

Kilpatrick, J. (2001). Adding it up: Helping children learn mathematics (J. Kilpatrick, J. Swafford, & B. Findell 

Eds.). Washington, DC: National Research Council. 

Steffe, L. P., Cobb, P., & von Glaserfield, E. (1988). Construction of arithmetical meanings and strategies. 

New York: Springer-Verlag. 

Steffe, L. P., Glasersfeld, E. v., Richards, J., & Cobb, P. (1983). Children's counting types: Philosophy, theory, 

and application: Praeger Publishers. 

Zazkis, R., & Chernoff, E. J. (2008). What makes a counterexample exemplary? Educational Studies in 

Mathematics, 68(3), 195-208.  

 



2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics 

Education: Foundations and Pathways (Proceedings of the 43rd annual conference of the Mathematics 

Education Research Group of Australasia), pp. 171-178. Singapore: MERGA. 

Spatial reasoning and the development of early  

fraction understanding  

Chelsea Cutting 
Royal Melbourne Institute of Technology 

<chelsea.cutting@student.rmit.edu.au> 

Young children are capable of engaging with ratio, measurement and operator meanings of 

fractions earlier than many national curriculum standards indicate, yet current trends in 

children’s understanding of fractions in Australia, remain weak. Research suggests that 

spatial reasoning can positively influence mathematical knowledge; however, the connection 

between spatial reasoning and fraction understanding remains under-researched. This paper 

will present qualitative data from a Design Based Research study that examined a spatialised 

approach for teaching fractions to 6-and 7-year-old children. Findings indicate that spatial 

reasoning played an important role in helping children develop early fraction knowledge.  

Examining the various perspectives of early fraction development reveals spatial 

reasoning may play an important role in the construction of such ideas. For example, research 

relating to young children’s proportional and fraction understandings suggests that children 

engage in spatial scaling when reasoning in such contexts, which requires mentally shrinking 

or expanding spatial information to determine the relationships between the relative 

magnitudes (see Huttenlocher et al., 1999; Möhring et al., 2015) This work aside, Bruce et. 

al. (2017) state there are many ‘gaps’ in relation to what is known about spatial reasoning 

and its impact on mathematics education,  including how different aspects of spatial 

reasoning may support young children’s engagement with, and understanding of, early 

fraction concepts. To explore this phenomenon, the following research question was 

examined in a Design-Based Research (DBR) intervention study: In what ways does the 

inclusion of a spatial reasoning approach to fraction instruction in the early years of 

schooling influence children’s understanding of key fraction concepts?  

Background 

Fractions are an essential building block of mathematical  knowledge yet are complex 

because they are represented in multiple interpetations, such as  fraction as a relation 

(ratio/rate/ proportion); fraction as operator; and, fraction as a measure (see Confrey 2008; 

Orbersteiner et al., 2019). Partitioning as an experienced based activity, provides the 

foundation for the development of children’s understanding of fractions (Lamon, 1996; 

Siemon, 2003) including the closely associated concepts of unitising and equivalence. These 

concepts should be explored through the three aforementioned fraction contexts to enable 

flexible and sophisticated understandings to develop (Confrey, 2008). However, current 

research indicates that the key difficulties young children exhibit in developing early fraction 

ideas are concerned with making the connections between the concepts of partitioning, 

unitising and equivalence and the various representations and interpretations in which they 

are explored (Bobis & Way, 2018; Way et al., 2015).  

A growing body of research indicates that young children can engage with these concepts 

utilising spatial reasoning (Congdon et al., 2018; Möhring et al., 2015). This research 

demonstrates that young children can adequately problem solve in ratio and proportional 

contexts when presented with spatial, non-symbolic representations. These fraction ideas are 

typically not introduced into the curriculum until upper primary and middle school years. 
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Whilst this body of research is limited, it does provide the warrant to explore the impact 

spatial reasoning may have on helping children understand the relationships between early 

fraction concepts, contexts and associated representations, to mitigate the persistent 

challenges children exhibit in this area of mathematical learning. 

Theoretical Perspectives 

Spatial reasoning is defined using the National Research Council’s [NRC] (2006) 

framework, which describes spatial reasoning as a problem-solving activity, involving the 

coordinated use of space, representation, and reasoning. For the purposes of this paper, the 

spatial reasoning constructs of spatial visualisation, spatial structuring and gesture will be of 

focus.  

Spatial Visualisation 

Lowrie et al. (2018) define spatial visualisation as “the ability to mentally transform or 

manipulate the visuospatial properties of an object…for example, visualizing a cube from 

its net or predicting a pattern on a piece of paper that has been unfolded” (p. 3). This spatial 

skill is the multi-step manipulation of objects generated or retrieved in one’s mind. Given 

this definition, this skill involves visualising how different objects and contexts may be 

manipulated mentally to help develop ideas of partitioning unitising and equivalence within 

the three different meanings of fractions.  

Spatial Structuring 

Spatial structuring can be defined as “the mental operation of constructing an 

organization or form for an object or set of objects”(Battista & Clements, 1996, p. 503). This 

focusses on identifying objects’ spatial components and their composites, and establishing 

what relationships exist between these elements. Fraction understanding is founded upon  

partitioning, unitising, multiplicative thinking, and patterning which are also foundational to 

spatial structuring (Papic et al., 2011).  

Representations  

Internal and external representations are key components of the spatial reasoning 

framework. Goldin (1998) describes internal representations as systems of verbal/syntactical 

representations, which describe the way a learner processes imaginative or mental images 

that include visual and spatial cognitive configurations. These representations involve 

children mentally organising a problem and mapping the processes for problem solving. In 

the context of fractions, the external representations such as concrete materials, pictorial and 

graphical representations, and language are central to this component of spatial reasoning 

and mathematics education. Additionally, gesture is considered an external representation 

which mediates mathematical meaning, particularly in learning and communicating spatial 

information (see Alibali et al., 2014; Bobis & Way, 2018) and is an important theme in 

relation to the present study. 

Gesture 

Gestures are described as the movement of a part of the body (typically one’s hands or 

head) that is used to covey an idea or meaning. It can be used to connect, illustrate and 

exemplify complex mathematical ideas so that children develop a deeper level of 
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understanding and play a significant role in the cognitive processing of spatial information 

(Alibali et al., 2014). The visuospatial nature of gesture makes it suitable for capturing spatial 

information, in this case, information pertaining to early fraction ideas such as magnitude, 

as it brings the imagined or abstract spaces and objects into a more concrete form. 

Research Design  

This paper reports on a sub-set of data collected as part of a larger DBR study, that 

comprised of three cycles: a pilot cycle (Cycle 1) and two cycles of a teaching intervention 

which included an identical pre and post-assessment and unit of work that replaced the daily 

mathematics program for each class (Cycle 2 and 3), over a period of approximately three 

weeks (per cycle). This methodology was chosen based on the premise that the educational 

context is imperative for developing and extending theories for learning, and that  "learning, 

cognition, knowing, and context are irreducibly co-constituted and cannot be treated as 

isolated entities or processes” (Barab & Squire, 2004, p. 1). Results presented for discussion 

in this paper are drawn from two tasks in Cycles 2 and 3: (i) a pre/post assessment item and 

(ii) a mapping-based task from the unit of work. Participating students did not receive any 

additional mathematics instruction during the intervention period. The participating 

classroom teachers also agreed not to teach their regularly planned fraction unit before their 

class participated in the intervention.  

Participants  

44 children aged 6-and 7-years participated in Cycles 2 and 3 of the intervention. The 

participating classes (Year 1-2 in Cycle 2; Year 2 in Cycle 3) were from separate, regional 

South Australian government primary schools. The teacher of each class did not teach any 

mathematics during this intervention; however, they acted as an additional researcher, by 

observing each lesson and recording their own reflections, interpretations and interactions 

with the children throughout each lesson. 

Research Instruments  

A 13-lesson unit of work was developed for this study. The unit of work was created and 

taught by the author of this paper. In Cycle 1, each lesson was piloted to determine its 

suitability for inclusion in the unit of work, and to determine the spatial skills and 

representations the children engaged with during each activity. Each of the lessons in the 

unit of work was approximately 50 minutes in length. An example of a task from this unit 

of work is based on a provocation developed from the picture book Knock, Knock Dinosaur 

by Caryl Hart: “The dinosaurs have escaped the house. They’ve decided to explore the 

neighbourhood. Help us find them!”.  Children were given clues and directions for where 

the dinosaurs had been ‘seen’ throughout the town. Using laminated maps and large carpet 

maps of fictional cities and towns, the children were asked to identify the locations of the 

dinosaurs, based on clues that contained fractional information (e.g., a quarter of the way 

along the train track; halfway along the bicycle path etc.). Many of the pathways chosen 

were not represented on the maps in a straight line, or were open to interpretation (e.g., 

negotiating which end of a path determined the ‘start’ of the measure). Thus, spatial 

reasoning was explicitly embedded into the anticipated problem solving strategies for this 

task.  

An identical pre-and post-assessment was developed to assist in identifying the changes 

in understandings and strategies developed from the unit of work. The assessment was 
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administered in a one-to-one task-based interview format with the researcher. Each interview 

consisted of 24 questions relating to the children’s whole number knowledge, fraction 

knowledge and their spatial reasoning abilities. A rubric was developed to assess each item 

and to make comparisons between children’s initial and final understanding. Children’s 

work samples were collected for analysis in this study and a journal for observations, 

interactions and reflections was maintained throughout the project.   

Data Collection 

Each child completed the pre- and post-assessment tasks within two days immediately 

before and after the unit of work was taught. The assessment took approximately 25 minutes 

for each child to complete. Children’s work samples were collected and their dialogue, 

gestures and use of materials was documented by the researcher during each item.  

The unit of work consisted of a 50-minute lesson each day for 13 consecutive school 

days. During each lesson, the classroom teacher and researcher kept separate journals of 

observations and interactions throughout each lesson. At the conclusion of each lesson, the 

classroom teacher and researcher held a de-brief about the perspectives of the learning. 

Data Analysis  

All data was analysed using Hybrid Thematic Analysis (Swain, 2018). The method of 

analysis chosen for this study enabled key themes and relationships to become visible, which 

were important for developing an understanding of the possible connections between spatial 

reasoning and fraction knowledge.  

Analysis from two tasks revealed the relationship between spatial visualisation, spatial 

scaling and gesture. The first task was taken from the identical pre-post assessment.  It was 

designed to explore how children conceptualised unit fraction magnitude when asked the 

following question: Which is bigger, a third or an eighth? How do you know? Children were 

asked to explain their reasoning with access to a range of materials including counters, 

popsicle sticks, strips of paper, and drawing materials made available (but not compulsory) 

for use. The intention was for children to demonstrate how they visualised and represented 

their understanding of magnitude. 

The second task, “The dinosaurs have escaped the house!”, taken from the unit of work, 

indicated the influence spatial reasoning had on children’s understanding of fraction as 

measure contexts. This task invited children to explore partitioning and unitising with an 

emphasis on spatial visualisation.  

Whilst both tasks had an intentional focus on spatial visualisation, the findings suggested  

that spatial structuring and gesture were deeply embedded in the children’s conceptualisation 

and representation of their knowledge.  

Results and Discussion 

In the assessment task, which is bigger, a third or an eighth? How do you know? every 

child from Cycles 2 and 3 (n=44) answered this question with “an eighth” in the pre-

assessment phase. The most common explanation to the second part of this question, how do 

you know? was “eight is bigger than three” indicating a reference to whole number 

magnitude understanding. Additionally, no child chose to use any materials for their 

explanation, nor use any gesture other than a shrug of the shoulders to indicate they did not 

know the reason for their answer. Conversely, in the post-assessment, 34 of the 44 children 

assessed within Cycles 2 and 3 not only answered correctly, but provided rich descriptions 
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supporting their answer that included gesture, evidence of spatial reasoning, and the use of 

materials to support their understanding of unit fraction magnitude. To exemplify, two 

responses from this question are presented (see Table 1) that are indicative of the 

interconnections between spatial and gestural elements evident in the majority of children’s 

post-assessment responses to this item.  

Table 1  

Post-assessment interview (Pseudonyms assigned) 

Speaker Interview transcript 

Adam: It’s a third, because look – if have this square paper (A4 rectangular sheet) 

and I imagine, like cutting in this way (gesturing cutting the paper across two 

evenly spaced places, horizontally across the page), I get threes, each of these 

are a third. To get eight, you have to make more cuts and get more pieces, but 

the pieces get smaller and there’s more of them, but they’re heaps smaller – I 

can see them shrink. And it doesn’t matter what size paper you use – a three is 

always bigger than an eighth.  

 

Troy: It’s a third. When I see the parts in my head, I imagine a line and I can break it 

up evenly. Just…it’s like… it’s the more pieces or groups [of things] you need 

to make out of something, the smaller they get or less you have (gesturing the 

forming of parts with hands, moving imagined objects to imagined groups in 

the air in an array like structure). 

 

Adam’s response suggests some understanding of partitioning as he described how he 

was able to visualise the process, using gesture to communicate his claims. He demonstrated 

spatial visualisation through his description of visualising the units “shrinking” as he applied 

more partitions, which required holding multiple pieces of information in his mind’s eye at 

once, whilst manipulating different components of the mental images (Lowrie et al., 2018). 

Adam’s response indicates an understanding of quantitative equivalence in his discussion of 

relative magnitude, evidenced in his explanation of the relationship between the fractional 

units (i.e., a third is always bigger than an eighth regardless of the common whole) which 

demonstrates emergent multiplicative thinking. Adam’s justification of this relationship 

suggests some abstraction about the essential foundations of fractional knowledge. These 

foundations include an appreciation for equal parts, and  understanding that when the number 

of partitions increase, the size of the parts decrease (and vice versa) (Lamon, 1996; Siemon, 

2003). Spatial visualisation,  in addition to the use of gesture, appeared to assist Adam to 

communicate his understanding of fraction magnitude suggesting he is developing ideas of 

the relationship between partitioning (division) and multiplication. Additionally, Adam’s 

explanation reveals there was an organisational structure to how he visualized the different 

partitions, by the way he gestured column and row structures when explaining how multiple 

unit fractions were created within the same whole. This suggests he was drawing on his 

internal representations of the patterning and the repeated units related to partitioning and 

unitising (Papic et al., 2011) which supported emergent multiplicative understandings and 

indicated an awareness of spatial structure.  

Troy’s response indicated a transfer of knowledge with reference to partitioning in 

continuous and discrete models. That is, Troy’s response demonstrated an understanding of 

the measurement meaning of fractions by his description of a line that he mentally partitioned 

into thirds. Troy’s response also exemplified the transfer of partitioning knowledge from 
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continuous to discrete contexts, by visualising and gesturing the unit fractions of a set. The 

transfer from continuous to discrete contexts is an important landmark in early fraction 

understanding, as these ideas require different cognitive demands (Confrey & Maloney, 

2010). The demands include recognising that a continuous model is the formation of 

multiple, contiguous parts; and the discrete model involves the need to perceive a set within 

one entity. In this case, gesture appeared to be closely associated with how Troy structured 

and visualised multiple partitions of either discrete or continuous contexts. Alibali et al. 

(2014) argued that gesture is a vehicle for communicating spatial information, which was 

evident in his gestures regarding the size and orientation of  the unit fractions (i.e., an array 

like formation). Moreover, Troy’s  description and use of gesture throughout this task 

suggests that the spatial composition of the of the unit fractions and the relationship to the 

fraction construct of measure, was an essential part of his understanding and ability to 

transfer such ideas across continuous and discrete models.  

The second task used for this analysis provides further evidence to address the research 

question by explicating a connection between spatial visualisation, spatial structuring, 

gesture and fraction as measure ideas. For example, to introduce the set of dinosaur tasks 

described above, the following question was posed: A T-Rex was spotted halfway between 

the central fountain and the duck pond – where would she be? From observational data and 

work sample analysis, most children recognised the fraction as measure context for this 

activity and engaged in a spatial strategy to solve the problem. This was indicated by drawing 

straight lines ‘as the crow flies’ on the map (some children gestured paths with their hands) 

to determine how the paths could be partitioned between the landmarks to represent where 

the dinosaur was located. Several children (n=8) interpreted this task as finding the halfway 

point of the path the dinosaur may have taken from the central fountain to the duck pond. 

That is, the children drew non-linear paths from one landmark to another and then identified 

the half-way point, as Shaun’s work sample illustrates (see Figure 1). 

 

Figure 1. Shaun’s work sample 

Shaun’s path has been marked ‘no’ at one location and the path marked with an ‘X’ 

(digitally enhanced for ease of reading) at another point. When the researcher asked him 

what the “no” meant, Shaun explained that he initially copied the location his friend had 

marked for determining half of the path, but Shaun soon realised that his friend was 

indicating the halfway point of a different path to what he had drawn. Shaun stated that he 

had to “straighten out the line [drawn path] in my head” (whilst gesturing pulling his hands 

apart) and when he considered the first mark (“no”), he realised this was “more like a three-

part of the way [a third] (using their hands to gesture the three parts of the path), than a two 

part [half]”. Shaun then placed an ‘X’ on the path (above the yellow car) as the halfway mark 
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instead. To paraphrase, Shaun stated that it did not matter how long the path was or in what 

shape/ orientation; to be half meant there were two equal parts of the concerning path. His 

recognition of the differing path lengths and its relationship to the target fraction 

demonstrates an emerging understanding of proportional thinking (fraction as relation). 

Although Shaun initially copied his friend’s map, he recognised it could not be an accurate 

representation of the same fractional measure, as their paths were different lengths. Shaun 

stated he would have to mentally manipulate these paths (using spatial visualisation) to 

enable a comparison of measures. This type of thinking also suggests spatial structuring was 

an important component to his conceptualisation of the problem, particularly when 

combining components into spatial composites such as units of thirds and halves (Battista & 

Clements, 1996), to establish the relationships between these measures within his own 

representation and in comparison to his friend’s path. Shaun demonstrated an understanding 

of relative magnitude, by explaining the differences of absolute measures through visualising 

and comparing the different paths and used gesture as a vehicle to demonstrate the iterative 

unit fractions of halves and thirds. Emerging proportional thinking as illustrated in this 

example was evident in 19 children’s responses throughout the intervention, which 

highlights the abstraction and transfer of these concepts.  

The relationship identified by this study between spatial visualisation, gesture and the 

concept of partitioning (in a fraction as measure context) extends Lamon’s (1996) 

description of partitioning as being an ‘experience-based activity’. The deep engagement 

between spatial visualisation with gesture forms an important part of this experience as it 

served as the vehicle for children articulating their experiences of partitioning. Moreover, 

spatial structuring was an important component in children’s development of unitising and 

equivalence ideas that formed from their engagement with spatial visualisation and gesture, 

which in turn suggested it positively influenced the children ability to conceptualise the 

multiplicative nature of fractions in both discrete and continuous contexts. It is clear that the 

common multiplicative foundations spatial structuring and early fraction concepts share, 

influenced the way children visualised and used gesture when representing key fraction 

ideas.  

Conclusion 

The relationship between visualisation, gesture, spatial structure and fractions is an 

important finding and contribution to understanding how young children develop such ideas. 

Importantly, this study revealed that this relationship also contributed to children’s 

abstraction and transfer of understanding of these concepts in both discrete and continuous 

models which is an essential component for developing conceptual understanding of 

fractions. Moreover, the results from this study go some way to addressing the persistent 

problems young children face in developing deep connections between the concepts and 

contexts in which fractions are explored and represented (Bobis & Way , 2018). These new 

understandings imply there are considerable benefits in adopting a spatialised approach to 

teaching fractions in the early years of primary school, because it can allow for a better 

exploration and understanding between the nature of young children’s spatial reasoning, 

representations (internal and external) and the role these factors play in young children’s 

development of fraction knowledge. The limitations of this study include the sample size of 

participants involved, and lack of video recordings for greater fidelity measures. However, 

future research directions could include a longitudinal study to provide greater insights into 

the connection between different aspects spatial reasoning and their impact on children’s 

development of rational number knowledge more broadly.  
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Teachers’ conceptions play an important role in their instructional practices. In this study, 

the researcher explored a small sample of Fijian secondary school mathematics teachers’ 

conceptions of assessment. Thirteen mathematics teachers from two case study schools took 

part in this study that utilised one-to-one interviews to gain insights into teachers’ beliefs on 

the purposes of assessment. The findings further indicate that a majority of the teachers held 

contemporary conceptions of assessment. While they did value summative assessment roles, 

teachers tended to support the use of assessments to improve or support student learning.  

The term assessment can be interpreted in different ways by different stakeholders. For 

example, while some teachers see assessment as an activity that is used to improve classroom 

instruction, others may value it as a means of establishing accountability within the school. 

Moreover, some may even perceive assessment as an activity that has no value at all (Brown 

2003, 2004). In other words, varying conceptions of assessments can be placed on a 

continuum that has traditional conceptions on one end and the other representing 

contemporary conceptions. For example, teachers can, on one hand believe that assessments 

serve solely accountability purposes (and seen as irrelevant (Brown, 2004)), while on the 

other end of the continuum of conceptions, they may see assessments as purely an activity 

with a pedagogical aim. Educators can hold mixed beliefs, representing any point on the 

traditional–contemporary continuum. For the purpose of this study, we define conceptions 

following Brown (2004) as a guiding framework used by an individual to understand, 

respond to, and interact with a given phenomenon. In other words, teachers’ conceptions of 

assessment can include their beliefs, attitudes, or perceptions (Harris & Brown, 2016).   

Research suggests that such a continuum of teacher conceptions is likely when teachers 

are asked to list various purposes of assessment (Barnes et al., 2015). Apart from the 

‘purposes’ category, assessments can be differentiated using other criteria such as nature of 

tasks used, cognitive demands associated with tasks, including frequency and grading of 

assessments (Wallace & White, 2014). The traditional-contemporary continuum of 

assessment can be seen as parallel to the commonly used summative-formative 

classification. Summative assessments are those that usually come in the form of 

standardized tests, measuring terminal performance while formative assessments represent 

any assessments that are designed primarily to support student learning (Wiliam, 2007, 

p.1053).  

Teachers’ conceptions play an important role in their instructional practices (Ashton, 

2015; Buehl & Beck, 2015; Marshall & Drummond, 2006; Skott, 2015). Despite notable 

progress in re-thinking learning and assessment over the past two decades, there exists many 

different understandings of the term assessment and other associated terms such as formative 

assessment (van de Watering et al., 2008). For example, Popham (2014) explains that 

American educators usually see teachers’ role in formative assessment as more important 

than students’ roles in improving their own learning.  

Differences in conceptions therefore could mean that teachers take relatively different 

perspectives on using assessment information. There is sufficient evidence that assessments, 

when developed and used appropriately, would lead to improved student learning (Black & 

Wiliam, 1998). In the Fijian secondary education context, assessments are generally 
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conducted to prepare the learners for the external examinations at the end of the year. As 

such, the majority of the ongoing assessments take the form of written examinations that are 

similar in content and structure to the national examinations. In light of the relative 

importance of teacher conceptions, this study aimed to explore how a small group of Fijian 

secondary mathematics teachers’ perceived assessments amidst an examination-oriented 

education system. While the study reported here was part of a larger study that aimed to 

explore how well mathematics teachers took up formative assessment practices (Dayal & 

Cowie, 2019), exploring teachers’ initial conceptions about assessment was seen as an 

important part of the larger study’s context. The following research question guided this 

study: What are Fijian secondary mathematics teachers’ conceptions of assessment? Are 

Fijian secondary mathematics teachers’ able to conceptualise the contemporary purposes 

of assessment?  

After presenting the sociocultural framework used for this study, a brief review of 

literature is provided. This is followed by research methods, results, and discussion. Finally, 

some conclusions and implications are outlined.  

Theoretical Orientation 

Brown and colleagues have identified the following four teacher conceptions of 

assessment. These include assessment serving four distinct purposes: improving teaching 

and learning; holding students accountable for learning; making schools and teachers 

accountable for student learning, and assessment serving no legitimate purpose in schooling 

(Brown 2003; Brown 2004; Brown & Hirschfeld 2007). The first conception presents a 

rather fallibilist or humanist view of assessment. It sees assessment as learner-focused, for 

joint use by students and teachers to improve teaching and learning. This conception blends 

well with the idea of formative assessments or ‘assessment for learning’ loosely defined as 

any activity  from which the elicited information is actually used to make changes to teaching 

and learning with the view to improve learning (Black & Wiliam, 1998). Formative 

assessments are in line with student-centred learning and Sheppard (2000) calls this the 

emergent assessment paradigm. Formative assessments are more about feedback that could 

be used to improve learning. Such a view of learning and teaching is consistent with the 

sociocultural theory that regards knowledge as fallible and a product of human creativity. 

This view of knowledge means that learning or knowledge creation is seen as a social process 

in which the learner is an active participant. 

Conceptions not confined to this contemporary end of the assessment conceptions 

continuum would fall somewhere in between and would likely be represented by the other 

remaining conceptions identified by Brown and colleagues. At or near the traditional end, 

assessments serve rather authoritarian roles such as measuring how much learning has taken 

place, monitoring, recording and reporting students’ performance, and holding individuals 

and institutions accountable for their actions. Toward this traditional end, knowledge is seen 

as objective and infallible (Sheppard, 2000; Wallace & White, 2014). Seen from this 

perspective, assessment’s purpose is mainly for grading and certification. Such conceptions 

align well with the behaviorist ideas and sees assessment as merely measuring students’ 

learning using quantitative methods. While realizing the important roles of assessment, this 

study took sides with Popham (2014) who claimed we must not rely only on traditional 

notions of assessment but should, instead, consider those conceptions of assessment that 

support effective teaching and learning. This paper conjectures that mathematics teachers 

would benefit a lot with a contemporary conception of assessment.  
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Literature Review 

Hui and Brown (2010), in their study involving primary school teachers’ in Hong Kong, 

revealed that these teachers were very well aware of the “improvement” purpose of 

assessment. In other words, the Hong Kong teachers generally held an ‘assessment for 

learning’ conception of assessment. The study did note, however, that some teachers also 

held accountability conceptions of assessment. Their data indicated that some teachers 

believed that the assessment tasks they designed were also valid for “accountability” and 

“examination” purposes. The study concluded that the prevalence of accountability as well 

as examinations conceptions of assessment among Chinese teachers may hinder the 

successful implementation of an assessment-for-learning policy.  

In another study, involving Fijian pre-service and in-service teachers, Dayal and Lingam 

(2015) also noted that teachers held multiple conceptions of assessment. While a majority of 

the seventy participants’ initial understandings aligned to a traditional conception that 

involved measuring students’ performance, some of the participants agreed that assessments 

could have formative functions when they were asked to list down other major purposes of 

assessment. The study revealed that a higher proportion of pre-service teachers held an 

‘assessment of learning’ conception of assessment in comparison to the teachers who had 

some years of teaching experience. This was revealed when both group of teachers were 

asked to choose from two different roles of assessment that they would favour: the master 

role, indicating ‘whatever assessed should be given importance’, against the servant role 

which suggested that ‘whatever is important should be assessed’. Of the practicing teachers, 

74% favoured the servant role, compared to only 30% of the pre-service teachers. The 

authors, however, showed concerns regarding a good number of in-service teachers still 

holding a narrower view of assessment. Dayal and Lingam’s (2017) study utilized an open-

ended questionnaire to explore pre-service and in-service teachers’ beliefs about the two 

major purposes of assessment. Their findings confirmed that pre-service and in-service 

teachers could hold beliefs which are in support of summative assessment, formative 

assessment, or both types of assessment. Majority of the pre-service and in-service group 

gave explicit support in favour of formative assessments. None of the participants, however, 

noted that both forms of assessment are irrelevant, contrary to findings such as Brown 

(2004).  

In terms of how secondary mathematics teachers perceive assessments, one notable, yet 

small study was that of Wallace and White (2014). The authors followed six pre-service 

mathematics teachers through what they termed a reform-minded teacher education 

programme in the United States. A notable feature of these programs was the inclusion of 

assessment ideas embedded in course assignments. The study’s findings confirmed that pre-

service secondary mathematics teachers initially held traditional perspectives on assessing 

student learning. The authors called this the ‘test-oriented’ perspective, characterised by 

assessment beliefs such as: assessments are tests, the purpose of assessment is to provide a 

grade, and assessment involves closed-ended tasks. The study noted that the pre-service 

teachers could modify their assessment practices by evolving through the ‘task-oriented’ and 

‘tool-oriented’ perspectives on assessment. The latter represented the developmental phase 

where these pre-service teachers were able to see assessments as designing new ways that 

would help facilitate student learning.   

The studies reviewed here and others such as Nisbet and Warren (2000) and Smith et al. 

(2014), confirm that both practicing and pre-service teachers have different conceptions of 

assessments. Some of these studies also point out that different assessment perspectives may 

have the potential to lead to different assessment practices, and the inherent need to explore 
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teachers’ conceptions of assessment. Studies such as Wallace and White provide evidence 

that teachers can modify their assessment-related conceptions when given support. While 

this is not an explicit aim of the current study, exploring the conceptions of a small group of 

practicing Fijian mathematics teachers will add to our understanding of how assessments are 

perceived by mathematics teachers. The context of our study is presented next.  

Context and Methods 

The participants in this study were 13 mathematics teachers from the two case study 

schools: Marau College and Kaivata College (pseudonyms used).  Marau College had nine 

teachers in the Mathematics Department, and Kaivata College had only four. The 

mathematics teachers had taught for an average of 9 years, ranging from 20 years to only 

three years. All of them had tertiary qualifications. For the five male and eight female 

teachers, real names are replaced by pseudonyms beginning with the letters A to M, the 

letters indicating the order in which the interviews were carried out. In order to elicit 

teachers’ conceptions of assessment, one-to-one interviews were held at the teacher’s 

respective schools. One-to-one interviews seemed suitable for two reasons. Firstly, it 

allowed the teacher participants to express freely their beliefs and experiences with 

assessments in mathematics. Secondly, the one-to-one interviews helped the researcher 

know the participants better, and this helped build positive relationships for the later phases 

of the study that involved teachers as key stakeholders in research (Kieran et al., 2013).  On 

average, one interview lasted for fifteen minutes. The study utilised the following prompts 

for the interviews:  

1. Think of the term Assessment. What comes to mind? List as many ideas as possible.  

2. What is the main purpose of assessment? What are some other purposes of 

assessment?  

All thirteen interviews were audio taped and transcribed. The interview data were 

analysed using traditional–contemporary continuum presented under the theoretical 

framework of the study. For example, upon transcribing the interviews, each response was 

read in full and the keywords or phrases that represented each participant’s beliefs about 

assessment were highlighted and placed under either traditional or contemporary 

conceptions. For example, if the participants used the keywords or phrases that resembled 

traditional conceptions of assessment such as ‘grading’, ‘passing an exam’, ‘measuring’ or 

‘testing’, these participants were classified as showing a traditional conception of 

assessment.  

Results 

This section presents the findings of the study. 

Assessment Purposes 

While all thirteen participants were able to define the term assessment, only five of the 

participants showed a narrower, traditional view of assessment. For these teachers, 

assessment essentially meant “testing students’ knowledge” (Ella) , or “getting to know 

whether the students have got the content we have taught” (Cathy) , “to test whether students 

have understood and whether they are revising their work” (Fran), and “to know how much 

they know” (Bhim). A strong focus on answering the ‘how much’ question, coupled with 

ideas related to ‘testing’ or ‘exams’ revealed that, for this group, assessment meant 

answering the question ‘how much does a student know?’, thus reflecting a traditional, 
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measurement view of assessment. For example, Jenny, in her description of assessment said 

that assessment is “the test given to see how much students have learnt from something” and 

“it is an activity to grade the students”. When asked about the major purpose of assessment, 

Jenny replied: “To rank”. When asked to list a few other purposes, she said “to test and select 

the best”. From Jenny’s interview account, it could be said that she had a strong inclination 

towards an ‘assessment of learning’ view of assessment. This view of assessment has a 

strong leaning towards a testing culture, promoting competition, and using examination 

results to select students for placements. In her interview, Jenny revealed that she did not 

use assessments in a formative manner. 

For the rest of the participants, assessment was more than ‘testing’. For example, Kumar 

said that assessment meant “monitoring the performance throughout the year”. Her 

definition viewed assessment as a continuous event, and not a one-off task. A similar view 

was given by Ledua, who said that “assessment is an ongoing process to see if the student is 

learning the concepts or not”. Isha listed a number of ideas such as “exam, presentation, 

short test, assignments, tutorials, oral assessment, quiz and class-based assessment (CBA)” 

when talking about her views on assessment. She showed strong emotions against 

summative assessment – “sometimes assessment is like a ‘torture’ to students, especially the 

three- hour exams.” Gavin showed an understanding that assessment not only concerned the 

students but also the teachers when he stated that “assessment is something which tells me 

how I have done in my class as a teacher”. Overall, the majority of the teachers showed an 

expanded, contemporary view of assessment in their initial discussions on assessment. These 

views had elements of formative assessments such as views about having multiple forms of 

assessment; views about assessment as a continuous process; and views about assessment as 

informing the teachers on their work as well. 

When asked to recall the major purpose of assessment, the teachers in this study 

exhibited the same tendency. Those who had initially shown a measurement view of 

assessment (Ella, Cathy, Fran, Bhim and Jenny) listed its summative function as the main 

aim of assessment. Examples of these included: “To test the students’ knowledge” (Fran), 

and “to test students’ ability” (Bhim). When asked to list any other purposes of assessment, 

three out of the five teachers were able to pick up some formative aims of assessment. For 

example, Cathy referred to teachers’ teaching techniques and how assessment could help 

teachers know how they are performing. Ella stated that teachers could work on weaker 

students as a result of assessment. However, this group of teachers was still hanging on with 

their initial ideas about testing and examinations. As Ella noted, “if they have done a test, 

they have got low marks, it means we place more time on them.” Only two teachers, Bhim 

and Jenny, in this group were unable to list any formative purposes of assessment. In their 

view, all purposes of assessment were summative in nature. Excerpts from Jenny’s interview 

are shared below: 

Researcher: In your view, what is the major purpose of assessment? 

Jenny: To test the students’ ability, to assess students and to know how much they know. 

Researcher: Can you think of any other purpose? 

Jenny: To pass exams and go to higher level? 

Researcher: Any others? 
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Jenny: Ummm…to see which students are, I mean good at which particular field, and 

whether they are supposed to go to tertiary institutions. 

The other eight participants had listed formative assessment practices as one or more of 

the purposes of assessment. For example, Dan explained that the major purpose was for “us 

to know how well the students have learnt”. He went further to claim that assessment “helps 

us to improve in our weak areas”. For Ana, assessment helped provide feedback not only to 

the students but also to the teachers. She showed formative aims or purposes when she 

claimed that “tests are not always giving us all about learning.” Mere claimed that the main 

purpose of assessment was to help students to learn. Apart from this, she added that 

assessment is used “to improve students’ learning and teachers’ teaching – when the 

activities I have given have not been done well, I come back and re-think about my teaching 

strategies.” Another teacher, Gavin, held similar beliefs about assessment. His views about 

assessment reflected an inclination toward the formative view of assessment as well. He 

viewed assessment as something “which tells how I have done as a teacher”. For him, good 

assessment meant that he had to “re-look at what students have given me and what I expected 

as the correct answer. If there were some differences, I have to do that again, or re-design 

my class and take another approach”. These statements reveal that this group of teachers had 

strong views about the role of feedback in assessment. Their overall view of assessment 

could be classified as being more aligned towards assessment for learning. 

Teachers in this group had also shown a combination of summative and formative 

purposes. For example, Isha mentioned “gaining certification” as the second purpose of 

assessment. In summary, majority of the participants were well versed in both summative 

and formative purposes of assessment. This group of teachers seemed to favour formative 

practices much more than summative or measurement purposes of assessment. Some even 

had strongly rejected the idea of “testing” alone. These sentiments are clearly visible in the 

accounts of some of these teachers: “the current assessment (three-hour exams) does not tell 

much as it is just a paper and pencil test – a lot of writing and recalling is involved. 

Learning/expressing is not there” (Isha); “assessment in mathematics can be very broad, in 

various forms. In my school, we just assess using paper work. We can assess by doing more 

practical work. There can be theory and practical assessment” (Haris). The views expressed 

by teachers suggest that they value formative assessment even more than summative 

assessment.  

Discussion and Conclusion 

Two types of assessment have been well distinguished in the assessment literature – 

summative and formative assessment, although these may not necessarily be mutually 

exclusive dimensions. A more productive view about assessment is the former and this is in 

line with the socio-cultural views of learning (Sheppard, 2000). Only five of the participants 

held a narrow, summative view of assessment. Two of these five (Jenny and Bhim) had very 

strong traditional conceptions of assessment, while the other three showed some support for 

formative assessments. This group of teachers tended to value the testing and grading 

function of assessment more. One reason for this could be that these teachers simply 

disregard the value of formative assessments. Another reason could be that they may not 

have used formative assessment practices well and thus may not have experienced any 

positive consequences of such assessments on student learning.  The latter is more likely 

given the examination-oriented education system in Fiji.  
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Eight of the 13 participants held contemporary conceptions of assessment. While they 

did value summative assessment roles, teachers tended to support the use of assessments to 

improve or support student learning. Despite working in an environment dominated by the 

summative culture, it is interesting how this group of teachers supported the idea of 

formative assessment. It would be worth investigating how these beliefs are formed. Initial 

instincts, including understanding gained from sociocultural perspectives suggest that 

personal experiences with the use of summative testing may be one of the factors. As one 

teacher indicated, three-hour examinations are a kind of ‘torture’ to pupils’ brains. From a 

social perspective, it can be argued that while summative examinations have been part of the 

Fijian education system from decades, teachers may have had bad experiences with 

summative assessments. It may also be inferred that the teachers in this study had seen that 

there are no real learning benefits from too much summative testing. It is interesting to note 

that a majority of the mathematics teachers do not render much support for traditional 

assessment practices, although they use such ‘examinations questions’ in their usual 

classroom teaching. Such a finding is consistent with previous studies like Dayal and Lingam 

(2015, 2017) that noted a relatively higher percentage of practicing teachers who favoured 

formative assessment practices. Ashton (2015) noted that belief systems rely heavily on 

evaluative and affective components. This may, to some extent, mean that a majority of the 

teachers in this study have negative feelings about summative assessments. In summary, it 

can be said that while cultural aspects may have affected the teachers’ beliefs about the 

nature of mathematics, personal experiences, including external factors such as school and 

national policies may have had some impact on shaping the teachers’ beliefs about learning, 

teaching and assessment.  
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Probability and statistical literacy is an important aspect of the school curriculum in many 

countries. In this study, we report on findings from a larger study that engaged pre-service 

teachers as key stakeholders in research in exploring teaching probability and statistics using 

a game-based teaching approach. The current study focuses on 23 pre-service teachers’ views 

about game-based teaching and learning. Our sample of teachers were from two universities 

in the Pacific region. The findings strongly indicate that pre-service teachers can derive useful 

pedagogical knowledge by engaging in the game-based teaching intervention. All the pre-

service teachers support the use of real-life based practical approaches in their teaching.  

In a rapidly evolving world, there is a strong need to understand and be able to use 

mathematics in all aspects of life. One particular area of mathematics that we use or rely 

upon on a daily basis is probability and statistics (Koparan, 2019). The use of probability 

and statistics translates down to the need to understand and use data in almost all aspects of 

life, such as education, health, or predicting future events such as adverse weather 

conditions. This aspect of learning mathematics is termed probability literacy or statistical 

literacy (Jones et al., 2007). It includes having a working “knowledge and understanding of 

numeracy, statistics and data presentation” (Pierce & Chick, 2013, p. 190).  

Given the importance of statistical literacy, many countries place probability and 

statistics in their core mathematics curriculum. For example, in the New Zealand school 

curriculum, probability is part of the three sub-strands in the curriculum document and 

viewed as critical in the learning of mathematics (Ministry of Education, 2007). In the Pacific 

education context, many educational jurisdictions have included statistical literacy as an 

important aspect from the early years of the school curriculum (Fiji Ministry of Education, 

Heritage & Arts, 2017).  

Given the relative importance of probability and statistics in our curriculum, it is 

imperative that teaching of the probability and statistics curriculum aligns, to a higher 

degree, with our recent understandings of the term statistical literacy. Therefore, it is critical 

that teachers of probability and statistics are exposed to making use of lots of real world 

examples and activities in their teaching. One of the ways of doing this is through the use of 

games. In this study, we report findings about the usefulness of teaching probability and 

statistics using a probability teaching sequence designed by one of the authors (Sharma, 

2015). The paper reports on benefits and challenges of using games from the perspective of 

our relatively small sample of secondary pre-service mathematics teachers from two 

different universities in the greater Pacific region. The research questions addressed in this 

paper are: To what extent do the pre-service mathematics teachers find the probability 

teaching sequence useful? What are some of the benefits and challenges they foresee in 

adapting such games in their teaching?  

After presenting the theoretical framework, a short literature review is presented. This is 

followed by the specifics of the study’s research design. Then, results and discussion are 

presented. A brief conclusion sums up this paper. 
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Theoretical Framework 

In this study, we utilised the socio-cultural theories of learning. The influence of socio-

cultural context on a learner has been examined mostly from Vygotsky’s frame of reference. 

The sociocultural environment incorporates use of a variety of tools such as language, sign, 

and cultural tools (artefacts) to assist with reaching higher mental models (Vygotsky, 1978). 

Given the aim of the study was to explore pre-service teachers’ views about the benefits of 

using a newly introduced probability teaching sequence (reference withheld), it was 

important to see how they suggest they could make use of the ideas that they could have 

possibly derived from the teaching sequence. Given that we were exploring pre-service 

teachers’ future intentions, it was critical that most of these are turned into productive actions 

when they begin teaching mathematics. In this regard, Valsiner’s zonal theory (Valsiner, 

1997), an extension of Vygotsky’s zone of proximal development (ZPD), is seen as a useful 

framework for viewing teachers’ thought processes as well as their actual actions (Goos, 

2014).  

Vygotsky defined ZPD as “the distance between the actual developmental level as 

determined by independent problem solving and the level of potential development as 

determined through problem solving under adult guidance or in collaboration with more 

capable peers” (Vygotsky, 1978, p. 86). According to Valsiner’s zone theory (Valsiner, 

1997), one can assist a learner reach ZPD with the help of available resources and processes 

within the proximity to enable their zone of free movement (ZFM) and zone of promoted 

actions (ZPA) (Goos, 2014). ZFM usually includes contextual factors that limit pre-service 

teachers’ thinking and actions, while ZPA includes all those activities that are designed by 

other adults, such as university lecturers, that are aimed at developing or promoting new 

skills. In this study, we focus on the pre-service teacher as the learner. Hence, it is important 

to critically review the contribution from each zone, in particular, focusing on what benefits 

and challenges pre-service teachers see in using the probability teaching sequence and how 

they intend to use the teaching sequence.  

Literature Review  

Two major interpretations of probability can be distinguished. The classical (theoretical) 

viewpoint assumes that it is possible to represent the sample space (all possible outcomes) 

as a collection of outcomes with known probabilities. For example, the probability of rolling 

a six on a regular six-sided die is one-sixth. In such a case, the theoretically derived 

probability is an estimate of the actual probability that is not known. Batanero et al. (2004) 

argue cases of equiprobability that arise in some simple game scenarios, such as rolling a 

die, may not be the same in complex everyday situations, such as weather predictions, risks 

and epidemics. On the contrary, the experimental interpretation assumes that the probability 

of something happening can be determined by doing experiments. A large number of 

identical trials (e.g., tossing two coins) are conducted, and the number of times a particular 

event (e.g. one head and one tail) occurs are counted. The greater the number of trials, the 

closer the experimental probability will move towards the theoretical probability of an event. 

By comparing inferences from their theoretical and empirical work students can evaluate 

and modify their hypotheses.  

Students leaving school should be able to interpret probabilities in a wide range of 

situations (Jones et al, 2007). If students are to develop meaningful understanding of 

probability, it is important to acknowledge the different interpretations, and to explore the 

connections between them and the different contexts in which one or the other may be useful. 



Dayal and Sharma 

189 

Games can provide a useful context for exploring different interpretations and contexts. 

Batenero et al. (2004) provide an excellent example of how different probability teaching 

contexts can be explored using games. They engaged a group of teachers in experiments 

involving different coloured dice. Although the authors did not specifically seek the 

participant teachers’ views about the usefulness of such gaming experiments, they speculate 

that teachers do acquire knowledge that would be beneficial in their later professional work. 

Research evidence suggests that teachers, including prospective teachers, find teaching 

probability and statistics difficult or challenging (Batanero et al., 2004; Leavy et al., 2013). 

For example, the findings from a small sample study conducted by Leavy et al. (2013) in 

Ireland suggests that prospective secondary mathematics teachers perceive statistics as a 

challenge due to, among other factors, the need to think and reason statistically. Anecdotal 

evidence suggests that teaching probability and statistics is also a challenge for Pacific 

Islands teachers. One possible factor could be the mismatch between the nature of 

probability and statistics, and the teaching approaches used by teachers. As reported by 

Dayal (2013), teachers from the Pacific Islands have a tendency to teach mathematics using 

traditional approaches such as relying heavily on notes and examples followed by routine 

textbook-type exercises.   

The brief review of literature suggests that two different, yet not mutually exclusive, 

approaches to understanding the teaching probability and statistics are prevalent. This study 

hopes to add to our understanding of how pre-service teachers can derive potential teaching 

ideas for both theoretical and experimental aspects of probability and statistics. The literature 

seems to suggest general prevalence of teaching challenges as well as an acknowledgement 

of the potential benefits of teaching using games. The current study also aims to add to our 

understanding of pre-service teachers’ perceptions of the degree of usefulness of games in 

teaching. 

Research Design 

To conceptualise our larger study, we drew on design-based research theory (Cobb & 

McClain, 2004). Design research is a cyclic process with action and critical reflection taking 

place in turn (Cobb & McClain, 2004; Nilsson, 2013). Further, all participants are equal 

partners in the research process (Kieran et al., 2013).  Using a case-study design (Yin, 2014), 

our study itself involved cycles of three phases: a preparation and design phase, a teaching 

experiment phase, and a retrospective analysis phase. Both mathematics educators were 

involved in the whole research process. The role of researchers involved posing questions, 

and observing the research unfold with minimal interference. This paper reports on post-

intervention findings, after our pre-service teachers had completed the teaching experiment 

phase. The teaching experiment, called the probability teaching sequence, involves a 

scenario where two people play a dice game. Each player throws a die and the difference of 

the two outcomes is calculated by subtracting the smaller number from the bigger number. 

If the difference is 0, 1, or 2, player A wins. If the difference is 3, 4, or 5, player B wins. The 

main question that pre-service teachers were required to think about when playing the game 

was whether or not the game was fair and to justify their reasons. From a socio-cultural 

perspective, the probability teaching sequence provides pre-service teachers an opportunity 

to ‘think’ and ‘act’ within their ZPD. For the full teaching intervention, see Dayal and 

Sharma (2020). The research context, participants and procedures are described in the table 

below. 
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Table 1 

A summary of context, participants, procedures and instrument 

Research 

Context 

Research Participants Research process Research Instrument 

The University 

of Waikato 

(UW) is located 

in Hamilton and 

operates from 

two campuses, 

Hamilton, and 

Tauranga, in 

New Zealand. 

 

• 10 pre-service 

mathematics teachers 

completing their Graduate 

Diploma in Teaching 

programme 

• Equal number of males 

and females 

• Six New Zealanders, four 

international pre-service 

teachers 

• All teachers have 

mathematics as their 

teaching major.  

• Participants are 

represented using letter 

codes O – Y. 

• The second author is the 

coordinator of the 

teaching methods course.  

• Upon completing the 

intervention, one-to-one 

semi structured 

interviews were 

conducted.  

• All ethical guidelines, as 

per UW research ethics 

approval, were adhered 

to. For example, each 

student gave their 

informed consent and 

were assured that their 

non-participation or 

withdrawal would not 

affect their performance 

in the teaching methods 

course. 

• All interviews were audio 

recorded.  

Post intervention one-to-one 

interviews with the 

following prompts: 

• Think back on the 

activity we did today. 

Did you all like the 

activity? Why or why 

not? 

• Are there any probability 

teaching ideas that you 

can take to your 

classroom? Will you be 

using these ideas in your 

teaching? 

• Suppose you were to 

recommend this teaching 

sequence to a colleague. 

When will you suggest 

him or her to use it? 

• Do you feel there are 

some challenges in doing 

this activity? 

• What kind of support, if 

any, would you require? 

The University 

of the South 

Pacific (USP) is 

a regional 

university that is 

owned by 12 

member 

countries in the 

Pacific and is 

head-quartered 

in Suva, Fiji 

Islands. 

• 13 pre-service 

mathematics teachers in 

their final year of the 4-

year BSC GCED 

programme 

• Equal number of males 

and females 

• All teachers have 

mathematics as their 

teaching major 

• Ten teachers from Fiji, 

four from Kiribati. 

• Participants are 

represented using letter 

codes A- N 

 

• The second author was 

not teaching the 

participants. 

• The intervention was 

held on a non-teaching 

day (Saturday) at the 

USP.  

• All teachers gave written 

informed consent and 

volunteered to be part of 

this intervention.  

• USP ethics approval was 

sought prior to the 

intervention.  

• Post intervention, 

participants reflected in a 

focus group set up.  

• All discussions were 

video recorded. 

Post intervention focus 

group discussions using 

the above prompts. 

• Group 1: Participants 

A,C,E, H, I (Fiji) 

• Group 2: B,D, F,G, J 

(Fiji) 

• Group 3: K,L,M,N 

(Kiribati) 

Findings and Discussion 

The individual interviews and focus group discussions were transcribed and analysed by 

each author. The following sections present the common themes that arose after analysing 

pre-service teachers’ opinions about the probability teaching sequence. 
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Affective and Cognitive Benefits  

All the participants explicitly stated that they liked the probability teaching sequence. 

The reasons provided related to the teaching sequence being interesting “because it allowed 

us to think” (Participant A) about probability and “learn from their own mistakes” 

(Participant K) rather than learning probability using formulas. In addition, the pre-service 

teacher participants talked about affective reasons, such as “we liked the dice activity 

because it is better than giving notes from the textbook” (Participant K) or “this is a very 

creative way of learning probability” (Participant C).  

Similar to the USP participants, UW participants also noted affective and cognitive 

benefits of the probability teaching sequence. Some of the responses included:  

“Open questions build student self-confidence because students can answer at their own level of 

understanding” (Participant Q) 

“It is different to most tasks with probability, so it will be good for students to get a change from 

routine” (Participant P) 

“The game makes students think logically to show all possible outcomes of rolling two dice” 

(Participant O).  

Deriving affective as well as cognitive benefits and learning about probability teaching 

ideas was a common theme reported by a number of participants from both contexts when 

asked about whether or not they liked the activity. It is encouraging to note that the pre-

service teachers were able to recognise such benefits and acknowledge that the teaching 

sequence provided another, interesting way to learn probability. This may be due in part to 

some of our participants, especially those from USP, being largely exposed to traditional 

approaches to learning during high school and university, such as completing routine 

textbook-type exercises (Dayal, 2013). 

Deriving Teaching Ideas 

In terms of learning about probability teaching ideas, the USP pre-service teacher 

participants could identify some holistic ideas as well as a number of specific topics that they 

could explore using this teaching sequence. The pre-service teachers’ very general hints 

about teaching probability included comments such as “we learnt how to create good 

experiments using dice” (Participant L). In their discussions, the pre-service teachers from 

USP uttered various probability- and statistics-related terms (e.g., events, trials, chance of 

events, outcomes, skewness of outcome, expected probability, fairness, graphs, making 

predictions). In comparison, some USP pre-service teachers appeared to have some difficulty 

with identifying topic-related terms. For example, when asked to share the probability 

teaching ideas they could take into their classrooms, some participants in Group 3 stated 

general themes, such as “conducting experiments using dice” (Participant L) or “teaching 

probability” (Participant N). 

 It is worthy to note that these participants were all from Kiribati. In the Kiribati context, 

these participants mentioned that probability is introduced late in the school curriculum, only 

in upper secondary curriculum (Years 11 and 12). In contrast, in Fiji and NZ, probability 

and statistics is introduced from the early years. 

Similar to the USP cohort, the UW cohort was able to list a range of teaching topics as 

well. For example, one participant mentioned the topic of sample space:  

“The lesson sequence allows students to explore sample space by using representations that make 

sense to them. For example, some students may use grid of numbers whereas others may use tree 

diagrams” (Participant P). 
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In addition to naming such probability teaching topics, it was encouraging to note that UW 

teachers were able to suggest many other pedagogical aspects from the probability teaching 

sequence, such as the sequence having a clear learning objective and a good range of 

questions that could promote student learning. For example: 

 “The lesson sequence has clear objectives for student learning. The teacher can share these goals with 

students.” (Participant O) 

“The sequence includes a range of questions. Asking questions can give teachers information about 

students’ thinking” (Participant S). 

Overall, the pre-service teachers derived a number of useful general teaching ideas, such 

as conducting experiments, as well as ideas about specific subtopics that are present in 

probability and statistics. The need to have practical activities using dice or coloured cubes, 

or even coconuts, were mentioned by USP and UW participants. The need for more real-life 

based activities were also mentioned:  

“It is important that students make connections to everyday life situations” (Participant U) 

“Students will be actually doing the thing. They will actually see what is happening by throwing the 

dice…and recording the data…” (Participant A). 

As well as thinking about connections to real life experiences, participants thought about 

how the activity allows students to make connections to existing mathematics they may 

know. One UW participant noted:  

“It provides opportunities for students to make connections between probability concepts with 

everyday life and with other topics of study such as fractional number” (Participant Q).  

Making connections to real-life and between different representations is critical in 

developing probabilistic understanding (Nilsson, 2013; Van de Walle et al., 2014). The 

findings suggest that the probability teaching sequence will likely benefit teachers as it 

provides them opportunities to ask students to play around with chance generating 

mechanisms, and use multiple representations such as tables, diagrams and graphs to explore 

probability concepts in a meaningful context. Since students can draw different 

representations to determine the theoretical probabilities, there is scope to make connections 

to real-life as well as among these different representations as reflected above. 

Future Teaching and Challenges 

All our pre-service teachers explicitly stated that they will be using this teaching 

sequence in their actual classroom teaching. When asked to suggest ways in which they 

would recommend this teaching sequence be best used, the groups seemed hesitant in 

providing specific answers. However, they stated a few specific scenarios, such as teaching 

a probability topic or as an assessment. Some responses included:  

“In conducting experiments about chance” (Participant L) 

“This activity would not be accessible at the start of a junior mathematics probability study, however 

it could be used as formative assessment” (Participant V) 

Some participants reiterated general teaching ideas, such as: 

“teaching probability in a real-life situation” (Participant A) 

“use of experiments instead of textbooks, by using real-life context we can also help students learn 

probability more effectively.” (Participant X) 
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In terms of teaching challenges, the major challenge noted by participants was the time 

factor. The reasons given by the USP cohort was mainly that the school teaching period was 

only of 1 hr and this activity could not be well implemented in an hour’s time. Upon inquiry 

by the researcher if the teaching sequence could be broken down into smaller bits, the groups 

seem to agree that the time factor challenge could be overcome through this. Views such as 

giving a lesser number of trials was one of the ways suggested to overcome this challenge.  

In addition to time, the USP and UW participants mentioned class management as a possible 

challenge, “challenging and disruptive classroom environment that results in a lack of 

engagement” (Participant V). Some participants though stated that this challenge could be 

overcome by having smaller groups or by asking students to work in pairs.  

In the context of mathematics lessons in Fiji and Kiribati, there is high importance placed 

on preparing students for external examinations. Hence, the limited lesson time, as 

mentioned by some of the participants, is a realistic challenge faced by many teachers. There 

was a consensus among the USP participants that covering the teaching syllabi well-ahead 

of time was critical for ensuring that ample time was left for students to attempt past-year 

examinations as part of their examination revisions. It was no surprise, then, that Participant 

I suggested that the use of these activities be reserved for “during a revision class”, instead 

of part of the introduction of the topic or prior to revision.  

Overall, our findings support, to a large extent, that some participants may use this 

probability teaching task or any shorter variant of it in their actual teaching. However, some 

may front load probability content first using more direct teaching methods, then use a game 

like this at the end of the unit to apply the learning. Seen from a socio-cultural perspective, 

the study provides evidence that our pre-service teachers’ potential to learn new skills and 

develop (ZPD) is enhanced by engaging with the probability teaching sequence (ZPA), as 

well as via thinking and interactions with their peers in small group settings (ZFM).  

Summary and Implications 

While this study can be seen as a step forward in collaboration among teacher educators, 

it had its own limitations. One major limitation was that the two research contexts were quite 

different in terms of many factors, such as high school and teacher education curriculum. 

We negotiated such challenges by frequently discussing emerging issues  through emails and 

Skype (e.g, the research process). Achieving exact consistency was not seen as critically 

important (Moss, 1994); instead, we made sure that an in-depth exploration was carried out 

while being within the ambit of our university learning and teaching regulations. The pre-

service teachers registered an overwhelming support for the probability teaching sequence. 

They saw the probability teaching sequence as having affective and cognitive benefits for 

them, as well as the students. In addition, we noted a strong degree of support in terms of 

using this or a similar teaching sequence in their later teaching career. Lesson time 

constraints and class management were among the few challenges mentioned by the pre-

service teachers if they were to implement the teaching sequences. Overall, our findings 

suggest that pre-service teachers find the probability teaching sequence useful and they could 

derive useful teaching ideas by engaging in this game-based teaching intervention. 

From a socio-cultural perspective of learning, we note how our participants could 

challenge and modify their probability teaching ideas. Exposing pre-service teachers to such 

activities could be seen as extending their ZFM. However, only a few participants were able 

to suggest actual teaching ideas, yet suggesting some very general ideas which can be seen 

as a development of their ZPD. The fact that these pre-service teachers were cognisant of 

the teaching challenges suggests that while teachers may have noble ideas or intentions, not 
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all of it could be easily translated into action (Goos, 2014). In terms of future research, we 

intend to follow a small sample of our participants, with an aim to explore if and how they 

implement these ideas in their classroom. 
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Language games in primary mathematics 
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This theoretical paper examines views about the role of language and mathematical discourse 

in learning mathematics. Current research is still addressing what constitutes a mathematical 

discourse. As new conceptions of the purpose of language use in mathematics are explored, 

and associated ontological and epistemic positions are revealed, one might ask: how are we 

able to reframe our view of language to support a social participation perspective? This paper 

proposes the consideration of Wittgenstein’s philosophy of language games to shift our 

conception of classroom language use in mathematics to encompass broader contextual 

features such as participation, patterns of exchange and social norms. 

This theoretical paper examines sociocultural theories and practices that considers 

language as central to learning mathematics. Underpinning these theories and practices is 

the notion of a strong connection between talking and thinking where social interaction 

impacts on learning (Barwell, 2018; Sfard, 2007; Vygotsky, 1978). Discourse practices 

recognise that there are many different factors that contribute to build meaning in a 

mathematical situation (Moschkovich, 2019). These factors may include the use of symbols 

or physical materials and written as well as verbal language (Moschkovich, 2019). 

Importantly for the theme of this paper, a mathematical discourse considers all uses of verbal 

language, or utterances, to support meaning. Informal language use is not disregarded. 

Research has demonstrated that particular discourse practices in mathematics assists students 

to engage more deeply in learning, building meaning, and knowledge in mathematics 

(Barwell, 2016). 

Exploring conceptions of learning, meaning and knowledge relating to language can 

reveal the influence of an ontological perspective. Stretching the concept of language use to 

embrace a broader notion of what can be considered a mathematical discourse may involve 

finding new ways to see language. It is expected that the development of new forms of 

language use in learning mathematics can be supported by a corresponding shift in 

underpinning ontology (Murphy, 2015). Exploring Wittgenstein’s notion of language games 

(1953) is a possible means of allowing such a shift (Standish, 1995). 

This paper aims to examine how sociocultural theories influence a view of language use 

in the learning of mathematics; in particular, I attempt to reframe the view of language to 

support a social participation perspective. I propose that an interpretation of Wittgenstein’s 

concept of language games, which is underpinned by social participation, can be helpful by 

providing a perspective of classroom language use that avoids seeing words as autonomous 

entities. Overemphasis on the use of specific words and terms can result in a narrow view of 

language use in learning mathematics (Barwell, 2016). This view prioritises the correct use 

of technical vocabulary or formal academic language. Instead, the idea of language games 

focuses attention on the broader contextual features in which talk occurs, such as 

participation, patterns of exchange, and social norms.  

Wittgenstein’s Language Games 

Wittgenstein (1953) aimed to demonstrate that words are not defined by reference to the 

objects they designate, nor by mental representations one might associate with them, but by 
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how they are used in the context of social activity. He challenged the idea that the meaning 

of words is anchored by invariable rules that can be demonstrated in acts of ostensive 

definition. Wittgenstein also opposed the notion that the rule for how to use a word can be 

abstracted from all particular uses. The meaning of the word is the use of it, which can only 

be learnt through such use with other language users. Wittgenstein questioned the idea that 

we can come to understand the essential meaning or essence of a word. He asked whether 

the word or concept of game has an essence that can meaningfully be defined in certain terms 

such as necessary or sufficient conditions (Wittgenstein, 1953):  

Consider … proceedings we call games, I mean all games, card games, board games, Olympic games 

and so on. What is common to them all? ... If you look at them you will not see something that is 

common to all, but similarities, relationships, and a whole series of them at that. (p. 66) 

Wittgenstein puts forward the idea of language games to illustrate the point that without 

considering use in context it can be nonsensical to theorise about what words mean; that 

understanding and meaning are inextricable from the social contexts within which speakers 

interact. The notion of language games is used to help us to see that the rules that guide how 

words are used are embedded in the social contexts of such use; they are part of a “form of 

life” (Wittgenstein, 1953, p. 68).  

The idea of a pragmatic theory of meaning contrasts with many commonly held views 

about how language operates in mathematics (Moschkovich, 2019). The notion that 

mathematical terms are tightly defined can result in such definitions being placed front and 

centre as a language feature in learning experiences (Strom et al., 2001). Rather than viewing 

the meaning of mathematical terms as fixed and the rules by which they are used as 

invariable we might seek to understand, instead, what are the norms or rules of the language 

games being played and in which contexts do language experiences support learning?  

Wittgenstein’s idea of language games does not provide a model of how mathematical 

discourse should look. Neither are language games part of a theoretical framework that can 

be mechanically applied. I am suggesting that language games are a way of seeing a 

mathematical discourse that looks beyond particular words and phrases and attempts to 

describe the overall purpose of the mathematical activity. The purpose is described in terms 

of social participation. For example, a language game could be one in which students appear 

to make a genuine effort to engage with others’ ideas. The purpose of this game might be 

described as recognising other peoples’ thinking. A language game could be one that 

involves trying to trump or better the previous speaker and the purpose is one-upmanship or 

winning. Yet another game could involve the teacher playing a catch-and-pass role. They 

chair a discussion by distributing contributions without comment or rephrasing. The purpose 

is to increase fluent exchange between interlocutors and support connection between ideas. 

There is not one type of language game, as there is no monolithic form of language 

(Moschovich, 2019). A description of language games is not intended to be definitive. Using 

a language games perspective aims to provide a way for teachers and researchers to look at 

a mathematical discourse that allows a connotation of meaning in terms of purposes for 

social participation. 

References to Wittgenstein’s importance for education often acknowledge his influence 

in providing an alternative view of the role of philosophy and note a corresponding shift in 

epistemological and ontological viewpoints (Standish, 1995). As new ideas for the purpose 

of education and the nature of learning are explored, a means of supporting the shift in ways 

of seeing, analysing, conceiving and acting as researchers and practitioners will also be 

required. For example, Wittgenstein’s opposition to Cartesian conceptions of mind and 

understanding allows us to reframe our view of the nature of learning and knowledge 
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(Smeyers, 1998). A change of approach recognises that overvaluing the use of technical or 

formal mathematical language can be inhibiting rather than enabling and that informal or 

natural dialogue can be effectively blocked. Viewing the language of mathematics too 

narrowly can fail to allow the natural use of language to discuss, explain and reason. Such a 

view can hinder the process of inducting children into mathematical practices (Wagner & 

Andersson, 2018).  

As young children are initiated into the practice of mathematics, they will already be 

exploring how they can engage in certain discourses to express and develop their thinking. 

Rather than constraining or obstructing natural use by maintaining too closed a view of how 

mathematical language should look, emphasis is placed on looking for natural use of 

language to develop. As a theoretical lens, the idea of language games allows a view of the 

broader contextual features in which a mathematical discourse occurs. 

The following sections will consider sociocultural theories and practices in relation to 

developing classroom discourse for mathematics. It offers reflections of how Wittgenstein’s 

language games potentially provide a lens for viewing the development of exploratory talk.  

Exploratory Talk 

A focus of research into classroom language use has been to distinguish between 

different types of talk. Talk that is rote learnt through repeated procedure or ritual can be 

considered essential to formative stages of learning (Sfard, 2007). In these formative stages, 

the role of a teacher is to model and shape how language is being used by students. However, 

highly practised forms of talk could be considered exemplifications for all classroom 

language use. Such a view can be normatively restricting. While ritualised forms of language 

use may be necessary for early initiation into new learning, it is thought that progression 

through later stages of learning requires more creative and generative uses of language 

(Sfard, 2007). Exploratory talk involves student-initiated language use that actively 

communicates about and negotiates meaning. As exploratory talk develops, patterns of 

classroom language use might be tentative, incomplete or fragmented yet allow for inventive 

purposes for talk. Overemphasis on polished forms of public speaking, or presentational talk, 

and on the correct use of formal language, can hinder opportunities for exploratory talk 

(Barnes, 1976). 

The goal of supporting children as they develop use of exploratory talk has been 

researched on the difference between characterising mathematical language use as ‘playing-

with’ and ‘playing-at’ (Fleener et al., 2004). Playing-with language use is seen as generative 

and employed by students to actively invent contexts to extend meanings. In contrast, 

‘playing-at’ language use is considered to be evident when a student merely attempts to 

provide the teacher with an expected response. The development of exploratory talk requires 

that teachers are able to recognise and create opportunities for this form of language 

exchange. Having a tuned ear to help guide or shape verbal exchanges towards exploratory 

talk is an important skill, as outlined above by the various talk moves a teacher can employ. 

However, such hermeneutical listening is not easily achieved. To support exploratory talk, 

teachers are required to use interpretive listening to allow students to expand and relate 

meanings rather than narrowing them. Attempts to support ‘playing-with’ language uses will 

collapse into ‘playing-at’ games if the teacher appears to feel the need to seek closure to the 

learning episode and feels pressured to ensure that students have used acceptable 

mathematical terms and phrases (Fleener et al., 2004).  

Using language games as a lens can provide a number of insights into the failure of 

‘playing-with’ language games: It is difficult for a teacher to avoid authoritative control and 



Galvin 

198 

to use interpretive listening to guide their own participation (Fleener er al., 2004). The 

perceived need for students to use mathematical terms correctly can restrict opportunities for 

exploratory talk. There also seems to be a tendency for both teachers and researchers to focus 

on the use of specific words or terms rather than notice patterns of exchange or attempts to 

convey meaning using informal language. 

Dialogic Pedagogies 

Researchers have identified features of teaching and learning that support the 

development of dialogue (Hardman, 2019). Common to such dialogic pedagogies are talk-

intensive practices that encourage students to engage in extended discourse to share and 

build a common understanding (Snell & Lefstein, 2018). Dialogic pedagogies are motivated 

by the idea often attributed to Vygotsky (1978) that regularly engaging in dialogue of a 

certain nature supports the ability to internalise a reasoning dialogue. An essential 

component of dialogic theories is the importance of learners interacting with others, 

including the teacher.  

It has been recognised that the development of a dialogic pedagogy takes a certain skill 

set of the teacher (Khong et al., 2019). Research has aimed to explore and describe effective 

roles for teachers to provide practical support within classrooms. These roles include asking 

probing and clarifying questions, encouraging students to elaborate on their ideas, 

acknowledging and validating students’ proposals, and encouraging sustained discussion 

(Sedova et al., 2019). Such ‘talk moves’ are designed to help teachers to interact with 

students and are also used to prompt and encourage peer-to-peer interaction. Different 

focuses of research into talk moves include: initial moves to engage discussion, moves to 

follow up ideas, moves to encourage students to interact with each other’s ideas and moves 

to make student thinking visible (Ritchhart et al., 2011; Webb et al., 2014). Encouraging 

students to relate their thinking to a previous expression is an example of talk move that 

helps to build connections between ideas and prompt interaction.   

Dialogic pedagogies emphasise the importance of collective participation and surfacing 

social norms that guide and shape the purpose of talk. Describing the purpose of a language 

game will also surface social norms. A language game could be one sided or balanced and 

interactive. A language game might prioritise authoritative use of technical language or 

allow novice attempts and informal expressions. A language game is a situated, social 

activity. Describing a classroom language game makes explicit the purpose, manner or intent 

of social participation. 

Philosophical Positions 

Opportunities for the development of exploratory talk may require more than teachers 

employing a set of techniques. It may also help if ontologies or epistemologies are reframed. 

The normative persuasion of a received ontology can imply that a shift in a teacher’s views 

about knowledge is required to support the introduction of exploratory talk in mathematics 

(Murphy, 2015).  

Ontological and epistemological views of mathematical knowledge will likely translate 

into different approaches towards engaging students in talk when learning mathematics. For 

example, a positivist perspective that sees mathematical knowledge as a set of stable patterns 

or universal invariants will likely influence teachers to lead students towards making correct 

interpretations (Radford, 2006). From this perspective, talk is more likely to be viewed 

merely as a means of reporting. For example, talk is used to allow students to report the 
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current state of their knowledge. Alternatively, a non-positivist perspective, which sees 

learning in mathematics as a generative process of meaning making or gaining 

understanding, will frame a view of knowledge in different terms. Exploratory talk is 

associated with the concept that knowledge is generated through collectively social activities 

(Barwell, 2018). So, increasing opportunities for use of exploratory talk in classrooms would 

appear to require that teachers are able to shift or reframe their epistemological perspectives. 

How a teacher participates in mathematical talk with students could provide some insight 

into their views about mathematical knowledge. Using a language games lens, a teacher’s 

influence on patterns of language use can be interpreted to uncover tacit beliefs about the 

purpose of language and the status of mathematical knowledge. If there is a causal 

connection, connections can be inferred between teacher ontology and observable features 

of classroom discourse. Increasing opportunities for exploratory talk may then require 

shifting a teacher’s views about the nature of mathematical knowledge.  

Learning-as-Participation 

If interpersonal language use is seen to be necessary for the development of thinking 

then language exchanges and children’s participation in such exchanges, with each other and 

with the teacher, are central to learning. Through our participation with other language users 

we become able to use language ourselves and develop our own thinking. This social 

participation approach sees learning mathematics as an initiation into using language in new 

ways. Learning is defined by participation in social practices rather than the acquisition of 

concepts or knowledge. Here the conception of learning and knowledge is reframed. The 

enterprise of learning mathematics is seen as becoming initiated into using a mathematical 

discourse and the goal is for students to eventually become participants in the use of 

exploratory talk (Sfard, 2007).  

From this perspective, language is considered in much broader terms than just involving 

the utterance of words or phrases. As many features of a context are considered to give sense 

to the social activity in which language use occurs, it is no longer possible to examine 

language as an isolated or autonomous phenomenon (Gee, 2014). Ontological implications 

associated with the concept of discourse can appear to contradict commonly held views 

about the nature of mathematical knowledge. This conflict arises when the effect of 

background influences in shaping meaning appear in the concept of discourse. These 

background influences are often implicit, but powerful factors which are posited by 

sociocultural theories of language to shape the overall meaning and intention of a discourse.  

Common to sociocultural theories of language is the idea that the terms of exchange take 

their meaning, intention or purpose from the contexts in which they are used. However, any 

attempt to pin down or isolate what it is about a particular context that conveys meaning to 

the discourse situated therein can seem impossible when considering a myriad of possible 

features (Gee, 2014). Further, the notion of context is not restricted to any particular instance 

of use, but extends to all previous uses. Terms of exchange have historical context: meaning 

has been shaped and formed through all previous uses and continues to be reshaped by each 

particular instance of use. In this view, language appears to be a fluid phenomenon with 

innumerable factors that influence meaning (Sierpinska & Lerman, 1996).  

A language games perspective is consistent with a view of learning mathematics in 

discursive terms. Knowing mathematics is seen to be synonymous with being able to 

participate in a mathematical discourse (Sfard, 2007). However, viewing this participation 

and recognising forms of engagement does not necessarily require that we attempt to identify 

definitive sources of meaning. Wittgenstein suggests that philosophical theorising about 
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ideas such as certainty or meaning can lead us to have unrealistic expectations about 

language. The idea of language games is useful in allowing us to escape the trappings of 

theoretical dogmatism. That is, thinking that we need to pinpoint the meaning of terms used 

in a mathematical discourse is based on the idea that there are direct referents for the meaning 

of terms. A language games perspective is not based on this idea of objectivity. Using a 

language games lens involves looking in an adaptable and flexible way at the meaning of 

mathematical communication within social contexts.  

Everyday Language and Mathematical Discourse 

Proponents of a view of classroom mathematical language use that recognises a broad 

conception of contextual meaning emphasise that natural or ordinary language use allows 

for less complicated assimilation of practice (Moschovich, 2019). The ease of using 

everyday language can be contrasted with the difficulty of learning technical or formal 

language. A distinction between everyday language and academic language seems 

straightforward. However, some researchers argue that this distinction oversimplifies the 

complexities of relationships between language, communication, and learning 

(Moschkovich, 2019). It is then recommended that everyday and school mathematical 

practices are not presented as a dichotomous distinction (Gutierrez et al., 2010; 

Schleppegrell, 2010).  

While cautioning us to avoid drawing impermeable lines between everyday and 

mathematical language uses, Moschkovich (2019) does see value in clarifying the 

differences between mathematical ways of talking and formal ways of talking 

mathematically. Here, we are asked to open our conception to a broader view of what an 

authentic mathematical discourse can be in a classroom. We are encouraged to move away 

from a simplified view of language framed in terms of words, phrases, vocabulary or a set 

of definitions and expand our view of the mathematics register. The proposed shift of focus 

is towards reasoning rather than accuracy and towards precision as an object of inquiry rather 

than a requirement of engagement: “instruction should move away from interpreting 

precision to mean using the precise word, and instead focus on how precision works in 

mathematical practices” (Moschkovich, 2019, p. 6). We are asked to share a progressive 

view of mathematical discourse that allows language use to flourish with attention on active 

negotiation of meaning within mathematical situations. 

Likewise, avoiding an instrumentalist view that sees mathematics and language as sets 

of tools or competencies that provide a means to an end can allow us to see mathematics as 

a way of thinking or reasoning which is part of our general existence; “the capacity to think 

mathematically is inseparable from the capacity to reason in general and should be seen as 

an essential part of the latter” (Rider, 2017, p. 504). Rejecting the assumption that a child’s 

world is not in some way mathematical before they enter school helps to reframe our enquiry 

into practices of instruction; the problem of “how can mathematics instruction recognise the 

pupil’s experience?” is misconceived from the outset. The question should rather be “how 

can instruction make children recognise the mathematical in their experience?” (Rider, 2017, 

p. 511).  

The question of what constitutes a mathematical discourse could be considered pivotal 

for theories that see learning in discursive terms. But rather than seeing the benefit of such 

theories hinge on a need to define what is meant by a mathematical discourse, they can be 

considered useful in providing a perspective for inquiry that explores this very notion. Using 

the idea of language games to see students as participants in discourse practices might reveal 

complexities, such as the relationship between everyday and mathematical discourses. This 
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perspective could help teachers and researchers shift away from oversimplified views of 

language (Barwell, 2016). Seeing learning mathematics in discursive terms is not an attempt 

to provide a definitive description of a mathematical discourse, but a way to view how 

classroom language is actually being used within rich social contexts as students grapple 

with new mathematical situations. 

Conclusion 

Learning can be seen as the change that takes place as students become participants in a 

mathematical discourse. A view of learning mathematics in discursive terms emphasises the 

importance of patterns of social interaction and recognises progression of learning in 

mathematics as a move towards more uses of exploratory talk (Sfard, 2007). Exploratory 

talk is thought to extend learning in mathematics by allowing generative and collaborative 

discourse (Murphy, 2015). The adoption of dialogic pedagogies may benefit this form of 

classroom talk. However, overemphasis on the correct use of formal academic language can 

impede the development of exploratory talk in learning mathematics (Barwell, 2016). In 

discursive terms, rather than seeing mathematical terms as autonomous and with objective 

referents, the broader context of a mathematical discourse is considered to give meaning and 

purpose to learning. Thus, Wittgenstein’s idea of language games is suggested as a useful 

perspective for seeing learning mathematics in discursive terms. This perspective could be 

useful in providing insight into the influence of a teacher’s views about mathematical 

knowledge on the development of exploratory talk. Language games could also support the 

development of an expanded view of a mathematical discourse. 
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“Out-of-field teaching” is an international phenomenon that seems particularly prevalent in 

mathematics. Our study is evaluating the impact of a national professional learning program 

for out-of-field secondary mathematics teachers in Ireland. Using the Productive Pedagogies 

framework, we compared the pedagogical practices of three pairs of teachers who were either 

upskilled, still out-of-field, or always in-field. The findings suggest that graduates of the 

upskilling program are developing pedagogical practices more like those of in-field teachers. 

“Out-of-field” teaching is an international phenomenon that involves teachers being 

assigned to teach subjects that do not match their training or education (Ingersoll, 2002). 

This practice seems particularly prevalent in the teaching of mathematics. Out-of-field 

teachers of mathematics typically possess a teaching qualification but have limited advanced 

studies of mathematics and little or no specific preparation in mathematics pedagogy. There 

is growing recognition of the need for professional development programs that meet the 

particular needs of out-of-field teachers (Du Plessis et al., 2014). To date, however, there 

has been little research on the effectiveness of such programs (Faulkner et al., 2019). This 

paper reports on aspects of a larger study that is evaluating the impact of a long-term, large-

scale, government-funded, nationally-consistent, university-accredited program offered to 

out-of-field teachers of mathematics in Ireland – the Professional Diploma in Mathematics 

for Teaching (PDMT). 

Background to the Study 

In Ireland, concerns about student performance in post-primary school mathematics at 

the beginning of the 21st century led to the introduction in 2010 of a new curriculum that 

shifted emphasis towards understanding and problem-solving and away from memorisation 

and procedures (National Council for Curriculum and Assessment, 2005). Concurrently, the 

Teaching Council of Ireland (2013) introduced new accreditation requirements for initial 

teacher education programs. In mathematics, fully qualified teachers must have a degree-

level qualification with the specific study of mathematics comprising at least one-third of 

the degree. There are also minimum credit requirements in analysis, algebra, geometry, and 

probability and statistics, with additional credits to be obtained in a variety of optional topics. 

Despite these strict requirements, school principals in Ireland have autonomy in recruiting 

staff and assigning teachers to subjects and classes, thus leaving open the possibility of 

placing teachers in out-of-field positions. 

Ní Ríordáin and Hannigan (2009) speculated that the phenomenon of out-of-field 

teaching of mathematics could be a possible obstacle to achieving the goals of the new 

mathematics curriculum. They conducted a national survey of teachers of mathematics in 

Irish post-primary schools, collecting data on respondents’ teaching assignments, degree 

qualifications, and the subjects they were qualified to teach according to the requirements 

specified by the Irish Teaching Council. This survey established that 48% of respondents 

were teaching mathematics without the necessary subject-specific qualifications. In response 

to this finding, the Department of Education and Skills (DES) funded the PDMT to develop 
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the content and pedagogical content knowledge of out-of-field teachers of mathematics to 

the level required by the Teaching Council. Six cohorts comprising 1078 teachers 

participated in the PDMT from 2012-2020. 

The PDMT is a 2-year part-time postgraduate program with teachers’ tuition fees funded 

by the DES. Delivery of the program is led by the University of Limerick in conjunction 

with a national consortium of higher education institutions. PDMT participants teach full-

time in their schools while they undertake the program in the evening, on weekends, and 

during school vacations via a blended learning approach. Ten undergraduate mathematics 

modules are delivered online in 30-hour blocks across 6-week sessions, with additional face-

to-face and online support. Two yearlong mathematics pedagogy modules are delivered 

face-to-face via weekend workshops and a one-week summer school. These pedagogy 

modules emphasise classroom practices that support problem-solving and promote 

conceptual understanding. One of the pedagogy modules also requires participants to 

complete a supervised action research project on their practice in the mathematics classroom. 

An important aim of the PDMT is to develop out-of-field teachers’ knowledge of 

mathematics content and pedagogy. The program additionally aims to support teachers in 

developing pedagogical practices aligned with the goals of the new mathematics curriculum 

in Ireland, and this is the focus of the present paper. To gain insights into the latter aspect of 

the PDMT, we compared video-recorded mathematics lessons taught by teachers who were 

currently, formerly, or never out-of-field in order to address the following research question: 

What similarities and differences can be observed when comparing the pedagogical 

practices of out-of field, upskilled, and in-field teachers of mathematics? (Upskilled teachers 

are those who have completed the PDMT.) 

Conceptualising and Evidencing the Impact of Professional Development 

Researching the impact of teacher professional development poses methodological and 

conceptual challenges. Desimone (2009) discussed the strengths, weaknesses, and trade-offs 

between observations, interviews, and surveys as the most common methods for studying 

teacher learning, and stressed the importance of choosing data collection methods to match 

a study’s research questions. Adler et al. (2005) also pointed out that a personal investment 

in teaching makes it difficult for teacher educators to take a critical stance towards the 

research we do with teachers, and they suggested developing strong theoretical languages in 

order to distance ourselves from what we are looking at. In the present study, as the authors 

have the dual roles of researchers and teacher educators in the PDMT, we aimed to achieve 

this critical distance by situating our research within Desimone’s (2009) conceptual 

framework for studying teacher professional development. 

Desimone’s (2009) framework has two components. The first component identifies the 

critical features that define effective professional development in terms of increasing teacher 

knowledge and skills and improving their practice. Drawing on existing empirical research, 

Desimone proposed that this set of critical features places emphasis on: (a) content focus, 

(b) active learning, (c) coherence, (d) duration, and (e) collective participation. The second 

component of the conceptual framework is “an operational theory of how professional 

development works to influence teacher and student outcomes” (p. 184). For this component, 

Desimone proposed a model with the following steps: 

1. Teachers experience effective professional development (defined in terms of the set 

of critical features outlined above). 

2. The professional development increases teachers’ knowledge and skills and/or 

changes their attitudes and beliefs. 
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3. Teachers use their new knowledge and skills, attitudes, and beliefs to improve the 

content of their instruction or their approach to pedagogy, or both. 

4. The instructional changes foster increased student learning. (p. 184) 

Desimone (2009) acknowledged that other potentially important factors existed, but 

these were not incorporated into her model because they have not yet been the subject of 

much research on the impact of professional development. These factors might include, for 

example, professional identity (Hobbs, 2012), the role of the principal in providing 

opportunities for teacher learning (Du Plessis et al., 2015), and the role of curriculum 

materials and implementation (Remillard & Heck, 2014). Desimone also conceded that her 

model could be criticised as representing a positivist viewpoint. However, she maintained 

that the model could still be used in studies with different theoretical perspectives on teacher 

learning as a means of integrating the knowledge generated by empirical research with “the 

emerging consensus of what is good professional development” (p. 187). 

Desimone (2009) noted that it is rare for a single study to investigate all four elements 

of her proposed model; in particular, there are significant methodological difficulties in 

designing evaluations that measure the effects of professional development on student 

achievement. Research conducted by our larger team has analysed the critical features of the 

PDMT program (Step 1 in Desimone’s model; see Goos et al., 2020) and its effect on the 

teachers who participated in the program (Steps 2 and 3; see Lane & Ní Ríordáin, 2020; Ní 

Ríordáin et al., 2017). In this paper, we further examine the impact of the PDMT on teachers’ 

pedagogical practices (Step 3) as a key element in Desimone’s model of teacher change. 

Research Design and Methods 

We would have liked to investigate the effects of the PDMT on participants’ classroom 

teaching approaches by observing lessons taught before and after the teachers experienced 

the program. However, this was not possible due to resource constraints and the demands of 

delivering a large, complex program involving 13 higher education institutions. Our research 

team’s earlier analysis of PDMT participants’ action research reports indicated that teachers 

perceived a shift in their pedagogical practices towards more student-centred approaches that 

emphasised conceptual understanding and problem-solving (Lane & Ní Ríordáin, 2019). To 

further investigate these teacher self-reports, we designed a cross-sectional study to compare 

the pedagogical practices of three groups of teachers: (a) those currently teaching 

mathematics out-of-field (n=2); (b) those who had been upskilled to fully qualified status by 

completing the PDMT (n=2); and (c) those who had always been fully qualified, in-field 

teachers of mathematics (n=2). These six teachers were recruited from six different schools.  

Teachers were observed by the second author as they taught six junior secondary 

mathematics lessons in two blocks of three consecutive lessons. These lessons were also 

video-recorded for later analysis. Pre- and post-lesson interviews were conducted by the 

second author to obtain teachers’ perspectives on lesson objectives, anticipated and actual 

challenges or successes, knowledge, and confidence levels. Surveys were also administered 

to the teachers to collect demographic information and data on teacher self-efficacy, job 

satisfaction, and preparedness for teaching topics in the secondary mathematics curriculum. 

All data collection was carried out by the second author. This paper draws only on teacher 

demographic data and the video recordings of lessons they taught. 

The Productive Pedagogies framework was selected as a classroom observation 

instrument that has been theoretically and statistically validated in Australian research 

(Lingard et al., 2001). Although not specifically designed for mathematics classrooms, it has 

been used in longitudinal studies of mathematics teaching (e.g., Makar, 2011) as well as in 
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large-scale studies of primary and secondary school lessons in a range of curriculum areas. 

The 20 items of the Productive Pedagogies framework are shown in Figure 1. The framework 

has four dimensions, two concerned with the academic outcomes of schooling (left side of 

Figure 1) and two with the social outcomes (right side of Figure 1). The Intellectual Quality 

dimension emphasises the importance of all students being presented with challenging work. 

Connectedness makes learning meaningful by linking new knowledge to prior knowledge, 

other subjects in the curriculum, and the world beyond school. Supportive Classroom 

Environment foregrounds relationships and giving students a voice in the classroom, while 

Recognition of Difference provides students with the capacity to act as responsible members 

of a democratic society. A 5-point rating scale is used to provide an index of the variation in 

quality of classroom practice for each item. 

 

Figure 1. Productive Pedagogies dimensions. 

Before observing and video-recording lessons taught by the six teachers, the second 

author discussed the Productive Pedagogies scoring manual with the first author, who is an 

experienced user of the Productive Pedagogies framework. Both authors used the scoring 

manual independently to rate an online video of a junior secondary mathematics lesson, after 

which they compared their ratings and resolved any differences via further discussion. After 

the data collection was completed, the second author watched the video-recorded lessons, 

assigned scores for each item, and calculated mean scores on each dimension for each of the 

three types of teachers (out-of-field, upskilled, in-field). Similarities and differences between 

the teachers were further examined for each dimension by inspecting item scores. 

Results 

Demographic Data 

Table 1 summarises the gender, years of mathematics teaching experience, and grouping 

(out-of-field, upskilled, in-field) of the participating teachers. Both out-of-field teachers 

were female and had taught mathematics for up to 10 years; the other teachers were male 

with mathematics teaching experience ranging from less than five to more than 16 years. 

Table 1 also shows the year in which upskilled and in-field teachers gained their mathematics 

teaching qualifications through the PDMT or initial teacher education program respectively. 
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Table 1 

Teacher Demographic Characteristics 

 Teacher 

Characteristic T1 T2 T3 T4 T5 T6 

Gender/ Group M 

US 

M 

IF 

F 

OOF 

M 

US 

F 

OOF 

M 

IF 

Years teaching mathematics 

(year qualified) 

16-20 

(2018) 

11-15 

(1999) 

<5 

(n/a) 

<5 

(2018) 

6-10 

(n/a) 

6-10 

(2010) 

Note. OOF = out-of-field; US = upskilled; IF = in-field 

Pedagogical Practices 

Table 2 presents the mean scores on the Productive Pedagogies dimensions for each 

group of teachers over the three lessons for which they were observed. Thus, each mean 

score is derived from six observations (two teachers × three lessons). One observable trend 

is that out-of-field, upskilled, and in-field teachers all scored highest on the dimension of 

Supportive Classroom Environment and lowest on the dimension of Connectedness. The 

same pattern was found in Makar’s (2011) analysis of pedagogical practices in Australian 

primary school teachers’ “regular” mathematics lessons.  

Table 2 

Productive Pedagogies Mean Scores 

 Teacher Group 

Dimension Out-of-Field Upskilled In-Field 

Intellectual Quality 2.64 3.00 3.61 

Connectedness 1.54 1.79 1.75 

Supportive Classroom Environment 3.67 3.27 4.07 

Recognition of Difference 3.10 2.23 2.57 

Note. A 5-point rating scale was used. Each group comprises two teachers who were observed for three lessons. 

Looking across the rows of Table 2 enables comparison between the three groups of 

teachers on each Productive Pedagogies dimension. In-field teachers had the highest mean 

scores for the dimensions of Intellectual Quality and Supportive Classroom Environment, 

while upskilled teachers recorded the highest mean score for Connectedness – although this 

was very similar to the mean score of the in-field teachers. Out-of-field teachers achieved 

the highest mean score for the dimension of Recognition of Difference. This may be because 

they were the only teachers in the sample who taught mixed-ability, rather than streamed, 

mathematics classes. These two teachers were observed to place particular emphasis on 

encouraging participation of struggling students, thus highlighting the element of Inclusivity 

(Figure 1) for this non-dominant group in their classrooms. 

Because the PDMT is mainly concerned with teaching mathematics for academic 

outcomes, we next examine the detail of teachers’ pedagogical practices in the corresponding 

dimensions of Intellectual Quality and Connectedness. Tables 3 and 4 show each teacher’s 

score totals for the three observed lessons for each item of these dimensions. (Score totals 
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are displayed instead of mean scores for ease of comparison across multiple teachers and 

items.) Pedagogical practices that seem to characterise the greatest difference between 

teacher groups are highlighted for discussion. 

Table 3 

Intellectual Quality Score Totals 

 Out-of-Field  Upskilled  In-Field 

Item T3 T5  T1 T4  T2 T6 

Higher Order Thinking 8 8  9 10  8 15 

Deep Knowledge 9 9  11 13  12 15 

Deep Understanding 9 12  10 10  12 12 

Substantive Conversation 5 9  5 10  8 9 

Problematic Knowledge 6 6  5 8  11 12 

Meta-language 5 9  9 8  12 5 

Note. A 5-point rating scale was used. Each teacher was observed for three lessons. 

Within the dimension of Intellectual Quality, the greatest differences – equivalent to at 

least 6 points across three lessons, or a mean of 2 points per lesson on the 5-point observation 

scale – occurred on the items representing Higher Order Thinking, Deep Knowledge, and 

Problematic Knowledge (Table 3). The general trend is for the scores to increase from out-

of-field to upskilled to in-field teachers. Also notable is the high Meta-language score for in-

field teacher T2, who regularly provided help in the use of mathematical terminology for 

students who had been identified with low literacy skills. 

Figure 2 provides examples of questions posed by Teacher 5 (out-of-field), Teacher 4 

(upskilled) and Teacher 6 (in-field) that illustrate differences in the quality of their 

pedagogies for promoting Higher Order Thinking. According to the Productive Pedagogies 

classroom observation manual, Higher Order Thinking requires students to manipulate 

information and ideas in ways that transform their meaning and implications, for example 

by synthesising, generalising, explaining, or arriving at a conclusion or interpretation. This 

level of thinking is evident in the question asked by Teacher 6, and to some extent by Teacher 

4. However, Teacher 5’s question only requires students to rehearse procedural routines. 

 

Figure 2. Examples of teacher questions illustrating variation in promotion of Higher Order Thinking. 

For the dimension of Connectedness, the differences between teacher groups were less 

pronounced – perhaps as a consequence of the lower scores across all three groups (see Table 

2). The greatest difference – equivalent to at least 3 points across three lessons, or a mean of 
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1 point per lesson on the 5-point observation scale – occurred on the item representing 

Problem-Based Curriculum (Table 4). In line with the Intellectual Quality dimension, the 

trend here is for scores to increase from out-of-field to upskilled to in-field teachers. 

Table 4 

Connectedness Score Totals 

 Out-of-Field  Upskilled  In-Field 

Item T3 T5  T1 T4  T2 T6 

Knowledge Integration 3 3  4 3  3 3 

Background Knowledge 6 7  7 6  6 6 

Problem-Based Curriculum 6 6  7 9  8 10 

Connectedness Beyond the 

Classroom 

3 3  4 3  3 3 

Note. A 5-point rating scale was used. Each teacher was observed for three lessons. 

Figure 3 shows examples of tasks presented by Teacher 3 (out-of-field), Teacher 1 

(upskilled) and Teacher 2 (in-field) that illustrate differences in the quality of their 

pedagogies for promoting a Problem-Based Curriculum. The Productive Pedagogies 

classroom observation manual defines a problem as a task with no specified correct solution 

that requires knowledge construction on the part of students. In keeping with the 

mathematics education research literature, we re-interpreted this definition to mean that a 

mathematical problem is a task for which the student does not know, and needs to construct, 

the solution method (National Council of Teachers of Mathematics, 2000). There is some 

evidence that this kind of knowledge construction is called for in the tasks offered by Teacher 

2 and Teacher 1; however, the task set by Teacher 3 instead requires using well-defined 

algorithms for algebraic manipulation. 

 

Figure 3. Examples of tasks illustrating variation in problem-based lessons 

Conclusion 

In this paper, our focus was on the extent to which the PDMT encouraged teachers to 

take up pedagogical practices that emphasise conceptual understanding and problem-

solving, in line with Ireland’s new secondary mathematics curriculum. Because it was not 

possible to collect longitudinal data on PDMT participants, we instead designed a cross-

sectional study to identify similarities and differences between these upskilled teachers and 

other teachers of mathematics who were still out-of-field or had always been in-field. This 

design does not allow us to make claims about causality in relation to the PDMT, but it does 

illuminate some interesting comparisons between these three groups of teachers. The groups 

were similar in that out-of-field, upskilled, and in-field teachers all scored highest on 

Supportive Classroom Environment and lowest on Connectedness, a finding that aligns with 
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previous research using the Productive Pedagogies protocol (Makar, 2011). Some of the 

differences between groups suggested that upskilled teachers (PDMT graduates) might be 

adopting pedagogical practices more like those of in-field teachers than those who are still 

teaching mathematics out-of-field, especially in relation to promoting Intellectual Quality 

and Connectedness. These conclusions can only be tentative, given the small sample, but 

they suggest that structured lesson observations can usefully supplement upskilled teachers’ 

self-reports of changes in their pedagogical practices arising from participation in a targeted 

professional development program. In addition, such structured lesson observations may be 

useful for informing the design of programs to develop out-of-field teachers’ (and also pre-

service teachers’) knowledge of mathematics and pedagogical practices, particularly in 

pinpointing specific items within the academic outcomes of schooling that require further 

consideration (e.g., knowledge integration and connectedness beyond the classroom). 
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Noticing structural thinking through the CRIG  

framework of mathematical structure 
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Central Queensland University 
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Structural thinking skills should be developed as a prerequisite for a young person’s future 

mathematical understanding and a teachers’ understanding of mathematical structure is 

necessary to develop students’ structural thinking skills. In this study, three secondary 

mathematics pre-service teachers (PSTs) learned to notice structural thinking through the 

CRIG framework of mathematical structure. The framework consists of Connections, 

Recognising patterns, Identifying similarities and difference, and Generalising and 

reasoning. I report here on how the CRIG framework helped the PSTs’ notice structural 

thinking. 

To develop an ability to notice structural thinking, teachers must first of all be aware of 

mathematical structure. Mason et al. (2009) defined mathematical structure as “the 

identification of general properties which are instantiated in a particular situation as 

relationships between elements or subsets or elements of a set” (p. 10). Stephens (2008) 

described structural thinking as an awareness of how mathematical properties develop into 

generalisations. Furthermore, Mason et al. (2009) promoted structural thinking as 

understanding the concepts and knowing procedures to use and when solving mathematical 

problems.  

Varied theories exist about structure; as mathematical structure or structural thinking. 

Wertheimer (1945) proposed that mathematical structure is knowing how a formula is 

connected to a mathematical concept. Hiebert and Lefevre (1986) combined conceptual and 

procedural knowledge as ‘proceptual’ thinking across mathematical processes. Stephens 

(2008) defined ‘structure’ as synonymous with relational thinking (Skemp, 1976). Schwarz 

et al. (2009) proposed that structural thinking is knowing the relationships and connections 

between mathematical concepts.  

The concept of structural thinking in mathematics is not clearly understood by many 

teachers of mathematics (Richland et al., 2012). Mason et al. (2009) stated that teachers’ 

awareness of structural relationships transforms students’ thinking and disposition to 

engage, they believe that teachers need to focus on structure so students can think 

structurally. Research in teachers’ awareness of mathematical structure or structural thinking 

is limited. Gronow et al. (2020) explored secondary mathematics teachers’ understanding 

and use of mathematical structure. Their study investigated how teachers used mathematical 

structure and encouraged structural thinking through components of mathematical structure: 

Connections, Recognising patterns, Identifying similarities and differences, and 

Generalising and reasoning. The four components, known as CRIG pedagogical framework 

of mathematical structure developed during Gronow et al.’s (2020) study found teachers’ 

identified with structure but were not aware they were using it in their teaching. The CRIG 

framework, in this study, is introduced to PSTs as an effective mechanism for learning to 

notice structural thinking. The four components of the CRIG framework are detailed next. 

Connections. Vale et al. (2011) recognised connections between mathematical 

representations as fundamental to structural thinking. Making connections between contexts 

or concepts allows learners to develop mathematical understanding. Mathematics teachers 
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make connections between prior, present and future learning, and in real-world contexts of 

mathematical representations.  

Recognising patterns. Patterns are essential in children’s mathematical development 

which begin with their observations of the natural world. Children recognise, observe and 

generate patterns before reaching school and learn patterning in formalised learning 

situations that develop structural thinking processes that lead to a deeper understanding of 

abstract mathematical concepts. Mulligan and Mitchelmore (2009) found that children’s 

structural thinking, identified in patterning awareness, is essential for mathematical concept 

formation in future learning.  

Identifying similarities and differences. Learners develop structural thinking through 

noticing the differences in mathematical representations. Mason (1996) believed structural 

thinking is noticing similarities and differences in mathematical relationships. Mulligan and 

Mitchelmore (2009) discovered that children who found similarities and differences in 

patterns were involved in structural thinking.  

Generalising and reasoning. Mason (2008) described this as an activity that develops a 

more in-depth experience of mathematics. Mathematical thinking that eventuates into a 

generalised fact is structural thinking, it connects mathematical relationships from concrete 

representations to abstract ideas. Mason et al. (2009) wrote that appreciation of structure 

involves the experience of generality. Stephens (2008) applied structural thinking to 

designing arithmetic questions. He asserted that children who could articulate a generalised 

principle underlying a whole problem were thinking structurally.  

The framework of noticing also supports the process PSTs learning to notice structural 

thinking. Scheiner (2016) identified how noticing is not restricted to a single process. Mason 

(2002) asserted that “every act depends on noticing” (p. 7), he used the term “awareness” to 

characterise the ability to notice, referring to noticing as an awareness of what one is 

attending to. In this study, noticing structural thinking implies an awareness of understanding 

and use of mathematical structure.  

By adopting Mason’s (2002) approach to noticing, the development and use of 

mathematical structure has emerged as a form of directing PSTs’ attention to their 

mathematical thinking. Mason studied what he noticed when doing mathematics and called 

what he noticed the structures of attention of how one thinks mathematically. The aim of 

this study is for the PSTs to notice structural thinking through learning the components of 

the CRIG framework of mathematical structure. The PSTs use of the CRIG framework 

provides an opportunity to detect their awareness of structure, thus answering the research 

question: How does the CRIG framework help PSTs to notice structural thinking? 

Method 

Context and participants 

PSTs in their final year Bachelor of Education/Bachelor of Arts (secondary mathematics) 

degree at a Sydney university were invited to participate in this study. Three PSTs, referred 

to as Ms K, Ms M, and Mr T, volunteered to participate in the study during their professional 

experience placement. Each PST taught mathematics at a secondary school in metropolitan 

Sydney. Ms K taught an accelerated Year 9 class, Ms M taught a top streamed Year 8 class, 

and Mr T taught a mixed ability Year 7 class. The PSTs were familiar with the concept of 
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mathematical structure through the content of courses studied in their undergraduate degree; 

however, they had no prior knowledge of the CRIG framework. 

Study design, instruments, and data collection 

The study design comprised of three cycles of: professional learning workshops (PLWs), 

which were audio recorded. Video recordings of PSTs’ mathematics lessons and a noticing 

reflection audio recording of PSTs reviewing a recorded segment of their mathematics 

lessons. 

Analysis  

The audio recordings of the PLWs and noticing reflections were all transcribed to a word 

document and uploaded to NVivo (QSR International, 2017). The videos of the mathematics 

lessons were also uploaded to NVivo. NVivo was used to code the data from the PLWs, 

mathematics lessons and noticing reflections for PSTs’ utterances and comments that 

identified a CRIG component. The data were analysed for evidence of the PSTs’ noticing of 

structural thinking through the PSTs attending to the CRIG framework. The videos acted as 

the main source of evidence for identifying the PSTs noticing structural thinking through 

their use of the CRIG framework when teaching. The PLWs and the noticing reflections 

provide further evidence of the PSTs attention to the CRIG framework.  

Results  

This section presents a summary of the data collected for each PST from the three cycles 

of PLWs, mathematics lessons and noticing reflections. An outline of the results from the 

PLWs are given, followed by exemplars of each PSTs’ utterances from the mathematics 

lessons and comments made during the noticing reflections in Tables 1, 2 and 3, coded to a 

CRIG component.  

During the PLWs, the PSTs were taught to notice structural thinking through the CRIG 

components. The first PLW began with a presentation on the CRIG framework, followed by 

a viewing of a video titled Related Problems: Reasoning About Addition (Teaching Channel, 

2017), where a teacher used the CRIG components to teach addition to a Year One primary 

class. Ms K Recognised patterns in the teacher’s instructions to students. Ms M also 

Recognised patterns as a teaching strategy to engage the students. Mr T noticed that the 

students used Similarities and differences to make generalisations.  

In PLW 2, the PSTs viewed a video recording of a child attempting several different 

arithmetic problems, they were asked to examine the child’s mathematical thinking when 

solving the problems. Ms K noted the child relied on calculations and did not Identify 

Similarities and Differences between the numbers. Ms M noticed the child was using 

Generalising and Reasoning in her structural thinking when she recognised that the problem 

could be solved another way. Mr T stated the child “Got it after the CRIG prompt, meaning 

she has structural understanding.”  

In PLW 3, the PSTs considered how the CRIG framework could be applied to teaching 

the expansion of binomial products. Ms K made Connections to the distributive law and 

expanding the expression using the FOIL method. Ms M was Identifying Similarities and 

Differences when changing numbers, pronumerals, signs and coefficients in the binomial 

expression. Mr T stated that Generalising and reasoning was identified as a way to 

summarise the process of expansion and apply it in other mathematical contexts.  
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Table 1  

Exemplars of Ms K using the CRIG Framework to Notice Structural Thinking 

Cycle Mathematics lesson Noticing reflection 

1 Topic: Simultaneous equations 

Connections to the relationship between the 

graphs’ intersection points and solving the 

equations simultaneously.  

Recognising Patterns of the power of x to 

determine the curve’s shape. 

Identifying similarities and differences 

“What is different about the line’s shape?”   

Connections between the equation 

and the graph. “I think to show how 

the y2 and the x2 is giving us part of 

the circle, that relationship.” 

Identifying similarities and 

differences between graphs and 

equations: “So, they could see that 

all of them had a square except the 

last one.”  

2 Topic: Angle sum of polygons  

Connections to prior learning “How did we 

prove the angle sum of the quadrilateral?”  

Angle sum of a polygon formula: 

Recognising patterns: “Can you find the 

pattern of what is going on between the 

number sides and triangles?”  

Generalising and reasoning: “Calculate the 

interior angle sum of any polygon.” 

Recognising Patterns to develop 

the formula: “They understood it 

better with the pattern.” 

Identifying similarities and 

differences different patterns helped 

students’ thinking. “I had the 

triangles meeting at a point. I 

adjusted it as I saw the pattern they 

were working out.” 

3 Topic: Quadratics  

Connections “Quadratics and parabolas go 

hand-in-hand. The visual representation of a 

quadratic is a parabola.” 

Identifying Similarities and Differences of 

the x2 expression in an equation “This is not 

of degree two; it is a power of negative two. 

So, this is not a quadratic.”   

Generalising and Reasoning relationships 

between the equation and the graph. 

Connections: “I was connecting it 

to when we did the non-linear 

simultaneous equations.”  

Recognising Patterns, “Rather than 

drawing random graphs, I’d link 

them to recognise any patterns from 

factorised quadratics.” 

Generalising and Reasoning 

“Generalising the solutions of when 

crossing the x-axis.” 

Table 2  

Exemplars of Ms M using the CRIG Framework to Notice Structural Thinking 

Cycle Mathematics lesson Noticing reflection 

1 Topic: Circumference of a circle  

Connections to a real life example of a 

pizza as a sector of a circle.  

Recognising patterns in the ratio of a 

circle’s circumference and diameter.  

Similarities and Differences comparing 

the circle’s radius and diameter. 

Generalising and Reasoning through 

students’ discussion when dividing 

the circumference by the diameter. 

“I’m looking at what they just did. 

I’m asking them to contribute what 

they found and see what they 

conclude from what they've done.” 
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2 Topic: Area of composite shape 

Identifying Similarities and differences to 

explain the formula of the area of circles. 

“Area equals 𝜋𝑟2 which is the same as 

saying 𝜋 × 𝑟 × 𝑟.” 

Generalising and reasoning “How come 

we have 𝜋 for every circle? Because the 

circumference divided by the diameter 

was always equal to 𝜋.” 

 Recognising patterns “asking them 

how to figure out the area. That 

could have been kind of recognising 

patterns.” 

Identifying Similarities and 

differences “How to write something 

in exact form and not exact form 

Generalising and reasoning “Asking 

them questions they can conclude.” 

3 Topic: Volume of a cylinder  

Connections of a real-world problem: 

“This is a picture of the sinkhole. What 

shape does it look like?”,  

Generalising and reasoning “What do we 

need to know to solve this problem? What 

are we trying to find in the end?”  

Connections “How they could use 

previous things they've learnt.”   

Recognising patterns “By helping 

them recognise patterns to work 

mathematically.”  

Generalising and reasoning 

“Recognising the meaning and 

interpreting the information.” 

Table 3 

Exemplars of Mr T using the CRIG Framework to Notice Structural Thinking 

Cycle Mathematics lesson Noticing reflection 

1 Topic: Ordering fractions  

Connections to a real example “What is 

one-third of my chocolate bar.”  

Identifying Similarities and Differences in 

ordering fractions “When you look at this, 

which one’s bigger? Or, which one’s 

smaller?” 

Generalising and Reasoning defining a 

rule “The size of the parts needs to be the 

same.” 

Connections “I should have 

reworded the question because this 

was what we did last lesson.” 

Recognising Patterns “What do you 

notice I’m doing with these 

numbers?” 

Identifying similarities and 

differences “Show the diagram of 

shaded fractions not symbolically.” 

2 Topic: Adding and subtracting fractions 

 Identifying Similarities and Differences 

“What do you notice about the 

numerators?” 

Generalising and Reasoning, using a 

whole number method to add fractions. 

“So, if 1 + 1 = 2, then, if I use the same 

thing, for a 
1

2
+

1

2 
, is 1 + 1 = 2, and 2 +

2 = 4, so it’s over 
1

4
. Right?” 

Recognising patterns: “I tried to set 

up some patterns and then asked 

them to recognise the patterns.” 

Generalising and Reasoning “I’ve 

tried to incorporate generalisation in 

terms of asking them, ‘What do you 

think would be the next pattern?’” 
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3 Topic: Stem and leaf plot graphs  

Similarities and Differences between 

graphs and stem-and-leaf plots. “Now 

what were the things we compared. 

What’s similar?” 

Generalising and reasoning to analyse 

stem-and-leaf plot data. “Take a look at 

your graph and talk to the other person 

and tell them what the graph tells you?” 

Recognising patterns: “So I should 

have put one number on so the 

students to see a pattern.”  

Identifying Similarities and 

Differences “I should have asked 

about the placement of these three 

numbers: “How are they different?” 

Discussion 

During this study, the PSTs’ noticing of structural thinking developed through their 

learning of the CRIG pedagogical framework of mathematical structure. Noticing of 

structural thinking was evident in their references to the CRIG framework drawn from the 

statements made during the PLWs, utterances in their mathematics lessons, and noticing 

reflection comments. Exemplars given demonstrate the PSTs’ noticing structural thinking 

through the CRIG components.  

The PSTs use of the CRIG components were identified in varied pedagogical strategies. 

Ms K encouraged students to use a pattern to find the rule for the angle sum of a polygon, 

Ms M used real world examples for each of her lessons to connect students understanding to 

the mathematical concept and Mr T used the CRIG components in his questions.  

The PSTs’ teaching accommodated the CRIG framework and supported their 

understanding of the mathematical content. Ms K considered other patterning approaches to 

finding a rule for the angle sum of a polygon and Ms M noticed similarities and differences 

in binomial expansions. The PSTs’ pedagogy focused on a structural thinking learning 

environment, Ms K promoted students’ thinking by challenging them to connect the equation 

to a graph, Ms M connected mathematical concepts to real-world examples and Mr T asked 

questions so students would notice patterns, and similarities and difference. In their noticing 

reflections, the PSTs stated how the CRIG framework supported their teaching. Ms K, was 

thinking of her future teaching: “If I were to do this again, I’d teach the patterning way, and 

I would incorporate the CRIG more.” Ms M stated CRIG helped her understand student 

thinking “They're trying to understand the difference between volume and capacity.” Mr T 

reflected on how CRIG improved his explanations. “I should have made it more explicit, by 

connecting to their prior experience.” The CRIG framework in these cases supported the 

PSTs’ noticing of structural thinking.  

Prescott and Cavanagh (2007) found that secondary mathematics PSTs tended toward a 

traditional teaching pedagogy. Awareness of the CRIG framework encouraged the PSTs in 

this study to move beyond traditional teaching pedagogy. The PSTs were more inclusive of 

student learning, as noted when asking CRIG component focused questions. Mr T’s 

questions promoted students’ structural thinking. He challenged students’ thinking about 

why using a whole number method when adding fractions was incorrect. “So, if 1 + 1 = 2, 

then, if I use the same thing, for a 
1

2
+

1

2 
, is 1 + 1 = 2, and 2 + 2 = 4, so it’s over 

1

4
. Right?” 

The PSTs diverse pedagogical strategies also saw them use the CRIG components when 

instructing or communicating with students. In her second mathematics lesson, Ms K used 

Recognising patterns to help students develop the angle sum of a polygon formula. As the 

students had discovered a different pattern, one that was not considered by Ms K, she acted 
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in-the-moment and noticed the students’ new approach, she encouraged her students to 

continue with their strategy and asked one student to explain it to the class. Ms M promoted 

student involvement in her lessons by arranging students in groups to complete activities, 

many of which had a real-world experience, such as, here final lesson of finding the volume 

of a cylinder as a sink hole. 

The professional learning program to understand and use the CRIG framework helped 

the PSTs’ to notice structural thinking. Ivars et al. (2018) identified the need for a specific 

framework for PSTs to have effective noticing. The CRIG framework provided this focus. 

The ability of the PSTs to understand the CRIG framework and to use it demonstrated its 

simplicity as a practical and useful tool for teachers of mathematics. The PSTs’ content 

knowledge was established from their extensive mathematical background in their university 

studies. The CRIG framework, however, deepened the PSTs structural understandings of 

mathematical relationship, for example Ms K’s students finding an alternative approach to 

finding the angle sum of a polygon.  

The PSTs’ lack of professional experience before this study could have influenced their 

fundamental understanding of the CRIG framework and their ability to notice structural 

thinking. However, having more teaching experience in the future will provide continual 

opportunities notice structural thinking through the CRIG framework when doing 

mathematics and when teaching. The PSTs’ teaching experience was restricted to their 

university professional experience program. Researchers have identified how PSTs’ limited 

experiences influence what they attend to when teaching. Star and Strickland (2008) found 

that secondary mathematics PSTs were not good at noticing mathematical content. Mason 

(2002) also asserted that PSTs lack experience in recognising and using classroom 

interactions effectively to promote mathematical understanding. Contrary to the results of 

these studies, the PSTs in this study produced mathematics lessons that engaged students 

with activities, instructions and questions that focused on developing students’ structural 

thinking through using the components of the CRIG framework. The PSTs effectively 

demonstrated an ability to learn and apply the CRIG framework as a new pedagogical skill 

to mathematical content that they had not taught before. The introduction of structural 

thinking through the CRIG framework could be regarded as an extra burden for the PSTs to 

consider when teaching. Nevertheless, the evidence indicates that the PSTs were comfortable 

with identifying and including the components of the CRIG framework in their lessons and 

were able to notice structural thinking. 

The PSTs were able to articulate the benefits of the CRIG framework to notice structural 

thinking they indicated that the CRIG framework had shaped their noticing structural 

thinking and had changed their teaching. Ms K stated that thinking structurally helped her 

make sense and explain mathematical concepts. In the final PLW, Ms K stated, “You 

structure your practice to facilitate deeper thought as to what and how things made sense.”  

Conclusions and Further Research 

The CRIG framework proved to be useful for helping PSTs to notice structural thinking. 

The CRIG framework provided the PSTs with a foundation for teaching mathematics that 

helped them focus on developing their understanding of mathematical structure. Moreover, 

this provided PSTs opportunities to notice structural thinking. 

Mason (2002) introduced the concept of noticing into the lexicon of mathematics 

education, and with his colleagues (Mason et al. 2009) the notion of teachers’ noticing of 

structural thinking has emerged as a significant contribution to mathematics teaching. PSTs 

noticing of structural thinking as the focus of this study has demonstrated, as evident from 
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the results, that there is potential to advance the discourse of mathematics teaching in this 

area. 

The introduction of mathematical structure in the teaching and learning of mathematics 

and the noticing of structural thinking has implications for future research in mathematics 

teaching. Future research could consider how developing noticing structural thinking 

through the CRIG framework may benefit practicing teachers of mathematics (e.g., primary, 

secondary, pre-service, novice, experienced, and out-of-field teachers).  
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Spatial ability, skills, reasoning or thinking: What does it mean 

for mathematics? 
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Spatial reasoning is identified as a Numeracy general capability in the Australian Curriculum, 

and more globally as a significant precursor to mathematics proficiency. Currently, the 

literature surrounding mathematical-spatial relations remains largely removed from 

classroom practice. This paper provides a reflection on the spatial cognition field as it relates 

to mathematics. The focus of the review is to find points of connection between psychological 

notions of spatial skills and spatial reasoning as it stands in curriculum and assessment.  

Spatial reasoning as an instinctive, vital, human capability has been demonstrated 

throughout history (e.g., locating the source of the Cholera epidemic in London; supporting 

the discovery of DNA; NRC, 2006). At a global level it refers to proficiency in mentally 

representing and transforming objects and their relations (Mulligan, 2015). At a local level, 

spatial reasoning is ingrained in daily activities, such as the ability to locate our keys, the 

process of parking a car or packing a suitcase. Although these different skills are often taken 

for granted and fall under the label spatial reasoning, it may not be the case that being good 

at one type of skill ensures aptitude for another (Newcombe, 2010). Spatial reasoning as an 

umbrella term has been deemed so closely related to mathematical proficiency it no longer 

makes sense to explore whether the two are related (Mix & Cheng, 2012). Whole books 

(Mix & Battista, 2018) and mathematics research journal special issues (Resnick et al., 2020; 

Sinclair & Bruce, 2015) have been dedicated to the theoretical positing of mathematical-

spatial relations. Despite the decades of analysis, the gap between cognitive theories of the 

mathematical-spatial relationship, and classroom promotion of spatial reasoning remains 

vast (Lowrie et al., 2020). This paper presents a review of some of the different spatial 

understandings brought about by differences in terminology, and how these link to the 

current state of spatial instruction in mathematics classrooms. The aim of this paper is to 

identify connections across the fields about mathematical-spatial relations, with a view to 

providing a common conceptual framework on which to build future empirical studies.  

Spatial Vocabulary 

Spatial terminology varies across discipline, country of origin and research intent. One 

reason may be that the richness of our mental imagery is poorly articulated by our linguistic 

capabilities (Hayward & Tarr, 1995). Consequently, a range of terms have been used to 

define spatial concepts with little consistency. Here I seek to define key spatial vocabulary 

to provide a shared conceptual framework that is currently lacking in the literature.  

The term ability is often used to differentiate students in education and has been defined 

as a “salient psychological attribute” (Wai et al, 2009, p. 817), implying it is stable over time. 

By contrast, spatial skills suggest the opportunity for growth and change (Uttal et al., 2013). 

More generally, spatial reasoning invokes thoughts of non-verbal problem-solving while 

spatial thinking conjures up images of a habit of mind or more holistic spatial sense 

(Whiteley et al., 2015). These terms are distinct from the mental processes that occur during 

spatial tasks. Visual imagery (imagining a referent object(s); Presmeg, 1986) and spatial 

relations (relative position or movement between objects; Hegarty & Kozhevnikov, 1999) 
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are often used to describe stable spatial characteristics. By contrast, spatial manoeuvres are 

the dynamic mental processes undertaken when performing tasks (Ramful et al., 2017). The 

accuracy and usefulness of these processes may vary depending on spatial aptitude and task 

demands (Hegarty & Kozhevnikov, 1999; Presmeg, 1986).  

Never is the lack of consistency in terminology more evident than when searching 

keywords in the literature. For example, in conducting their spatial training meta-analysis 

Uttal et al. (2013) searched 14 different terms yet failed to include spatial reasoning or 

thinking. To move the field forward there needs to be consistency in the meaning and use of 

spatial terms. A proposed conceptual model for spatial terminology is presented in Figure 1.  

 

Figure 1. Conceptual model of spatial terminology. 

Spatial abilities  

Spatial ability was described as an intelligence distinct from verbal ability almost 140 

years ago (Galton, 1883). The measurement of spatial ability was predominantly conducted 

with instruments developed by psychologists (Hegarty & Waller, 2005). Despite research 

now indicating that spatial aptitude is not fixed (Uttal et al., 2013), there are individual 

differences that show trends in spatial abilities. Generally, males perform better on spatial 

ability tests (Hegarty & Waller, 2005). However, research is emerging to suggest that gender 

differences may lie in strategy choices, thus calling into question some of the long-held 

beliefs about gender factors in spatial ability theory (Newcombe, 2020).  

Piaget and Inhelder (1967) proposed that although infants show evidence of spatial 

coding, mature spatial reasoning does not emerge until age 9 or 10. Congdon et al. (2018) 

report evidence for pre-schooler’s awareness of spatial properties, but it is not until a few 

years into formal schooling that language and conceptual understanding develop. Separate 

spatial abilities also seem subject to different developmental trajectories. Crescentini et al. 

(2014) found that the ability to perform object-based spatial tasks emerged earlier than tasks 

requiring awareness of one’s body and environment. This may be largely due to children’s 

exposure to activities and environments that support the development of spatial reasoning at 

the different scales (Newcombe, 2002; 2020). Understanding the developmental path of 

spatial abilities may assist educators and researchers in providing appropriate experiences 

for children to foster their spatial reasoning. The dotted line between spatial abilities and 

spatial reasoning in Figure 1 above signifies that spatial capacity (or ability) exists for 
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everyone, however, education, experience and environmental interaction are most influential 

in the development of the more holistic notion of spatial thinking (Newcombe, 2002).  

Spatial skills 

Spatial skills are the quantifiable factors comprising spatial reasoning that are distinct, 

yet related (Carroll, 1993). The structure of these skills, much like the overarching theme 

itself, remains under some debate. Newcombe and Shipley (2015) proposed a typology of 

spatial tasks categorised by the characteristics of the referent object(s); whether they 

remained still (i.e., static) or moved (i.e., dynamic) and whether spatial relations were within 

(i.e., intrinsic) or between (i.e., extrinsic) objects. Such a framework could provide 

researchers with the foundations for linking the mental manoeuvres undertaken during 

spatial tasks and skills in other fields, such as mathematics. However, the typology proposed 

by Newcombe and Shipley is largely based on psychological tests and has yet to be supported 

by further research or in applications beyond lab-based studies (Mix et al., 2018). 

Measuring spatial skills. The idea of assessing different spatial skills emerged in the 

field of aptitude testing for occupations (Hegarty & Waller, 2005). As psychometric tests 

measuring spatial skills continued to evolve, correlations with other skills and outcomes 

emerged. For example, spatial skills were the strongest predictor of Science, Technology, 

Engineering and Mathematics education success and career choice in a 50-year longitudinal 

study (Wai et al., 2009), above verbal ability and mathematics proficiency. 

Spatial task performance has been related to mathematics outcomes in correlational 

(Gunderson et al., 2012; Mix et al., 2016) and intervention studies (Cheng & Mix, 2014), 

leading to categorisation of spatial skills based on test affordances. For example, object-

based spatial skills are considered in a different category to egocentric skills, where one’s 

perspective becomes the reference point (Sorby, 1999). This distinction is a consequence of 

test design and the intentional promotion of specific strategy use (Hegarty & Waller, 2004). 

This psychological approach results in cognitive theories limited by the measures used in 

empirical studies and may be counter-productive to the development of robust models of 

mathematical-spatial relations that are based on applications of spatial skills. 

Ramful et al. (2017) adopted a different methodology in the development of their spatial 

reasoning instrument (SRI). They defined spatial constructs (as opposed to skills) by the 

spatial manoeuvres found in the Australian Numeracy curriculum; namely, mental rotation 

(i.e., imagining an intact 2D shape or 3D object in a different orientation; Cheng & Mix, 

2014), spatial visualisation (i.e., performing complex, multi-step manoeuvres that change 

the form of the referent object; Hegarty & Waller, 2005), and spatial orientation (i.e., 

imagining different perspectives, navigating, or taking different orthogonal views; 

Newcombe & Shipley, 2015). These constructs correlate with psychological tests of spatial 

skills but provide opportunities to explore links with mathematical-spatial processing in a 

more applied way. This measure is the first of its kind but there are calls for more measures 

of spatial reasoning that consider real world spatial problem-solving (Mix, 2019). 

Spatial Reasoning 

Spatial reasoning, as a foundational component of Numeracy, requires an awareness of 

space, the ability to imagine objects and relationships, and use this information to reason and 

problem-solve (ACARA, n.d; NRC, 2006). Spatial reasoning manifests differently across 

situations (such as the constructs identified by Ramful et al., 2017). For example, mental 

rotation involves imagining an object’s position within its direct environment, while spatial 
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visualisation exists in isolation, where the environment is less important than the relations 

within and the ability to visualise and transform the object’s form. Spatial orientation 

requires imagining dynamic interaction with an environment on a larger scale.  

Spatial reasoning is not easy to quantify, and researchers look to spatial tests (Mix, 2019) 

or to the most explicitly spatial aspects of curricula (i.e., geometry; Battista et al., 2018) to 

make inferences about its underlying structure. Spatial reasoning in education goes beyond 

success on spatial tests. Educators need to be equipped with the tools to recognise and foster 

students’ awareness of space in the mathematics classroom, and to encourage them to notice 

spatial relations in their interaction with the world.    

Spatial Thinking 

Spatial thinking is less well-defined by literature, except where used interchangeably 

with spatial reasoning. Newcombe (2010) used the term spatial thinking to describe Albert 

Einstein’s unique way of seeing the world, that is, in pictures and relations. In this paper, I 

propose a distinction between spatial reasoning, the application of spatial skills during 

problem-solving, and spatial thinking, the tendency to visualise non-verbal aspects of objects 

and relations, separate to mathematical thinking (Newcombe, 2010; Whiteley et al., 2015).  

In the National Research Council (2006) report, spatial thinking was defined as an 

“amalgam of three elements: concepts of space, tools of representation, and processes of 

reasoning” (p. 3). Figure 1 shows spatial thinking as underpinning all forms of spatial 

representation and assessment discussed above. This model positions spatial thinking as a 

habit of mind that guides communication, reasoning and problem-solving. Therefore, 

promoting spatial thinking across education, provides students with strategies when faced 

with new or complex materials (Uttal & Cohen, 2012).  

Visualisation 

Much like the absence of spatial terms in Uttal et al.’s (2013) literature search, Figure 1 

did not capture all aspects of spatial vocabulary. One missing element is visualisation, which 

is critical for spatial thought (Battista et al., 2018). Visualisation occurs differently for those 

with varying spatial skill levels. Strong spatial thinkers tend to generate mental images that 

facilitate problem-solving and concept development, poor spatial thinkers tend to produce 

mental images that, while detailed, offer little in their affordances for problem-solving 

(Hegarty & Kozhevnikov, 1999; Presmeg, 1986).  

Mathematics and Spatial Reasoning 

A complete review of the mathematics-spatial literature is beyond the scope of this paper 

and well captured in Mix and Battista’s (2018) edited book. Here, I focus on the connection 

between cognitive theories of mathematical-spatial relations and spatial reasoning in 

mathematics curricula and assessment based on Ramful et al.’s (2017) three constructs.  

Mental Rotation 

Mental rotation is one of the most extensively studied spatial skills in the mathematics 

literature. In fact, 3D mental rotation training by Cheng and Mix (2014) was found to lead 

to improvements on missing term addition and subtraction tasks. Furthermore, mental 

rotation is thought to support geometric reasoning by providing the mental models on which 

to examine geometric properties (Battista et al., 2018). For example, to perform 

mathematical rotation tasks on a coordinate grid, one must first be able to correctly visualise 
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the rotation of the referent object. The disconnect between the psychological and educational 

notions of mental rotation are evident in these two lines of thought. While one is focused on 

repetitive, comparison tasks that rely on speed to force rotation (psychology; Hegarty & 

Waller, 2005), the other advocates for mental rotation processes in building conceptual 

knowledge for geometric understanding (mathematics education; Battista et al., 2018).   

Apart from small-scale studies (e.g., Bruce & Hawes, 2015; Cheng & Mix, 2014), the 

development of mental rotation in mathematics classrooms remains largely incidental as a 

result of engagement with geometry material (Lowrie & Logan, 2018). Lowrie et al. (2018) 

provided a pedagogical model for developing mental rotation beyond curriculum learning 

through a classroom-based spatial intervention. However, the unique contribution of mental 

rotation to mathematics improvement was not addressed.  

Spatial Visualisation 

The complex, multi-step manoeuvres that constitute spatial visualisation are evident 

within mathematics curricula in geometric concepts of symmetry and net to solid 

conversions. Furthermore, psychological measures of spatial visualisation such as paper 

folding have been found to relate to multiplicative and algebraic thinking by reflecting 

students’ ability to map folds to parts (Empson & Turner, 2006). Lowrie et al. (2019) trained 

spatial visualisation skills, which led to improvements in geometry and word problems. They 

concluded that the impact on geometry tasks was reflective of students’ increased ability to 

manipulate spatial properties, while the word problems were evidence for improvements in 

representing information spatially during problem-solving (Hegarty & Kozhevnikov, 1999).  

Rittle-Johnson et al. (2019) found strong relationships between patterning, mathematics 

and spatial visualisation. They found that spatial visualisation at the beginning of the pre-

school year was a significant predictor of later numeracy performance (a subset of the 

mathematics assessment) in that same year. They also found that initial patterning skills were 

a significant predictor of later mathematics, over and above prior mathematics knowledge 

and a composite spatial measure. Their findings shed light on the complex relationship 

between spatial skills, patterning and mathematics. It is possible that spatial visualisation is 

helpful when developing mathematical understanding but is less influential long term when 

content knowledge increases. 

Spatial Orientation 

Few psychological studies have explored the direct role of spatial orientation in 

mathematics (Newcombe, 2010) but mapping tasks and orthogonal perspectives are explicit 

elements of the Measurement and Geometry strands of the Australian Curriculum (ACARA, 

n.d.). Two longitudinal studies have examined the unique role of spatial orientation in 

mathematics performance. Frick (2019) found that spatial orientation skills measured in 

kindergarten predicted performance in quantity, magnitude and geometry tasks, but not 

arithmetic in year 2. Mix et al. (2016) found significant contributions of spatial orientation 

to a general mathematics measure in years 3 and 6. Spatial orientation skills such as 

understanding scale and magnitude are critical for performance on mapping tasks as well as 

development of number line knowledge (Gunderson et al., 2012) and proportional reasoning 

(Möhring et al., 2016). Given these preliminary findings, I propose that this is a spatial 

construct that should be included in empirical studies of mathematics-spatial relations.   
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Spatial Intervention 

Many studies to date have analysed correlational data, providing valuable insight into 

areas where spatial intervention may support student learning (Mix, 2019). Spatial skills 

have been found to be malleable and responsive to training (Uttal et al., 2013). In their meta-

analysis of spatial training studies Uttal et al. (2013) found no difference in effect sizes as a 

result of the form of the training (i.e., instructional courses, video games or spatial skills 

training) on spatial outcomes. However, when examining potential transfer to mathematics 

the range of outcomes has produced variable results (Stieff & Uttal, 2015). Stieff and Uttal 

acknowledge the difficulty in conducting classroom-based studies on a large-scale but when 

done successfully, they have the greatest potential for effecting change. 

To progress the field and transfer theoretical understandings to practical, student benefits 

we need to shift the focus from performance on cognitive tests to how spatial reasoning 

manifests in mathematics.  Lowrie and colleagues have demonstrated reliable transfer to 

mathematics achievement (Lowrie et al., 2017; 2019; in press) in ways that others in the 

spatial cognition field have not (Cheng & Mix, 2014; Hawes et al., 2017). They achieved 

this through the integration of spatial skills in a pedagogical framework, delivered by 

classroom teachers (Lowrie et al., 2018). In their intervention studies, ranging in length from 

3 to 10 weeks and focusing on mental rotation, spatial visualisation and spatial orientation 

(Lowrie et al., 2017; in press) or spatial visualisation alone (Lowrie et al., 2019), Lowrie and 

colleagues consistently demonstrated mathematics improvements with effect sizes ranging 

from .38 – .40 (Cohen’s d) compared to business as usual control groups.  

There remains a gap in the literature. To date there have been no systematic studies of 

spatial skill interventions to determine their contribution to mathematics. Studies remain 

either isolated (e.g., 3D mental rotation; Cheng & Mix, 2014; spatial visualisation; Lowrie 

et al., 2019) or combined (e.g., Lowrie et al., 2017; in press), making it difficult to identify 

the unique contributions of spatial skill development to mathematics. Similarly, the effect 

on mathematics has been too broad, leaving the field still speculating about the mechanisms 

that result in improvements in mathematics based on spatial training (Stieff & Uttal, 2015).   

Limitation and Conclusion 

The focus of this review has been to highlight some of the connections between cognitive 

theories of spatial skills, emerging from lab-based studies, and applied spatial reasoning, in 

education. This review could not be exhaustive and there remains a considerable absence of 

spatial terminology as well as spatial concepts such as transformation, and representation. 

These were excluded based on the goal of seeking common ground across psychological and 

educational domains, as these terms often have different meaning in the two fields. For 

example, in mathematics transformations are functional in problem-solving (Battista et al., 

2018), while in psychology transformations refer to mental manoeuvres (Frick, 2019). 

To progress the field in practical and constructive ways the focus on spatial reasoning in 

mathematics needs to be situated within real world applications (Lowrie et al., 2020). Spatial 

instruction needs to be explicit, not merely fostered through the more spatial content within 

the curriculum. To bridge the disconnect between cognitive theories of mathematical-spatial 

relations and classroom practice, there needs to be shared meaning and studies need to be 

conducted at scale with teachers instrumental in the process. Finally, experimental design 

needs to allow for conclusions to be drawn about the mechanisms that connect spatial 

thinking, reasoning and skills with mathematics understandings to ensure sustainable and 

positive outcomes for students.  
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Location and Transformation skills are critical tools for navigating the world and establishing 

foundational steps for geometric reasoning associated with co-ordinate grids and the 

Cartesian plane. The contextual nature of using local landmarks to understand students’ 

mental representation of large-scale space has the potential to enhance these skills. This paper 

examines a classroom activity that draws on students’ local knowledge when representing 

their environment. Factors such as geographic distance and isolation, and incorporation of 

spatial relations are explored. Recommendations are made for educators to incorporate the 

sophisticated local knowledge when building mathematical understanding.  

From the Foundation year of school, the Australian Curriculum identifies Location and 

Transformation as critical elements of mathematics (ACARA, n.d.). This content sits within 

the general capability of spatial reasoning. Although identified in the Australian Curriculum, 

educators are left with little support for incorporating spatial instruction in their teaching 

(Lowrie & Logan, 2018). Engaging with position and movement provides a novel 

opportunity to embed learning into tangible, real-world, contexts for students. Rather than 

abstract notions of mathematical content confined to a page or screen, teaching about large-

scale space affords students the opportunity to be active participants in their learning. 

Physical exploration has been linked to greater accuracy and flexibility when estimating 

landmarks and distances compared with abstract (i.e., virtual) experience (Richardson et al., 

1999). This embodied approach to spatial reasoning has been found to be effective in 

mathematical and cognitive learning models (Nathan et al., 2020; Tversky, 2009). To 

address the problem of how to bring spatial instruction into the classroom in an accessible, 

contextualised way, we explore engagement with a spatial task that drew on the local 

knowledge of students from culturally and geographically diverse schools.  

Location and Transformation 

Location and Transformation are interwoven throughout the Australian mathematics 

curriculum. In the early years, the focus is on position and movement to assist with simple 

directions. As students develop, they are taught increasingly complex mapping skills as a 

foundation for the introduction of the Cartesian coordinate system (ACARA, n.d.). Despite 

the inherently spatial nature of this content, concept development often fails to consider the 

opportunities of promoting spatial representations to provide students with a fallback 

strategy when content difficulty increases (Lowrie, Logan & Patahuddin, 2018).  

Location is a broad term spanning Measurement and Geometry, ranging from descriptive 

language (i.e., behind or next to), to pictorial (grid representations), and symbolic (co-

ordinate systems). This learning progression was identified by Lowrie, Logan and 

Patahuddin (2018) as critical for development of sound mathematical understanding. They 
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posit that student experiences support language growth and engagement with pictorial 

representations (i.e., concrete materials, gesture, maps, pictures). It is these foundations that 

foster development of symbolic understanding and further applications to more complex 

mathematical concepts.  

Large-scale Spatial Representation   

Mapping skills sit at the nexus of numeracy and spatial cognition. Numeracy (via 

Location and Transformation) and Geography curriculums emphasise the development of 

mapping skills throughout schooling (ACARA, n.d.), while psychologists explore the 

relationship between mental representations of real and virtual environments to understand 

the development of navigation skills (Keil et al., 2020; Richardson et al., 1999).  

Drawing on student experience is critical when developing mathematical and spatial 

thinking (Lowrie, Logan, Harris et al., 2018). Connecting new learning to students’ 

knowledge provides the foundation for language development such as directional and 

relational language (e.g., the park is south of school, I go past the corner store on my way). 

Although language alone is not sufficient for developing spatial thinking (as this would 

undermine the non-verbal nature of the concept), language can be critical for directing 

attention and building towards more complex spatial concepts (Newcombe & Stieff, 2012). 

Experience and language lay the groundwork for developing increasingly sophisticated 

large-scale spatial representations and map understanding (Larkin & Kinny-Lewis, 2017). 

These tools transcend cultural boundaries and provide access points for all students when 

building content knowledge.   

Large-scale spatial representation has traditionally been thought to reflect a cognitive 

map incorporating Euclidean space, landmarks, and routes (Tversky, 2003). Although 

cognitive maps develop through exposure to both physical space and maps, the notion that 

the representations themselves are map-like is a topic of some debate (Foo et al., 2005). 

Some researchers have argued that mental representations of large-scale space may be more 

like graphs, with spatial locations represented as nodes, connected by familiar routes but 

flexible enough to account for changes in orientation and task demands (Peer et al., 2021).  

Spatial Relations 

Landmarks serve two main purposes in spatial representations (Presson & Montello, 

1988): 1) as navigational cues, and 2) as reference points for determining spatial relations 

(Clements & Battista, 1992). Here we focus on spatial relations, however the salience and 

organisation of landmarks in the spatial representation can be highly contextual. For 

example, a student may recall passing the park and shops on their journey to school, but it 

does not necessarily help them position the locations from a birds’ eye perspective.  

Scale adds an extra element to the notion of spatial relations. The structure of large-scale 

space is divided into regions that, even in the absence of language, can be thought of in terms 

of distance and direction (Kuipers, 1978). By removing physical boundaries, students are 

free to reveal the scale and relative position of the landmarks as they exist in their mental 

representation. It is through this physical enactment of their mental representation of space 

that we can gain insight into their awareness of their local environment, including scale and 

relative position, and use this as a springboard for developing further content knowledge.  
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The Context of the Study 

Research has shown that a great deal of curriculum content is established in a city-centric 

style that leaves students in regional and rural communities at a disadvantage (Roberts, 

2017). However, recent work has highlighted the incredibly sophisticated local knowledge 

possessed by students outside of city centres (Lowrie et al., 2021). It is this contextualised 

knowledge we propose provides curriculum accessibility for all students in developing 

Location and Transformation understanding.  

When performing tasks relating to their local environment, visual prompts allow children 

to recall and represent a greater amount of information than free recall alone (Matthews, 

1985). Therefore, by providing students with physical stimuli we can explore children’s 

representation of space using familiar landmarks (Peer et al., 2021). Tversky and Hard 

(2009) argued that the mere presence of an individual in a spatial perspective task alters the 

interpretation of spatial relations. In this study, while all students were oriented to face north, 

relations between landmarks were relative to the school or position of other landmarks (as 

determined by the student).  

This study is situated within an Australian Research Council Discovery Project exploring 

spatial reasoning in children from culturally and geographically diverse communities. 

Specifically, this study examined students’ large-scale spatial representations, with a focus 

on factors such as geography, distance, and spatial relations, with the goal of analysing the 

efficacy of using local knowledge to foster foundational spatial concepts. 

Method 

Participants 

Thirty Grade 5 students from three NSW schools participated in this study. The sites 

represent vastly different geographic locations and population density: an urban site in 

Western Sydney, a rural site (population < 1,000), and a regional site (population > 30,000). 

Procedure 

Students were shown a collection of local landmark sites (such as parks, shops, 

prominent town features) and asked whether they recognised the site. They were asked how 

often they visited or travelled past the site, whether they had positive or negative feelings 

about the location, and how familiar they were with the site.  

Students were seated facing north and given a piece of A3 paper with a dot representing 

the school in the centre. As each site varied significantly in terms of geography and density, 

the school was chosen as a central point as it was familiar to all students, and consistent 

within and between sites. Students placed the photos of landmarks they recognised around 

the school point from a bird’s eye perspective over their local area. Students performed this 

task twice on consecutive days with different landmarks. The photos were large compared 

to the school marker and the A3 paper. There were no constraints on the way students were 

able to complete the task and all photos were provided to the students at the same time.  

Scoring and Analysis 

We analysed student representation according to three criteria, and then made site-based 

comparisons using Analysis of Variance, and Nonparametric tests (chi-square) to explore 

distributions within sites: 
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1. Landmark recognition = proportion of the possible landmarks recognised 

2. Landmark accuracy = landmarks positioned correctly relative to school 

3. Spatial relations = the scale and relative position of landmarks 

a) Scale = some photos placed further than others 

b) Relative position = clustering of photos 

Results 

Landmark Recognition 

A 3x3 mixed factorial ANOVA revealed significant main effects in landmark 

recognition across distance categories (within-groups) and site (between-groups), and a 

significant interaction, F(4,54) = 3.85, p = .008, partial eta2 = .22. All students recognised a 

larger proportion of near landmarks, F(2,26) = 19.59, p < .001, partial eta2 = .60. Between 

sites, rural students recognised a significantly larger proportion of landmarks than urban 

students, F(2,27) = 4.13, p = .027, partial eta2 = .23. Means are presented in Table 1.  

Table 1  

Average percentage of sites identified in each of the distance categories 

 Near (<1 km) Intermediate (1-5 km) Far (>5 km) Total 

Urban 56% 57% 56% 56% 

Rural 94% 76% 57%* 76% 

Regional 100% 50% 43% 64% 

*Note. All far landmarks in the rural site were located in neighbouring towns roughly 40-50km away. 

Urban students recognised half of all landmarks across distance categories, while 

regional students were familiar with all locations within 1 km of school, dropping to half the 

sites beyond 1 km. By contrast, rural students identified a large proportion of landmarks in 

their own town. Despite the distance of the far landmarks, rural students still identified more 

than half the possible landmarks. 

Landmark Accuracy 

A 3x3 mixed factorial ANOVA revealed significant main effects in accuracy by distance 

(within-groups) and site (between-groups) and a significant interaction, F(4,54) = 2.88, p = 

.031, partial eta2 = .18. Landmarks in the near range were positioned most accurately, 

F(2,54) = 13.60, p < .001, partial eta2 = .34. At the school level, rural students were more 

accurate than urban students, F(2,27) = 8.21, p = .002, partial eta2 = .38. At the urban site 

there was no difference in performance based on distance categories while rural and regional 

students experienced decreasing accuracy as distance increased. Regional students had a 

sharper decline with increasing distance than rural students (see mean percentages in Figure 

1).  

 

Figure 1. Mean percentage of landmarks in correct position relative to school site 
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Spatial Relations 

Students used different strategies to demonstrate their mental representation (examples 

in Table 2). We analysed the final position of the photos as not all students verbalised their 

thinking during the task. The most distinct differences were in orientation and structure. 

Some students kept all photos facing themselves while others rotated the photos to reflect 

how the landmark would appear when journeying from school. The structure students chose 

when arranging the photos varied between grid-like and relational. The relational structure 

accounted for the scale and relative position of landmarks, or a combination of both. These 

differences are discussed further in the next section. 

Table 2 

Representation categories 

Orientation Upright 

 

Rotated 

 

Structure Grid-like 

 

Relational 

 

Scale and relative position. A third of all students demonstrated elements of scale and 

relative position, however, this had no significant connection with accuracy. One exception 

was for those that demonstrated scale, these students were more accurate when placing near 

landmarks, F(1,29) = 6.81, p = .014. There were no significant differences for the other 

distance categories. Table 3 includes sample arrangements of the four categories.  

Table 3 

Sample representations, and student numbers per category  

  Scale 

  Yes No 

R
el

at
io

n
s 

Yes 

 N = 10  N = 8 

No 

 N = 7  N = 5 
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Non-parametric analysis (cross tabulation using chi-square statistics) revealed a 

difference by site in the representation of scale, χ2(2) = 8.69, p = .01, but not relative position, 

χ2(2) = 46, p = 79. A large proportion of students in the rural and regional sites represented 

scale compared with only one urban student. Despite the distance category parameters 

remaining constant, students at the urban site appeared less sensitive to the distance when 

arranging the landmark photos. 

Discussion 

Recognition and Accuracy  

Landmarks within 1 km were most recognisable and positioned with the most accuracy 

(with the exception of urban students). Regional students were incredibly familiar with their 

local area, within 1 km, recognising all the possible landmarks and accurately positioning 

80% of those. More progressive, rural students were able to recognise most landmarks within 

their town and still more than half of the landmarks in towns 40-50 km away. Even at this 

distance, rural students correctly placed roughly half of the landmarks, which was more than 

the urban or regional students whose far landmarks were roughly 5 km away. Tversky (2003) 

talks about key landmarks when referring to cognitive maps. In towns like the rural one in 

this study, the geographic size and relatively low density may contribute to students being 

aware of all landmarks. By contrast, the density of the urban environment makes competition 

for landmark memory much higher. For example, most students in the regional town were 

able to identify something as routine as a street sign, while at the urban site only a 

McDonald’s and a movie theatre were consistently recognised. The regional students 

similarly recognised a local McDonald’s but were also able to identify local parks, shopping 

centres, petrol stations and hardware stores. It is possible there are fewer of these to compete 

for attention, or the nature of children’s lived experience drives their memory for these 

locations. This finding has implications for classroom practice, the richness of local 

knowledge demonstrated by rural and regional students can be drawn upon when introducing 

concepts such as scale. When verbalising their thinking, those students who demonstrated 

scale and relative position were able to clearly articulate the relations between the sites, and 

often drew on these relationships to help them position less familiar photos.   

Presson and Montello (1988) discuss the importance of context when it comes to spatial 

memory for location. Our results highlight the impact of student context in mental and 

physical representation of their local environment. We argue that the sophisticated local 

knowledge in rural and regional areas should be harnessed when building understanding 

around Location and Transformation. Similarly, it would benefit urban students to engage 

more with their local environment, for example through community walks or mapping 

exercises, to provide foundational experiences and develop directional language before 

building towards more abstract representations of space. Educators are well-placed to draw 

on student strengths and experiences when building mathematical knowledge – this task is 

one example of how local knowledge can be used. 

Spatial Relations 

The open-ended nature of the task allowed students to reveal the diversity of their mental 

representations of the local environment. While some students kept all photos upright, others 

rotated the images to align with their view as they mentally traversed the journey. This latter 

approach may be indicative of the graph approach (Peer et al., 2021), with students 
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connecting nodes (i.e., locations/landmarks) via their well-travelled routes. Anecdotal 

evidence from some students’ reflections suggested that these differences may be due to 

map-like (i.e., bird’s-eye) versus route-based strategies. Future research may benefit from 

exploring these distinctions further.  

Relative position. Despite the body of work discussing relative position as a critical 

component of the accuracy of spatial representations (Peer et al., 2021; Presson & Montello, 

1988), our findings did not establish a link between students who demonstrated relative 

position and their accuracy in positioning landmarks. The difference between our study and 

those before are that we drew on the local environment in selecting landmarks, whereas 

previous studies have focused on new learning. In these instances, the locations (or nodes) 

under consideration are determined by the researcher. In our study it may be that students 

were drawing on knowledge beyond what we presented to them, for example a third site 

(such as home) may have helped them triangulate locations (Foo et al., 2005). 

Scale. By contrast, representation of scale did show significant connections to accuracy 

and context. Those that demonstrated scale by positioning the photos at varying distances 

from school were more accurate in their placement of near landmarks. It is one possibility 

that these students had a robust mental representation of their local area and then used this 

to extrapolate to the larger area. In newly learned environments nearer landmarks have been 

shown to be associated with greater salience and accuracy (Keil et al., 2020).  

Consistent with the notion that context is critical when examining Location, rural and 

regional students were more likely to represent scale. The nature of their interaction with 

their local area appears to have a bearing on their awareness of the scale of the environment. 

Many rural students travel long distances by bus to school while many regional students 

reported not travelling very far beyond their local community in their daily lives. Both 

environmental conditions may contribute to students’ sense of environmental scale (Presson 

& Montello, 1988). Scale and magnitude are foundational numeracy skills, our findings 

suggest that where city-centric teaching models may disadvantage some students (Roberts, 

2017), the opportunity to draw on students’ local knowledge and experience may make 

abstract mathematical concepts more accessible for all students. 

Future Directions 

This task provided some insights into the different ways students represent large-scale 

space. The factors explored in this paper were broad in terms of geography and assumptions 

about student experience of both the sites and town structure. Future research may look at 

more individual factors, such as students’ freedom to roam, means of transport, and family 

culture.  Although we explored the use of relative position and we did not analyse the order 

in which students placed the photos, it is possible more in-depth analysis of the students’ 

actions and thinking may give insights into key landmarks (or nodes) around which their 

spatial representations were built.  

Conclusion 

Much of the spatial research examines lab-based or abstract notions of spatial reasoning 

which often leaves students in regional and rural areas at a disadvantage. We have visited 

sites with different social, geographical and cultural contexts. We have chosen to examine 

the question of spatial representations with a different lens. Our results indicate that the 

engagement with the local environment afforded by rural and regional living has provided 



Harris, Logan and Lowrie 

234 

students with an advantage in representing their familiar space. We suggest that this 

embodied, contextualised spatial knowledge is a strong foundation for building 

mathematical knowledge around Location and Transformation as a springboard for more 

complex mathematical skills. 
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This paper reports on a new initiative of collaborative work between the Australian 

Curriculum, Assessment and Reporting Authority (ACARA) and Cambridge University as 

part of the 2020-21 review of the Australian Curriculum: Mathematics Foundation – Year 

10.  The ACARA mathematics curriculum development team worked with the Cambridge 

Mathematics team using the Cambridge Mathematics Framework, which incorporates 

summaries of the research literature, to inform the review of Statistics and Probability in the 

mathematics curriculum as part of ACARA’s program of research.  

The Australian Curriculum, Assessment and Reporting Authority (ACARA), during the 

2020-21 review of the Australian Curriculum: Mathematics Foundation (pre-Year 1) to Year 

10, identified an opportunity to trial a new approach to coherent curriculum design. A team 

of curriculum specialists incorporated the Cambridge Mathematics Framework (CMF) into 

the Statistics and Probability areas of the curriculum review as an analytical tool for 

examining content revisions, making decisions, and providing justification to other 

stakeholders based on consolidated interpretations of relevant research. Teams from 

ACARA and the University of Cambridge developed ways of incorporating the CMF which 

led to areas of validation and areas of change in the curriculum and recommendations for 

use and support of the CMF for the Cambridge team to apply in the future. This paper 

presents an outline and some details of this new initiative and discusses implications for the 

Australian Curriculum, the CMF, and curriculum review more broadly. 

Challenges for domain coherence in curriculum design 

Learning mathematics has been described as the process of building a scaffold from the 

ground up, a rising and expanding network of ideas supported by the synthesis and 

consolidation of ideas students have already developed (Tall, 2013; Thurston, 1990). Day to 

day in the classroom, this process is non-linear, as teachers and students visit related ideas 

back and forth, retracing steps, making connections, bringing new ideas to bear on old ones, 

and vice versa. A coherent mathematics curriculum seeks to provide a substantive 
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progression within key organising constructs, structuring the process in time across years of 

study while supporting the underlying conceptual structure of the domain (Jameson et al., 

2018; Schmidt et al., 2005). 

The extent to which this is possible depends on what knowledge can be brought to bear 

about the underlying structure of the domain. Each teacher, curriculum designer, and 

researcher in mathematics education, from their own education and professional experience, 

has developed a sense of the ideas and the relationships between them that make up parts of 

this scaffold, though perspectives on some areas will be based on more information than 

others due to individual specialisations. However, opportunities for sharing these 

perspectives to assemble a larger coherent picture are often limited.  

The importance of connecting research and practice is well recognised in mathematics 

education, but there are challenges to making these connections successfully (Flessner, 

2012). These challenges stem in part from how research is designed and the investment it 

takes to bring professional judgment from practice and research together. First, much of this 

research is structured around developing particular theories of learning and understanding 

of surrounding issues, and produces knowledge in a very different framework to pedagogical 

knowledge (McIntyre, 2005). Each study is intended to address a specific gap in knowledge, 

to make a unique or complementary contribution with respect to existing research and 

experience. This means that studies typically do not result in unambiguous recommendations 

for practice individually, and the collective picture can be even more complex.  

Secondly, in order for research to contribute to practice, teachers and educational 

designers need practical access to it. Some barriers to access are physical or financial, while 

others have simply to do with the time it takes to find, read, and synthesise reports of multiple 

studies, and the study or training required to be familiar enough with research practices and 

strands of work in the field for critical analysis (van Schaik et al., 2018).  

Another challenge is that curriculum design involves agents and stakeholders who are 

members of different communities of practice (Pinto & Cooper, 2018; Remillard & Heck, 

2014), with differences between their priorities and perspectives on mathematics. Pinto and 

Cooper (2018) reported that in curriculum design discussions between different types of 

stakeholders, people with backgrounds in more than one camp act as knowledge brokers - 

people who can translate between perspectives and help the group to make decisions based 

on shared understanding. Shared objects of discussion can also help. However, discussions 

which are not successfully mediated may not end with meaningful agreement, whether about 

structuring principles or scope and sequencing. 

Lastly, a challenge lies in the compressed selection of objectives which occurs 

distinctively in every curriculum due to time and resource constraints. Different decisions 

guide this selection under different circumstances, but it always involves trade-offs – for 

example, depth and breadth, this set of key ideas or that set of key ideas, ordered along in 

this sequence or that sequence. It is not possible or even necessary to include everything, but 

the choices which are made affect the coherence of mathematical experiences in the 

classroom and opportunities for teachers to develop a more connected perspective of the 

domain (Schmidt et al., 2005). Whatever selection is made, the curriculum aims to have its 

own sense of completeness, coherence, consistency, correctness and relevance, in particular 

as it is developed to provide access to educational entitlement for students. 

Conceptual mapping has been used in multiple instances to address curriculum 

challenges. Confrey et al. (2017) have designed “learning maps” based on learning 

trajectories, which are empirically supported conjectures of the network of constructs 

students experience as they build understanding of mathematical concepts. Learning maps 
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are designed to show details which help teachers to provide learner-centred instruction 

(Confrey et al., 2017). Koch et al. (in press) have developed a network representing teacher 

knowledge of mathematical topics for middle grades in Canada, derived from empirical work 

with teachers rather than students. The CMF has some similarities with each of these and 

also key differences. It allows maps to be generated from a network of mathematical ideas 

which, similar to Confrey et al.’s (2017), represent concepts building on one another, but 

these concepts in the CMF are derived from interpretation and synthesis of research 

literature. They represent not professional knowledge itself, as in Koch et al.’s (in press) 

work, rather what the reviewed research suggests is useful for designers to know about 

students’ conceptions. 

Context 

Review of the Probability and Statistics component of the Australian Curriculum 

The current F-10 Australian Curriculum review process began in June 2020 when 

Australian education ministers through the Education Council agreed to the terms of 

reference, and a guiding paper, The Shape of the Australian Curriculum, was developed. 

From there, content review began, as well as consideration of how the proficiencies could 

be further developed and incorporated with this revised content. The Cambridge 

Mathematics team were introduced to the project in June 2020 and began working with the 

team of curriculum specialists tasked with reviewing content in the Statistics and Probability 

strands, with both teams using the CMF to explore questions and inform regular discussions. 

The review was structured around the organising ideas of Mathematising, Structure, and 

Approaches and took place in four steps: (1) identifying core concepts at the Learning Area 

level, (2) identifying core concepts at the Strand (branch) level, (3) using identified core 

concepts to curate essential content for the learning area and identifying any gaps, 

redundancies or imbalances, and (4) organising content with embedded  proficiencies into 

strands using core concepts and/or core concept organisers within the wider Mathematics 

scope and sequence, also relying on an initial programme of research. Once this process was 

initially completed, the result was sent out for feedback from teacher and curriculum 

specialist reference groups. The next stage in the process is public consultation. 

The ACARA team had in place its own programme of research which made them aware 

of key issues they wanted to look at further in Statistics and Probability. However, work with 

outside groups, like the Center for Curriculum Redesign, and drawing on Australian research 

in the field (Bargagliotti, 2020; Callingham & Watson, 2005; Callingham & Watson, 2017; 

Franklin, 2007; Watson & Callingham, 2020), led them to seek additional feedback on 

aspects of the work. Their two guiding questions for the collaboration were: (1) In what way 

would engaging with the CMF and the Cambridge team support/validate the revisions to the 

Statistics and Probability strands of the revised curriculum? And (2) If 

adjustments/additions are made based on engagement with the CMF, what led the ACARA 

review team to make these changes? 

The Cambridge Mathematics Framework (CMF) 

The CMF is a tool for conceptual mapping in educational design which supports 

research-informed design decisions in mathematics education. It consists of a searchable 

network of key mathematical ideas and the relationships between them in the domain of 

school mathematics, along with a set of tools for exploring and analysing the network and 



Jameson, Whitney-Smith, Macey, Morony, Benson-Lidholm, McClure and Leigh-Lancaster 

238 

descriptions of what these ideas look like in the classroom. These ideas are ordered in 

relation to their interdependence, not tied to year ranges, and this provides the opportunity 

for designers to make choices of their own with respect to temporal sequencing.  

The network is derived from interpretation and synthesis of mathematics education 

research carried out by the Cambridge Mathematics team. The ideas in the network are 

linked to underlying research sources and can be accessed in the form of dynamic maps 

which are presented with corresponding Research Summaries, which tell and reference the 

stories of the map representations with respect to the research sources. External content, like 

curriculum statements, tasks or assessment items can be linked to the network to help 

designers to analyse how the ideas underlying their work depend on each other, as was the 

case with the ACARA collaborative work. 

The goals of Cambridge Mathematics involve domain coherence at different levels of 

educational design, and the CMF is intended to inform design work at different scales: 

national, regional, and school-level curricula, resources, and even lessons in some contexts. 

All levels are important for optimal impact, but opportunities to trial the CMF are more 

frequent for smaller resources. The Cambridge team viewed this collaboration as a valuable 

contribution to its current formative evaluation goals. In this case, they wanted to examine 

whether the CMF as a reference tool was meaningful, trustworthy, useful, and usable for 

curriculum design spanning a range of years in school mathematics. 

The CMF situates statistics education as learning how to understand variability in data 

(Macey et al., 2018). This variability is expressed through the concept of a distribution and 

exploration of its graphical and mathematical representation. Figure 1 shows an example of 

this and illustrates the materials the ACARA team was working with; the map shows the 

highly connected waypoint “knowing simple distributions” which draws together the 

sometimes-disparate ideas that underpin the concept of a distribution, and establishes a 

stepping point for more advanced statistical concepts that rely on it. 

 

Figure 1. A view of a portion of a map within the CMF  

Methods 

The collaboration between the ACARA and Cambridge teams took place primarily in 

and between seven meetings from June - August 2020. After an orientation meeting in which 

the two teams discussed the context and established mutual goals, they met again for the 

Cambridge team to introduce the features of the CMF and demonstrate how to search and 

how to work between maps and detailed descriptions. The Cambridge team linked ACARA’s 

original curriculum statements to mathematical ideas expressed in the CMF and produced 
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underlying maps of ideas and relationships which they provided to the ACARA team for 

consideration. Having previously piloted the CMF in the design of the UNICEF Learning 

Passport mathematics curriculum (Oates et al., 2020), which spanned a wide year range, the 

team was able to apply ideas from that project to the ACARA review. 

The ACARA team kept diaries and notes on a weekly basis as they worked with the 

CMF. The Cambridge team used the diary-interview method, adapted from Zimmerman & 

Wieder (1977) to develop a detailed picture of their activities. One ACARA team member 

kept a running diary, while others kept notes, and in each joint discussion the ACARA team 

would raise issues which had come up in their work over the past week, having to do with 

the content, use of the CMF, or both. In the final meeting before the revisions went out for 

initial review, the ACARA team debriefed the Cambridge team on the full diary and their 

sense of how things had gone overall relative to their interests and expectations. 

Outcomes and discussion 

Ways of working with the CMF 

The ACARA team identified the location of core concepts in the CMF and explored 

similarities and differences in the way these concepts were represented and the landscape of 

other connected ideas. This process helped them to clarify what they thought the core 

concepts were and how things could be structured around them for students to approach and 

investigate. To do this, they used search features and structural cues in CMF maps. After 

reflecting on this process, they noted that “there was sufficient detail” in the map “to provoke 

further exploration of ideas but without predicating the outcome, so it can be a tool for 

critical inquiry”. It was possible to find and recognise “big ideas writ small” and then 

continue to the next issue. 

The higher-level core concepts, structure, approach and mathematising, had already been 

transformed to key organisers for a larger set of core concepts so that these could be revised 

and restructured more usefully. From this process, what it means to reason stochastically 

became a structural focus. Proficiencies like problem solving and reasoning are always 

embedded in specific content areas, and the ACARA team reported that the CMF helped 

them to do this more meaningfully, integrating content statements with proficiencies and 

bridging between the statements and the bigger picture. 

Within the timeframe for the review, the ACARA team found themselves choosing what 

to pay attention to in the CMF based on what most surprised them based on their expectations 

and prior understanding. When they identified areas requiring particular attention, they used 

not only maps but some of the more detailed information in the CMF, including descriptions 

of ideas, rationale for structure and examples of what it looks like in the classroom when 

students are working with them. They referred to the research summary level of the CMF as 

applicable for more detailed investigation, however, as these summaries had already been 

reviewed by external researchers in general, they trusted that research had been reasonably 

and robustly interpreted. 

Use of research synthesis for validation and change 

 The ACARA team found that research synthesis in the CMF provided further validation 

for many of the revisions they were planning based on the research they had already 

consulted. They found there was a high level of consistency with their existing 
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understandings, but that some things stood out as being particularly surprising, and it was 

these that drew their attention for further investigation. 

There were a few notable areas in which the ACARA team decided to adjust content and 

sequencing based on the implications of research synthesis in the CMF; four examples are 

given below. 

• Before: There was initial concern that the pairings of measurement and geometry, 

statistics and probability was restricting development of other connections – the 

ACARA team knew there were connections between measurement and statistics 

which weren’t being explored. 

• After: Some of the connections they found in the CMF led to rich discussions around 

how connections between the mean, error and measurement could be made and 

actively furthered in the curriculum presentation on the website.  

• Before: Summary statistics, which are introduced close together in the current 

curriculum, sometimes leading to students being unable to distinguish between 

mean, median and mode later on, as well as to 'procedural approaches' that lacked 

understanding of what the measures are and why they'd be of interest. 

• After: The separation of these statistics as distinct ideas with distinct relationships to 

other topics in the CMF which built up to them prompted the ACARA team to make 

several changes. They moved mean and median around to get at deeper conceptual 

understanding of each and to introduce them at different times, shifted from 

frequency to mode, and introduced ordinal data, which wasn’t included previously, 

so students would engage with these concepts sooner. 

• Before: The notion of distribution was mentioned 11 times in content and 

achievement standards across 10 year levels, but nevertheless seemed procedurally 

driven and not conceptually connected for the ACARA team. 

• After: After discussing research implications which were apparent in the CMF, they 

shifted to embedding expectation of reasoning about representations, conceptual 

understanding, and connections. Distribution is now mentioned only twice but it is 

richer in that it points to how to talk about distributions in terms of their 

characteristics (spread, skewness, etc.).  

• Before: The ACARA team felt that some connections between probability and 

statistics were not being made. 

• After: The idea in the CMF that probability estimates are the result of narrative 

frequency was used as a way to bring statistics and probability together more 

explicitly.  

Use of maps as shared artefacts in discussing decisions with stakeholders 

The ACARA team felt the maps they were working with would be a useful contribution 

to discussions with reviewers in which they might need to provide justification for their 

decisions. Not only did the maps link to research sources and research summaries (synthesis 

documents), but they also showed what some of the key sequencing decisions were as a 

result and allowed the conversation to focus on these areas. The full consultation with 

teachers has not yet begun, but the curriculum and teacher reference groups have provided 

initial feedback. Qualitative feedback from the combined teacher and curriculum reference 

group indicated they had seen a positive development in the statistics strand from the original 

version of the material.  
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Drawing on this, the ACARA team identified instances where the CMF was used to 

provide justification for decisions in a way that reference group members agreed was clear 

and helpful. In one example, CMF maps were used to illustrate the reason for separating 

statistics and probability as different strands. Some reference group members with a 

particular focus on statistics felt that the “end-game” or big picture was more apparent, and 

that it helped see the purpose and meaning of particular decisions. The ACARA team felt it 

gave them more confidence in laying out their perspective, knowing their reasons had 

research behind them and they could trace choices back to this in a discussion. 

Formative evaluation 

Just as the ACARA team found the CMF useful for analysing gaps, ordering, and 

coverage, the Cambridge team found the reverse was also true. The ACARA team’s critical 

engagement with the CMF as curriculum designers provided valuable formative feedback 

on the representation of mathematical ideas in the CMF, the tools available for working with 

relevant information and how these could be efficiently accessed and effectively used. 

Several points from the Cambridge team’s evaluation themes are below: 

1. Meaningful: Overall, the ACARA team recognised within the CMF concepts which 

they were working with, realised implications, and made meaningful decisions. 

There were particular areas in which it became clear during discussion that some 

implications were not explicitly represented in the CMF. In such cases, CMF content 

was further refined and possibilities for other supporting documents were raised. 

2. Trustworthy: The ACARA team themselves felt the CMF provided them with good 

justifications for their curriculum revisions. Other stakeholders agreed. 

3. Useful: (a) Because the CMF is a dynamic digital online tool, the collaboration 

demonstrated that it was productive for two teams across the world from each other 

to interact virtually around the same artifacts. (b) A theme running throughout the 

joint discussions was the notion of perspectives from research being represented 

explicitly vs. implicitly; the Cambridge team realised some perspectives needed 

more explicit and actionable support, either in the network or the guidance 

documents. Discussions like this are useful to identify whether other assumptions 

about what is implicit in design need to be made more real for designers. 

4. Useable: (a) From the ACARA team’s perspective, the CMF “made the research 

usable” and “did the heavy lifting in a limited time frame”. They noted the CMF 

helped them to overcome time and resource constraints to bring new and well-

synthesised research influences into the review. (b) The ACARA team found their 

first exposure to the CMF mapping environment to be demanding, but it 

progressively became more comfortable and they felt it had been worth getting over 

the initial familiarisation hump. The Cambridge team could provide additional 

support to streamline this process. (c) The ACARA team concluded that using the 

CMF was not a shortcut in terms of time spent, but they felt the output reflected a 

broader range of research and was more coherent, helping them meet review goals.  

Conclusions 

The ACARA team entered the collaboration seeing potential in the CMF as a tool for 

validation, conceptual insights, construction and exploration, and they agreed that these 

goals had been met. The process that worked for them involved using the CMF for a 

combination of individual exploration, group decision-making and justification activities, 
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providing some evidence that the design of the CMF supports active professional decision-

making. Reflecting on the outcomes, the ACARA team identified opportunities where the 

CMF could be used in other strands beyond statistics and probability. The Cambridge team 

continues fine-grained analysis of interview data which can inform refinement and future 

use of the CMF for curriculum design, and is in the process of following up on suggestions 

which emerged from the process.  This collaboration demonstrated the value of the CMF as 

a map-based design tool to support mathematics curriculum design, and processes emerged 

which will streamline its use in future versions. 
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This paper describes the development and efficacy of an online tool for assessing the 

numeracy of undergraduate students. The tool was designed to be easy to administer, provide 

immediate feedback to students on whether they had the required level of numeracy, and to 

be consistent with other measures of adult numeracy. When used with students taking a 

mathematics or statistics course, we found a significant correlation of r = 0.45 between their 

numeracy score and final mark in their enrolled course. Students who had a numeracy score 

less than our threshold had a 30.6% probability of failing their course, whereas students who 

had a numeracy score of at least our threshold had a probability of failing of only 8.0%. 

We define numeracy, in an undergraduate university context, as having the knowledge, 

skills, and confidence to use mathematical tools in a range of disciplinary contexts. Tertiary 

educators may expect students entering their programmes to have the prerequisite numeracy 

to successfully complete their quantitative courses. However, student performance does not 

necessarily align with these expectations (Parsons, 2010). Students lacking numeracy skills 

are less likely to continue with a course when they are faced with difficulties with 

quantitative material (Matthews et al., 2009). Large scale numeracy assessment tools such 

as the Literacy and Numeracy Test for Initial Teacher Education (LANTITE) (Australian 

Council for Educational Research, 2016) and the Literacy and Numeracy for Adults 

Assessment Tool (LNAAT) (Tertiary Education Commission [TEC], 2008), have been 

developed to provide detailed feedback to individuals about their numeracy competency. 

Such tools are aimed at measuring the level of numeracy demonstrated by an individual 

rather than establishing if that person has a sufficient level of numeracy to be successful in 

a particular situation. Therefore, we sought to develop an undergraduate numeracy 

assessment (UNA) tool that could be used specifically for identifying if students have the 

prerequisite level of numeracy to enable them to be successful in their quantitative courses. 

Background 

The New Zealand Ministry of Education (2009) cautions us on using educational 

assessment as a sole means of assessing numeracy capability because high school students 

with high levels of success in formal qualifications may often present with low levels of 

numeracy. Since expectations from lecturers about students’ mathematical competence does 

not necessarily align with numeracy entry levels (Parsons, 2010), high school leavers who 

are not identified by their teachers as having problems with numeracy may be identified 

subsequently in adulthood (Bynner & Parsons, 2006). Furthermore, the teaching of 

mathematical and statistical knowledge within courses of a quantitative nature does not 

necessarily link directly to a students’ mathematical qualification (Gnaldi, 2006; Taylor et 

al., 1998). 
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We built upon descriptions of students’ numeracy difficulties that were generally 

anecdotal or restricted to mathematical content (Taylor et al., 1998). We identified important 

underlying numeracy constructs for undergraduate students that included proportional 

reasoning, understanding of rational numbers, and multiplicative thinking (Galligan & 

Hobohm, 2015; Linsell & Anakin, 2012; Linsell et al., 2017). These constructs can be found 

in the large-scale numeracy assessment tools, such as the LANTITE and LNAAT. However, 

there are limitations when using these tools to assess the numeracy of undergraduate 

university students. First, students with high attainment take longer to answer questions than 

students with low attainment (TEC, 2017). Thus, students and education practitioners may 

feel that the time taken to complete a robust adaptive test across a six-step progression may 

be arduous or unnecessary. Second, assessment feedback provided to a student describes 

individual strategies, strengths, and knowledge (Hall & Zmood, 2019; TEC, 2008) but not a 

level of numeracy competency. Third, the New Zealand TEC has aligned numeracy 

progression benchmarks in the LNAAT to levels of the mathematics and statistics in the 

New Zealand Curriculum and to National Certificate of Educational Achievement (NCEA) 

standards for numeracy assessment (Thomas et al., 2014). A LNAAT score of 605 (Step 5) 

approximates to the NCEA numeracy standard as required for university entrance. However, 

further work is needed to confirm whether LNAAT is well aligned and represents numeracy 

competencies that adults require to be successful in society. Further study is also needed to 

investigate numeracy competency, to predict success in quantitative courses at the university 

level. One way to address the limitations of the large-scale assessments is to carefully frame 

assessment items. We define framing in three ways. First, assessment items need to be 

encased in appropriate and meaningful contexts (Mason et al., 2009). Second, items must 

allow for authentic user responses. Third, items must assess conceptual knowledge alongside 

procedural fluency (Hiebert & Carpenter, 1992). With well framed assessment items, 

educators may be able to establish a student’s numeracy competence and predict their 

readiness to succeed in quantitative courses.  

Development of Assessment Tool 

Our aim was to produce a dependable assessment tool that was easy to administer, gave 

immediate feedback to students on whether they had the required level of numeracy, and 

that was consistent with other measures of adult numeracy. We decided that an online 

assessment would be necessary for facilitating marking and giving immediate feedback to 

students. We had previously used the LNAAT for investigating numeracy of undergraduates 

(Linsell & Anakin, 2012; Linsell et al., 2017). The LNAAT has been aligned with other 

measures of numeracy (Thomas et al., 2014) and we therefore decided to benchmark our 

tool against this. 

We wanted to determine whether students had a particular level of numeracy, rather than 

measure what level of numeracy students had. Therefore, it was unnecessary to set questions 

that could be answered with lower levels of numeracy than our requirement. Our previous 

work (Linsell et al., 2017) had indicated that Step 6 of the LNAAT numeracy scale was 

necessary for success in undergraduate quantitative courses. Furthermore, detailed 

examination of the responses of students to the LNAAT numeracy questions suggested to us 

that a score of 740 was necessary, considerably higher than the 690 threshold for Step 6 

(Casey & Knowles, 2018). Step 6 includes requirements for students to: 

• solve addition and subtraction problems involving fractions, using partitioning 

strategies; 
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• solve multiplication or division problems with decimals, fractions and 

percentages, using partitioning strategies; 

• use multiplication and division strategies to solve problems that involve 

proportions, ratios, and rates; 

• know the sequences of integers, fractions, decimals and percentages, forwards 

and backwards, from any given number.   

Our assessment consisted of 20 questions on the topics of fractions, decimals, ratios and 

proportions, and percentages. Students were required to answer five questions, which 

covered a range of sub-topics, in each topic. 

Using a question format similar to that of the LNAAT, our assessment made use of 

meaningful contexts, previously unseen by the students, to determine whether the students 

could use mathematical tools to solve problems. This use of contexts ensured that conceptual 

knowledge (Hiebert & Carpenter, 1992), rather than just procedural knowledge, was 

required to solve the problems. Contexts were chosen that reflected the experiences of 

undergraduate students but that were not specific to any particular academic subject. Figure 

1 shows an example of a question that requires students to make use of their knowledge of 

operating with fractions (this sample question is for illustrative purposes only and was not 

used in any assessments). The format for this question was multiple-answer, while other 

questions made use of numeric answers, fractions (both proper and mixed), multi-choice and 

drag-and-drop formats. 

 

Figure 1. Snow Days question employing multiple answer format. 

To ensure authenticity of students’ work when sitting the assessment in computer 

laboratories, we designed the assessment to make it unlikely that nearby students would be 

answering the same question, or that one student’s answer would be useful to another student 

sitting the assessment later.  The assessment used a number of levels of randomisation. In 

addition to randomising the order of questions, contexts were randomised (e.g., for 

multiplying fractions the context of recipes was randomised with the context of student 

allowances) and pictures accompanying the questions were changed accordingly, names of 



Knowles, Linsell, Baeumer and Anakin 

246 

people, objects, places and courses were randomised (e.g., quantity of flour to quantity of 

sugar), and the numbers used in each question were randomised. When randomising 

numbers, it was important to select values that did not alter the level of difficulty of the 

question (e.g., in the Snow Days question only the fractions 2/5, 2/10, 3/5, 3/10 were used 

and the number of snow days was randomised between 131 and 139 excluding 135). 

The platform we used was adapted and further developed from an online system for 

assessing first-year university students of mathematics and statistics at the University of 

Otago. Question presentation was simplified, fractional and drag-and-drop answer formats 

were added, and the reporting of feedback expanded. The development of the question bank 

and its benchmarking took multiple iterations of setting the test, analysing answers (e.g., too 

easy, too hard, misleading etc.), improving questions, and adding questions. The test was 

first administered in MATH151 General Mathematics, and the success rate for questions 

was found to vary between 28% and 89%. Possible reasons for the range of difficulty were 

identified and questions were revised. Next, two parallel versions of the test were developed 

and used in EMAT198 Essential Mathematics for Teaching. Again, questions that were 

particularly easy or hard were identified and modified if necessary. Students taking 

EMAT198 (n = 67) also sat a LNAAT assessment, which was used for benchmarking. There 

was a strong correlation of r=0.45 (p<0.001) between EMAT198 students’ scores on UNA 

and their LNAAT results (see Figure 2). Regression showed that a LNAAT score of 740 

corresponded with a UNA score of 14. 

We combined all questions (modified if necessary) from iterations 2 and 3 for use in 

STAT115 Introduction to Biostatistics in the second semester. For this fourth iteration the 

success rate for questions was found to vary between 49% and 92%. This variation is likely 

to be due to general gaps in students’ conceptual knowledge rather than assessment item 

difficulty. In total, there were five iterations of question development and improvement to 

develop a test for use in the following year. 

 

Figure 2. Correlation of UNA vs LNAAT assessment score in EMAT198 (n = 67) 

Numeracy of Undergraduates 

For students taking MATH151 General Mathematics, the UNA numeracy assessment 

was administered during tutorials in the third week of Semester 1 2019. The test was carried 

out under exam conditions. Of the 142 consenting students taking MATH151, 131 sat the 

UNA test, with the remaining 11 students not attending the tutorial in which the test was 

administered. Students scored between 1 and 20 on the 20-item test (M=13.3, SD=4.2) (see 

Figure 3). Sixty students (45.8%) scored less than our threshold score of 14 marks and 24 

students (18.3%) scored less than 10 marks. 



Knowles, Linsell, Baeumer and Anakin 

247 

 

Figure 3. MATH151 distribution of students’ scores (n = 131) on the 20 item UNA test 

For students taking STAT115 Introduction to Biostatistics, the UNA numeracy 

assessment was completed by students in their own time in the first week of Semester 2 2019 

and was unsupervised. However, students were encouraged to take the test to inform 

themselves of their numeracy needs and were given five marks towards their final grade in 

the course for taking the test. Of the 785 consenting students taking STAT115, 701 sat the 

UNA test, with the remaining 84 students opting not to do so, despite the inducements. 

Students scored between 0 and 20 on the 20-item test (M=14.9, SD=4.7) (see Figure 4). One 

hundred and eighty-eight students (26.8%) scored less than our threshold score of 14 marks 

and 90 students (12.8%) scored less than 10 marks. 

 

Figure 4. STAT115 distribution of students’ scores (n = 701) on 20 item UNA test 

As can be seen from Figures 3 and 4, the distribution of scores for STAT115 students 

sitting the test independently is rather different to that for MATH151 students sitting under 

exam conditions. Not only did a smaller proportion score less than our threshold score, but 

a much higher proportion scored 18 or more on the 20-item test. This difference could be 

accounted for by the variation in testing procedures rather than any differences between 

cohorts of students. The numeracy and attainment of the two cohorts is explored further in 

the next section. 

Numeracy and Attainment 

Overall, there was a strong and significant correlation of r=0.45 (p<0.001) between UNA 

numeracy score and the final mark of students in MATH151 and STAT115. Students who 

had a numeracy score less than our threshold of 14 marks had a 30.6% probability of failing 

their course, whereas students who had a numeracy score of at least our threshold had a 

probability of failing of only 8.0%. However, a much clearer picture is obtained by 

examining the attainment in MATH151 and STAT115 courses separately. 
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Figure 5. MATH151 students’ attainment (n = 131) on course vs UNA score 

For MATH151 there was a strong and significant correlation of r=0.41 (p<0.001) 

between UNA numeracy score and the final mark in the course. Of the students scoring less 

than 10 marks, 54% failed MATH151 (see Figure 5) with a mean score of 41% (M=41, 

SD=32). Similarly, 31% of students scoring 10 to 13 marks failed MATH151 with a mean 

score of 55% (M=55, SD=28). Only 14% of students scoring 14 or more marks failed 

MATH151 with a mean score of 71% (M=71, SD=26). It was interesting to note that the 

students who did not attend the tutorial and therefore did not sit the UNA test had a similar 

failure rate to those students who scored less than 10 marks. The failure rate (54%) for 

students scoring less than 10 marks or not sitting the UNA test was 3.9 times as high as the 

rate (14%) for students who achieved at least our threshold score of 14 marks. 

 

Figure 6. STAT115 students’ attainment (n = 701) on course vs UNA score 

For STAT115 there was a strong and significant correlation of r=0.46 (p<0.001) between 

UNA numeracy score and the final mark in the course. Of the students scoring less than 10 

marks 32% failed STAT115 (see Figure 6) with a mean score of 56% (M=56, SD=17). 

Similarly, 24% of students scoring 10 to 13 marks failed STAT115 with a mean score of 

62% (M=62, SD=20). Only 7% of students scoring 14 or more marks failed STAT115 with 

a mean score of 76% (M=76, SD=17). It was extremely interesting to note that the students 

who chose not to sit the UNA test had a failure rate even higher than those students who 

scored less than 10 marks. The failure rate (44%) for students scoring less than 10 marks or 

not sitting the UNA test was 6.3 times as high as the rate (7%) for students who achieved at 

least our threshold score of 14 marks. 

Discussion and Conclusions 

We used assessment items from UNA with students enrolled in EMAT198 to reliably 

calibrate using regression analysis against the LNAAT test to map a threshold score of 14 
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on UNA with the LNAAT adult progression at Step 6 and a score of 740. This score is higher 

than the 605 (Step 5) benchmark which corresponds to NCEA Level 1 numeracy assessment 

(Thomas et al., 2014) that is required for university entrance. Results from 832 students 

enrolled in mathematics and statistics courses within this study, using a UNA benchmark 

score of 14, indicate a significant correlation between UNA score and final examination 

result, demonstrating its suitability across a range of undergraduate courses with quantitative 

material. Furthermore, the cost and management of large-scale assessment (Brumwell et al., 

2018; Hall & Zmood, 2019) can be mitigated by the provision of a well framed, 20 item 

assessment, which identifies a particular level of numeracy competence (Galligan & 

Hobohm, 2015) rather than a description of a learners’ strategies, strengths, and knowledge 

(TEC, 2008) making it both time and financially advantageous. The importance of 

presenting questions in real-life contexts (Norton, 2006; Mason et al., 2009) is widely 

understood. Furthermore, UNA uses familiar adult contexts to assess the use of conceptual 

knowledge rather than procedural fluency (Hiebert & Carpenter, 1992). 

In describing how the UNA was developed, we also demonstrated the efficacy of the 

UNA to identify whether students had a particular level of numeracy rather than measure 

what level of numeracy students had. This decision allows us to not only analyse the data 

but consider appropriate actions to take as a result (Blaich & Wise, 2011). The next steps are 

to examine how other disciplines, such as commerce, health sciences, and humanities, may 

use the UNA. Expanded use of the UNA may assist lecturers to question and examine their 

expectations about their students’ mathematical competence and its alignment with 

numeracy entry levels (Parsons, 2010). Additionally, educators may find the UNA 

convenient for identifying the number of students who are likely to experience conceptual 

difficulties in their course. The UNA also provides an alternate source of numeracy feedback 

to educators that is consistent with other measures of adult numeracy such as the LNAAT. 

Educators may use results from the UNA to suggest that identified students seek numeracy 

support. To this end, students may be more likely to continue with the course and complete 

it successfully. 

 Further areas to address include: developing a larger bank of questions in the context of 

students’ specific disciplines (e.g., nursing, pharmacy, business); and the process and 

potential issues (e.g., resources, time) in scaling up the use of UNA across an institution. We 

anticipate that educators will find the UNA useful for identifying if students have the 

prerequisite level of numeracy to enable them to be successful in their quantitative courses 

and that it will be a dependable assessment tool that is easy to administer, provides 

immediate feedback to students, and is consistent with other measures of adult numeracy. 
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Why should we argue about the process if the outcome is the same? 

When communicational breaches remain unresolved  
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This paper uses the commognitive framework to analyse how a group of four primary school 

students classify odd and even numbers. The findings show how students’ reasoning is 

grounded in their personal uses of “odd” and “even”. The students attend to different features 

of “oddness” and “evenness” and agree on which numbers are odd and even but disagree 

about why. The findings highlight the role that proving can play in signalling differences in 

reasoning within a group of students that may otherwise remain hidden. However, they also 

suggest students’ awareness of the breach in communication may not be sufficient to 

engender a resolution, even when pedagogical moves toward this direction are made. 

Mathematical proof is fundamental to the work of mathematicians, and many educators 

maintain that it should also be a fundamental part of school mathematics 

(CadwalladerOlsker, 2011). However, proving activity has been neglected in mathematics 

education (Stylianides, 2016), especially in the primary classroom. Accordingly, there have 

been recent calls recommending proving for all mathematical content areas and across the 

grades. For example, the PISA 2021 framework (OECD, 2018) highlights the centrality of 

mathematical reasoning and reforms in some countries’ curriculum documents also now 

require proof and proving to be taught at all levels (e.g., Common Core State Standards 

Initiative [CCSSI], 2010; Department of Education [DfE], 2013; NCTM, 2000).  

Although the fundamental purpose of a mathematical proof is to know whether a 

mathematical assertion or idea is true or false (CadwalladerOlsker, 2011), proving also has 

a more practical role in explaining and convincing others about our statements or theorems 

(Stylianides et al., 2017). It is through this practical role that proving has potential to support 

deep learning and sense-making. For instance, the NCTM’s (2000) standards refer to proofs 

as offering “powerful ways of developing and expressing insights” through which “students 

should see and expect that mathematics makes sense.” (p. 4).  

What constitutes proof and proving at the primary level, however, is not entirely clear. 

Whilst it is unlikely that formal, deductive proofs expressed algebraically would be within 

reach of typical primary school students, Stylianides (2007) provided empirical accounts of 

how young students’ informal arguments could be mapped onto corresponding formal 

proofs. These student arguments made use of manipulatives or diagrams to provide visual 

demonstrations of a generic example. Building from this research, Stylianides (2016) defined 

a proof as an argument, which is accepted by the classroom community and, uses and 

communicates reasoning in ways that are endorsable by the wider mathematical community 

but are also within reach of the classroom community. Nevertheless, even with a working 

definition of primary-level proofs, there is little research that explores how young students’ 

arguments develop and become accepted within the classroom community. In this paper I 

utilise Sfard’s (2008) commognitive framework to provide insights into how young students’ 

arguments unfold as they substantiate (verify with evidence to prove why a reason is true) 

their classifications of numbers as even or odd. 
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Theoretical Framework 

Sfard (2008) defines mathematical discourse as a special form of communication, including 

self-communication (thinking), that is distinguishable via four interrelated characteristics: 

Its keywords (e.g., ‘odd’, ‘even’) and their use; its visual mediators (e.g., numerals, symbols, 

counters, pictures); its endorsed narratives (e.g., theorems, proofs, conjectures, definitions), 

and; its routines – discursive patterns, according to which mathematical tasks are being 

performed (e.g., the ways in which interlocutors substantiate oddness and evenness). 

Learning is seen as a lasting transformation in a learner’s discourse, which is identifiable by 

changes in one or more of these four characteristics.  

In terms of the keywords of interest to this study, ‘odd’ and ‘even’ are labels that function 

as nouns to denote discursive mathematical objects which may be realized in a multitude of 

ways; infinitely many numbers (e.g., ‘odd’ could be one, seventeen, one billion and one; 

‘even’ could be two, forty-six, three million and eight) and each of these numbers could be 

realized as numerals (e.g., 1, 17; 2, 46), icons (e.g., an arrangements of dots) or symbolically 

as algebraic expressions (e.g., 2n+1; 2n). However, the illusory nature of mathematical 

objects (being products of our discourse as oppose to actual, tangible objects) entails that 

none of these realizations could be singled out as being ‘the’ object. During initial phases of 

learning, learners may have limited realizations of the signifiers ‘even’ and ‘odd’: Evidence 

of an expansion of realizations signals learning. 

Another characteristic feature denoting the development of discourse is the level of 

objectification. Sfard (2008, p. 44) defines this as a process involving both reification–

replacing talk about processes with talk about objects – and alienation – presenting 

phenomena impersonally, as if they were occurring independently from human participation. 

For example, when someone speaks of ‘even’ as “numbers that can be shared equally 

between two people”, an activity (sharing) is indicated and the word ‘even’ acts as an 

adjective describing numbers. Whereas in the sentence “even plus even is even”, ‘even’ has 

been objectified: The word is used as a noun that encapsulates all even numbers and 

realizations of even into one set, giving it separation from any activity and more permanence.  

According to the commognitive framework, development occurs through the learner’s 

exposure to, and participation in, the discourse he or she is supposed to individualise, and 

the support he or she receives from other participants. Encounters between interlocutors who 

use the same mathematical signifiers (words or written symbols) in different ways, or 

perform the same mathematical tasks according to differing rules, have an indispensable role 

in this (Sfard, 2008, p. 162). Such encounters, termed commognitive conflicts, provide space 

for participants to consider new ways of talking, which is a prerequisite for experiencing a 

change in what they see. Sfard (2008, p. 258) maintains that resolving a commognitive 

conflict involves one of the interlocutors gradually accepting and adopting the 

incommensurable discourse and abandoning his or her own.  

With regard to the group of students in focus, in this paper I ask, “What are the sources 

of commognitive conflict in the context of classifying odds and evens?” and “When and how 

can a commognitive conflict fail to give rise to a modification in students’ discourse?” 

Research Design 

The present data is taken from a larger study aiming to investigate how students’ arguments 

unfold and develop as they engage in proving activity. Year 4 students from two NZ schools 

were selected by their teachers to be withdrawn from their class to work in groups of four at 

a time with me (as a teacher-researcher) on three different tasks: (1) classifying numbers as 
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odd or even; (2) proving conjectures about the sums of odds and evens; and (3) proving 

conjectures about the products of odds and evens. As the unit of investigation in this study 

was discourse, teachers selected students and groups according to whom they considered 

would be willing and able to engage in dialogue.  

The data presented in this paper is taken from one group of four 8-year-old students as 

they participated in the first task. The students took turns to classify numbers presented on 

cards as odd or even and, as each card was classified, they were asked to substantiate their 

classifications and were encouraged to consider one another’s questions and thinking. The 

cards displayed increased in complexity, from single digit numbers (shown as Numicon tiles 

or numerals) to six-digit numbers. Numicon tiles are visual representations of numbers 1-10 

presented as dots within a frameless 2 x 5 rectangle (see Figure 1).  

 

Figure 1. Numicon tiles. 

The main aim of engaging students in this first task was to provide a baseline discourse 

for each student (i.e., what they already knew about ‘odd’ and ‘even’), enabling me to track 

their learning (observable via the development of their discourse). The group sessions were 

audio and video-recorded, and their conversations were closely transcribed along with 

corresponding and relevant details about what the students did (e.g., gestures, facial 

expressions, actions, photos of their work). Here I conducted detailed discourse analysis 

utilising Sfard’s (2008) commognitive framework to look for well-defined, repetitive 

patterns (routines) in students’ discourses regarding their use of the words ‘odd’ and ‘even’ 

and their substantiating narratives about oddness and evenness. I also made use of realization 

trees. Whilst Sfard used “realization trees” (p. 165) to map personal realizations based on 

observations of the individual person implementing them, I constructed a combined tree of 

realizations for the group, mapping each interlocutor’s observable realizations along specific 

branches, to help examine and clarify consistent and inconsistent uses of words within the 

group.  

Findings and Discussion 

Throughout the classification task all four students correctly classified the numbers and they 

agreed with the classifications made by their peers. Indeed, if the students had been asked to 

simply sort the cards into odd and even boxes with no justification, it would have been easy 

to assume that they held a common understanding about odd and even numbers. However, 

when I examined the routine ways the students substantiated their classifications, it became 

clear that their use of the words ‘odd’ and ‘even’ was different. Sfard (2008) states that 

interlocutors’ word use (or what others might call ‘word meaning’) is important because “it 

is responsible for what the user is able to say about (and thus see) in the world.” (p. 133).  

Due to the scope of this paper, data that illustrate the students’ word uses have been 

compressed in Table 1, rather than shown in their entirety. I include the turn number to 

provide the reader with an idea of turns elapsing and to enable me to refer to key turns within 
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my analysis. A combined tree of realizations (Figure 2), constructed from the student group’s 

discourse, is provided to visually illustrate the students’ word uses. 

Table 1 

Student Substantiations for Classifying Numbers as Odd or Even  

Card shown 

and teacher’s 

question 

Jane, Zara and Robert’s responses Danny’s response 

Why is ‘six’ 

even? 

[31] Jane: Because three plus three equals 

six and that’s even. 

[32] What the heck! That’s not right! 

[34] That’s so not right… three plus three… 

how does the three come here? 
 

Why is ‘nine’ 

odd? 

 

[43] Zara: It’s got a one there. (Pointing to 

the single one at the top of the 

Numicon piece.). 

[45] So, even are always first, ‘cos zero, two, 

four, six, eight, ten. And then the odd 

numbers are starting from one—one, 

three, five, seven, nine, eleven. It goes 

like that. So that nine is odd. 
 

Why is ‘four’ 

even? 

 

[55] Robert: Because, two and two. 

[59] Robert: Mm… er, because two plus 

two. 

 

 [73] Zara: Erm also if, if you had two 

people then you’d be able, they’d both 

get two each. 

 

[58] But how did you get the two? 

[60] How did you get the two?! Where’s the 

two? How did you get the two? 

[70] It’s just the sequence. Same as the 

Fibonacci sequence and the other 

sequences. 

[79] I know something. So, it’s like always 

like even-odd, even-odd, even-odd a 

number.  

[81] No odd can, odd can still be a fair share 

‘cos you can split it up into decimals. 

Like with seven you can make three point 

five. 
 

Why is ‘five’ 

odd? 

 

 

[90] Jane: Because a four and one. 

[92] Jane: Because the four is even, but five 

has like… 

[93] Zara: Instead of adding two on, you 

add on one and then it wouldn’t be 

even. 

[94] Zara: So, two, two and one. 
 

[91] But how did you get the four and one?  

 

 

[102] I know something. So, everything is like 

even-odd, even-odd, then even, then odd, 

so that’s odd.  
 

Why is 

‘twenty-two’ 

even? 

 

[119] Jane: Because eleven and eleven. [120] All you need to know is like if it ends 

with a… if… This is like a simple way- 

if it ends with a zero, two, four, six or 

eight it is an even number… 

[122] And if it’s one, three, five, seven, nine 

it’s odd. 
 

Jane, Zara, and Robert’s substantiations of evenness and oddness 

Table 1 shows that Jane substantiates evenness as referring to numbers formed by adding 

the same, or an even amount to itself (a double) to make a number [31, 119]. Her realization 

of the signifier ‘even’ is characterised by Branch 2a on the combined tree of realizations. 

Similarly, Robert substantiates the evenness of four by attending to “two plus two” [55, 59] 

and so his realization is also aligned with Branch 2a. Jane substantiates numbers as being 

5 

22 
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‘odd’ because they are an even number “and one” [90] (shown on Branch 2b). Zara has two 

substantiation routines for evenness: When two people have equal shares [73] (shown on 

Branch 2a) and, numbers that are formed by “adding two on” [93] (shown on Branch 2c). 

Her substantiations show she realises oddness as being unlike evenness because the structure 

deviates from ‘adding two’, to having “a one there” [43, 93, 94] (shown on Branch 2d). 

Whilst Zara’s substantiations of oddness and evenness are not completely identical to Jane’s 

and Robert’s, the student group share a common branch (Branch 2) because their realizations 

of the signifiers ‘even’ and ‘odd’ attend to the symmetrical or asymmetrical structure of such 

numbers. I refer to their discourses about odd and even as being structure-based. 

 

Figure 2. A combined tree of realizations showing the group’s realizations of the signifiers ‘odd’ and ‘even’. 

Danny’s substantiations of evenness and oddness 

In contrast to the other students, Danny rejects (sometimes vehemently) structure-based 

substantiations of evenness and oddness [32, 34, 58, 60, 81, 91]. Even though the first three 

cards were presented as Numicon tiles, making the structure of these numbers visibly salient, 

his comments about Numicon 6 [32, 34] and Numicon 4 [58, 60] suggest he cannot even see 

the ‘three plus three’ in six nor see the ‘double two’ in four. However, Lavie and Sfard (2019) 

warn the researcher’s tendency to look for things that children don’t or can't do yet, means 

that they “remain oblivious to the possibility that the child’s response to the [task 

situation]… may be about something else” (p. 423). Indeed, Danny’s apparent bafflement 

and rejection of Jane’s narrative is not necessarily because of an inability to see doubles but 

because, for him, his use of the word ‘even’ has nothing to do with a doubling criterion. 

Danny’s routine uses of the words odd and even become apparent in his substantiation of 

nine as odd [45], and he repeats this substantiation for each subsequent number presented. 

For Danny, just as there is a Fibonacci sequence [69] and numbers within this set are 

‘0,1,1,2,3,5,8…’, the signifiers ‘odd’ and ‘even’ are sanctioned by sets of numbers in the 
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sequence of ‘even-odd-even-odd-...’. His substantiations are shown by Branches 1a (for 

even) and 1b (for odd). When the task changes to include numbers with more than one digit, 

Danny elaborates on his substantiation of oddness and evenness, adding a ‘check the last 

digit’ [120; 122] procedure to his ‘check for place in with sequence’ procedure (shown on 

Branches 1a(i) and 1b(i)). Accordingly, I refer to Danny’s discourse about odd and even as 

being sequence-based. 

Level of objectification 

Having illustrated how Danny’s realizations of the signifiers odd and even are different 

to those of the other students, I now point to a further point of difference between their 

discourses in terms of the degree of objectification. Jane’s, Robert’s and Zara’s 

substantiating routines refer to numbers on the cards as specific concrete objects that serve 

as realizations of ‘odd’ and ‘even’, and these routines require an action. According to their 

routines, one is required to check if the specific numbers can; be made by a double [31, 55, 

59, 119]; make two fair shares [73], or; be grouped in twos to prove evenness [93]. Oddness 

is proven where an even result is not possible or in instances where a remainder of one or 

unequal shares are created [43, 90, 93, 94]. These students also tend to use the words ‘odd’ 

and ‘even’ as adjectives; for example, when Jane substantiates the evenness of six, she 

describes the even quantity of “three plus three” [31]. In contrast, Danny’s discourse replaces 

talk about processes on concrete objects with talk about ‘even’ and ‘odd’ as mathematical 

objects existing in their own right, each as a condensed set of numbers reified from his 

known sequencing procedures. And when Danny uses the words ‘odd’ [81] and ‘even’ [45] 

they serve as nouns rather than adjectives; for example, “odd can still be a fair share”. In 

short, for Danny ‘odd’ and ‘even’ is the sequence itself, just like the Fibonacci sequence 

[70], whereas for the other students, these keywords appear as describing features derived 

from actions on specific numbers. These characteristics all provide evidence to suggest that 

Jane, Robert, and Zara are in the process of discovering generalizable features of odd and 

even, and show Danny’s sequence-based discourse on odd and even to be more objectified 

(and thus more entrenched) than the structure-based discourse of the other students. 

The (unresolved) commognitive conflict 

The exchanges in Table 1 present an example of what Sfard (2008) calls “commognitive 

conflict” (p. 161): The students have realized the signifiers ‘odd’ and ‘even’ in different 

ways and so are classifying numbers as odd or even according to different rules. The different 

branches of realizations (Figure 2) illustrate the differences in the students’ substantiations 

of evenness and oddness and thereby expose the source of the breach in communication: 

Jane, Zara, and Robert have a shared structure-based branch of realization for odd and even 

and so are able to communicate their process of classifying odds and evens effectively with 

one another whilst Danny’s sequence-based branch of realization for odd and even is 

disconnected from the others’, meaning he is unable to communicate his process effectively 

with the other three group members.  

To support the students to resolve the commognitive conflict, the teacher-researcher 

makes several attempts to scaffold their participation in one-another’s discourses. An 

example of this can be seen in Table 2, where the teacher-researcher has assumed that Danny 

cannot see the double structure of even numbers and the asymmetry of odds, and she attempts 

to scaffold his participation in this structure-based discourse.  
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Table 2 

Why is ‘Five’ Odd? 

Line Speaker What was said What action occurred 

103. Teacher: And you were a bit confused weren’t you. When you said, 

“Where’s the four and the one come from?” Is that right? 

When she [Jane] said, “Five is four and one”. 

Directed to Danny. 

104. Danny: I know, I know. I know why. Cos five is like split and there’s 

a four and there’s a one but that doesn’t make any sense in 

high-school maths, ‘cos it goes like... 

Points to the 

Numicon 5 piece. 

105. Jane: We’re not doing high school maths.    

106. Danny: I know but, but it doesn’t make any sense to like a really 

good, really good mathematicians ‘cos it has no sense.  

 

 

This exchange is interesting as it shows signs of Danny attuning (albeit very slightly) to the 

discourse he initially rejected. And yet even when he eventually begins to endorse the other 

students’ structure-based substantiations, he positions them being substandard to his own 

routine when he says theirs’ “doesn’t make sense” in “high school” (a more authoritative 

setting) and by “really good mathematicians” (people who have higher mathematical status) 

[104, 106]. In other words, he elevates his sequence-based substantiation routine as one that 

does ‘make sense’ and is endorsed by people and places of mathematical authority. By doing 

so, he maintains incommensurability between the two discourses. Hence, the teacher’s 

pedagogical move to encourage Danny to make sense of the other students’ did not result in 

him endorsing their substantiations.  

For group members to resolve commognitive conflict, a “gradual mutual adjusting of 

their discursive ways” is required (Sfard, 2008, p. 145). However, during the entire 

classification task there was little evidence to suggest this occurring. The failure to resolve 

the conflict can be attributed to two factors. Firstly, the conflict was not about the outcome 

of classifying numbers as odd or even, it was about how the students substantiate oddness 

and evenness. For the students, deciding which numbers are odd and even was the goal of 

the task so they had no reason to resolve it because, on this, they agreed. Secondly, although 

the teacher encouraged the students to share their thinking and participate in each other’s 

discourses, Jane, Robert, and Zara’s structure-based routines were supporting them to make 

sense of and explain generalizable properties of even and odd, where Danny’s routine way 

of substantiating oddness and evenness was too objectified for this purpose. And Danny 

rejected the other students’ structure-based substantiation routines because his sequence-

based routines were more entrenched and, not only did they work and produce the same 

outcome, they also were more efficient than the alternatives. From David’s perspective the 

structure-based substantiations required a process (checking for symmetry in one way or 

another) and so were time-consuming and unnecessary when, with his substantiations, the 

last digit, simply and instantly, confirmed a number’s membership in the set of even or the 

set of odd numbers. Accordingly, even when he eventually endorsed the structure-based 

substantiations, he maintained incommensurability between these and his own by 

positioning his routines as superior ones that worked in more authoritative contexts and with 

people who had more authority. 

Conclusion and Implications 

For effective interpersonal communication within the group to occur, group members 

need to build on one another’s ideas using “the same means as those endorsed by his or her 
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interlocutors” (Sfard, 2008, p. 173). This paper shows that whilst members of this group 

agreed on classifications of numbers as odd or even, they held different meanings of the 

keywords ‘odd’ and ‘even’ and accordingly substantiated oddness and evenness differently. 

Utilising the commognitive framework has helped highlight these distinctions in the 

students’ reasoning that may otherwise be tacit. In terms of resolving the commognitive 

conflict, the students were unwilling to build on one another’s ideas or reach a 

communicational agreement that rationalised these group decisions because they saw no 

incentive in doing so: They agreed on the classifications (which they interpreted as the goal 

of the task) and the alternative discourse did not serve them well with respect to this goal. 

Sfard (2007) notes that learners need good reason to change their routines, and I posit the 

classification task presented no such reason for any of the students to modify their 

substantiation routines. 

The findings highlight the role proving activity can play in mathematics classrooms. In 

the absence of students’ substantiations, a group consensus about an answer (in this case 

about which numbers are even and odd) may prematurely signal shared reasoning. Pressing 

students to publicly air their substantiations can bring differences in students’ reasoning to 

the surface, which may otherwise be hidden. However, the findings also serve as a warning 

that common pedagogical moves to capitalise learning from mathematical disagreements by 

encouraging students to make sense of one-another’s ideas may not necessarily result in 

students’ adoption or even endorsement of them. Therefore, if a criterion for proof in the 

primary classroom is an argument accepted by the classroom community (Stylianides, 2016), 

the commognitive framework provides a useful lens to glean insights into barriers that a 

community may need to overcome in order to reach consensus.  
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Is the natural number 7 rational? Is it complex? We argue that the answers to these questions 

relate to the ways numbers are taught. Commonly, a new kind of numbers is presented as an 

expansion of a previously familiar kind of numbers, which results in a nested image of the 

relations between number sets. In this article, we introduce an alternative approach, in which 

one transitions between different numerical domains, some subsets of which are isomorphic.  

Is the natural number 7 rational? Is it complex? Based on our experience with raising 

such questions to many students and teachers, we speculate that most members of the 

MERGA community will answer affirmatively. This might relate to a common way of 

teaching, where a new kind of numbers is presented as an expansion of a previously familiar 

kind, resulting in a nested image of number sets (see Figure 1). In this short theoretical 

discussion, we introduce an alternative perspective, in which one transitions between 

different numerical sets, some subsets of which are isomorphic. 

 

Figure 1. Nested image of number sets. 

The Metaphor of Expansion 

Many scholars argue that mathematics emerges from communication, which is replete 

with ubiquitous and often transparent metaphors (e.g., Lakoff & Núñez, 2000). Drawing on 

experiences that are expected to be common to the communicating actors, metaphors can 

open the door even to the most abstract mathematical ideas (e.g., Barton, 2008; Sfard, 2008). 

This feature turns metaphors into a powerful didactical tool that becomes handy when new 
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numbers are introduced and when they are related to those numbers with which learners are 

already familiar. 

In instructional settings, new kinds of numbers are often “grown” from an expansion of 

the concept of number: novel elements are introduced to a familiar number set yielding its 

expansion. For instance, González-Martín et al. (2013) maintain that, 

the learning of different sets of numbers can be seen as a progressive extension of the initial perception 

of numbers through the algebraic structure of nested number sets, from the primitive notion of 

counting, to the ideas of comparing, measuring and solving equations (p. 230) 

At least three reasons can be offered for the didactical appeal of expanding learners’ 

concept of number: 

• Different number sets share many familiar number-symbols, words, related concepts, 

and properties (e.g., commutativity, associativity, identity). This allows teachers to 

develop new numbers out of the ones that students are already familiar with. 

• The expansion epitomizes mathematics as a highly connected and coherent body of 

structural relationships. Given that numbers accompany students’ learning all the 

way from kindergarten to university, every encounter with new numbers turns into 

an opportunity to perpetuate this image.  

• This perspective aligns well with a common narrative, in which new numbers are 

positioned as a patch that resolves issues and inadequacies with numbers of the “old” 

kind. Naturals do not allow subtracting a larger number from a smaller one, hence 

the integers. Not all divisions of two natural numbers result in a natural number, 

hence the rationals. While bearing some resemblance to the development of numbers 

throughout mathematical history (e.g., Kline, 1972), an expansion of the familiar 

presents a sensible rationale for introducing new numbers. 

As with any metaphor taken literally, expansion comes with its issues. For instance, it 

draws attention to the introduced add-ons, while glossing over the changes that they impose 

on the familiar structure. This might at least partially explain why students often assume that 

their previously held truths about numbers remain intact. At the elementary-school level, 

well-documented examples concern the notions of successor and density that children “carry 

over” from natural to rational numbers. For instance, pupils can claim that 2.4 is the next 

number after 2.3 and that 7.5 is the only number between 7.4 and 7.6 (e.g., Vamvakoussi & 

Vosniadou, 2010). Similar phenomena occur in a more advanced context. Kontorovich 

(2018a) showed that many tertiary students continue referring to complex numbers with a 

zero imaginary part as positive and negative. In fact, some of his participants even became 

irritated with the questionnaire specifying the number set for each question and lamented 

“Why do you always mention whether it’s ℝ or ℂ? 2 is positive no matter where!”.  

In research and practice, the exemplified ways of thinking are often stigmatized as 

products of students’ “bias”, “naivety”, and “overgeneralization”. However, we suggest that 

the metaphor of expansion may play a role in the robustness of these ways of thinking. 

Indeed, it seems more reasonable to expect expansion to enrich familiar concepts rather than 

transform them beyond recognition. Of course, a diligent teacher will emphasize the ways 

in which new numbers are different from the “old” ones. Yet, it is still not easy to keep track 

of what changes and what remains valid after the expansion. For instance, NCTM standards 

(2000) prescribe understanding complex numbers as solutions to quadratic equations that do 

not have real-number roots. Students are usually introduced to the quadratic formula in the 

system of real numbers. Accordingly, it seems to be taken for granted that the quadratic 

formula remains intact even after renouncing square-rooting negatives – one of the most 

prominent taboos of reals. 
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The Metaphor of Transition 

The issues that we described in relation to the expansion metaphor appear serious enough 

to consider whether it is the only way to introduce new numbers. The alternative that we 

bring to the fore is the metaphor of transition. Within it, learners are not asked to mobilize 

familiar numbers to engender new ones but encouraged to depart from one numeric set to 

arrive at another. Transitions take place between distinct domains, situating the differences 

between them as an expected norm rather than an anomaly. For travellers, an appreciation 

of transition implies that the destination is foreign, and its mysteries are waiting to be 

discovered. It also means that the luggage carried from the port of departure should be 

selected carefully since not everything will continue to be useful. Overall, for the sake of a 

positive experience, transitioning students had better be attentive and alert to the rules and 

customs of the foreign terrain, as these are likely be different from the familiar. This is not 

to say that similarities between the new and the old will not be recognized. Such instances 

would be a pleasant surprise, enabling to leverage previously gained knowledge and 

experiences in new circumstances. 

The transition metaphor may be viable for introducing new kinds of numbers. 

Specifically, it may offer a cohesive frame to attune learners’ mindsets to the encounter with 

new number-names, symbols, and operations; to enhance their readiness to adjust and make 

sense of new number rules; and to explain why some familiar mathematical truths should be 

lost in transition. Transition also provides room to grow insights and appreciations of the 

familiar kind of numbers from the newly developed perspective. 

To illustrate the metaphor of transition, let us consider an example where a somewhat 

extremal attempt is made to disconnect between real and complex numbers. Imagine a 

teacher who welcomes students to a new mathematical domain consisting of dots residing 

on a plane with one special dot O. “What can be done with them?”, students ask. “Well, 

there is one operation we can do, let’s call it “tāpiritanga” and “tāpiria” as its process.” Then, 

the teacher shows how tāpiritanga of the dots 𝑧1 and 𝑧2 yields another dot 𝑧3 via a so-called 

parallelogram law (see Figure 2). Through a guided investigation, students can find out that 

“tāpiritanga” is commutative (i.e., 𝑧1 tāpiria 𝑧2 is the same as 𝑧2 tāpiria 𝑧1), associative (i.e., 

𝑧1 tāpiria 𝑧2 and then tāpiria 𝑧3 is the same as 𝑧2 tāpiria 𝑧3 and then tāpiria 𝑧1), and tāpiria 

of O to any dot leaves this dot intact. To impede students from carrying over “old” meanings 

of the concept, the teacher refrains from referring to dots as numbers. Instead, the teacher 

invites students to consider whether numerical domains with which students were familiar 

until now and the new world of dots have something in common. To support this process of 

discerning similarities, the teacher can reveal that “tāpiritanga” is “addition” in Māori (see 

Zazkis et al., 2021 for more illustrations of this sort). 

We acknowledge that teaching with the metaphor of transition in mind is likely to come 

with issues. Supporting students in establishing productive relations between different kinds 

of numbers is probably among the first issues to emerge. Teaching experiments are needed 

to show what these issues can look like and how they can be handled. What we wonder about 

is whether students who transitioned between numerical sets will adhere to the 

abovementioned ways of thinking as students for whom the concept of number was 

expanded. Another point to consider is how the rules of new numbers can be harnessed to 

make students re-appreciate numbers of the familiar kind. For instance, will the students in 

our example enjoy the fact that a “flat” version of the parallelogram law works as the addition 

of reals on a number line? 
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Figure 2. 𝑧3 as a result of the ‘tāpiritanga’-operation between 𝑧1 and 𝑧2. 

Images Underpinning the Relations Between Number Sets 

Herein we draw on the notion of subset to illuminate the mathematical grounds for the 

metaphors of expansion and transition. To recall, the set 𝐴 is called a subset of the set 𝐵 if 

every element in 𝐴 is also an element in 𝐵. The expansion metaphor draws on the nested 

relationship among number sets, commonly visualized as presented in Figure 1: natural 

numbers are a subset of integers, which are a subset of rationals, which are a subset of reals, 

which in turn is a subset of complex numbers. To be explicit, we consider the subset relation 

of numbers as a mathematical stance rather than a deductively derivable result. Within this 

perspective, recognizing 7 as an element of natural numbers warrants its being an integer, 

rational, real, and complex number. 

This recognition may become easier or harder depending on how numbers are 

represented. For instance, when numbers appear as dots, the dot entitled “7” remains fixed 

when the natural number line extends to the negative direction to become the integer line. 

The “7”-dot stays in place when the dotted line becomes dense with rationals and reals, and 

even when it expands to become the Argand plane. The situation is different when symbolic 

representation starts playing a more significant role, especially when different kinds of 

numbers are defined through symbols. For instance, complex numbers are often 

characterized by a real and an imaginary part. Then, 7 + 0𝑖 and 7 become different 

representations of the same mathematical object. In this sense, one could argue that 7 + 0𝑖 
is 7, in more or less the same way that “seven” in English is “whitu” in Māori. This is 

opposed to a common students’ claim that “the addition of zero 𝑖 has no impact”. 

The transition metaphor draws on an image in which different number sets are 

isomorphic to some subset of each other. To recall, two sets are isomorphic if there exists a 

bijection between their elements that preserves a binary relationship, for instance addition 

and multiplication. Figure 3 depicts this relation with an example of real and complex 

numbers. From this standpoint, the natural 7 is different from the integer 7 (or +7), rational 

7 (or 
7

1
), and from the complex 7 (or 7 + 0𝑖). Yet, these numbers could be considered 

equivalent, if one wishes to identify them as such. Similarly, the relationship between natural 

and rational numbers is captured by considering naturals as isomorphic to a subset that, 

mathematically speaking, is perfectly embedded in rationals. 
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Figure 3. Isomorphic image of real and complex numbers. 

An isomorphic image can help in resolving what may appear as an issue within the nested 

view on numbers. Zazkis (1998) discussed an incident, where her pre-service classroom was 

divided around the quotient in the division 12 by 5: some of the students argued for 2 with a 

whole-number quotient in mind, while others advocated for 2.4, implicitly assuming 

rational-number division. In a similar vein, Kontorovich (2018b) reported on a student who 

struggled to cope with the fact that √9 was 3 when approached as the (real) square root 

function, but the application of De Moivre formula on the complex 9 entailed 3 and −3. In 

both cases, the difference of the results is an issue within the nested number image but not 

necessarily with the isomorphic view. Through the latter lens, identically appearing words 

and symbols can be interpreted rather differently in different number sets. 

Specific images of the relation between number sets underpin mathematical software. In 

MAPLE, the command 𝑖𝑠𝑝𝑟𝑖𝑚𝑒 tests for whether the input is a prime number. Working with 

an older version of MAPLE, we witnessed that it outputted “true” for 𝑖𝑠𝑝𝑟𝑖𝑚𝑒(7) but “false” 

for 𝑖𝑠𝑝𝑟𝑖𝑚𝑒 (
14

2
), 𝑖𝑠𝑝𝑟𝑖𝑚𝑒(7.0) and 𝑖𝑠𝑝𝑟𝑖𝑚𝑒(3.5 × 2). This was because the programmers 

intended for 𝑖𝑠𝑝𝑟𝑖𝑚𝑒 to operate with integer arguments. In MAPLE, the result of division 

was considered a rational number, and a rational 
14

2
, and similarly 7.0 and 3.5 × 2, were not 

identified with an integer 7. Such programming may appear infelicitous to those adhering to 

the nested image: if all the four inputs point at the same number, how come that their outputs 

are not the same?! The devotees of the isomorphic image may be more accommodating since 

for them all these “7”s are different numbers a priori. Yet, we do appreciate that the current 

version of MAPLE explicates that the input of 𝑖𝑠𝑝𝑟𝑖𝑚𝑒 must be an integer. 

Concluding Remark 

We started with a question whether the natural 7 is also rational and complex, and 

suggested that the answer depends on the metaphoric lens through which one considers 

relations between number sets. We hope that the members of the MERGA community will 

share our curiosity in the metaphor of transition as a refreshing alternative to the hegemonic 
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metaphor of expansion. The nested and isomorphic images underpinning the metaphors may 

appear conflicting, but we consider them as complementary viewpoints – one from “above” 

and one from “aside” – on the same mathematical structure (see Figure 4). Furthermore, we 

believe that, for the learning of mathematics, it is useful for students and teachers to be able 

to flexibly switch between the two images. 

 

Figure 4. Visualization of relations between number sets. 

Note. This paper is an amended version of Kontorovich et al. (2021). 
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The study reported here was conceptualised using a theoretical framework that included three 

dimensions of engagement; emotional, behavioural, and cognitive, and these were used to 

structure the data collection and analysis vis-à-vis learning mathematics outdoors. This 

comparative case study involved 34 students from two Year 6 classes at a Queensland state 

primary school. The findings indicate that the students were engaged in their mathematics 

learning in the outdoor context. However, there was no compelling evidence that suggested 

the outdoor environment was any more emotionally, behaviourally, or cognitively engaging 

than the indoor context. 

The concept of engagement has been a growing concern for researchers, particularly in 

mathematics education (Attard, 2012; Chan et al., 2015), where it has been seen as a key 

factor in ameliorating low levels of achievement and student boredom (Fredricks et al., 

2004). For this reason, it is important that the concept of engagement be explored in 

mathematics education, as low levels of engagement can result in low participation and 

achievement (Attard, 2011). Consequently, this has the potential to affect Australia’s 

perennial shortage of mathematically literate citizens (Attard, 2011). Engagement is a 

multifaceted concept that has been defined along three dimensions: emotional, behavioural, 

and cognitive (Fredricks et al., 2004). Researchers have suggested that utilising the outdoors 

in mathematics education helps to increase students’ engagement (Fägerstam & Samuelson, 

2014; Haji et al., 2017; Young & Marroquin, 2008). It seems there is a growing interest by 

researchers to evaluate and compare the efficacy of indoor and outdoor learning 

environments. However, it is seldom seen that the effectiveness of outdoor learning is 

holistically evaluated through the lens of the engagement dimensions. This study seeks to 

determine the effects that outdoor learning has on students’ engagement in mathematics. To 

this end, this study will explore outdoor learning vis-à-vis the three dimensions of 

engagement: emotional (with aspects of affective engagement), cognitive, and behavioural, 

and investigate the engagement of students in relation to indoor and outdoor environments. 

In addition, this study will clarify distinctions among the three constructs of engagement and 

how they are both individually and holistically identified within the learning context. 

Given the apparent gaps in the literature, this study sought to determine the effects that 

outdoor learning had on students’ engagement in mathematics. The research question 

guiding this study were:  

• What sort of engagement (emotional, behavioural, and cognitive) in mathematics 

does an outdoor learning environment facilitate?  

• In what ways, if any, does student engagement in mathematics differ according 

to the learning environment? 
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Theoretical Framework 

Emotional engagement is defined as the positive and negative reactions that students 

have to their peers, teachers, academics, and school (Fredricks et al., 2004). Skilling (2014) 

suggests that when students are emotionally engaged, they demonstrate interest and 

enjoyment. Emotional engagement is also commonly labelled as affective engagement by 

mathematics education researchers (e.g., Attard, 2011; 2012; Grootenboer & Marshman, 

2016), and these researchers frequently come from an educational background and explore 

the deeper internal state of engagement. Others, who label it as emotional engagement, 

typically come from a psychological background and look at student’s reactions to school 

experiences and environments. Behavioural engagement is defined as an individual’s active 

participation and involvement in academic and social activities (Attard, 2012). The concept 

of participation is inherent to the construct of behavioural engagement (Finn et al., 1995) 

with Skilling (2014) and Fredricks et al., (2004), suggesting that students who are 

behaviourally engaged actively participate, persist and concentrate, ask questions, and 

contribute to class discussions.  

Cognitive engagement is defined as an individual’s investment in, and acknowledgement 

of, the value of learning and their willingness to go above and beyond the minimum 

requirements of a task (Attard, 2012). It also refers to the ability to suppress distractions and 

to maintain and regulate efforts in sustaining cognitive engagement (Fredricks et al., 2004; 

Skilling, 2014). It is critical to acknowledge that these engagement constructs are not isolated 

processes occurring within the individual, but rather they are dynamically interrelated and a 

shift in one can dramatically influence the others. Therefore, in this article, the dimensions 

of engagement are considered holistically as a multifaceted phenomenon. 

Attard (2012) suggests that effective mathematical engagement occurs when a student is 

enjoying the subject, can easily see the relevance that their work has to their own lives and 

future, and can make meaningful mathematical connections between their learning in the 

classroom and their learning beyond school environment. Also highlighted in her work is 

the significance of choice and creativity in the mathematical learning context, and the 

suggestion that, if students are engaged in activities that encourage creativity and that 

provide opportunities to make decisions about their learning, their engagement in 

mathematics will increase. Motivation concepts are suggested to have significant relevance 

and are often synonymous with engagement. Student motivation increases when they are 

able to make links between what they are learning, their knowledge, and their inside and 

outside classroom experiences (Opitz & Ford, 2014). 

The literature frequently suggests that outdoor learning is an effective pedagogical 

approach to increase student engagement (Attard, 2012; Fägerstam & Samuelson, 2014; Haji 

et al., 2017) and consequently student learning. Outdoor learning can include activities that 

take place on the playground, the oval, or the garden, and it has been suggested that students 

perform significantly better in outdoor activities than in similar indoor classroom activities 

in mathematics (Fägerstam & Samuelson, 2014; Haji et al., 2017). Similarly, it is considered 

that exclusively learning mathematics inside the classroom hinders students from fully 

understanding mathematical concepts (Haji et al., 2017). There is a diversity of desirable 

learning features associated with outdoor learning that can be seen as prompting, and 

resulting from, increased levels of student engagement. Taking mathematical lessons outside 

adds a new dimension to the learning experience where opportunities for multi-sensory 

perceptions are increased (Fägerstam & Blom, 2013).  
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Linking conceptualisation of engagement to the effectiveness of outdoor learning 

When reviewing the literature on engagement and outdoor learning, clear links can be 

made between the two. Table 1 outlines the links between emotional engagement and 

outdoor learning theories. Table 2 outlines the links between behavioural engagement and 

outdoor learning theories. 

Table 1 

Linking emotional engagement theories to outdoor learning theories 

Emotional Engagement Theories Outdoor Learning Theories 

“The element of fun was identified as an 

element of “good” mathematics lesson” (p. 

371) (Attard, 2011) 

“The pupils in this study all described 

positive experiences regarding the outdoor 

lesson… all of them spontaneously uttered 

remarks such as ‘it was fun’”. (p. 68) 

(Fägerstam & Blom, 2013) 

“When an individual is engaged with 

mathematics, he or she has been influenced 

by motivation” (p. 10) (Attard, 2012) 

“Outdoor lessons in outdoor environments 

have positive impact on the pupils’ interest 

and motivation” (p. 69) (Fägerstam & 

Blom, 2013) 

Table 2 

Linking behavioural engagement theories to outdoor learning theories 

Behavioural Engagement Theories Outdoor Learning Theories 

It is emphasised that inherent to the 

construct of behavioural engagement is the 

concept of participation, which is a crucial 

component in achieving positive academic 

outcomes (Finn et al., 1995) 

Students who are generally reluctant to 

participate in mathematics are more likely 

to engage in tasks when lesson are taken 

outside (Young & Marroquin, 2008) 

Behavioural engagement is concerned with 

students’ actions such as their “efforts, 

persistence, concentration, attention, 

asking questions, and contributing to class 

discussions” (Fredricks et al., 2004, p. 62) 

Students are generally willing to take 

greater risks when mathematics is taken 

outside and are more likely to volunteer to 

share their answers and justify their 

thinking (Young & Marroquin, 2008) 

 

Also outlined in the literature on engagement is the close connection that behavioural and 

cognitive engagement share (Fredricks et al., 2004). As many students are willing to take 

greater risks and persist when learning is outside the classroom, it is also probable that 

outdoor learning facilitates opportunities for cognitive engagement. A significant component 

regarding the effectiveness of outdoor learning in mathematics, labelled the ‘novelty and 

variation dimension’, is proposed in Fägerstam and Blom's (2013) study. It is suggested that 

since outdoor learning is often a new educational experience for students, this might have a 

high impact on students’ positive engagement. In their study, students often regard indoor 

learning as boring and monotonous (Fägerstam & Blom, 2013). It can then be proposed that 

outdoor learning offers a valued variation to this type of learning.  



Laird, Grootenboer and Larkin 

268 

Methodology 

The methodology for this study was previously presented (see Laird & Grootenboer, 

2018), so only a brief outline will be provided here. To establish what effect the 

mathematical learning site (outdoors and indoors) has on students’ engagement, a 

comparative, collective, case study methodology was used. The study involves the 

comparison of two sets of two cases. Both cases were Year 6 classes undertaking 

mathematics lessons on the same topic and concept.  

The first set of two cases involved the students initially participating in a mathematics 

lesson inside the classroom. Following this, they participated in a similar mathematical 

lesson outside the classroom (e.g., the playground, oval, or elsewhere on school grounds). 

The second set of cases involved the students participating in the same mathematical lesson, 

but in the reverse order where they participated in the outside lesson first and then the inside 

lesson second. The focus of the lesson, which was introducing students to the ‘order of 

operations (“BODMAS”), was determined by the teachers to accord with their mathematics 

scope and sequence planning. 

For this study, three methods of data collection were used: a simple survey, structured 

observations, and document analysis. They relate specifically to the three dimensions of the 

theoretical framework as is outlined in Table 3 below. 

Table 3 

Data collection 

Dimensions of Engagement Data Collection Method 

Emotional engagement A survey that the students completed at the conclusion of 

each lesson. 

Behavioural engagement Observations of students participating in the lessons using 

an observation framework. 

Cognitive engagement Student work samples* collected in each lesson  

* The nature of these depended on the lesson focus that the classroom teachers chose 

As there were no existing suitable instruments found in the literature, new instruments 

were developed using relevant theoretical literature on the nature and features of engagement 

in educational settings (see Laird & Grootenboer, 2018). 

Findings 

Emotional Engagement 

The emotional engagement of the students in the study was measured through a post-

lesson survey given to all the participants immediately following both their indoor and 

outdoor lessons. It is acknowledged that this instrument is limited in its capacity to measure 

emotional engagement; nevertheless, it provides some insights that are useful in considering 

engagement in mathematics learning. The first analysis was conducted to see if there were 

any statistically significant differences for the whole sample at the item level, and total score, 

between the indoor and outdoor lessons. The descriptive statistics are shown in Table 4 

below. 
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Table 4 

Descriptive statistics for emotional engagement indoor and outdoor 

  N Mean Std. Deviation 

1. I enjoyed the lesson Inside 33 3.88 .927 

 Outside 34 3.94 .814 

2. I thought the lesson was interesting Inside 33 3.61 .827 

 Outside 34 3.59 .957 

3. I had a lot of fun during the lesson. Inside 33 3.42 1.146 

 Outside 34 3.56 .894 

4. I would like to do that lesson again. Inside 33 4.06 1.059 

 Outside 34 3.56 1.019 

Total Inside 33 14.97 3.359 

 Outside 34 14.68 3.082 

 

These results of the t-tests indicated that there were no statistically significant differences 

in the students’ emotional engagement between the indoor and outdoor lessons as measured 

by the emotional engagement survey. Specifically, the students’ post-lesson responses to 

individual items indicated that the outdoor lessons were not perceived as being more 

enjoyable, fun or interesting, and there was no distinction in their perception of whether they 

would like to do a similar lesson again. 

An open question at the end of the survey provided the participants with an opportunity 

to express any other thoughts. 23 responded, and in their responses, they were generally 

positive about both the inside and outside lessons. Positive responses associated with 

emotional engagement (e.g., fun, liked, enjoy) for the indoor lesson were limited (n=7), 

whereas there were many more for the outdoor lesson, and several students (n=23) gave 

more than one positive response. The words used were often about particular features of the 

lesson including “being outside” and also being able to “move around”, with, for example, 

one student stating, “I would like to do the lesson again because it was outside and I think 

we should do more outside tasks”. Also, students often used positive emotional engagement 

terms in regard to being able to work in pairs/groups, the way their teacher taught in this 

context, and the lesson generally as a whole. By way of examples, one student responded, 

“It was much funner [sic] than the lessons in class and we got to work in pairs or in groups 

most of the time. We never get to do that in class”, and another said, “I would like to do the 

lesson again because it was outside and I think we should do more outside tasks”. 

Behavioural Engagement 

The behavioural engagement of students in the study was measured through a 

behavioural engagement checklist, which was completed by the lead author during both the 

indoor and outdoor lessons. Although it is acknowledged that this instrument is limited in its 

capacity to measure behavioural engagement, it does provide some insights that are useful 

in considering behavioural engagement in mathematics learning. The resulting data was 

multifaceted, nuanced, and intricate, but here only aggregated findings will be presented, 

and these will focus on the different phases (see below) of the lesson, and the two learning 

sites (i.e., indoor, and outdoor).  
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During the lesson observations, three distinctive lesson phases were identified and these 

were present in all observed lessons - both inside and outside. The three phases were listening 

to the teacher (LT), working as whole class (WC), and individual work (IW). The purpose 

of identifying these lesson phases is so that behavioural engagement can be compared vis-a-

vis specific learning phases rather than just time phases. Student engagement was observed 

and recorded at 5 minutes intervals. The number recorded represented different levels of 

engagement from the students in the class: 1 = None, 2 = Some, 3 = Half, 4 = Most, 5 = All. 

The summarised data for behavioural engagement for both classes in both lesson sites is 

outlined in Table 5 below (note that LT was barely evident in the data so it is not included) 

Table 5 

Mean behavioural engagement ratings across lesson phases and lesson sites (n=34) 

Lesson 

Phase 

Site Active 

participation 

Ask 

questions 

Contribute 

to class 

discussion 

 Persist 

with 

tasks 

Display 

strong levels 

of 

concentration 

Average 

WC Outside 4.5 2.3 2.5  4.5 4.3 3.62 

Inside 4.4 2.3 2.5  4.4 4.4 3.6 

IW Outside 4.15 2.75 2  4.2 3.65 3.35 

Inside 4.15 3 3  4.2 3.75 3.62 

Average Outside 4.325 2.525 2.25  4.35 3.975 3.485 

  Inside 4.275 2.65 2.75  4.3 4.075 3.61 

 

These results indicate that there were minor differences between the behavioural 

engagement levels of students in the outdoor and indoor setting. Overall, it seems that 

students were ‘actively participating’, ‘persisting with tasks’, and ‘displaying strong levels 

of concentration’ with similar or the same levels of engagement during outdoor and indoor 

lessons. The data for ‘asking questions’ and ‘contributing to class discussion’ showed some 

differences indicating that students were engaging with the teacher and the class more in the 

indoor setting. When looking at the ‘asking questions’ section of the checklist, there seemed 

to be minor differences between the two indicating that students were asking more questions 

in the indoor setting. These results indicate that there were minor differences between the 

behavioural engagement levels of students in the outdoor and indoor setting while they were 

working as a whole class and doing individual work.  

Cognitive Engagement 

Definitions of cognitive engagement relate it to an individual’s ability to persist when 

problem solving, endure in the face of failure, demonstrate highly strategic learning qualities, 

and adopt metacognitive strategies to arrange and assess cognition (Zimmerman, 1990). In 

this study these were ‘measured’ based on an interpretation of these features that could be 

identified in students work samples. The work samples collected provided some evidence of 

the students’ levels of cognitive engagement, albeit that it was difficult to clearly identify 
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certain features and to attribute them with any certainty to the particular site of the lesson. 

With this limitation in mind, in general the students demonstrated evidence of cognitive 

engagement when they were given the opportunity to immerse themselves in mathematics 

that required a high level of problem solving. This did not seem to occur in any particular 

environment - indoor or outdoor, but rather evidence of learning features that indicated high 

levels of cognitive engagement were observed only after some form of basic conceptual 

understanding was sound. For example, evidence of higher order thinking was found more 

in the students’ second lesson work samples on order of operations because by this time they 

were able to participate in the more complex tasks. It is acknowledged that the data in this 

section is perhaps the least compelling, and in part, this is due to the ‘internal’ nature of 

cognitive engagement, meaning evidence often has to be inferred from behaviours and 

objects that can be observed. Also, there were some difficulties in even capturing the student 

work samples due to the activities of the lesson. Nevertheless, for the purpose of this small-

scale study, cognitive engagement was examined using these qualities in an attempt to grasp 

some understanding of students’ cognitive engagement levels. 

Concluding Comments 

This study focussed on student engagement in learning mathematics and, as is clear from 

this study and the relevant literature, this is a complex phenomenon. However, rather than 

being sidelined by the apparent difficulty in grasping the multifaceted and intricate nature of 

mathematical engagement, in this study the decision was made to accept the complexified 

quality of the phenomenon and then attempt to further investigate the topic. Unsurprisingly 

the findings are not conclusive; nevertheless, they are interesting and insightful. Put simply, 

rather than the indoor or the outdoor environment being more conducive to mathematical 

engagement per se, there is a need to appreciate all the pertinent factors (including the 

learning environment) when seeking to engage students in mathematical practices.  

In general, the findings suggested that the students were engaged emotionally, 

behaviourally and cognitively in the outdoor learning environment. Although most of the 

data suggested that the outdoor learning environment was conducive to engendering all the 

dimensions of engagement, it was evident the dimension of emotional engagement was 

enhanced the most. However, although the outdoor environment was generally engaging for 

the students, it was not evident that they were any more or less engaged in their mathematics 

learning than in the indoor environment. This finding is noteworthy as it is somewhat at odds 

with the literature that indicated, albeit not conclusively, that an outdoor environment is 

likely to be more engaging. 
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All students should have access to learning experiences that help them make sense of 

important mathematical concepts. This study highlights teacher actions for consolidating 

student learning during teacher-lead discussion in the early years. We report on a case study 

of a Year 1 teacher involving a lesson observation. Highlights of the lesson include intended 

teacher actions that supported students to focus on the learning goals; use of work samples 

to make concepts clearer; fostering mathematical connections; and questioning strategies for 

promoting cognitive activation. Teacher actions such as questioning strategies and discussion 

of work samples may be key for helping students to achieve mathematical learning goals. 

One of NCTM’s (2014) guiding principles for school mathematics is that “effective 

teaching engages students in meaningful learning through individual and collaborative 

experiences that promote their ability to make sense of mathematical ideas and reason 

mathematically” (p. 5). Many researchers would claim that effective teaching practices can 

be influenced by teacher actions. Teacher actions can include how teachers prepare for 

teaching; approaches for launching a lesson, how they promote student-centred learning; the 

types of questions they pose that guide learning; and how they help students to make 

mathematical connections, and develop reasoning and problem solving skills (ACARA, 

2021; NCTM, 2014; Rowland et al., 2009; Smith et al., 2020; Sullivan et al., 2020b).  

In our research project we aim to assist teachers to enhance the mathematical outcomes 

of Australian students by developing new understandings in ways mathematics is learnt by 

early years students’ (5-8 year-olds). The project, Exploring Mathematics Sequences of 

Connected, Cumulative and Challenging tasks (EMC3) provides teachers with sequences of 

lessons and new approaches to curriculum. Each lesson addresses a key mathematical 

concept and builds on students’ mathematical learning from the previous lesson. To guide 

teachers’ pedagogical actions, we have developed a student-centred Instructional Model for 

supporting teacher actions when facilitating lessons (Bobis et al., 2021). The Instruction 

Model extends the work of Sullivan et al., (2016) and the three phases of Launch, Explore, 

and Summarise. The revised framework includes an Anticipate Phase where the teacher 

identifies the learning goals of the lesson and considers ways the students might respond to 

the task; and a (Re)-Launch Phase, where the teacher can pose a further task that is the same 

in most respects, but different in terms of context, size of the numbers, or representation.  

An outcome of the project is to report on ways teachers might use our sequences of 

lessons to inform their teaching and guide student learning. This paper reports on a case 

study of a Year 1 teacher and will inform further data collection as part of the larger project. 

The teacher was selected because she had been observed on several occasions throughout 

the year and was proficient at using the Instructional Model. Proficient teachers in the study 
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were expected to follow the lesson structure of Anticipate, Launch, Explore and Summarise 

(Bobis et al., 2021). The research questions guiding the study were: 

What types of questions did a Year 1 teacher rely on when consolidating student learning and sharing 

work samples?  

How did a proficient Year 1 teacher rely on her teacher actions to guide her instructional decisions 

when discussing and sharing student work samples? 

By observing teacher actions, we aim to identify how they increase opportunities for 

student learning and success through subsequent tasks. Findings will assist other teachers as 

they reflect on their actions when implementing the 10 sequences of lessons and suggestions. 

Next is the review of literature and the theoretical model used to inform the study. 

Literature Review 

Effective mathematics teachers establish goals to focus and guide student learning 

(NCTM, 2014). Others suggest teaching approaches should be student-centred (Staples & 

King, 2017). Another attribute of quality teaching is to provide students with tasks that 

support cognitive activation by encouraging students to think in greater depth about 

problems (NFER, 2015). Such tasks may be open-ended, having more than one solution or 

have multiple approaches used for solving the task (open-middle) (Sullivan et al., 2020a). 

Other strategies intended to support cognitive activation include questioning techniques such 

as asking, “What if?” or “Might there be another way?” type of questions (NFER, 2015). 

Effective mathematics teachers should provide opportunities for purposeful questions 

that promote reasoning (NCTM, 2014), guide learning, thinking and exchanging of ideas 

(Staples & King, 2017) and help students to make sense of solutions (Evans & Dawson, 

2017). Sahin and Kulm (2008) described factual, probing and guiding question types in their 

review of literature. Factual questions require little cognitive challenge and are closed 

question types that usually require yes/no answers; probing questions help students to clarify, 

justify or explain; and guiding questions can assist students when responding to questions. 

When posing questions teachers must consider the types of questions they ask as well as the 

pattern of questions they use if they are to promote students’ reasoning skills (NCTM, 2014). 

Theoretical Framework 

An adapted version of Clark and Peterson’s conceptual framework (1986) was used to 

guide the study (Figure 1).  

 

Figure 1. Framework adapted from Clark and Peterson (1986). 
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Clark and Peterson (1986) suggest teachers’ classroom actions are informed by the 

relationship between knowledge of mathematics and pedagogy; dispositions including, 

beliefs, values and attitudes; opportunities and constraints they anticipate experiencing; and 

planning intentions. We anticipate that when teaching sequences of challenging tasks teacher 

actions guide their pedagogical decisions when posing questions, whilst sharing and 

discussing student work samples. Data analysis for the current study reports on one teacher’s 

classroom actions when observed teaching a lesson. 

Method 

A qualitative study and case study were chosen to assist with providing an in-depth 

description of the circumstance (Yin, 2009). The study explored how Abby (pseudonym) 

approached her discussion with students when she was observed teaching a geometry lesson 

with Year 1 students. During the year, Abby first participated in a whole day of professional 

development to learn how to use the project resources; she attended six planning sessions 

with a member of the research team; was observed teaching on six occasions; and had trialled 

most of the ten sequences of lessons with her students. 

Abby was observed teaching the first and second lesson of a shape sequence at the end 

of the year. The rationale for the shape sequence was to help students when classifying, 

making, naming and describing two dimensional shapes (polygons). The first lesson focused 

on students classifying groups of polygons, explaining similarities and differences. The 

second lesson (reported in the results) focused on students making and learning the names 

and properties of polygons. Students were asked:  

If you have 6 triangles all the same, what shapes can you make using all of the triangles; draw the 

new shapes you have made on dot paper [isometric] and name the shapes.  

The next lesson in the sequence used trapeziums to make and name shapes and 

introduces the term chevron [and was not taught]. 

Proficient teachers in the study were expected to Anticipate students’ solutions prior to 

teaching and launch each lesson without telling students how to respond to the task. 

Following the launch, students were expected to independently engage and attempt the task 

whilst the teacher observed and monitored their work as the lesson unfolded. The next phase 

of the lesson was the Summarise Phase [and occurred three times during the lesson reported 

in this study]. In this phase, students were selected to share their work samples. The teacher 

led a whole class discussion, similar to the framework for orchestrating mathematically 

productive discussion (Smith & Stein, 2018). Questions were posed by the teacher to the 

student(s) sharing their work sample or the whole class, helping students to clarify or explain 

their strategies, thinking, reasoning and/or problem solving skills. 

Data collection and analysis 

The launch and three Summarise Phases of the lesson were video recorded by the first 

author. Abby’s lesson plan (including four anticipated student responses) and student work 

samples were collected. The lesson transcript was transcribed for coding and included the 

questions and student responses for each of the three Summarise Phases. The questions were 

coded as factual, probing, or guiding by two authors until a consensus was agreed (Table 1). 
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Table 1 

Sample of coding teacher questions and explanation of coding 

Coding Illustrative question Explanation of coding 

Factual Should I call this shape a trapezium? Yes/no answer closed question 

Probing Why can’t I call this one a 

trapezium? 

Asking students to justify or explain 

their thinking 

Probing  Who can tell me why? Seeking clarification 

Guiding What do you notice about the edges? Prompting students to focus on the 

edges when answering 

Two authors partitioned the transcript into eight segments. Each segment included 

discussion of a key mathematical concept and/or student work sample. The segments assisted 

with identifying teacher actions Abby modelled during the lesson. Highlights are reported 

and discussed next.  

Results and Discussion 

The length of each summarise phase increased throughout the lesson and the lesson took 

90 minutes to complete. During the lesson, five student work samples were shared. Table 2 

reports the number and type of questions Abby posed for each Summarise Phase of the lesson 

and number of segments within each phase. 

Table 2 

Number of Summarise Phases of the lesson, segments and types of questions 

Phase and Segments Factual Guiding Probing Total 

Summarise 1(3 minutes) 

1 Segment 

10 3 0 13 

Summarise 2 (8 minutes) 

3 Segments 

20 4 21 45 

Summarise 3 (19 minutes) 

4 Segments 

48 15 25 88 

Total 78 (53%) 22 (15%) 46 (32%) 146 (100%) 

Effective teachers use a variety of questioning types as part of their teacher actions 

(NCTM, 2014). The results in Table 2 show Abby relied on different question types. Half of 

Abby’s questions were factual (closed) questions and less than a quarter were guiding 

questions. As the topic of shape relied on naming shapes and their properties this may be a 

reason more questions were closed question types as Abby posed closed questions to help 

students develop geometric language. One third of the questions were probing questions. 

Probing questions are important for helping students to clarify, justify and explain their 

thinking (Sahin & Kulm, 2008), assisting students to make sense of mathematical ideas and 

demonstrate reasoning.  

Next a selection of Abby’s teacher actions is reported focusing on the summarise phases. 
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Selecting work samples 

For each Summarise Phase Abby selected one to three student work samples to discuss 

with the whole class. The work sample was projected onto a white board. The students sat 

together on the floor and the students sharing their work stood next to the teacher. The first 

student work sample that Abby chose showed four polygons, including two quadrilaterals 

(Figure 2). 

 

Figure 2. Four responses recorded on dot paper. 

As a number of students had not attempted to record their solutions the work sample 

(Figure 2) provided an opportunity for all students to see how to use the dot paper, which 

they had not used previously. Arguably there are different reasons the teacher may select a 

student work sample first; the most commonly used strategy; an incorrect solution; 

misconception; or example of concrete to abstract (Smith & Stein, 2018). The first work 

sample Abby shared helped clarify how to record solutions and guided the students to focus 

on the learning goal, using triangles to make, name and record polygons. When discussing 

the work sample Abby also made connections to the previous lesson. A student named the 

first shape a diamond and Abby replied, “Yesterday we decided not to call these shapes a 

diamond … yes a quadrilateral.”  

This discussion demonstrated how Abby’s classroom actions were influenced by her 

own mathematical content knowledge of how to name polygons. 

Questioning strategies 

When asking students to discuss their work samples, Evans and Dawson (2017) noted 

that teachers usually prompt students by first posing an open-ended question such as, “How 

did you solve this problem?”  

Abby asked the following closed questions at the beginning of each of the three 

summarise (S) phases: 

S1: I want you to tell me out of these four shapes, which one do you think meets the 

problems keywords? 

S2: This is a fun one isn’t it? 

S3: Should I call it a trapezium? 

Interestingly Abby chose to ask closed questions when commencing each Summarise 

Phase. There may be any number of reasons Abby chose closed questions, such as wanting 

to help the students to re-engage with the task, providing a warmup question, or because she 

considered that an open question to begin with may cause students to encounter challenges 
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and disengagement. Another conjecture might be that Abby was assessing or reviewing 

student understanding before moving on, helping her to think in the moment and therefore 

guide her follow-up questions.  

Supporting cognitive activation 

Cognitive activation occurs when students think more deeply about facts or concepts 

(NFER, 2015). An important observation was how Abby used different question types to 

cognitively activate students as she engaged them in mathematical discourse and 

consolidated their learning. Segment 3 provided an example of Abby’s teacher actions when 

demonstrating her questioning strategies for supporting cognitive activation. The students 

were discussing an irregular hexagon (one student named an apple core) and a regular 

hexagon, both constructed with six triangles. 

Abby: Hands up if you don’t think it is a shape [pointing to the irregular hexagon]? (factual) 

Abby: Why don’t you think it is a shape? (probing) 

Some students thought it was not a shape because they had never seen the shape before, one 

that goes in and out like that.  

Abby: What name did you give this shape? (probing because there is more than one answer) 

Student: An irregular hexagon. 

Abby: Why is it an irregular hexagon? (probing). 

Abby: How many sides does your shape have? (factual) 

The use of a factual question was followed up with probing questions demonstrating how 

Abby posed questions to help make the mathematical concepts clearer for the students. 

Abby’s actions show skilful use of a factual question (typically) having a lower level of 

cognitive demand, followed by probing questions (typically) having a higher level of 

cognitive demand, encouraging students to justify and explain the properties of regular and 

irregular hexagons. In other words, the factual question required students to engage in the 

discussion by choosing a yes or no response, focus their thinking, ready for the following 

probing questions that supported cognitive activation.  

Fostering mathematical connections 

Fostering mathematical connections for students was another action Abby modelled to 

help make concepts clearer. The focus in Segment 2 was to clarify the properties of ‘real 

shapes.’ A student named the bottom figure a candy-bar (see Figure 3). 

 

Figure 3. A quadrilateral and a candy bar 
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During this discussion Abby used ‘why’ and ‘what’ type questions such as “Why do you 

think it’s not a shape?” and “What do you think?” Some students considered it was a shape 

and others disagreed, but the students were not really sure. The nature of these questions 

provides another example of Abby engaging students in cognitive activation. The 

combination of why, what and probing questions encouraged students to reason, clarify and 

justify their thinking about the ‘candy bar’ and experience a light bulb moment. In particular, 

Abby asked questions designed to support students to notice that the edges of the triangles 

did not always overlap (“What are those bits called?”), and that the corners or vertices need 

to overlap to make a (real) shape. Other teachers in the project also reported experiencing 

light bulb moments with their students when important mathematical connections were 

highlighted for, and by, the students (Russo et al., 2020). 

In terms of the study’s conceptual framework (Clark & Peterson, 1986), Abby’s beliefs 

and values influenced her choice and ordering of work samples during the lesson. Abby 

valued the importance of the Anticipate Phase, particularly anticipating her student work 

samples prior to teaching as she considered how they might respond to the task prior to 

teaching. Doing so allowed Abby to increase the level of cognitive activation because she 

was familiar with different solutions and therefore could focus on discourse for consolidating 

student learning. Further evidence of Abby’s beliefs could be gained from an interview after 

the lesson, which did not occur.  

Conclusions 

During the Summarise Phase of the lesson Abby relied on a combination of factual, 

probing and guiding questions to make connections among important mathematics 

concepts/ideas and student work samples that ultimately helped to consolidate their learning. 

Abby modelled a well-developed understanding of the different terms used to describe the 

properties and names of different polygons when questioning students as part of her teacher 

action and knowledge of mathematics and pedagogy. Without such knowledge this would 

have impacted on her classroom actions especially selecting and discussing examples to 

make concepts clearer when guiding students to the learning goal of the lesson and sequence. 

When helping students to make connections in the elementary classroom, Smith et al., 

(2020) state the importance of the role of the teacher for helping students “see connections 

between the solutions that are shared and the goals of the lesson (p.141)”. Specifically, Abby 

was able to help students make connections with the goal of the lesson by asking students to 

explain their thinking related to the names and properties of the different polygons, and to 

make, name and describe two dimensional shapes (polygons). This lesson approach is 

different to that described by Smith & Stein (2018) in that our research-based teaching 

suggestions, Instructional Model and teacher actions support students to make connections 

with the mathematical goal of a sequence of lessons. Such student-centred pedagogical 

approaches aim at consolidating student learning in greater depth.  

Further lesson observations and assessment of student knowledge prior to and after a 

sequence will assist with extending understanding of the strengths and weaknesses of how 

students learn during a sequence and as a consequence of teacher actions. We note the 

limitations of reporting on one case study and a single lesson but anticipate the findings from 

this small study will help teachers to reflect on their questioning approach for deepening the 

learning during the Summarise Phase of lessons. 

In terms of more general research directions suggested by this study, it is notable that 

Abby used different question types in complementary ways. In particular, we discussed how 

a factual question was often followed by a probing question. We commented that the purpose 
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of asking the factual question appeared to be to engage students, whilst the follow-up probing 

question served to activate cognition. Future research could consider whether this strategy 

was idiosyncratic to Abby, particular to a lesson exploring properties of shapes, or whether 

using the different question types in this manner characterises effective teachers more 

generally when teaching primary mathematics.    
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To understand what teachers need to teach towards big ideas in the classroom, there is a need 

to systematically interface different conceptions of big ideas in mathematics with models of 

teacher knowledge. We conducted a literature review on horizon knowledge and big ideas to 

clarify both constructs and their relationships. Twenty-one journal articles were initially 

shortlisted, with within-case and cross-case analysis finally performed on four articles after 

inclusion/exclusion criteria.  While it is clear that more work needs to be done, we tentatively 

conclude that to teach towards big ideas is to emphasise disciplinary ways of thinking that 

are empirically demonstrable to be fruitful for the learning of mathematics.  

Teaching towards big ideas is a key shift in Singapore’s most recent mathematics 

curriculum revision, implemented in 2020 (Toh et al., 2019; Choy, 2019). Teaching towards 

big ideas may present a huge pedagogical challenge for teachers. Firstly, there is a lack of 

clarity about what big ideas are. Although Charles (2005) defines a big idea as “a statement 

of an idea that is central to the learning of mathematics, one that links numerous 

mathematical understandings into a coherent whole” (p. 10), different conceptions of big 

ideas continue to abound both in literature and in the practice of teaching. For example, the 

big idea of equivalence has a ‘bigness’ that can range from an understanding of the equal 

sign to the logical equivalence underlying every step in a series of algebraic manipulations 

to the equivalence relations that appear much beyond the domain of mathematics. Secondly, 

it is not clear what is meant by teaching towards big ideas. Some researchers highlight the 

importance of making explicit both “big content ideas” and “big process ideas” during 

lessons (Hurst 2015a). Others highlight the importance of reflecting on “issues of student 

learning and engagement as well as the domain”, allowing mathematically worthwhile 

learning experiences to emerge from the connection of numerous smaller ideas (Mitchell et 

al., 2017). Such conceptions of big ideas may even seem not too different from existing 

understandings of expert teaching (Choy, 2019).  

In a crowded curriculum, teachers may be tempted to force-fit the teaching of big ideas 

directly rather than teaching towards big ideas. How teachers can understand and appropriate 

the new notion of teaching towards big ideas, and yet, maintain the coherence and connection 

with their current pedagogical practices will depend on their mathematical knowledge for 

teaching (Ball et al., 2008). Ball et al. (2008)’s conceptions about Mathematical Knowledge 

for Teaching (MKT) make a distinction between Pedagogical Content Knowledge (PCK) 

and Subject Matter Knowledge (SMK). In particular, the notion of Horizon Content 

Knowledge (HCK), a component of SMK, resonates with ‘teaching towards big ideas’ since 

it isolates those aspects of mathematical knowledge which constitute an “awareness of how 

mathematical topics are related over the span of mathematics included in the curriculum” 

(Ball et al., 2008, p. 403). The idea of seeing connections and coherence within and between 

mathematical topics may provide a way for teachers to navigate the challenges of teaching 

towards big ideas. However, like the notion of big ideas, ‘horizon knowledge’ has been 

defined differently and utilised in various ways (e.g., Jakobsen et al., 2014). Teaching 

towards big ideas requires teachers to present mathematics as a “coherent and connected 

enterprise” (NCTM, 2000, p. 17). To do this, there is a need to have some clarity regarding 
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the kind of knowledge needed. This begs the following research question: How does the 

construct of 'horizon content knowledge' explicate how teachers can teach towards big ideas 

in the mathematics classroom? 

To answer this question, we adopted a systematic approach towards reviewing the 

literature discussing both ‘horizon knowledge’ and big ideas in conjunction. In particular, 

this research question is framed by addressing how the constructs of ‘big ideas in 

mathematics’ and ‘horizon content knowledge’ are respectively conceptualised in the 

mathematics education literature. 

Method 

Taking into account the best practices for conducting a systematic review (Alexander 

2020; Siddaway et al. 2019, 2019), we took a systematic approach towards conducting a 

literature review by searching through four databases: EBSCO’s Academic Search 

Complete, British Education Index, Education Source, and ERIC.  Using a search term for 

‘big idea’ or big ideas in “All Text”, a total of 929 articles were initially obtained. A further 

refinement for texts that also contain ‘horizon knowledge’, ‘horizon content knowledge’, or 

‘mathematical horizon’ yielded a total of 21 articles using Boolean search. We applied our 

inclusion/exclusion criteria to obtain four articles for our focus, as summarised in the chart 

(see Figure 1).  

 

Figure 1.  Systematic inclusion and exclusion 

An example of a journal article with no clear understanding of HCK offered is Carrilo-

Yanez et al. (2018). The article proposes a new model of mathematical knowledge. On one 

hand, the Mathematics Teacher’s Specialised Knowledge (MTSK) has a component 

Knowledge of the structure of mathematics (KSM) that could be coded for big ideas with its 

distinction between ‘intra-conceptual and inter-conceptual connections’ (Carrilo-Yanez et 

al.,2018, p.8); on the other hand, its lack of explicit reference to HCK or ideas of the horizon 

outside of its literature review prevents an independent coding for any implicit concept of 

HCK which it could hold. This inhibits any conclusion that could be drawn from the 

comparison of the two constructs big ideas and HCK. An example of an article rejected for 

no clear understanding of big ideas is Ball (1993). While there is a singular occurrence of 

the phrase ‘big ideas’ in viewing “students as capable of thinking about big and complicated 



Loh and Choy 

283 

ideas” (Ball 1993, p. 384), the notion was not explicitly discussed. After obtaining the 

resulting set of articles (see Tables 1 and 2), we conducted a vertical or within-case analysis 

followed by a horizontal or cross-case analysis (Miles et al. 2014) for each of the concepts 

‘big ideas’ and ‘horizon content knowledge’ respectively.  

Table 1 

Conceptualisations of big ideas in review 

Author Conceptions of “big ideas” 

 Connectivity of knowledge Disciplinary practices Setting up powerful teaching moments 

Hurst 

(2015) 

See mathematics as ‘coherent set of ideas’. 

Encourage deep understanding of math: 

enhance transfer, promote memory, reduce 

amount to be remembered, how topics are 

connected across years. Knowing ‘about’ 

the link rather  than knowing a particular 

link (p. 2). 

Problem solving skills and other ‘big 

process ideas’ need to be at the heart of 

teaching and learning. Includes deciding 

how to tackle problems, gather and organise 

data, represent and communicate findings. 

Could be reflected in practices documented 

in syllabi, e.g. ACARA (p. 9). 

 

Hurst 

(2017) 

Grants an ability to shift between ‘inner’ 

and ‘outer’ horizons, which respectively 

denote objects’ properties and connections 

to larger mathematical structures (p. 117). 

 “It is the ‘enabler’ that allows teachers to 

set up, the contingent moments that are the 

essence of powerful teaching” (p. 117) 

Seaman 

and 

Szydlik 

(2007) 

 Mathematical sophistication: beliefs about 

nature of mathematical behaviour, values 

concerning what it means to know 

mathematics, and particularly in avenues of 

experiencing mathematics objects and in 

distinctions about language 

Explicitly identified some fundamental 

norms of the community of mathematicians 

and demonstrated how these norms can help 

to understand why many preservice teachers 

find mathematics difficult (p. 170) 

 

Quebec 

Fuentes 

and Ma 

(2018) 

 Norms of discussions specific to the field of 

mathematics, sociomathematical norms, 

including what makes various explanations 

mathematically different, sophisticated, 

efficient and/or acceptable (p. 11) 

 

Table 2 

Conceptualisations of ‘horizon content knowledge’ in review 

Author Conceptions of horizon content knowledge 

Connected content knowledge based on big 

ideas 

Mathematical knowledge to situated 

mathematical horizons of students in terms 

of their understanding 

Awareness of the affordances of 

mathematical competencies to highlight 

mathematical connections 

Hurst 

(2015b) 

 Teachers with well-developed horizon 

content knowledge (HCK) are able to look 

both forwards and backwards from a 

particular point of mathematical 

understanding and consider how to help a 

child to develop new knowledge or to see 

what understanding might be lacking in 

order to correct a misconception (p. 8). 

 

Hurst 

(2017) 

Consists of connected content knowledge 

based on big ideas and also a sensibility 

about mathematical proficiencies (p. 120). 

Teachers need: knowledge of students’ 

mathematical horizons, situated in terms of 

his/her mathematical understanding (p. 

115). 

A sensibility about mathematical 

proficiencies and processes that can be 

invoked to help children reach their 

mathematics horizons and move beyond 

them (p. 120). 

Seaman 

and 

Szydlik 

(2007) 

The teacher must understand the rich 

connections among mathematical ideas (p. 

168). 

Be better able to identify specific 

mathematics needs to help children in 

particular situations (p. 168). 

 

Quebec 

Fuentes 

and Ma 

(2018) 

 Having connections to mathematical 

concepts, as presented in various ways, and 

requiring metacognition. (p. 15) 

Developing an understanding of the 

specific ways of communication and 

representation centred on developing 

particular mathematical ideas as well as 

constituting the disciplinary discourse of 

mathematics. (p. 11) 
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Results and Discussion 

Three main strands of big ideas and HCK emerged from our analysis. For both big ideas 

and HCK, two of three strands were respectively grouped around content knowledge and 

characterisations of mathematical thinking. In the third strand, HCK is explicitly defined in 

terms of big ideas or vice-versa, and thus could not be coded independently of the other 

construct.   

Conceptualisations of big ideas  

Firstly, big ideas are a “coherent set of ideas” (Hurst 2015b, p. 2) which allow for the 

connectivity of mathematical understanding. This was coded in two of the four studies. Hurst 

(2015b), quoting from Charles (2005), states that connectivity is important to “encourage a 

deep understanding of mathematics, enhance transfer, promote memory and reduce the 

amount to be remembered” (p. 2). Interestingly, big ideas are distinctive in allowing for 

cognitive improvements such as improved transfer learning and memory performance 

through a reduction of cognitive load. In consequence, future research could underpin this 

conception of big ideas based on empirical work. Further, Hurst notes importantly that 

“[t]here is not necessarily any one particular way in which content ideas can be linked around 

big ideas”, as the big ideas can be linked together in different ways (Hurst 2015b, p. 2). For 

example, consider the big idea of ‘proportionality’. Depending on the lesson objective, 

students could be led to the “inner horizon” (Hurst 2017, p. 116) to understand why 3/15 is 

equal to 1/5, or to the “outer horizon” (Hurst 2017, p. 116) to understand why fractions, 

decimals, percentages (Hurst 2015b, p. 6) are ultimately different representations of the same 

mathematical object. Ultimately, this first strand of big ideas emphasises the connectivity of 

mathematical content knowledge, and could be elaborated in specific versions such as in 

Charles (2005), Ma (2010), and Clarke et al. (2012). 

Secondly, big ideas are disciplinary norms and beliefs about the nature of mathematics, 

which can be shown to affect mathematical understanding. This strand was evident in three 

of the four studies reviewed. Seaman and Szydlik (2007) most clearly show this through an 

inability of preservice elementary teachers to re-construct a correct mathematical 

understanding of the greatest common divisor, even when given mathematical definitions in 

a teaching resource. Instead, some preservice elementary teachers cling to a procedural 

approach to mathematics. This differing view on the nature of mathematics prevented them 

from even attempting to making sense of the relevant definitions. This was a lack of 

“mathematical sophistication” (Seaman & Szydlik, 2007, p. 169) on the pre-service 

elementary teachers’ part, as Seaman and Szydlik observe amongst other deviations from a 

non-exhaustive list of nine disciplinary norms. Further empirical work may strengthen this 

claim to show how disciplinary norms such as problem-solving habits can improve general 

mathematical performance. Moreover, a closer look at the three studies indicates different 

understandings of what constitutes mathematics as a discipline. While Seaman and Szydlik 

(2007) and Quebec Fuentes and Ma (2018) refer explicitly to university mathematicians, 

Hurst (2015b) does not explicitly address the possibility that the mathematics education 

community and, what we loosely call the ‘university mathematics’ community, could have 

a differing set of norms. Any conception of big ideas based on disciplinary processes must 

clarify its definition of ‘mathematical discipline’ before it can be further demonstrated how 

such big ideas improve mathematical understanding and learning.  

Thirdly, big ideas enable better teaching by setting up “contingent moments that are the 

essence of powerful teaching” (Hurst, 2017, p. 117). Of the four articles, this was explicated 
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only in Hurst (2017). This conception of big ideas has a clear link to the context of teaching. 

The resemblance to HCK is not an accident as in his view, “HCK and big ideas are 

inextricably linked, or even could be considered as one and the same” (Hurst 2017, p. 114). 

Whether HCK and big ideas are separate constructs need to be further evaluated. This 

evaluation could happen on the conceptual front as evidenced by further systematic reviews, 

or on the empirical front by investigating the separability of big ideas and HCK as constructs. 

Conceptualisations of Horizon Content Knowledge 

First, one concept of HCK is that it is the knowledge required to situate the 

“mathematical horizons” of student mathematical understanding. This view was found in all 

four studies. An example of this is provided by Quebec Fuentes and Ma (2018, p. 19), where 

an open-ended question is posed about a ‘yellow square’. Students were to debate if the 

square is both a polygon and a quadrilateral, and the teacher needs to work with students’ 

definitions of squares and rectangles in order to convince them that a square is a special kind 

of rectangle. That is, the teacher’s content knowledge about mathematical definitions at 

different curricular levels are required for teachers to look “both forwards and backwards” 

(Hurst 2015b, p.8) so that the visual understanding of rectangles is connected with an 

inclusive definition of rectangles. This strand of HCK is thus characterised by open-ended 

engagement with students’ ideas that does not fall into the other categories of Ball et al.’s 

(2008) categories in SMK or PCK.  

A second related concept is that HCK is a sensibility for mathematical horizons, as 

understood in the previous sense. HCK consists of ways of representing and communicating 

mathematical ideas that can help children reach beyond their current mathematical horizon. 

This view was shared by Quebec Fuentes and Ma (2018) and Hurst (2017). Using the same 

example from Quebec Fuentes and Ma (2018, p. 19), the crux of this conceptualisation of 

HCK is in the sensitivity of the teacher to student’s open-ended answers about squares. The 

teacher needs to apply “mathematical proficiencies and processes such as reasoning, 

justifying, hypothesising and problem-solving” (Hurst , 2017, p. 115) to transform student’s 

answers into precise mathematical language, so that the students can understand that “a 

square is a special kind of rectangle”. Like the difference between the first and second 

concepts of big ideas, the difference between HCK of the first and second kind is in the focus 

on the teacher’s cognitive processes in navigating mathematics, in contrast to the content 

knowledge invoked for the same purpose. This parallel distinction will be significant in our 

later conclusion.   

The third concept of HCK is that it consists of “connections and links within and between 

big ideas” (Seamand & Sydzlik, p. 8). This was also found in Hurst (2017), which held a 

view that HCK and big ideas might be the same (Hurst 2017, p.114). Again, the link between 

HCK and big ideas ought to be evaluated empirically as well as theoretically. We attempt to 

evaluate the latter in the next section.  

How can teachers teach towards big ideas in the classroom?  

Our review of papers discussing both HCK and big ideas simultaneously reveals that the 

two concepts are related but ultimately distinct. While both concepts are sometimes used to 

refer to both the content knowledge and the processes underlying it, our review shows that 

the focus of the two terms are different. For the big ideas of mathematics, the crux of the 

concept refers to knowledge and mathematical processes that unify the discipline, whereas, 

for HCK, the corresponding focus is within the context of teaching: HCK is the knowledge 

consisting of content knowledge and processes required to diagnose a student’s current 
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mathematical horizon and advance it. The difference that characterises big ideas, in contrast 

to HCK, is an intentional usage of knowledge and practices from mathematics as a discipline. 

This makes sense given that HCK was originally a component of MKT. Whilst 

terminological ambiguity could have diluted its meaning (Jakobsen et al., 2014), HCK 

cannot be dissociated from teaching contexts. In contrast the construct of ‘big ideas’ runs in 

the opposite direction with the mathematical discipline influencing teaching.  

The distinction of HCK from big ideas helps explicate how teachers can teach towards 

big ideas in the classroom. We propose that to teach towards big ideas is to embody the 

epistemic norms of the mathematical community in the classroom. By epistemic norms, we 

mean habits of the mathematical community that are demonstrably productive towards the 

generation of mathematical knowledge and the improvement of learning outcomes. This is 

supported, firstly, by the non-uniqueness of the mathematical connections between content 

knowledge, as discussed in the first strand of big ideas. That these connections need not be 

unique suggests greater importance for the habit of deepening one’s mathematical content 

knowledge. Secondly, the second strand of big ideas emphasises strategies of knowing in 

mathematics that can be meaningfully brought into the classroom. The embodiment of 

epistemic norms requires the possession of both these strands of big ideas.  

We suggest, then, a two-step characterisation for preparing teachers to ‘teach towards 

big ideas’. First, ‘teaching towards big ideas’ involves an understanding of how 

mathematicians think. Whether big ideas are conceived as connective content knowledge 

(Hurst 2015b) or mathematical habits, characterised as “mathematical sophistication” in 

Seaman and Szydlik (2007), the teacher has to reflect in order to improve her classroom 

practice. This involves noticing differences from the mathematical discipline in how they 

conceptualise mathematical connections and in how they think mathematically. Secondly, 

‘teaching towards big ideas’ needs to be evaluated on empirical metrics such as improved 

classroom practice and/or student learning outcomes. ‘Teaching towards big ideas’ takes 

time for its efficacy to be evaluated, and this evaluation could be incorporated into existing 

frameworks of professional development. The educative curricular approach of Quebec 

Fuentes and Ma (2018) is but one example of other approaches to professional development, 

such as lesson study, that can be pursued and investigated.  

Finally, a comparison across the four studies suggests that the two distinctions between 

HCK and big ideas, and between content and process, are valuable for unifying the 

mathematics education literature. In our review, the studies that surfaced ran across the 

literature’s breadth. The empirical work of Quebec Fuentes and Ma (2018) and Seaman and 

Szydlik (2007), and the theoretical works of Hurst, form a closed loop, that can benefit from 

more work that clarifies both constructs in theory and practice.  

Conclusion 

In conclusion, we suggest that to teach towards big ideas is to emphasise disciplinary 

ways of thinking that are empirically demonstrable to be fruitful for the learning of 

mathematics. Our review was limited by three factors. First, the current range of databases 

could be extended. Second, literature beyond journals should be considered in a more 

thorough review. We excluded grey literature including books and dissertations for 

practicality. There is reason to believe that grey literature may be useful for our research 

question due to its practitioner-oriented focus. Further, given a relatively new focus on big 

ideas in the literature, new ideas could be expected to be articulated outside of journal 

publications. Third, whilst teaching towards big ideas may seem to be a new trend in English 

language mathematics education journals, a systematic review across multiple languages 
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may reveal greater insights. In German-language literature, for instance, there has long been 

a tradition of established mathematicians interacting with their mathematics educators along 

the lines of “fundamental ideas” in mathematics (Vohns, 2016).  

Given that mathematics as a discipline needs to be understood both universally as well 

as contextually, especially in connection to teaching, ‘teaching towards big ideas’ may 

benefit from a closer look at the existing interdisciplinary study of mathematical practice. 

Historical, sociological, and philosophical standpoints can have meaningful contact with the 

mathematics education literature in creating an empirically-grounded study of successful and 

diverse mathematical practices (Hamami & Morris, 2020; Kerkhove & Bendegem, 2007). 

Disciplinary features such as mathematicians’ judgements about the elegance of a proof, 

explanation and understanding, the visualisation of mathematical objects, and the differences 

between informal and formal proofs are just some of the topics investigated in this 

burgeoning focus of interdisciplinary inquiry (Hamami & Morris, 2020), of which their 

contact with ‘teaching towards big ideas’ is not coincidental. To advance the ‘teaching 

towards big ideas’ successfully, it is suggested for further research to integrate knowledge 

across disciplinary divides, where meaningful. 
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Pedagogical Content Knowledge (PCK) is a powerful construct for examining the complexity 

of teacher knowledge. Together with teachers’ moment-by-moment choices of action, it 

provides insight into teachers’ knowledge and its influence on student learning. This paper 

investigates the PCK experienced by a senior secondary mathematics class during a lesson 

on probability. Data were gathered through observation, and student and teacher interviews. 

Multiple aspects of PCK were evident and were used in complex and dynamic ways. 

This study is from a wider investigation of pedagogical content knowledge (PCK) at the 

senior secondary mathematics level. PCK has become a powerful construct for examining 

the complex relationship between content and teaching (e.g., Ball et al., 2008). PCK is an 

intricate blend of content and pedagogy, described by Shulman (1986) as knowledge that 

embodies those qualities of the content “most germane to its teachability” (p. 9). There has 

been little research into PCK at the senior secondary mathematics level, with only a few 

small studies (e.g., Maher et al., 2015; Maher et al., 2016) exploring the complexity of 

teachers’ PCK and its relationships with broader contextual factors. The present study builds 

on this research by examining the moment-by-moment enactment of a senior secondary 

mathematics teachers’ PCK during part of a lesson, and how this is perceived by the students. 

Data were collected from a lesson observation, a post-lesson interview with the teacher, and 

from students’ perspectives on their teacher’s knowledge and actions. This paper will 

explore the following research questions: What aspects of PCK does a teacher of senior 

secondary mathematics display while demonstrating a worked solution? What do multiple 

sources of evidence of PCK reveal about teaching and learning during a teacher’s worked 

solution to an item? 

Review of Literature 

In the past 35 years, PCK has received considerable attention in the mathematics 

education research community (e.g., Hill et al., 2008). The appeal of PCK may be attributed, 

in part, to its potential to more precisely describe teacher knowledge in action (Gess-

Newsome, 2015). While “teacher knowledge in action” refers to important practices such as 

the preparation of meaningful explanations in predictably challenging content areas, it does 

not necessarily concentrate on what it means to “teach effectively moment by moment” 

(Mason & Davis, 2013, p.186). It is posited that teachers’ moment-by-moment pedagogical 

choices of action are potentially the most influential source of insight into mathematics 

teacher knowledge (Mason & Davis, 2013; Mason & Spence, 1999). Mason and Davis 

(2013) pinpoint the vital role of the “connective tissue” between mathematical awareness 

(e.g., noticing an absence in understanding from a learner) and in-the-moment pedagogy 

(e.g., having an appropriate pedagogical action come to mind when needed). 
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Several frameworks have been developed to identify aspects of teacher knowledge 

including PCK (e.g., Chick et al., 2006; Hill et al., 2008). The Chick et al. PCK framework 

(2006) used in this study provides a detailed inventory identifying key elements of PCK, 

designed for observing teacher knowledge in action in the classroom. The framework has 

been applied to the work of mathematics teacher educators (e.g., Chick & Beswick, 2017), 

and within the context of secondary mathematics teaching. Vale and her colleagues (e.g., 

Vale, 2010) have used it to examine the mathematical knowledge of out-of-area mathematics 

teachers.  

The elements of the framework offer a set of filters through which to explore teaching 

in action. The framework reflects the complexity of PCK, by identifying its components 

under three broad categories: “clearly PCK”, “content knowledge in a pedagogical context”, 

and “pedagogical knowledge in a content context”. These categories represent the varying 

degrees to which content and pedagogy are intertwined rather than specifying sharply 

defined boundaries. Space prevents the inclusion of the entire framework but brief 

descriptions of selected PCK elements specific to this study are given in Table 1.  

Table 1 

Excerpts from a Framework for Pedagogical Content Knowledge (from Chick et al., 2006) 

PCK Category Evident when the teacher … 

Clearly PCK  

Teaching Strategies Discusses or uses general or specific strategies or approaches 

for teaching a mathematical concept or skill 

Student Thinking  Discusses or addresses typical/likely student thinking about 

mathematics concepts (either generally or with reference to 

specific students). 

Cognitive Demands Identifies aspects of the task that affects its complexity. 

Representations of 

Concepts 

Describes or demonstrates ways to model or illustrate a 

concept (can include materials or diagrams) 

Explanations Explains a topic, concept or procedure 

Knowledge of Examples Uses an example that highlights a concept or procedure 

Curriculum Knowledge Discusses how topics fit into the curriculum 

Purpose of Content 

Knowledge  

Discusses reasons for content being included in the 

curriculum or how it might be used 

Content Knowledge in a Pedagogical Context 

Structure and 

Connections 

Makes connections between mathematical concepts and 

topics, including interdependence of concepts 

Pedagogical Knowledge in a Content Context 

Goals for Learning Describes a goal for students’ learning (e.g., justifies an 

activity as developing understanding of long-term 

probability). 

Methodology 

This paper uses data from a wider investigation into PCK at the senior secondary 

mathematics level and explores aspects of PCK from the perspectives of a teacher, his 
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students, and the researcher, by examining an episode from one lesson. A Year 11/12 

Mathematics Methods class from a Tasmanian independent school participated. 

Mathematics Methods is the main pre-requisite mathematics course offered for students who 

intend to pursue tertiary studies in areas such as science and engineering.  

The participants in the present study were the teacher, Mr McLaren, who had taught 

Mathematics Methods for 12 years, and the nine 16-18-year-old students in his class, five of 

whom provided data. Teacher and student names are pseudonyms. Data were generated 

during part of a lesson where Mr McLaren provided a worked solution to an item involving 

the practical application of a concept the students were studying. The episode was observed, 

video-recorded, and transcribed in full. After the lesson, the participating students completed 

a short questionnaire that asked them: (a) What did you find to be the most helpful 

explanation, example, or strategy that your teacher used in today’s lesson? And (b) What did 

it help you learn? At the end of the lesson, the students participated in a 15-minute semi-

structured focus group interview during which they commented on aspects of the lesson that 

they perceived were particularly useful. Mr McLaren also participated in a 20-minute 

interview after the lesson, discussing his actions during the lesson episode discussed in this 

paper. Both interviews were recorded and transcribed in full.  

Teacher actions were identified by the authors and aligned to relevant PCK elements of 

the Chick et al. (2006) PCK framework. The teacher and student interview and questionnaire 

responses were also analysed for further insight into teacher PCK.  

Results and Discussion 

This section begins with a description of the lesson scenario involving a number of 

aspects of teacher knowledge. Insights into Mr McLaren’s PCK—as illuminated by multiple 

sources of data—are then discussed. The scenario focuses on Mr McLaren’s demonstration 

of the solution to the Tattslotto problem in Figure 1.  

 

In Tattslotto, your chance of winning first division is  
1

8145060
. Find the number of games 

you would need to play if you wanted to ensure a more than 50% chance of winning first 

division at least once. 

Figure 1. The Tattslotto problem (condensed from Hodgson, 2013) 

The Tattslotto problem scenario 

During the lesson, Mr McLaren had introduced his students to applications of the 

binomial distribution and chose to demonstrate the solution to the Tattslotto problem as an 

example of a problem where the probability is known and the number of trials (n) is 

unknown. He guided the students through the process of setting up the inequality to model 

the problem. He identified that winning first division Tattslotto involved a binomially 

distributed random variable X with n trials and probability of success 
1

8145060
 , that is, 

X ~ Bi(n, 
1

8145060
). With a mix of focused questions and explicit direct teaching, he helped 

the students to recognize that, given the item stipulates winning first division at least once, 

the situation can be expressed as “one minus the probability of not winning first division [in 

n trials]”. He thus established the inequality 1 - Pr(X = 0)>0.5 using the fact that Pr(X ≥ 1) = 

1 – Pr(X = 0). Mr McLaren then guided the class through the development of the inequality 

shown in Figure 2, by using the formula for the probability distribution of a binomial random 
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variable X, given by Pr(X = x) = nCx 𝑝𝑥𝑞𝑛−𝑥 where nCx represents the number of ways that x 

different outcomes can be obtained from n trials, p is the probability of success (in this case 

winning first division), and q the probability of failure (not winning first division; equal to 

1 – p). The students had been introduced to this formula during the previous lesson.  

 

 

Figure 2. Initial stages in determining how many games are required in order to  

have a 50% chance of winning Tattslotto 

After some procedural manipulation, which included dividing both sides by negative one 

and changing the sign of the inequality as a result, the inequality shown in Figure 2 was 

expressed as: n loge (
8145059

8145060
) < loge 0.5. Mr McLaren pointed to the inequality and asked 

the class, “What do we do now?” David suggested dividing both sides of the inequality by 

loge 0.5, so Mr McLaren reiterated that “we are trying to get n on its own, so we need to 

divide by the log of all that [points to loge (
8145059

8145060
)]. Now, is there anything else we need 

to know about?” There was a pause before Toby tentatively suggested that “The [inequality] 

sign changes”. Kale quickly retorted “No it doesn’t. I thought you said it only changes when 

you divide by a negative?” “That’s right, so why would the inequality change?” asked Mr 

McLaren. “It doesn’t” Kale persisted, looking puzzled. Mr McLaren assured them “It does 

change, but why?” Someone suggested, “because it’s a log” to which the teacher responded, 

“Yes, well, in a way because it is a log, but why?” David offered “Because there is a rule on 

our formula sheet?” Mr McLaren shook his head with a smile “No, there is no rule on your 

formula sheet”. He paused for a short while and then said, “OK, let’s have a look”. Mr 

McLaren began to write something on the white board but then quickly rubbed it off and 

changed tack. “OK, let’s think of any log. Now remember the log graph, this is the easiest 

way to look at it”. He sketched the graph of y = logax as shown in Figure 3.x 

 

Figure 3. Mr McLaren’s sketch of the graph of y = logax used to show when logax is negative. 

Mr McLaren highlighted the point at x=1 and Toby suddenly called out, “Oh, so that’s 

below one, so it’s a negative, so that’s why you change it around!” Mr McLaren nodded 

“Good, yes, any value of x less than one, or between zero and one, is negative”. He pointed 
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to the region of the graph between x=0 and x=1 and reiterated that the logarithm to any base 

of any value for x between zero and one, in this case 
8145059

8145060
, is negative. This was used to 

explain that when both sides of the inequality are divided by loge (
8145059

8145060
), the inequality 

sign changes. “And it’s a good thing too,” Mr McLaren commented as he rubbed the board 

down, “otherwise we would find that we need to buy less tickets than we would actually 

need to buy. So, it’s a good thing to look at what you’re actually doing rather than just 

performing the calculations. OK, can someone evaluate that for me please?” [points to the 

right hand side of the inequality shown in Figure 4]. 

 

Figure 4. Final stages of the calculation of the inequality to determine the number of games. 

Jonti performed the calculation, yielding 5645727.4. Mr McLaren asked “Can you buy 

0.4 of a ticket? [The students shook their heads.] You would still write it to one decimal 

place, but for your final answer you would round up. You have to round up because if you 

go less than the 0.4 then you won’t have greater than 50% chance of winning”. Kale 

exclaimed, “So you’d need to buy that many tickets?!” Someone else added, “Just to have a 

50% chance of winning once! What?” Mr McLaren smiled, “Yes, so you need to buy a lot.”  

Discussion of PCK 

Multiple elements of PCK from the Chick et al. framework provided filters through 

which to examine the teacher’s PCK in action in this episode. Knowledge of explanations 

was evident throughout Mr McLaren’s worked solution. A combination of knowledge of 

student thinking and knowledge of the cognitive demand of the task were apparent, in that 

Mr McLaren was aware that students may not make the necessary connections with their 

previous work on logarithms to recognize that loge (
8145059

8145060
) is negative. These aspects of 

PCK were intertwined with knowledge of teaching strategies, evident when Mr McLaren 

posed strategic questions to encourage the students to make the connection between the value 

of the logarithm and the reversal of the inequality sign. As the students did not appear to 

make this connection by themselves, Mr McLaren sketched the graph of y = logax, where 

“a” represents any base, to assist them to recognise that the value of loge (
8145059

8145060
) is 

negative. Mr McLaren’s decision to sketch the graph appeared to be made in-the-moment, 

in that it seemed not to be something that was planned in advance, which highlights the 

complex and dynamic nature of teacher knowledge. During this in-the-moment event, Mr 

McLaren drew upon his own mathematical content knowledge and demonstrated several 

aspects of PCK including representation of concepts, knowledge of mathematical structure 

and connections, and knowledge of the curriculum (evident because the teacher drew upon 
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his knowledge of where logarithmic graphs were placed within the course). Further evidence 

of Mr McLaren’s PCK was provided in the post-lesson interview, as seen below: 

 
Researcher: The reversal of the inequality sign generated a lot of interest. How did you come to 

decide on how to show them why the sign changes? 
Mr McLaren: … It’s a hard one to remember because it [loge (

8145059

8145060
)] doesn’t look like a 

negative number but umm I suppose it strengthens their understanding of logarithms. 

They were not understanding; well, they hadn’t made any connections at that point. 
  

While Mr McLaren’s comment provides further evidence of knowledge of mathematical 

structure and connections and knowledge of student thinking it does not offer specific insight 

into his in-the-moment decision to use the log graph to show why loge (
8145059

8145060
) is negative. 

On reflection, it may have been valuable if the researcher had phrased her question more 

carefully to probe for specific details about Mr McLaren’s in-the-moment decision to draw 

the graph. Nevertheless, it is apparent that Mr McLaren’s content and curriculum knowledge 

were sufficient for him to bring to mind (a) the reason for the change in sign and (b) a 

representation that would help students see why the value of the logarithm is negative.  

Several students commented on the usefulness of the way Mr McLaren unpacked the 

solution to the Tattslotto problem, as indicated in their responses to the researcher’s question 

about the teacher’s useful explanations, examples, or demonstrations. 

 

Jonti: The log one … [Toby concurs with “The Tattslotto one”]. It was good he kind of 

like decided on that Tattslotto question because it sort of recaps other things that we 

knew already so you go through it and refresh your mind on log laws and add the 

new layer of um technicality to it … Umm I don’t know, it’s just, well, it doesn’t 

look that hard but then the way you’ve got to go around it with the logs and switching 

the inequality sign as you go through as well. 

Researcher: Did you find anything in the explanation useful in helping you to piece it all together? 

Jonti: Yeah umm I liked how he went through each step not like skipping over any one of 

them assuming you would know it. 

Carl: Yeah umm just I kind of understood the thing except for getting tripped up when 

you’ve got to remember your log laws and like, and it was funny that you even had 

to draw a graph so go right back to the start to show us like if it’s below like why 

you have to switch. 

Jonti: The graph made it a lot clearer as to why you change the sign. 

Kale also recorded that “the log explanation was the most useful because it explained 

and refreshed things for me like the log laws and changing < and >” (post-lesson 

questionnaire). These responses suggest that the students appreciated Mr McLaren’s 

approach to solving the problem and that the graph had assisted them to realise why the 

inequality sign changed. Here the teacher’s fluency across topics is a key part of his 

knowledge, and something that he wants to convey to students. 

Mr McLaren also discussed the reversal of the inequality sign within the context of the 

problem, highlighting that it “makes sense because otherwise we would find that we would 

need to buy less tickets than we would actually need to buy”. This aspect of Mr McLaren’s 

PCK was identified as purpose of content knowledge because he alluded to the way the 

mathematics content may be used within the context of the Tattslotto scenario. This 

connection between the mathematics itself and the context of the problem resonated with 

Carl in the student focus-group interview: 
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Carl: Yeah, because I was sitting there and I was like why did you switch it because it 

wasn’t dividing by a minus but then it’s like no because if you think about it, it’s 

common-sense you’re not going to have to only buy a small number of tickets. 

During his post-lesson interview, Mr McLaren identified his reasons for selecting the 

Tattslotto problem. 

Mr McLaren: Umm probably more so from a non-maths kind of perspective to sort of demonstrate 

the futility of umm Tattslotto and the chances of winning umm that’s probably the 

main reason why I chose that particular question. It wasn’t so much a maths choice 

in that respect. 

The teacher’s response provides evidence of both choice of examples and goals for learning 

since he justified choosing the Tattslotto problem because it illuminates the very low 

probability associated with winning first division. One student, David, commented on this 

aspect of Mr McLaren’s approach in the following written response: 

The Tattslotto question was the most useful. It helped me to find the number of games needed for a 

50% chance of winning the game and how stupid gambling is. (David, post-lesson questionnaire) 

It is noteworthy that teacher and student responses in relation to the Tattslotto problem 

focused on the involvement of logarithms during the solution process rather than on 

probability concepts per se. For example, although Mr McLaren solved the problem by 

setting up the inequality as 1 – Pr (not winning in n games), thus demonstrating that content 

knowledge, the significance of this probability technique was not evident in the other data 

sources in that neither teacher nor students mentioned this as a key learning outcome. This 

might mean that students were familiar with the technique, and that Mr McLaren had 

knowledge of student thinking to be confident that they could use it fluently, or, alternatively, 

this was not identified as a key learning point, which may reflect some shortcomings in PCK.  

Conclusions 

While this study is limited to one account of a lesson episode, it provides a detailed 

snapshot of the nature of a senior secondary mathematics teacher’s PCK in action, and its 

influence on students from their perspectives. The level of detail and specificity afforded by 

the Chick et al. (2006) framework rendered it useful for examining the moment-by-moment 

teaching and learning interactions between Mr McLaren and his students. As such, the study 

contributes to the field of research into the complexity of PCK at the senior secondary level 

from multiple perspectives, including the researcher, the teacher, and his students. 

 Multiple elements of PCK were evident in the scenario, particularly those from the 

“clearly PCK” section of the framework, including knowledge of student thinking, 

knowledge of the cognitive demand of the task, knowledge of teaching strategies, and 

representations. Mathematical structure and connections from the “content knowledge in a 

pedagogical context” section of the framework, and Goals for learning from “pedagogical 

knowledge in a content context” section were also evident in the data.  

The combination of PCK elements from across the framework provided insight into the 

nature of the interactions between Mr McLaren, his students, and the mathematics itself, 

highlighting the complex and dynamic nature of PCK. For example, Mr McLaren called 

upon his own content knowledge to decide on which action to take in order to make visible 

for the students why the value of the logarithm was negative. There were also interactions 

with the broader teaching and learning context, with Mr McLaren’s expressed reason for 

choosing the Tattslotto problem being to illuminate the “futility of gambling” rather than the 
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mathematics per se. On the other hand, some key probability ideas, such as the role of the 

complement, may have been underemphasised because of this focus. 

Other post-lesson teacher interview data supported the researcher’s observations of 

knowledge of student thinking and mathematical structure and connections but was limited 

in terms of providing insight into Mr McLaren’s specific choices of action. The Chick et al. 

(2006) framework for analysing PCK, however, offers a level of detail and specificity that 

is potentially useful for examining what comes to a teacher’s mind in moment-by-moment 

teaching and learning interactions.  

The students’ perceptions of Mr McLaren’s actions gave useful insights into PCK and 

supported evidence from the other data sources. For example, Mr McLaren’s representation 

of the log graph representing the relationship between the value of x and its logarithm was 

particularly noticed and appreciated by the students. Similarly, the connection Mr McLaren 

made between the mathematics involved in the reversal of the inequality sign and the reality 

of the number of games that would need to be played, was valued by some students.  

. Further studies that investigate PCK in different senior secondary mathematics contexts 

with a particular focus on the moment-by-moment pedagogical choices of action would also 

add to the limited research in this area.  
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Capitalising on student mathematical data: An impetus for changing 

mathematics teaching approaches 

Tracey Muir 
University of Tasmania 
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National testing and reform agendas, with their focus on school improvement, has led to 

increased collection and scrutiny of student data. The analysis of these data usually occurs at 

a school level, often by school leaders. What is less common is the opportunity for students 

to scrutinise their individual data and take ownership over the results and subsequent learning 

experiences. This paper reports on a study whereby students and teachers collaboratively 

interpreted mental computation test results and identify future teaching and learning 

directions. The findings showed positive outcomes for students led to changes in teacher 

growth and approaches to their teaching of mathematics.   

A key finding from a study aimed at developing an evidence base for best practice in 

mathematics education (Smith et al., 2018) identified that data can be used to monitor student 

outcomes and progress in mathematics. Purposeful use of data was a characteristic of the 

successful schools in the study, with the report recommending that sharing best practice 

models for using data would benefit all schools. Direct measures of student outcomes, and 

the collection and analysis of data, have also been identified as essential contributors to 

school improvement (ACER, 2019).  ‘Analysis and discussion of data’ is one of the eight 

domains identified in the Teaching and Learning School Improvement Framework (Masters, 

2010) whereby outstanding schools are characterised by having established and 

implemented a systematic plan for the collection, analysis and use of student achievement 

data. Furthermore, data are used throughout the school to identify gaps in student learning, 

monitor improvement over time, and monitor growth across the years of schooling (Masters, 

2010). The Grattan Institute also recommended the use of data to inform teaching through 

the provision of a checklist of effective uses of data such as a shared sense of responsibility 

for students’ learning; developing a common language across the school; and in-house 

professional learning (Goss et al., 2015).  

This paper reports on a study which was part of an ARC research project which aimed 

to improve students’ learning and wellbeing through a focus on personalised learning and 

team teaching in six different Australian schools. Each school identified a curriculum focus, 

which in this case was mathematics, and for the purpose of this paper, the topic of mental 

computation. Clarke and Hollingsworth’s (2002) model was used to inform the professional 

learning and subsequent professional growth experienced by the teachers in the study, with 

student data collected pertaining to students’ performance in mental computation. These data 

were subject to subsequent analysis, and formed the basis for future teaching and learning 

experiences. The following research questions were addressed for this paper: 

1. In what ways can student data on mental computation performance inform 

subsequent mathematical teaching experiences? 

2. In what ways does a shared responsibility for teaching mental computation 

contribute to teacher growth? 
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Theoretical Background 

Schoenfeld (2014) identified five key dimensions which characterise quality learning in 

mathematics: curricular coherence of the subject, cognitive demand of tasks, student access 

to mathematical content, opportunities for student agency, authority, and identity, and 

effective use of assessment. Cox et al. (2015) documented a case study whereby students 

experienced personalised learning in mathematics that met Schoenfeld’s dimensions. 

Curriculum coherence, for example, was provided through a focus on student learning 

intentions, and individualised mathematics programs, and students worked in groups at the 

same level. Of particular relevance to this paper is the consideration of effective assessment, 

whereby consideration is given to the monitoring of student understanding and timely 

planning that addresses students’ needs and offers ways to progress in performance (Black 

& Wiliam, 2009). The schools in Cox et al.’s (2015) study used student data collected 

through NAPLAN and diagnostic tests to design individualised programs for their secondary 

classes. The researchers found that test results, despite being trenchantly criticised elsewhere 

for their reductive effects on curricular content and methods, actually allowed teachers to 

tailor curricular experiences and progressions to meet the developmental needs of 

individuals in mathematics. 

Teacher change and professional growth 

According to Guskey (1986), teacher change is likely to occur only after changes in 

student learning outcomes are evident. Guskey and others (e.g., Fullan, 2015) highlight the 

limitations of one-off professional learning opportunities and advocate the situating of 

professional development within realistic contexts. For teachers to make significant changes 

to their practice, multiple opportunities are required to learn new information, trial new 

approaches and evaluate the impact of these approaches (Timperley, 2008). In addition, 

collegial interaction and expertise are required to challenge existing assumptions and 

develop new knowledge and skills associated with positive outcomes for students 

(Timperley, 2008). Change is more likely to occur if teachers are seen as learners and schools 

as learning communities (Clarke & Hollingsworth, 2002), and more likely to be sustained if 

there is evidence of student learning success. With this in mind, Clarke and Hollingsworth 

(2002) developed an Interconnected Model of Teacher Professional Growth which identifies 

the mediating processes of reflection and enactment as the mechanisms by which change in 

one domain leads to change in another. As shown in Figure 1, four domains are identified, 

with the type of change reflecting the specific domain. For example, using a new teaching 

approach is relevant to the domain of practice and a changed perception of salient outcomes 

related to classroom practice would reside in the domain of consequence. Through the use 

of the model, Clarke and Hollingsworth (2002) found that having a community of colleagues 

with whom consequences of experimentation were shared facilitated documented changes 

in teachers’ practice. These findings are consistent with other research that endorses 

collaboration, where practices are deprivatised (Vescio, Ross, & Adams, 2008), enabling 

teachers to engage in meaningful reflection alongside colleagues working in similar contexts 

(Buysse, Sparkman, & Wesley, 2003). Clarke and Hollingsworth’s (2002) model has been 

applied in a range of contexts to identify growth in teachers’ learning (e.g., Downton, et al., 

2019), and was used to interpret the changes in teachers’ practice reported in this paper.  
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Figure 1. Interconnected model of Teacher Professional Growth (Clarke & Hollingsworth, 2002, p. 951). 

Mental computation 

Mental computation and the explicit teaching of strategies was selected as a focus by the 

teachers in this study as they consistently found that students in their Year 5 and Year 6 

classes were relying on written methods, rather than mental methods, to solve basic number 

fact problems. Mental computation is emphasised in the Australian Curriculum: 

Mathematics (ACARA, 2018). By Years 5 and 6, students are expected to solve problems 

involving multiplication of large numbers by one- or two-digit numbers using efficient 

mental strategies (ACMNA100), use efficient mental strategies to solve problems 

(ACMNA291), including those involving all four operations with whole numbers 

(ACMNA123). While specific mental computation strategies are not identified, McIntosh 

and Dole (2004) identified a number of strategies including bridging 10, commutativity, and 

doubles.  

Methodology 

The study reported in this paper was part of a wider collaborative project which aimed 

to improve regional low SES students’ learning and wellbeing. Involving six different 

schools from two Australian states, each school developed their own projects which included 

individualised approaches to supporting learning and wellbeing, in response to the interests 

and needs prominent in each site. The project reported here involved teachers capitalising 

on mathematics test results to personalise students’ mathematics learning.  

The project used a longitudinal multi-phased mixed methods design study (Creswell, 

2003) to examine the effects of the proposed strategies as they were enacted in each school 

site. Each project site entailed an interpretative cycle whereby observations and teacher 

insights and practices, gleaned from interviews and meetings, progressively fed into the 

findings and forward planning.   

Context and participants 

The site which is the subject of this paper was Epping Primary School (pseudonym). 

Epping Primary School is a semi-rural school with a total student population of 



Muir 

300 

approximately 500. The participants for the study were four Year 5 and Year 6 teachers and 

their classes which totalled approximately 120 students. Following ethical approval, full 

consent was given by the teachers and the participating students’ parents.  

Data collection and procedure 

The researcher’s role was partly observer, participant-observer, and an external source 

of information or stimulus (Clarke & Hollingsworth, 2002). Beginning in 2017, the 

researcher met each term with the Year 5/6 teachers and school leaders to identify the 

mathematical focus or topic. The researcher and teachers worked collaboratively to either 

develop or adapt a pre-test on the topic (e.g., mental computation) which was administered 

to all students. The teachers marked the tests and then organised students into four similar 

ability groups based on the results. They also conducted interviews with the students to share 

individual test results and have students write their personal goals for mathematics learning. 

With the support of the researcher, the teachers adopted a shared responsibility through 

collaboratively planning for and then teaching, the selected mathematical topic to the whole 

cohort of 120 students. 

In addition to ‘regular’ mathematics classes, 2-3 sessions were planned weekly whereby 

all the students gathered in the Performing Arts Centre (PAC) space. PAC maths (as it came 

to be called) involved a 15-20 minute session which was planned for and led by one of the 

teachers. For mental computation, the sessions would involve familiarising students with 

different mental computation strategies, providing them with problems to calculate mentally 

and then whole group sharing of selected students’ strategies. Students used individual 

whiteboards to record their thinking when required.  Following the whole group session, 

students were then split into four groups and moved to their allocated teacher’s classroom. 

Each teacher was responsible for adapting instruction on a previously agreed strategy for 

their particular group. The emphasis was on increasing students’ range of strategies and 

teachers typically made use of games and activities to develop the strategies. The 

experiences for each group were similar, but tended to differ in terms of the magnitude of 

the numbers involved. The teaching of mathematics continued in this way for 4-6 weeks, 

and then students were given a post-test. Results were again discussed between the teachers 

and the students, and a new focus was identified. The data reported on in this paper relates 

to a fourth cycle undertaken on mental computation in Term 3, 2018.    

Data analysis 

The data discussed in this paper include pre- and post-test results, student data interviews 

and a teacher focus group interview. The pre- and post-tests were co-designed with the 

teachers and the researcher and contained 73 items. Essentially the items were the same for 

both tests with some variation in the numbers given. There were 50 items that required 

instant recall, but most items required application of strategies as illustrated in Figure 2. The 

strategy items were marked according to a rubric designed by the teachers and used a rating 

scale of 0 (no or incorrect response), 1 (partially correct response) and 2 (complete correct 

response). The response shown in Figure 2 scored a 2. It was possible to score a total of 116 

in both the pre-test and post-tests. Interviews were semi-structured, audio-recorded, of 

approximately 15 minutes in duration and fully transcribed. Student data interview scripts 

were open coded, with mathematical language and goals being examples of two codes 

applied. The teacher’s focus group interview was analysed to look for evidence in changes 
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in practice using codes related to the four domains of Clarke and Hollingsworth’s (2002) 

model. The next section presents the results of the study. 

 

 

Figure 2. Example of test item and student’s response 

Results 

Prior to participating in the project, each of the Year 5/6 teachers were responsible for 

individually planning, developing and teaching mathematics to their own classes. As a result 

of the project, the teachers assumed a sense of shared responsibility for students’ learning, 

and changed their approach to collaboratively plan for the whole cohort of Year 5/6 students, 

based on the results of a pre-test. Individual data interviews were held with students, 15-

minute introductory sessions were conducted with the whole cohort, and students were 

organised into fluid groupings for targeted instruction, based on the results of the test. 

Students’ and teachers’ experiences of this approach are detailed in the next sections. 

Capitalising on student pre-test data 

In order to capture how students experienced PAC maths, two students, John and Tina 

(pseudonyms), have been selected to illustrate how the approach worked in practice.   John 

scored 56 in the pre-test and was particularly confident with instant recall. He indicated in 

his interview that: 

I reckon I did pretty good. I like times tables, so I’m pretty good with times tables. I think I did pretty 

good … I liked part two where you had to choose your method, then you had to tell in your answer 

why it was preferred. 

He was less confident with the items that required him to interpret the work sample responses 

and left most of Part 5 blank which required the use of specific mental computation strategies 

to solve the problems (“it was a bit hard for me”). John initially identified that his goal would 

be to “work on harder questions”. His teacher helped him to refine the goal in the following 

way: 
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We’ve got to have a look at your goal and see if it’s very specific or not. So, work on harder questions. 

We might not know exactly what that looks like, so is there another way that we can be a bit more 

specific about that? Questions that involve what? 

John: Involve maybe harder times tables, like 23 times 200 or something.  

In the interviews each student was also encouraged to set a mathematical behaviour goal. 

After some discussion, John identified that this goal would be to have a go at questions he 

was not sure about, rather than leaving them blank. 

Tina scored 92 in her pre-test and made an attempt to answer every question. While she 

could identify two different ways to solve problems when asked, her responses showed a 

preference for the formal algorithm because “it is quicker and easier for me”. She was able 

to articulate areas in which she was confident with and others which she found challenging: 

I did well in the timed questions, then I sort of went downhill through the rest of the test but I still did 

my best. It was hard for me to say how I did it because most of it was in my head. Division was more 

challenging because most of the division questions I get always have sevens and eights in them and I 

can’t really divide with seven and eights. 

Salient outcomes: Students’ perspectives 

Along with the whole cohort of Year 5/6 students, John and Tina participated in 2-3 

whole group 15-minute sessions in the PAC, followed by 45 minutes of targeted group 

instruction. According to John’s teacher, he was placed in the ‘second top’ group, where 

specific mental computation strategies such as doubling and bridging 10 were taught. In his 

post-interview, John indicated that he thought he had achieved his goal and learned about 

strategies such as bridging 10 and doubling and halving. He scored 92 in his post-test (an 

improvement of 31%) and indicated that he liked the PAC maths approach: 

You get to work in groups where you can interact with other people, plus they help you out if you 

don’t know a sum, like, they can teach you how to do it. 

Tina was placed in the ‘top’ group, for her targeted mathematics instruction and scored 105 

in her post-test. In her post-test interview she acknowledged that the teaching approach had 

helped her towards achieving her goal: 

[We learned about] split and divide and split and multiply and friendly and fix … where you make 

one of the numbers up to ten, instead of having a unit in it and you add that back on later … so 49 

plus 20, and you make it into 50. 50 plus 20 is 70, then you minus the one that you added on, so that’s 

49.  

Tina also expressed a liking for the PAC maths approach: 

There’s other people in the room … and I like watching what answers they get, once I’ve got my 

answer and I’m holding it up. I like seeing how other people have thought, that’s my favourite thing 

about PAC maths … and I like the groups because in [regular] class I have people that are lower than 

me, so we have to teach them stuff I already know. 

Salient outcomes: Teachers’ perspectives 

The focus group interview provided teachers with the opportunity to discuss the benefits 

and challenges of the PAC maths approach. They found the pre-test was useful in terms of 

identifying that while many students did well on the multiplication items, many students 

found division challenging and did not see the connection between the two operations. The 

collaborative planning and whole group teaching sessions enabled “all teachers to be using 

the same language which is good” and the targeted instruction groups provided for 

differentiation with a smaller range than typically experienced in a regular class grouping:  
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Maths is hard to teach in our [regular] class … the range is just so huge …  all across the 5/6 cohort 

there’s a big lot of D kids and because you’ve got Ds and you’ve got your As and a few Es, it’s really 

hard to plan at everyone’s level.                                                                                                        [Jane] 

I think that’s the key to helping them go forward because you don’t have to worry about those ones - 

you’ve just got that core of the kids.  You know very explicitly what they can and can’t do and how 

you can just push them to move that little bit further because it’s just targeted at them.              [Tim] 

Other than logistical issues early on with factoring in planning time and booking the PAC 

space, the teachers all agreed that PAC maths was not only beneficial for the students, but 

also for their own teaching practice: 

I think it’s been good in the sessions that we do have together that they [students] realise that 

sometimes we can be so isolated in our rooms, “Oh, we’re all learning this.”  That’s quite a powerful 

thing … it’s pushed us out of our areas as well. It’s been really powerful for the kids to see that we 

all teach – I mean, I’ve gone from taking the top group to the bottom group and that has been really 

powerful for the kids to see … it’s just been good … everyone’s been happy.                                 [Jane] 

Discussion 

There is evidence that Schoenfeld’s (2014) five dimensions of quality learning were 

enacted through the PAC maths approach. Collaborative planning provided for curriculum 

coherence across the Year 5/6 cohort. The whole cohort grouping at the beginning of each 

session ensured that all students received the same core content, experienced different 

teaching styles, developed a common vocabulary, and were exposed to a wide range of 

different students’ thinking strategies. Like the students in Cox et al.’s (2015) study, these 

students worked in similar ability groupings, with the establishment of personal learning 

goals fostering the development of individualised learning.  

Clarke and Hollingsworth’s model (2002) provided a useful lens for understanding 

teachers’ growth and commitment to sustain the practice. Through the researcher and their 

involvement with other schools in the project, the teachers were exposed to an external 

source of information or stimulus. Site visits to other participating schools allowed teachers 

to observe different enactments of personalised learning and they were particularly 

impressed with the shared practice of capitalising on the use of student data. The teachers 

then engaged in professional experimentation through their use of pre- and posttests, whole 

cohort PAC sessions, which deprivatised their practice (Vescio, et al., 2008) and grouping 

for instruction. They were motivated to continue with cycles involving different topics when 

students’ results improved from pre- to posttests (salient outcomes) and they experienced 

satisfaction from their teaching approaches.  

In terms of improving students’ mental computation skills and knowledge, the interviews 

showed that students were able to identify learned strategies that were helpful and efficient 

and helped them to achieve their personalised mathematical goals. The test results allowed 

teachers to identify gaps in students’ learning (Masters, 2010), while the interviews allowed 

teachers to tailor curriculum experiences to meet the individual needs of students (Cox et al., 

2015). 

Conclusions and Implications 

While the collection of student data is becoming increasingly prevalent in our schools, 

more could be done to capitalise on this valuable source of information. Analysis and 

discussion of data has been identified as an essential component of school improvement 

(ACER, 2019), yet examples of effective ways of how this might be done is limited in the 

literature. The approach detailed in this paper provides such an example, which could be 
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adapted by schools in similar contexts. It is likely that within any school, that is typically 

organised in year cohorts, students are exposed to different mathematical experiences 

depending upon their teacher’s interpretation of the curriculum. PAC maths made provisions 

for teachers to develop a shared responsibility for the Year 5/6 cohort and students and 

teachers benefited from being exposed to different teaching, deprivatisation of practice 

(Vescio, et al., 2018) and interaction with different students. The project provided teachers 

with the opportunity to engage in professional experimentation (Clarke & Hollingsworth, 

2002), and salient student outcomes provided an impetus for professional growth to occur. 

It is hoped that the project detailed in this paper has provided teachers and school leaders 

with an insight into how rethinking current teaching approaches can lead to improved 

mathematical outcomes and experiences for students.     
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This longitudinal study aimed to determine changes in students’ predictive reasoning across 

one year. Forty-four Australian students predicted future temperatures from a table of 

maximum monthly temperatures, explained their predictive strategies, and represented the 

data at two time points: Grade 3 and 4. Responses were analysed using a hierarchical 

framework of structural statistical features. Students were more likely in Grade 4 than Grade 

3 to make reasonable predictions (87% vs 54%), to demonstrate data transnumeration in their 

representations (71% vs 19%), and to describe data prediction strategies based on extraction, 

clustering, aggregation of data, and observations of measures of central tendency. 

Predictive reasoning is an everyday process where the decision-making process is 

informed by chance events placed in a context of underlying causal variation (Makar & 

Rubin, 2018). Research with primary school students on probability and prediction often 

focuses upon deterministic experiments using devices such as random draws; for example, 

balls or lollies (Reading & Shaughnessy, 2004). These tasks are helpful for investigating and 

promoting student reasoning because they reduce the number of sources of variation under 

consideration. However, at the heart of statistical analysis lies an understanding of the 

relationship between variables (Biehler et al., 2018). To answer many “real world” statistical 

questions of interest, students must also be capable of making distinctions between authentic 

correlations and genuine randomness (Bryant & Nunes, 2012). Designing predictive tasks, 

which include both causal and random variation, can therefore have exceptional potential 

for exploring some of the big ideas about probability and variation, such as distribution, 

expectation and randomness, and inference and sampling.  

Appreciating distributional relationships and identifying authentic data patterns while 

predicting can be challenging for young students. Watson and Moritz (2001) described 

predictive strategies used by young students which included seeking missing or unused 

numbers, as also reported in Oslington et al., (2020). This may be linked to students’ 

perception of “fairness” whereby variation is controlled by even allocation across groups 

(Reading & Shaughnessy, 2004). When describing the data predictions of Grade 2 students, 

for example, Ben-Zvi and Sharett-Amir (2005) noted that students in their sample appeared 

to conceive the data as flat distribution with all values equally likely. However, Grade 3 

students with an aggregate view of data were generally able to make reasonable predictions 

(Oslington et al., 2020) suggesting a developmental progression towards an understanding 

of data as a distribution containing a central signal with random variability around the signal 

(Konold & Pollatsek, 2002). 

Conceptual framework 

Students’ development of predictive reasoning competencies can be supported in 

multiple ways, including via opportunities to create and analyse data (English, 2012; Makar, 
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2016), opportunities to represent data by drawing, describing and graphing (English, 2012; 

Mulligan, 2015), and via other low-stakes learning experiences in which predictive 

reasoning language, context, and content is scaffolded (Kazak et al., 2015; Makar, 2016). To 

measure these competencies, researchers have drawn upon frameworks that observe what 

students can do—such as the Awareness of Mathematical Pattern and Structure (AMPS) 

(Mulligan & Mitchelmore, 2009) or the Structure of Observed Learning Outcomes (SOLO) 

model (Watson et al., 2017)—as well as what students notice and describe (English, 2012; 

Konold et al., 2015; Mulligan, 2015).  

Mulligan and Mitchelmore’s (2009) five-level AMPS conceptual model demonstrated 

that some young students spontaneously sought patterns, structures, and relationships by 

noticing similarities and differences between mathematical quantities, objects or 

relationships. In this process, students showed an understanding of emerging generality 

when they identified and applied common structural features and noticed regularities of 

spatial structures. These students could also think relationally. Based on these findings, 

AMPS describes two interdependent components: one cognitive—a knowledge of structure, 

and one meta-cognitive—a tendency to seek and analyse patterns. When applied to the 

development of statistical reasoning, it is implied that pattern and structure refer to the 

general properties within the data set, which can be expressed through relationships between 

the elements or subsets of the data set (Mason et al., 2009).  

Our recent study (Oslington et al., 2020) found individual differences in reasoning 

among Grade 3 students. For example, students who viewed the data represented in a table 

as a single dataset also tended to use that same table as a resource for making predictions; 

integrating data with personal experiences and general knowledge. However, other third 

graders used the table in an inconsistent and idiosyncratic way. The current study, which 

included the same cohort at the beginning of Grade 4, focused on the changes in structural 

features of student predictions, reasoning, and representations between Grades 3 and 4. The 

AMPS framework was extended to capture the structural features of statistical development, 

drawing on research which suggests that the development of complex cognitive processes 

underpinning predictive reasoning occurs over time and from an early age. These studies 

imply that students who engage in pattern-seeking behaviours such as seeking similarities 

and differences are likely to understand the mathematical and statistical structures behind 

these patterns, while those who do not notice the patterns are likely to focus upon 

idiosyncratic or non-mathematical features. Thus, the developmental process of predictive 

reasoning might be interpreted through observing the pattern-seeking behaviour of students 

while engaged in a predictive reasoning task.  

The Design Study 

An earlier report (Oslington et al., 2020) described the first of three iterations of a design 

study on predictive reasoning conducted with a single student cohort (Oslington, 2020). This 

report describes the second of the three iterations and two research questions were addressed: 

(1) Which structural features of the data were identified by students when predicting 

from, reasoning about, and representing a data table? 

(2) How do the predictions, reasoning, and representations of Grade 3 students compare 

with those same students when in Grade 4? 
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Participants 

Students attended a K-12 independent school in metropolitan Sydney. The school was 

relatively advantaged with an ICSEA score of 1080 and 75% of students were in the top half 

of Australian students. The report here covers two data points: the first week of Term 1 for 

Grade 3 students and the first week of Grade 4 with the same students. Forty-four students 

were available at both time data points representing 96% of the year group. Ethical 

permission was provided for all students. Data collection on both occasions was by the first 

author as teacher-researcher. 

Table 1 

Coding for student predictions, reasoning and representations (AMPS level) 

AMPS 

level 

No. of 

reasonablea 

predictions 

Explanations Representations 

Advanced 

structural 

12  

 

Identified and 

described 

relationships 

between variables 

across the table 

Relevant data transnumeration 

demonstrating association between 

variables of time and temperature (e.g., 

dot and line graphs) 

Structural 10-11  Patterns observed 

across the row 

and column 

structure 

Relevant data transnumeration through 

reorganisation of variables of time and 

temperature (e.g., bar graphs, tables 

extracting highest values from years or 

months) 

Partial  5-9  Patterns observed 

using column 

structure 

Attempted transnumeration, such as 

changing the orientation of the table 

without relevant data extraction (e.g., 

reorienting the data table so time series 

is on the horizontal axis) 

Emergent 3-4 Patterns described 

not related to data 

context or content 

Reproduction of data set without 

transnumeration (i.e., copy of table) 

Pre-

structural 

≥ 2  Systematic 

pattern seeking 

not employed 

No interaction with the numbers in the 

data table observed (e.g., weather 

pictures, empty grids or invented data) 

a Predictions were considered reasonable if falling within the 5th and 95th percentiles of temperatures 

historically recorded for the month at Observatory Hill meteorological station, Sydney. 

Lesson design and data collection 

As previously described (Oslington et al., 2020), students were withdrawn from the 

classroom in convenience groups of 9–12 students. Each student independently: (1) 

predicted future maximum monthly temperatures for Sydney using a table of past maximum 

temperatures, (2) constructed a representation of the temperature data, and (3) explained 

their predictive strategies via a videoed interview. The data collection process was identical 

in both Grades 3 and 4, with the exception that the temperature table provided to Grade 4 

students (Figure 1) contained one extra year (2017) of temperatures. Data consisting of 
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student predictions, video interviews, and representations for students at each time point 

were coded using a five level AMPS scaffold (Table 1). 

 

Figure 1. Maximum temperatures table for Sydney provided to Grade 4 students. 

Results 

As shown in Table 2, evidence of structural and advanced structural awareness 

underpinning temperature predictions was more widespread in the Grade 4 cohort relative 

to Grade 3. In Grade 4, 87% (n=38) of students predicted sequences of temperatures with at 

least 10 reasonable predictions. In contrast, just 54% (n=24) of the students had reached this 

same milestone in Grade 3. Almost half the Grade 4 cohort (48%) made reasonable 

predictions for all 12 monthly values, compared with 27% of Grade 3 students. The 

percentage of students making emergent or pre-structural predictions declined from 22% of 

Grade 3 students to only 9% of Grade 4 students.  

Table 2 

AMPS levels of student predictions, representations and explanations in Grades 3 and 4  

  

Reasonable predictions relied on identification of patterns in the data, which some 

students could articulate at interview. Strategies unrelated to the data table (pre-structural), 

or that erroneously applied personal knowledge and experience in isolation from the data 

(emergent), were reported by 48% (n=21) of students in Grade 3 but just 20% (n=9) of the 

same students in Grade 4. By Grade 4,79 % (n=21) of the cohort described some relevant 

aspects of the data table when explaining their predictive strategies (i.e., a partial, structural, 

or advanced structural response) relative to 22 (50%) in Grade 3. Students’ strategies that 

 Predictions (%) Explanations (%) Representations (%) 

 Grade 3 Grade 4 Grade 3 Grade 4 Grade 3 Grade 4 

Adv structural 27 48  2  7  5 12 

Structural 27 39 15 36  7 45 

Partial  23  5 34 36  7 14 

Emergent 11  7 25 14 36 20 

Pre-structural  11  2 23  7 45  9 
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focused upon a single aspect of the data were categorised as partial. These explanations often 

reflected awareness of the similarities or patterns in the vertical column structure of the table 

only, but were not coordinated with the seasonality implicit in the horizontal row structure. 

Other strategies included matching the tens’ digits or looking at the highest or lowest value 

in each column. Approximately one third of each of the Grade 3 and 4 cohorts’ (34% and 

36% respectively) elicited explanations that were coded at the partial level. Structural 

responses successfully integrated seasonal knowledge and changes in temperature with the 

yearly trends of the data table by coordination of vertical and horizontal data entries. Such 

responses were more common in Grade 4 (36%) than Grade 3 (15%). Grade 4 student Luca, 

for example, first described observing the range of values in columns, and noticed that some 

values were more frequent than others, implying an expectation of a clumped distribution. 

He then explained that the previous two July temperatures were the hottest July values, 

predicting a similarly hot value for 2018. 

Finally, and in contrast to the temperature prediction data, verbal explanations at the 

advanced structural level were quite uncommon, observed in only one Grade 3 student (2%) 

and three Grade 4 students (7%). These students described the data table holistically, often 

observing multiple interrelated components (e.g., noticing a higher level of variability with 

increasing temperatures). They differed from those with structural explanations by 

describing how they had sought central tendencies in the data, or by selecting an average or 

representative figure. In Grade 3, for example, Joseph observed differences in monthly data 

range and benchmarked values by intentionally making adjacent months a few degrees 

higher or lower than adjacent ones. Grade 4 student, Rhys, explained he sought the 

“approximate average temperatures”, describing these as middle values, closely aligned to 

the median. Grade 4 student, Stuart, started his predicting with winter temperatures where 

the variability was least, and explicitly linked the higher range of temperatures in the summer 

months to the amplified impact of climate change on warmer seasons relative to cooler ones.  

Students’ representations of predictions in Grade 3 were predominately pre-structural, 

or emergent (Table 2). Pre-structural representations did not include data from the original 

temperature table, instead consisting of weather pictures, empty grids, and tables with 

invented data (pre-structural, Figure 2). Students with emergent responses appeared to 

recognise the importance of the original temperature data by copying the table, but provided 

no interpretation or additional manipulation to illustrate understanding (emergent, Figure 2). 

In both Grade 3 (7%) and Grade 4 (14%), a relatively small number of students also 

constructed representations at the partial structural level, using aspects of the table data in a 

non-systematic way. For example, the transnumeration labelled partial in Figure 2 was 

constructed as a time sequence on the x-axis prior to stacking the temperature data values on 

the y-axis above. 

Finally, by Grade 4 more than half of the students created representations that were 

categorised at the structural (45%) or advanced structural levels (12%). These students were 

able to organise their data in a new way, distinct from the original data table: either by sorting 

(e.g., listing years as hottest to coldest), grouping the original data to create a new variable 

(e.g., determining hottest temperature for each month), or by focusing on a specific statistical 

exemplar, such as the median value. While some students listed these as abridged tables or 

lists, students in Grade 4 (39%) were often able to coordinate two sets of variables and create 

bar graphs (23%) or line graphs and scatterplots (16%). Only 7% of students in Grade 3 were 

able to do the same. The examples of structural and advanced structural representations in 

Figure 2 include structural elements such as approximate equal spacing, the range on the y-

axis starting above zero, correct sequencing of months, and coordination of bivariate data. 
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Discussion 

The aim of the study was to track the development of students’ predictive reasoning 

capacities across one year. Students demonstrated important gains in development by Grade 

4, evident through the reasonableness of their predictions, and examples of transnumeration 

and coordinate graphing in their representations. In order to accurately make predictions, 

students required an understanding of the variability in data, the capacity to reason logically 

about random events, and to appreciate associations between events (Bryant & Nunes, 2012). 

Consistent with Watson and Moritz (2001), who found increases over time in students’ 

ability to represent, predict, and interpret pictograms, students’ predictions in the current 

study progressed markedly between grade levels. By Grade 4, many students’ explanations 

of their predictions reflected an understanding of multiple forms of variability (see 

Shaughnessy, 2007), for example, noticing extremes and outliers in temperatures, discussing 

changes over time, noticing variability in the table or monthly range; variability associated 

with seasonality, and awareness of distributions. 

 

Figure 2. Student representations of Sydney maximum temperatures at five AMPS levels.  

Coding with the AMPS conceptual framework highlighted the degree to which students 

identified statistically-meaningful patterns within the data. While previous research has 

shown that students with a high awareness of patterns are also likely to develop coherent 

mathematical concepts and relationships (Mulligan et al., 2020) and representations 

(Mulligan, 2015; Oslington et al., 2020), this longitudinal study is the first to apply the 

AMPS framework to statistical reasoning (also see Cycle 1 findings in Oslington et al., 

2020). Awareness of mathematical pattern and structure was fundamental to students’ 

perception and representation of the data set, enabling an understanding of how the variables 

of time and temperature could be related and organised, how students coordinated bivariate 

lent data, and an understanding of collinearity. For example, students in the cohort were 
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frequently able to identify the base-ten structure evident in the monthly columns, note the 

repeated data values, and identify variations and similarities in data range. Students who had 

structural or advanced structural AMPS levels demonstrated conceptual understanding of 

central tendency, variability and could abstract and generalise about relationships within the 

data, which are both crucial components of AMPS (Mulligan & Mitchelmore, 2009). 

The data set chosen in this study reflected underlying causal variation due to seasonal 

change, which was apparent to students’ reasoning at the structural and advanced structural 

levels. In each case, students were able to identify this causal pattern and use it in their own 

predictions and representations. However, the variables of time and temperature could also 

be organized in several ways, each giving a different grasp of the distribution (Gattuso & 

Ottaviani, 2011). If a student selected the temperature as the dependent variable, for 

example, the independent variable could be either month or year. Selection of month as the 

independent variable emphasised the relationship between months and temperatures, 

provided they were organised in calendar order. This made it easier for students to read 

beyond the data (Makar & Rubin, 2018) and make inferences about other years. For some 

students, drawing their own (structural) predictions in a figure or graph clarified this 

relationship in a way that simply viewing the historical data table could not. This became 

apparent at interview. Students who selected the year as the independent variable still 

demonstrated coordination of bivariate data, but their resulting graph lacked the relational 

component apparent when months were selected. This is because, at least on the timescale 

used, the data showed no clear trend across years and temperatures. This type of 

representation provided less opportunity for inference, as interpretation was limited to 

noticing (for example) the hottest or coldest year out of the limited range.  

Limitations and directions for further study 

This study illustrated development in the predictions, explanations, and representations 

of students at Grade 3 and 4. The study was nonetheless limited by focusing on a single 

aspect of predictive reasoning with one cohort. It also involved a repeated task and the impact 

of task familiarity upon the achievement of the students has not been explored. Caution is 

therefore required before such findings are generalised to other contexts. Notwithstanding 

these limitations, there are also recommendations for future research. 

First, future research should investigate the interplay of students’ prior knowledge, 

autobiographical memory, and data interpretation skills when making predictions. In the 

current study, students’ explanations revealed gaps in their assumed semantic knowledge of 

relevant concepts such as the timing of winter, the importance of the values in a data table, 

and the repeated pattern of months. This was particularly true in Grade 3. For example, few 

students appreciated that the two dimensions of the data table actually represented one 

continuous data sequence, which formed a pattern of highs and lows repeated every 12 units. 

In contrast, references to students’ prior experiences were common. The Grade 4 data 

collection occurred in February 2019, after an Australian summer widely promoted as having 

record-setting maximum temperatures. While predictive strategies described by the Grade 4 

students were typically based upon either the data values, the seasons, or an integration of 

both season and data table contents, the discussion of temperature within the media and 

community may still have helped students to better understand what might count as a realistic 

temperature. Indeed, practice at making predictions in other contexts—such as literacy 

studies, problem-solving in mathematics, social science lessons on climate change and 

geography—may also have contributed to the growth in predictive reasoning capacity 

between the two grades. 
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Secondly, for more advanced and older students, further research should consider the 

optimal timing for introduction of formal statistical concepts. Several of the students already 

appear to be independently seeking central tendencies in the data. Research on the use of 

exploratory graphing as a tool for promoting a relational understanding of data sets would 

also provide guidance regarding appropriate statistical learning sequences. 
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Comparative judgement is a relatively new way of facilitating peer-assessment where 

students are shown pairs of other students’ work and judge which of the two is better. 

Literature on example-based learning suggests that students should be able to learn from 

comparative judgement. We present the case of one student, Josie, whose understanding of 

rational inequalities did not improve while assessing other students work comparatively. We 

argue that her self-explanation attempts were limited because comparative judgement created 

an environment that threatened her goal of understanding. Knowing the correct answer may 

have helped alleviate some of these issues. 

Comparative judgement is increasingly being used as a digital peer-assessment tool 

where students evaluate, provide feedback, and rank pairs of other students’ work. It 

involves showing pieces of work as pairs, side-by-side, where students select which of the 

two they feel is better. This relies on the fact that humans are more reliable at comparing 

two objects against a given quality, for example, which object is heaviest, than they are at 

making an absolute judgement, such as stating how heavy an object is in kilograms 

(Thurstone, 1927).  

In the context of mathematics education, comparative judgement has been used 

successfully to assess problem solving (Jones et al., 2014), students’ understanding of 

fractions (Jones & Wheadon, 2015), and proof comprehensions (Davies et al., 2020), as well 

as understanding of calculus (Jones et al., 2019, 2013). Each of these studies focused on 

establishing reliability, that is, to demonstrate that the rankings produced by comparative 

judgement agree with those that would have been produced using traditional marking 

methods. High inter-rater reliability has consistently been demonstrated. 

Other studies have explored what type of construct comparative judgement might be 

measuring. For example, Jones et al. (2013) advocate for the potential of comparative 

judgement to measure what they term as conceptual understanding. In their study, teachers 

were asked to give an estimate of their middle school students’ mathematical ability. 

Students were then given a task where they were asked to order a set of fractions from 

smallest to largest and explain their solution. Teachers then used comparative judgement to 

rank students’ responses. Jones et al. found that teachers’ estimates of mathematical ability 

were a better predictor of final rankings than task accuracy, and argue that comparative 

judgement measures something other than procedural understanding. 

Given the large number of studies already available exploring issues of reliability and 

validity, this paper instead focuses on recent calls to explore the potential use of comparative 

judgement as a learning tool rather than an assessment tool (e.g., Strimel et al., 2020). As of 

yet, there has been minimal research looking at the role comparative judgement might play 

pedagogically, particularly in the context of mathematics. From the few studies that do exist, 

it seems that students both in the secondary school setting (Jones & Alcock, 2013) and 

university setting (Potter et al., 2017) find pairwise peer-assessing valuable and worthwhile. 
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In the context of design, Bartholomew et al. (2019) have shown that comparative judgement 

can improve student outcomes, where students who participated in pairwise peer-assessment 

outperformed students who assessed their peers’ work one at a time. This suggests that 

comparative judgement influences learning beyond the process of just giving and receiving 

feedback. 

In this paper, we add to the limited knowledge of comparative judgement as a learning 

tool by presenting the case of one student, Josie, who did not find comparative judgement 

helpful. We present an analysis of Josie’s experience to better understand what aspects of 

the comparative judgement process were helpful or otherwise. We suggest that the way in 

which we organised our comparative judgement activity may have limited Josie’s 

willingness to engage in deep reflection, reducing the potential for learning to occur.  

Before reviewing the case of Josie, we draw on the framework of learning from worked 

examples to provide some justification for why comparative judgement might be useful for 

students’ learning. 

Learning from Worked Examples 

Learning from worked examples involves providing students with the following: the 

problem itself, the steps taken to reach a solution, and the final solution (Renkl, 2014). In a 

seminal study, Sweller and Cooper (1985) compared learning through worked examples and 

learning through problem solving in mathematics and found that learning through worked 

examples required less time to process, problems were solved faster, and students made less 

mathematical errors. Since then, several studies have replicated these findings (for an 

overview, see Renkl, 2014). 

The reasoning behind why example-based learning is effective draws on Cognitive Load 

Theory (Sweller et al., 1998). Learning by practicing problems without the guidance of a 

worked example places heavy demands on working memory. To solve a given problem, 

learners must work on finding a set of steps that can lead them to the desired goal. Because 

such an approach imposes a heavy load on working memory it generally does not lead to 

learning. Studying worked examples reduces cognitive load. Learners no longer need to find 

a set of required steps themselves as these are included within the worked examples. 

Learners can then avoid searching their own prior knowledge for solution methods. This 

thereby reduces working memory leaving cognitive resources available for self-explanation 

(Sweller et al., 1998). This is important as only when self-explanation is encouraged, that is, 

when students explain the reasoning behind a solution to themselves, do worked examples 

appear to be effective (Chi et al., 1989; Renkl, 2014). 

We hypothesise that comparative judgement, as with worked examples, may also 

facilitate learning, where the solutions students compare are analogous with worked 

examples used during example-based learning. One key difference is the emphasis on 

comparing, however, this too has supportive evidence for learning in the literature on 

example-based learning.  Empirical studies have demonstrated that presenting worked 

examples side-by-side, rather than one at a time, consistently results in greater learning gains 

(Star & Rittle-Johnson, 2009). By having two worked examples available simultaneously, 

the learner is no longer required to hold a representation of the previous worked example 

active in their working memory in order to compare with the next example. The effect is to 

reduce cognitive load making learning more likely. To put it simply, in the words of Rittle-

Johnson and Star (2009, p. 529) “Experts agree; comparison is good.” 

Lastly, comparative judgement includes both correct and incorrect examples. The 

framework of example-based learning suggests that providing students with both correct and 
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incorrect examples is more beneficial than providing correct solutions only since incorrect 

solutions help students recognise incorrect strategy choices by drawing attention to the 

feature of the problem that makes the strategy inappropriate (Booth et al., 2013). 

Research Design 

The results reported here form part of a larger pilot-study. As such, we limit our 

explanation of our research design and detail only aspects needed to understand this single 

case study. 

Participants included first-year undergraduate students studying an entry level calculus 

course. Eight students participated in an individual problem-based interview. Students 

completed a pre-task that asked them to solve the rational inequality 
𝑥+1

𝑥−7
> 3. No feedback 

was provided, and they were not told whether they had answered the problem correctly or 

incorrectly. The students were then shown six pairs of other students’ work on the same 

problem. For each pair, students selected which of the two they thought was the better 

solution. What better meant was up to students to decide. Students decided based on a variety 

of factors including the choice of method, whether any mistakes had been made, and even 

the neatness of the handwriting. Students were not provided with a rubric, marking scheme, 

or correct answer to help inform their decisions. While assessing each solution, students 

were asked to think-aloud. The think-aloud method involves verbalising one’s thoughts 

when first noticed and is seen as a valid way to capture individuals’ working memory 

(Ericsson & Simon, 1993). Once students completed their pairwise judgements, they then 

completed a similar problem and solved 
5𝑥−2

𝑥+5
> 6. This allowed for comparison between 

students’ pre- and post-tasks to analyse any changes students might have made between 

tasks. A short semi-structured interview followed where we asked students to explain any 

changes they made to their solution technique between their pre- and post-tasks. 

Analysis 

From the literature, we anticipated that comparative judgement should be useful in 

improving students’ understanding of rational inequalities. To measure this, we intended to 

compare students’ pre- and post-tasks to see if students who had made errors in their pre-

task had rectified their mistakes in their post-task. Surprisingly, for students who held 

misunderstandings during the pre-task, we found little evidence for improved understanding 

in the post-task. 

Since we were unsure why there had not been any improvement our next steps were 

exploratory. We found students’ think-aloud comments during comparative judgement 

enlightening and analysed students’ comments using thematic analysis (Braun & Clarke, 

2019). This involved a progressive process of systematically comparing and grouping 

segments of think-aloud data firstly into meaningful smaller groups, and later into broader 

themes. These themes were developed inductively from the data. We present two themes 

here: the frustrations caused by not knowing the correct answer, and the lack of willingness 

to interpret other students’ solutions if knowledge from external, rather than internal, sources 

was expected. 

Below is our analysis of one student, Josie, who had not found comparative judgement 

helpful. Josie represented an atypical case since she was able to complete both the pre- and 

post-tasks but was still unable to understand the different approaches used in the solutions 

presented to her. As such, Josie was the only student for whom there was no evidence to 
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suggest any improvement in understanding had resulted from the comparative judgement 

task. As Josie was forthcoming with her opinion, her case was useful in illustrating why 

comparative judgement may not be helpful for all students. 

Results and Discussion: The Case of Josie 

Background 

Josie completed the pre-task by rearranging 
𝑥+1

𝑥−7
> 3 as 

𝑥−11

𝑥−7
< 0 and solving for when 

the numerator was positive and denominator negative, and vice versa. Unfortunately, she 

made a minor numerical error, leading to an incorrect final answer. This proved to be 

significant as her answer differed to most of the answers in solutions provided for the 

comparative judgement task. Josie noted while completing the pre-task that she had never 

understood how to solve rational inequalities and did not know why the same techniques 

used for solving equations could not be used to solve inequations. For example, Josie did not 

understand why you could not multiply both sides by 𝑥 − 7 and why there would be “two 

answers”. We refer to this type of approach as a two-cases approach. 

Josie’s goal of understanding and not knowing the correct answer 

Josie was shown sample solutions from other students, presented in pairs, from which 

she was asked to choose which of the two solutions she felt was better. For Josie, the better 

solution tended to be the one with the correct answer. 

The thing I mostly go off is if the answer is right. If one was right, one was wrong, most of the time I 

picked the one that was right. 

Not knowing for sure the correct final answer proved to be a major source of frustration for 

Josie as her strategy for choosing between the two solutions relied heavily on which solution 

was correct. This meant she was at risk of not making what she felt to be the correct choice 

between solutions. As a result, Josie did not trust her pairwise judgements. 

But if I actually knew the right answer, then I’d be like well that one’s better because it’s the right 

answer. 

Having been denied access to the correct answer after multiple requests to the interviewer, 

Josie felt frustrated and as such, perceived it to be the interviewer’s fault, not her own, that 

she was unable to make a correct pairwise choice. The above statement was said with a tone 

of irritation suggesting she felt a sense of pointlessness to the whole activity. From Josie’s 

point of view, there was no point in engaging with the task if her pairwise choices were going 

to be wrong anyway. Without a means of resolving her uncertainties, the task had little 

perceived value. 

This sense of pointlessness was again felt as Josie began working on the post-task. She 

believed her answer to the new problem to be incorrect and attributed this again to not having 

been provided with the correct answer to begin with: 

Now see if you’d told me how to solve this [pre-task] then I could probably solve this. So, I’m just 

going to be doing the wrong thing. [Huff] Is that right? 

Josie continued working with a ‘huff’. These statements carried a strong sense of 

exasperation and her final comment “Is that right?” was said sarcastically. By this late point 

in the activity, Josie was frustrated. 
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Josie’s inability to resolve her uncertainties appeared to have affected her efforts in 

understanding the relevant mathematical concepts. In one example, Josie had tried to 

understand why the student had solved for two-cases but ended her reflection shortly: 

I’m just like sort of trying to tell myself what they’re doing and why they’re doing it. But I don’t 

know if that’s the right answer… [Moves onto next solution] 

Here Josie made a sincere attempt to understand what the student had written but quickly 

gave up. Her comment about not knowing the right answer was said with a slight antagonistic 

tone directed towards the interviewer. From Josie’s perspective, there was no point spending 

time interpreting the student’s work if there was no means of checking the correctness of her 

interpretation. 

In a second example, Josie tried to understand why a particular student’s solution 

included two cases, noting two columns, one labelled 𝑥 − 7 > 0 and 𝑥 − 7 < 0. She quickly 

gave up, this time with self-deprecating comments: 

I’m just trying to work this out for my own benefit here and think, why are they doing the  

𝑥 − 7 > 0 [Points at two column headings]? [Silence] Honestly, I’m probably just too dense to get 

this. [Quickly starts evaluating next solution] 

Josie had been silent for some time, suggesting she had been deep in thought and genuinely 

tried to work out why the student was solving for a second case. Additionally, her self-

criticism was not uttered with her usual air of exasperation, but instead said with a more 

sombre tone, suggesting a sense of hopelessness or even sadness. We interpret this to mean 

that Josie really had tried to understand the need for a second case but felt unable to do so. 

Furthermore, the negative emotional response suggests Josie may have been experiencing 

fear as she perceived her goal of understanding to be at risk. As such, Josie may have felt 

her own reasoning was not a safe strategy (Sumpter, 2013) and rather than risk investing 

more time into resolving her confusion, she avoided this situation by quickly moving on to 

evaluating the next solution. 

Together these instances paint a picture of a student who found comparative judgement 

frustrating primarily because she had no internal means available to resolve her uncertainties. 

This subsequently created an environment that repeatedly placed Josie’s goals of wanting to 

understand the problem under threat. As a coping strategy, Josie often appealed to not having 

the correct answer as the cause of not being able to understand. By placing blame on external 

factors, that is, not having the answer, Josie was able to increase her own feelings of safety 

rather than risk relying on her own reasoning. As a result, Josie seemed to have viewed 

comparative judgement as somewhat pointless for learning. From Josie’s perspective, what 

was the point of investing time and effort into understanding someone else’s solution if her 

reasoning of what the student had written could not be verified? This provides some 

explanation into why comparative judgement was not helpful in this case: if there was no 

point spending time interpreting each worked solution, then self-explanations were unlikely 

to be generated. With no self-explanations, learning from worked examples was unlikely to 

be successful (Chi et al., 1989). As such, if comparative judgement is to be used with the 

educational goal of improving mathematical understanding, we recommend providing 

students with, at minimum, the correct answer before completing any pairwise judgements. 

We suspect had Josie known the correct answer with certainty, she might have been willing 

to spend more time reflecting and interpreting what other students had written, making 

learning more likely. 
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Josie’s views on the role of the expert and usefulness of other students’ solutions 

In this section we discuss who Josie felt was responsible for explaining mathematical 

ideas so that she could understand them, and whether she felt comparative judgement was 

effective in improving her understanding. 

Ultimately, Josie felt the responsibility for her understanding of the mathematics content 

lay with her lecturers – an external source of expertise: 

I guess I don’t have as good an understanding of inequalities as I should. I guess you can’t multiply 

across like that [multiply by 𝑥 − 7 without considering both 𝑥 − 7 > 0 and 𝑥 − 7 < 0]. I don’t know 

why you can’t. That never really got explained to me. 

Furthermore, she felt frustrated with her mathematics lecturers, who she felt were not 

providing adequate explanations: 

Cause there’s a lot of stuff I don’t understand, and the lecturers aren’t really thorough with explaining 

it. 

From Josie’s point of view, the responsibility for generating understanding came from her 

lecturers. It was their role to provide a thorough enough explanation to generate 

understanding and her role to receive such knowledge. We suggest that by placing 

expectations of understanding on an external source, it increased Josie’s feelings of 

psychological safety by removing her ownership of her own understanding. By claiming her 

lecturers had failed in providing her with suitable explanations, it may have resolved her 

experience of doubt by surrendering control to an external authority (Bendixen, 2002). From 

Josie’s point of view, it was not her fault if she could not understand when the responsibility 

for understanding lay with her lecturers. 

These sentiments were echoed as Josie explained why she felt comparative judgement 

had not been helpful for her understanding. Firstly, Josie acknowledged that comparative 

judgement had been useful in pointing out that her initial assignment had been flawed. 

However, it had not been useful for understanding why they were flawed: 

But yeah it definitely helped me figure out oh yeah, I need another answer. Stuff like that. But it didn’t 

help me understand why. 

Here Josie was referring to when she had completed a comparative judgement activity as 

part of a class assignment earlier in the semester. For her assignment, she had multiplied 

both sides of the inequality by the denominator but failed to consider when the denominator 

was either positive or negative, yielding the partial solution 𝑥 < 11. By looking at the 

solutions of her peers, she realised that there was “another answer”. 

Josie continued explaining why comparative judgement might not have helped her 

understanding: 

Well there’s either really smart kids that just go bang, bang, bang. That’s the answer and they don’t 

really explain it. I don’t understand what you’re doing [the smart kids]. Or they’re just not getting the 

right answer in general. 

Given it was likely Josie believed the role of her lecturers was to provide her with an 

explanation, it may be that as she read these solutions, she similarly felt that it was the 

responsibility of the student (as an external source of knowledge) to provide all necessary 

explanations. That is, it was not her role to spend time interpreting the solutions but rather 

the solutions should have been presented in a way that did the thinking for her. Because of 

the value Josie placed on figures of authority such as her lecturers, it was surprising to see 

that Josie did not value the work of the “really smart kids”. This speaks to the interplay 

between Josie’s views on the role of the expert and her goal of understanding. While Josie 
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viewed her role as the receiver of knowledge from those more knowledgeable than her, she 

simultaneously expected the knowledge giver to provide such knowledge in a way that was 

easy to understand. This meant that for Josie, comparative judgement failed to provide an 

environment conducive to learning as the solutions were not written in a clear and easy to 

understand manner.  

Lastly, linking back with our previous theme, Josie implied that incorrect solutions were 

not useful in helping her mathematical understanding. Because of the emphasis she placed 

on knowing the correct final answer, it was unlikely that Josie thought she could learn from 

incorrect examples. However, even the correct worked solutions seemed equally unvalued 

as they did not include enough detail or explanation to help resolve Josie’s knowledge gaps 

(“they don’t really explain it”). This is true - none of the worked solutions in this study 

included much detail or written explanation as to exactly why two cases needed to be 

considered. We found this surprising given that research in the area of learning from worked 

examples suggests that learning from incorrect examples is often more beneficial to learning 

than correct examples only (Booth et al., 2013). Results here suggest that this may not carry 

into the context of comparative judgement. This might be because the comparative 

judgement solutions we used were not labelled as either correct or incorrect, whereas studies 

exploring incorrect worked examples typically label such solutions as incorrect. One avenue 

of future research could be to explore whether marking comparative judgement solutions as 

either correct or incorrect has any influence on how students interact with the written 

solutions. 

Final Comments 

For Josie, comparative judgement was useful in helping her notice that she had been 

incorrect, but not useful in improving her understanding of solving rational inequalities. We 

noted two reasons for this. Firstly, it seemed that comparative judgement threatened Josie’s 

goals of understanding – Josie did not feel her own reasoning was a safe strategy and did not 

feel she had a way of resolving her uncertainties. Josie’s coping strategy was to blame the 

interviewer for not providing her with the answer. As Hannula (2006, p. 169) states “students 

may decide not to pursue learning goals when they feel that one or more of their 

psychological needs are thwarted.” 

Secondly, learning from other students’ solutions did not appear to align with Josie’s 

expectations of where knowledge comes from. From Josie’s perspective, it was the role of 

the worked solution to provide her with a clear and easy to understand explanation and her 

role to receive such knowledge. In short, she expected to understand each solution without 

needing to think and the solutions we included in this study lacked the type of explanation 

Josie expected. 

What ties these themes together is the interplay between Josie’s desire to understand but 

not wanting to take ownership of generating this understanding. This seems to have impacted 

her ability to act strategically, limiting the amount of time she spent reflecting on the 

underlying mathematics, making learning from the worked solutions less likely. As such, the 

way in which we set up our comparative judgement activity may not be appropriate for the 

purposes of improving understanding for students like Josie.  
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This study investigated the implementation of a primary mathematics initiative in an 

Australian Indigenous community school designed to improve students’ mathematical 

proficiency. Throughout the 7-month initiative, four classes ranging from Year 2 to Year 6 

participated in the initiative. Findings indicated an increase in mathematics achievement as 

measured by the Progressive Achievement Test – Mathematics (PAT-M) throughout the 

initiative. As the findings from the Year 3/4 class displayed the largest growth in 

mathematical achievement throughout the initiative (equivalent to 1 year and 2 months), the 

specific pedagogies and practices enacted in this class that were found to influence students’ 

achievement will be considered. 

The gap in achievement between Indigenous and non-Indigenous students in Australia is 

regularly referred to in literature, and there has been little change in this gap over time despite 

several initiatives, both government and non-government, attempting to address these 

reported gaps (e.g., Dreise & Thomson, 2014; Thomson et al., 2016). Though the Council 

of Australian Governments (COAG) goal to halve gaps in numeracy achievement for 

Indigenous students by 2018 has not been realised (Department of the Prime Minister and 

Cabinet, 2018), this paper will discuss a case where the gap between Indigenous students’ 

and non-Indigenous students, as measured by PAT-M, had been successfully reduced in a 

sample within one Australian Indigenous community school. 

Literature Review 

A substantial body of research in Indigenous education focused on achievement has been 

established in recent decades and continues to be of importance due to equity implications 

(Hunter & Schwab, 2003). Beyond conforming ideals of creating capable citizens, whereby 

mathematical knowledge enables students to understand how the world works, those who 

develop mathematical knowledge potentially have the capacity to also create the world in a 

new way (Atweh & Brady, 2009). Due to equity concerns and the importance of 

mathematical knowledge, research exploring effective education practices in Indigenous 

education is important as “future Indigenous education policy decisions must be based upon 

real research findings, and where these findings necessitate policy action, those actions must 

be taken” (Mellor & Corrigan, 2004, p. iv). These sentiments have also been re-iterated in 

reports on Indigenous primary school achievement by the Productivity Commission (2016). 

Despite several programs focused on Indigenous mathematics education currently 

operating across Australia, no consistent improvement has been realised according to current 

large-scale, standardised measures of achievement (e.g., the National Assessment Program 

– Literacy and Numeracy [NAPLAN], Programme for International Student Assessment 

[PISA], and Trends in International Mathematics and Science Study [TIMSS]). Therefore, 

it is important to continue investigating the impact of specific educational practices to further 

understand underlying reasons for these gaps and to focus on identifying and supporting 

teachers in implementing successful practices. This study is significant for its contribution 

to our understanding of these issues, and the findings reported focus on the practices enacted 
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by teachers, supported by the researcher in the role of a mentor, that resulted in significant 

positive change in students’ mathematics achievement as measured by the PAT-M.   

A summary of seminal literature regarding effective teaching of mathematics to 

disadvantaged students is outlined in Table 1. These practices were also supported by 

common findings from research concerning effective numeracy development for Indigenous 

learners through the What Works program developed by the Australian Government, 

Department of Education, Science and Training (DEST, 2010). This literature guided the 

conceptualisation of the mathematics teaching initiative in the initial stages of development. 

The intention of the review in the development of the initiative was to establish a 

mathematics program that was structured in a manner that provided appropriate 

opportunities to thoughtfully develop foundational mathematics concepts.  

Table 1 

Effective pedagogies informed by literature 

Initiative elements Components of effective mathematics education from literature 

Developing the initiative High levels of teacher collaboration and a shared, school-wide approach 

(Boaler & Staples, 2008; Jorgensen, 2018).  

Lesson elements Explicit teaching of new mathematical concepts (Baker et al., 2002; Good 

& Grouws, 1979; Hattie, 2009; Jorgensen, 2018; Pegg & Graham, 2013). 

The central role of feedback, & providing feedback data to students (Baker 

et al., 2002; Hattie & Clarke, 2019). 

A mastery learning cycle (Hattie, 2009; Jorgensen, 2018; Kulik et al., 

1990; Pegg & Graham, 2013). 

High mathematical expectations (Jorgensen, 2018). 

Focus on number (place value and operations) as a priority (Jorgensen, 

2018). 

Teaching number facts Explicit strategy instruction in conjunction with timed tasks (Cumming & 

Elkins, 1999; Pegg & Graham, 2013). 

Teaching 

computations/algorithms 

CRA teaching sequence, and consistent language and methods for teaching 

algorithms (Mancl et al., 2012). 

Teaching problem-solving Utilisation of Polya’s problem solving heuristics (Ozsoy & Ataman, 2017) 

One of the dominant practices focused on in this initiative was explicit instruction to 

conceptually develop students’ deep understanding of key mathematics concepts. Explicit 

instruction is “a systematic method of teaching with emphasis on proceeding in small steps, 

checking for student understanding, and achieving active and successful participation by all 

students” (Rosenshine, 1987, p. 34). Supported by evidence from meta-analyses and other 

studies (Hattie, 2009), explicit instruction practices have been shown to significantly 

increase students’ achievement. Often explicit instruction (sometimes referred to as direct 

instruction) is criticised due to its presumed association with a didactic teacher instructional 

model. To clarify, Hattie (2009) provided a list of seven elements of effective explicit 

instruction which consisted of clear lesson goals (learning intentions) and success criteria, 

student engagement, lesson structures designed to accommodate modelling and checking for 

understanding, guided practice, independent practice, and effective lesson closures. Many of 

these practices align with key practices noted in other projects involving Indigenous students 

(e.g., Jorgensen, 2018).  

Two research questions were answered in this study by observing how teachers 

employed the suggested practices and by tracking changes in students’ achievement on the 

PAT-M. The first research question was: How did students’ mathematical achievement, as 
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measured by the PAT-M, change as a result of the initiative? And how did teachers 

implement a mathematics initiative in an Indigenous community school? 

Method 

The Sample: Study context 

The students in this study were of Aboriginal and Torres Strait Islander heritage, which 

encompasses a great diversity of people. The local context of these students was an urban 

community (city) in Australia. The context of the study school is a F-12 community operated 

school (under the banner of an Australian Independent school, which is government funded 

but run by a community identified school board) for Indigenous students. This study 

involved four composite age classes, comprising of students from Year 2 to 6 (Year 2/3, 

Year 3/4, Year 4/5, and Year 5/6), four individual classroom teachers, and 57 students. The 

findings from 11 students in the Year 3/4 cohort (out of a total class number of ~20-25 

students) are reported. The final sample is smaller than the total population of the class due 

to students leaving the school throughout the initiative resulting in incomplete data for some 

students, and movement of students between classes meaning that achievement could not be 

tracked and attributed to the teaching and learning occurring in a single classroom. The total 

class numbers fluctuated in the outlined range throughout the school year due to student 

movement in and out of the school, and within the school. The teacher for Year 3/4, Diane 

(a pseudonym), was a practising teacher for approximately 15 years who had been teaching 

at the sample school for 12 years.  

Implementation of the initiative  

The mathematics initiative in this study was conducted over 7-months from March to 

October of the school year. The initiative was implemented through professional 

development sessions delivered by the researcher. The first of these sessions was run at the 

beginning of the initiative and involved dissemination of the summary of literature findings 

to teachers. The researcher then maintained an interactive role throughout the initiative by 

providing support to teachers when planning and implementing their mathematics programs. 

The interactive nature of the research was facilitated by the researchers established role as a 

teacher in the school prior to the initiative. The prolonged engagement of the researcher in 

the school helped to increase the credibility of findings, which worked to ensure the validity 

of conclusions from findings (Guba & Lincoln, 1985). Also, due to the researcher’s pre-

established role in the school, the context and culture of the school were well understood, 

and rapport was established with students and staff, increasing the credibility of findings by 

providing cultural sensitivity (Gay et al., 2006). Further professional development sessions 

were facilitated part-way through the initiative during school hours to provide interim 

analysis of class data; this was conducted in the interest of ensuring the collected data 

supported the school’s mathematics programs in a meaningful way. 

Overview of Methodology 

The research design for this study was mixed methods, typified by the collection and 

interpretation of quantitative data, followed by qualitative data to provide breadth and depth 

of data to explain a complex phenomenon (Cohen et al., 2011). To address the first research 

question, changes to students’ proficiency throughout the initiative was measured using a 

standardised mathematics test (PAT-M). To address the second research question, rich 

qualitative data in the form of classroom observations were collected throughout the 

initiative. The quantitative findings relating to changes in students’ achievement were then 
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connected to and explained by the qualitative classroom observations. Interpretations on how 

teaching practices impacted on students’ mathematics achievement were then made, 

following a sequential mixed methods design (Creswell & Plano Clark, 2018). Though these 

findings are not reported within the scope of this paper, this study was situated within a 

larger research study which involved the collection of further data on students’ mathematical 

proficiency (Reid O’Connor, 2020; Reid O’Connor & Norton, 2020). The use of multiple 

data sources and triangulation of data in this mixed methods study helped work towards 

increasing the trustworthiness and confirmability of findings (Guba & Lincoln, 1985). 

Data analysis: Progressive Achievement Test – Mathematics 

Changes to students’ mathematical proficiency were measured by administering the 

standardised PAT-M at the beginning and conclusion of the initiative. The PAT-M consists 

of 30-40 multiple choice items across number, algebra, geometry, measurement, statistics, 

and probability. The PAT-M provides a measure of students’ skill and understanding of 

school mathematics (Stephanou & Lindsey, 2013). The intended use of these tests aligned 

with this study, which aimed to assess students’ current achievement, monitor the impact of 

an initiative over time, and to inform the development of the initiative. Utilising a 

standardised test also provided a method for comparing class mean scores to the national 

norming sample of over 500,000 students. Cohen effect sizes were also calculated to 

compare the initiative to the national norming sample.  Effect sizes are an empirical measure 

that answers the question “how does the effect of an initiative compare to a typical year of 

growth for a given target population of students” (Hill et al., 2008, p. 173). Cohen (1988) 

classified effect sizes of 0.20 as small, 0.50 as medium, and 0.80 as large; other literature 

has found 0.40 to be the average effect size expected during a school year (Hattie, 2009). 

For more meaningful comparisons, the effect sizes from the norming sample data were also 

calculated.  

Data analysis: Classroom observations  

Classroom observations were carried out throughout the initiative and provided 

important data to identify how and why classroom practices were influencing students’ 

achievement. Classroom observations focused on qualitatively recording: (1) lesson 

structures, (2) pedagogical approaches, (3) frequency and type of teacher interaction with 

students, and (4) student time on task. Approximately two mathematics lessons were 

observed in each class during each week of the initiative. Observations were recorded by the 

researcher as field notes in the form of diary entries throughout the initiative. The intent on 

such a method was to be able to tell the story of what happened in classrooms to allow for 

teaching practices to be described in detail and linked to student achievement. Observations 

of the classes during mathematics lessons also allowed for identification of other relevant 

occurrences in students’ learning environments that may have impacted on teaching and 

learning. Summaries of teaching practices were member checked with teachers at the 

conclusion of the initiative to help ensure the authenticity and dependability of the data and 

analysis, increasing the validity of findings (Guba & Lincoln, 1985).  

These qualitative observations were analysed by the creation of case reports for each 

class, and Wellington’s (2015) stages for interpreting qualitative data were utilised. These 

stages consisted of immersion in the data and reflection, analysing and taking apart the data, 

and   recombining and synthesising the data. Patterns in teaching practices across 

observations were identified relating to the four observed elements in lessons. These trends 

were then reduced by searching for overarching themes; for example, patterns relating to 
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classroom routines and daily activities that fostered student’s independence were grouped 

under an overarching theme of consistency. These themes were then located with reference 

to the literature (Wellington, 2015), to propose links between teaching practice and student 

achievement.  

Results: PAT-M 

The mean PAT-M score and effect sizes for the Year 3/4 class comparative to the national 

norming sample is outlined in Table 2. The comparative mean scores reported for the 

norming sample are what would be typically expected of a Year 3 student in March and 

October respectively.   

At the beginning of the initiative, the mean score reported by the Year 3/4 class was 

below the norming sample mean. The mean score of 96 reported by Year 3/4 was equivalent 

to an achievement standard of an early Year 2 student when compared to the norming 

sample. By the end of the initiative, the Year 3/4 class reported positive gains in mean score, 

and closed the gap in achievement comparative to the norming sample. The Year 3/4 post-

initiative mean score of 109 was indicative of an achievement standard similar to that of a 

mid-Year 3 student. Comparing the effect size found for Year 3/4 to Hattie’s (2009) 

classification, the large effect size of 1.36 was above the zone of desired effects for an 

educational intervention.  

Table 2 

Results from PAT-M pre- and post-initiative for Year 3/4 

 M (Mean Rasch Scaled Score) 
Effect size 

 Pre-initiative: March Post-initiative: October 

Year 3/4, n=11 96.57 109.88 1.36 

PAT-M norming sample 106.29 (Yr3) 110.90 (Yr3) 0.32 

Gap in achievement -9.72 -1.02  

Overall, the gains in achievement reported by the Year 3/4 cohort throughout the initiative 

equated to an improvement of approximately 1 year and 2 months within the 7-month 

initiative, twice the expected gain. Figure 1 graphically outlines the change in scores 

throughout the initiative. 

 

Figure 1. Graph of the growth in PAT-M achievement for Year 3/4 compared to the norming sample, n=11. 

The Year 3/4 cohort experienced a more substantial improvement in a shorter timeframe 

than the national norming sample. The significant gains in achievement, and subsequent 

closing of the achievement gap, and high effect size indicated that the initiative was highly 

effective in advancing students’ learning in this class. Exploring the pedagogical practices 

enacted by the classroom teacher assists in understanding why the initiative was effective in 

advancing students’ mathematics achievement in this case.  
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Results: Classroom Observations 

The teaching approach of the Year 3/4 teacher, Diane, involved mathematics lessons that 

followed a consistent daily structure, with the intention that students in the class would also 

learn the structure and become self-sufficient with lesson routines (i.e., students knew what 

activities were coming next and could get appropriately prepared without added teacher 

instruction). When asked to comment on her specific strength in teaching mathematics, 

Diane self-identified that her strength was implementing consistent routines by noting “I 

stick to routine quite stringently…I think that is a strength because the children know what 

the expectation is for the day, for the week”.  

In addition, Diane focused on maintaining high behavioural standards during classes as 

a priority, and subsequently was observed to consistently minimise behavioural interruptions 

that may have occurred without her supervision and guidance; this was achieved by Diane 

establishing a trusting and respectful rapport with students by maintaining firm, consistent, 

and reasonable expectations regarding classroom behaviour.  

 High academic standards were also a major feature of Diane’s teaching approach. On a 

daily basis Diane constantly consulted with students one-on-one during mathematics lessons 

by marking students’ work and giving feedback, with the expectation that students would 

then immediately return to independently fix any errors. This consultation and feedback 

process formed a continuous cycle.  Feedback included supporting the students in identifying 

their error/s, followed by discussion and explanation of correct techniques or strategies. 

What Diane was observed to have implemented was a method of maintaining high academic 

standards through short diagnostic teaching cycles where a small number of tasks (questions 

or problems) were set and completed by students then checked by a teacher, and where 

accuracy of answers was required. This cycle is outlined in Figure 2.  

 

Figure 2. Description of diagnostic teaching cycle employed in Year 3/4 (developed from Reisman, 1982). 

The way in which Diane influenced students’ achievement in mathematics through the 

combination of consistent lesson structures, high behavioural standards, and high academic 

standards was observed to result in high levels of time on task for students in Year 3/4. The 

continual checking of student work and continuous feedback cycle was observed to foster a 

learning environment where most students strived for accuracy.  

Diane’s pedagogic approach focused on explicit individual and whole class instruction, 

and group work was not a feature of instruction. In terms of the quantity of work set, Diane 

set small quantities of work (i.e., questions) for students to complete as part of her diagnostic 

teaching cycle. Diane followed recommendations concerning the need to conceptually 

develop ideas at the introductory phase of learning by following the recommended, 

consistent pedagogy and language for teaching algorithms, however Diane focused on clear 
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strategy discussion in mathematics. On this, Diane noted that “I always try and teach my 

kids other ways of doing things. There’s not just one way”.  

Discussion 

Results from this study indicated that, as measured by the PAT-M, students in the reported 

cohort substantially increased in their mathematical proficiency over the course of the 

initiative as illustrated by high effect sizes and the closing of the gap between the Indigenous 

students and the norming sample comparisons. Pedagogical practices supporting consistency 

(predictable lesson structures fostering students’ self-sufficiency), feedback (in the form of 

a diagnostic teaching cycle), and high expectations (relating to both behaviour and academic 

expectations) were critical features of the teaching approach in mathematics in Year 3/4.  

One potential explanation for practices associated with consistency and high 

expectations underpinning positive gains in students’ achievement is the outcome of 

increased academic learning time. Research in Indigenous settings, including the Success in 

Remote Indigenous Contexts project (Jorgensen, 2018), has proposed that consistent lesson 

structures reduce student confusion, which subsequently enables students to focus on the 

tasks rather than guessing teacher or classroom expectations. This finding was also supported 

in this study as a known and consistent lesson structure fostered students’ independence in 

their learning and reduced many classroom or behaviour-related disruptions related to 

students being off-task or needing to ask what was required of them. The result is that the 

total time students spend on task is increased.  

The diagnostic teaching cycle was a central element in successfully implementing and 

maintaining high academic expectations within the classroom. The continuous feedback 

cycle fosters a mastery teaching approach which is supported by empirical research (e.g., 

Good & Grouws, 1979; Hattie, 2009; Hattie & Clarke, 2019; Jorgensen, 2018; Kulik et al., 

1990; Pegg & Graham, 2013). This diagnostic, mastery approach increased students’ 

experiences with success on mathematical tasks in the observed class. Feedback through the 

diagnostic cycle achieves a meaningful and practical way for the teacher to ascertain what 

students understand and what mistakes they are making, and through this process teaching 

and instruction can be accurately tailored. By doing this, teaching is never “missing the 

mark” of where students are at in their learning process, and instruction can be tailored to 

ensure it is highly relevant and appropriate to students’ ability and learning needs.  

Overall, the enacted practices in this class that were supported by the initial literature 

review including consistency, mastery teaching approaches, feedback, and high expectations 

were successful in raising Indigenous students’ mathematical achievement throughout this 

initiative.  

Conclusions 

The positive findings from this study relating to Indigenous students’ achievement is an 

important contribution to literature, particularly due to the wealth of deficit-based findings 

that are currently reported in the field related to large-scale standardised testing. Whilst the 

findings of the larger study from this initiative indicated that the factors relating to 

Indigenous students’ mathematical proficiency in this setting were complex and inter-

related, with several affective factors playing a critical role (Reid O’Connor, 2020), the 

conclusion from the initiative’s findings were that positively influencing Indigenous 

students’ achievement is a worthwhile and feasible endeavour. Specific practices supported 

by the findings that positively influenced students’ mathematical proficiency included 

consistent lesson structures, short and targeted diagnostic teaching cycles featuring high 
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levels of feedback, a mastery approach, and high expectations within a framework of 

classroom management that worked to maximise learning time. Further studies are needed 

to explore the impact of these practices in other Indigenous school settings, and the 

limitations of this study include the small sample size. 
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Test developers are continually exploring the possibilities Computer Based Assessment 

(CBA) offers the Mathematics domain. This paper describes the trial of the Place Value 

Assessment Tool (PVAT) and its online equivalent, the PVAT-O. Both tests were 

administered using a counterbalanced research design to 253 Year 3-6 students across nine 

classes at a primary school in Melbourne. The findings show while both forms are valid and 

comparable, the online mode was preferred by teachers. The affordances and constraints of 

using CBA in the formative assessment process are explored.  

Over the past 10 years there has been a rapid uptake of Mathematics Computer Based 

Assessments (CBA) in Australian primary schools. Commercial firms have identified 

teachers as eager consumers in this market. Companies are acutely aware of the friction 

points for teachers: the challenges around creating their own formative assessments and 

time-consuming marking. This has led to the development of several increasingly popular 

CBA formative assessment “programs”. Yet, for these programs be the panacea their 

advertising suggests, schools must be confident they provide valid formative data teachers 

can easily interpret and apply. 

Currently in Australia, there are very few comprehensive formative whole number place 

value assessments for Years 3-6 students. To address this, a Rasch analysis-based 

methodology was used to develop a valid and reliable whole number place value paper-and-

pen assessment, called the Place Value Assessment Tool (PVAT) (see Rogers, 2014). While 

the PVAT provided a detailed picture of student knowledge in the construct, the time taken 

to mark (5-7 minutes per student) was seen as a potential obstacle for teachers. To address 

this, the researcher investigated if a comparable online version of the test could be created. 

Relevant Literature 

Place value knowledge has been compared to the framework of a house, such that if a 

student’s knowledge in this area is shaky, his/her understanding of mathematics as a whole 

is affected (Major, 2011). An understanding of place value has been shown to be closely 

related to students’ sense of number (McIntosh et al., 1992), understanding of decimals 

(Moloney & Stacey, 1997), and comprehension of multi-digit operations (Fuson, 1990). 

Underpinning almost every aspect of the mathematics curriculum, it is an integral part of the 

primary school syllabus. Yet there is considerable evidence to suggest students struggle with 

whole number place value well into lower secondary school (Thomas, 2004; Wade et al., 

2013). Research has shown that place value is often taught superficially, something that can 

be attributed to the lack of quality formative assessments available in this construct (Major, 

2011; Rogers, 2014). 

An assessment is essentially a sample of selected tasks intended to allow inferences to 

be made about a student’s level of achievement. The strength of these inferences relies 

heavily on the quality of the tasks used (Izard, 2002). An assessment which includes a 

selection of items that are too easy, or too difficult, will not provide teachers with a complete 

picture of each student’s knowledge. Similarly, an assessment that does not comprehensively 

cover the required content may cause the omitted content to be devalued by teachers (Webb, 
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2007). In both cases, the inaccurate inferences drawn from these assessments, adversely 

influence the quality of instruction. Formative assessment is a process that provides teachers 

with information that can be used to support individual student’s future learning (Popham, 

2018). It is one of the most effective, empirically proven, processes that teachers can use to 

improve student performance.  

An important consideration when developing assessments is practicality (Masters & 

Forster, 1996). If an assessment instrument does not justify the time or money required for 

its administration and marking, it will not be implemented by schools. Doig (2011) noted 

that some educators (despite appreciating the quality of data they received) avoided using 

interview-based assessments simply because of their administration time. As a result, many 

schools consider paper-and-pen tests a more practical assessment option, particularly with 

older students. Proponents of interview-based assessments disagree, stating clinical 

interviews provide higher quality assessment information and enhance teacher knowledge 

of common misconceptions in mathematics (Clements & Ellerton, 1995).  While 

mathematics assessments have traditionally been delivered via paper-and-pen or interview 

(Griffin et al., 2012), the accessibility of technology has seen test developers investigate the 

many opportunities provided by CBA (ACARA, 2021). 

CBA’s major advantage is it delivers traditional assessment in a more efficient and 

effective manner (Bridgeman, 2009). CBA has the potential to save teachers time marking 

test papers and means results can be used to guide instruction in a timelier manner (Tomasik 

et al., 2018). Yet, as Thompson and Weiss (20011) explain, many school’s technological 

capabilities fail the standard required to successfully implement CBA, leading to test 

administration problems (McGowan, 2019). Thus, while CBA has great potential in schools, 

further logistical work is required to ensure its success. 

Much research associated with CBA has explored the comparison of traditional paper-

and-pen based tests with their CBA equivalent (e.g., Wang et al., 2007; Thompson & Weiss, 

2011). Wang et al. (2007) conducted a meta-analysis of 44 mathematics-based assessments 

comparing paper-and-pen and CBA versions of the same test. Overall, they reported that the 

mode of administration did not have a substantive effect on the students’ performance (ES 

= -0.059). These comparisons aimed to determine whether online and paper versions of the 

same test could be used interchangeably. This is an important practical consideration, as 

comparable tests allow schools the flexibility to choose the most appropriate mode for their 

context. Yet, as Popham (2018) suggests, the decisions around test selection rely heavily on 

the assessment literacy of teachers and school leaders. 

Popham (2018) defines assessment literacy as an “individual’s understanding of the 

fundamental assessment concepts and procedures deemed likely to influence educational 

decisions” (p.13). An assessment literate teacher makes informed choices around the 

assessments they use, and accurately applies the results to guide their instruction. Research 

has shown that assessment literacy is not usually a focus of teacher education, meaning most 

teachers have poor levels (Stiggins, 2006). While providing teachers with assessment 

literacy professional development has been shown to be effective (Xu & Brown, 2016), 

without access to this, teachers are left to develop these skills ‘on the job’. As CBA is a 

relatively new mode of assessment, it is realistic to assume that teachers need support to 

develop their assessment literacy in this mode. As Popham (2008) points out, being provided 

with assessment data is only the beginning of the process – teachers need the assessment 

literacy skills to understand a test’s construction so they can successfully interpret the data. 

One proven method of test construction is Item Response Modelling (IRM), which has 

well-established methods for analysis (Wright & Masters, 1982). IRM measures the 
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relationship between student achievement and item difficulty on the same scale (Wright & 

Stone, 1979). IRM has been successfully applied to a variety of test modes and used in large-

scale assessments through to high-quality classroom-based assessment tools including PAT-

M (Australian Council for Educational Research, 2012) and the Scaffolding Numeracy in the 

Middle Years (SNMY) assessment (Siemon et al., 2006). A popular IRM model, devised by 

Rasch (1960) is used in this research. Rasch analysis is based around the interplay of 

candidates and items in an assessment. While analysis of assessments traditionally generates 

a score that summarises the number of items correctly answered by students, Rasch considers 

the students who correctly answered each item (Izard, 2004). Rasch examines the extent to 

which the item distinguishes between those who are more and less knowledgeable (Izard et 

al., 2003). That is, the model assumes that less knowledgeable students have lower 

probability of answering a difficult item compared with those who are more knowledgeable 

(Rasch, 1960). Items that are considered not to follow this pattern do not fit the Rasch model 

and are generally removed from a test. This process verifies that the test content is 

meaningful and appropriate so that useful inferences can be made about the knowledge of 

candidates (Izard et al., 2003). Rasch allows different tests to be located on the same scale 

and allows test designers to determine if they are of comparable difficulty. The next section 

describes how quantitative Rasch based methods were used to compare the PVAT and 

PVAT-O, and the qualitative methods used to gather insights from teachers. 

Methodology 

PVAT-O Creation 

Multiple technologies including HyperText Markup Language (HTML5), Javascript, 

and PHP: Hypertext Preprocessor (PHP) were used to create the PVAT-O assessment. The 

mathematical content and format of each PVAT-O item was as close as possible to the 

equivalent PVAT items. However, some items required the inclusion of computer-based 

features. For example, a ‘drag and drop’ feature was used in items requiring students to place 

numbers in order from smallest to largest and ‘radio buttons’ were used in multiple choice 

items.  

The Counterbalanced Trial 

The online and paper and pen PVAT trial was conducted at School C, a Catholic Primary 

school in metropolitan Melbourne where approximately 11% of students were from English 

as an Additional Language or Dialect (EAL/D) families (ACARA, 2020). All Year 3 to 6 

students (N = 253) from nine classes took part in the trial (Male= 47%, Female= 53%). The 

trial took place over a 2-week period in the school library and was supervised by both the 

researcher and the classroom teacher. The trial was conducted using a counterbalanced 

measures design (Shuttleworth, 2009). Half of the students in each class (randomly selected) 

completed the PVAT-O, whilst the other half of the class completed the paper-and-pen 

PVAT. Exactly one week later, the students completed the alternate version of the test. This 

research design was used to minimise factors such as learning effects and order of treatment, 

adversely influencing the results of the trials (Perlini et al., 1998). Only 227 students (Male= 

45%, Female= 55%) completed both forms, due to absences and technical issues. 

Teacher Surveys 

A short survey was given to the nine Year 3 to 6 classroom teachers (Female=100%). 

The purpose of this survey was to gain an indication of the teacher’s preferred testing mode. 
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When the survey occurred, the teachers had not yet received their student’s results from the 

PVAT-O database, but it was explained they would receive each student’s raw score in a 

spreadsheet. Due to the small sample size, the survey data was interpreted by the researcher 

and reported as individual responses (Neuman, 2006). 

Rasch Analysis 

The paper PVAT tests were scored and coded by the researcher. The PVAT-O was 

scored by the PVAT-O database and then rechecked by the researcher to ensure consistency 

and accuracy. In order to determine if the PVAT and PVAT-O could be considered valid 

tests and comparable in their mean item difficulty and mean student achievement (Kolen & 

Brennan, 2004), three Rasch analyses were conducted: 

• Run A was conducted to re-confirm that the paper-and-pen PVAT was a valid and 

reliable test. The items which fit the model were used to create an anchor file for Run 

C. This allowed the PVAT and PVAT-O items to be placed on the same scale.  

• Run B looked at the PVAT-O items in isolation. Rasch analysis was used to determine 

which PVAT-O items fit the model and determine if it was an internally consistent test.  

• Run C investigated if the PVAT and PVAT-O could be placed on the same uni-

dimensional scale and thus determine if they were comparable in item difficulty and 

student achievement.  

The anchor file from Run A was used to fix the difficulty estimates of the PVAT items that 

fit the model. This allowed the PVAT-O items to be calibrated against the PVAT items 

(Izard, 2005). The mean item difficulty and mean student achievement for the PVAT and 

PVAT-O was then calculated from this run. Effect Size measures were used to quantify the 

standardised mean difference between the two tests (Izard, 2004). Cohen’s (1969) 

descriptors for the magnitude of Effect Sizes, alongside the assigned ranges for each 

descriptor as suggested by Izard (2004), were then be used to describe the Effect Sizes in 

plain language.  

Results 

Rasch Validation and Comparison 

The mean and standard deviation of the PVAT (n = 65) and PVAT-O (n = 59) items 

which fit the model in Run C were calculated to determine if the PVAT and PVAT-O could 

be considered comparable tests. The Effect Size measure was calculated to be 0.14, while 

the difference in student achievement between the tests was 0.01. This is described to be a 

“very small (0.00 to 0.14)” (Izard, 2004, p. 8) magnitude of Effect Size. This suggests there 

was not a substantive difference between the mean of item difficulties in the two modes, nor 

the students’ achievement (which is to be expected, given the tests were of similar difficulty).  

Teacher Survey 

The class teachers (N = 9) at School C completed a brief survey asking them to indicate 

their preferred mode of administration for the PVAT. Seven teachers preferred the PVAT-

O, while two preferred the PVAT. The seven teachers who preferred the PVAT-O stated: 

‘It will save correcting it’ (Teacher #1,#2,#3) 

‘The results are immediate, I can use them the next day in my teaching’ (Teacher #4) 

‘If the computers all work, online is much better’ (Teacher #5) 

‘I don’t have to correct it…and I can use the results tomorrow’ (Teacher #6) 

‘The corrections would save me a lot of time and effort’ (Teacher #7) 
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The two teachers who indicated they preferred the PVAT mode stated: 

‘Correcting them myself gives me a sense of their understanding’ (Teacher #8) 

‘I’m always concerned students will lose their responses’ (Teacher #9) 

The small sample of teachers completing this survey limits the inferences that can be made 

from the data. However, within this group of teachers there was a clear preference for the 

PVAT-O mode of test administration, largely due to marking time it saved. 

Discussion 

Formative mathematics CBA continues to be embraced by schools, teachers and test 

developers. This research highlights several considerations when implementing formative 

CBA in classrooms: transparency, rigor, flexibility, and assessment literacy.   

Transparency 

While teachers in this research project were provided access to both the paper and CBA 

version of the test, this is not always the case. For example, in Computer Adaptive Tests 

(CAT) (Martin & Lazendic, 2018) each child is provided with a different set of items 

according to their responses. It is impossible for a teacher to view the combination of items 

individual students encounter, thus they are unable to judge their quality, appropriateness 

and relevance. Without this transparency, teachers are outsourcing the judgement of student 

knowledge to test designers. While somewhat appropriate in summative situations, 

eliminating teacher judgement in the formative assessment process should raise concerns for 

schools. Teacher #8 at School C echoed this ‘transparency’ constraint, indicating she was 

concerned about missing important diagnostic information in the PVAT-O. In response to 

this, the database was later adjusted to ensure teachers were provided with a summary of 

student responses to each item. The Specific Mathematics Assessments that Reveal Thinking 

(SMART) tests (University of Melbourne, 2012), are another platform that recognises the 

importance of allowing teachers to ‘see’ common student errors in the CBA mode. Doig 

(2011) reiterates this concern, noting that ‘off site marking’ does little to assist teachers to 

develop their knowledge of common student errors and misconceptions. Providing teachers 

with an overall raw score, rather than access to individual responses, is a major constraint of 

formative CBA and an issue which needs to be addressed by test designers. 

Rigor of the Assessment 

Wiliam (2007) states that formative assessment can effectively double the speed of 

student learning. Yet, as often happens in education, approaches can become diluted when 

commercial firms become involved. In order for schools and teachers to make informed 

decisions about the worth of formative CBA programs (particularly those produced 

commercially), it is critical teachers understand how to evaluate the rigor of a test’s 

construction. The results presented in this paper use Rasch analysis to show both the PVAT 

and the PVAT-O are valid and reliable tests. For schools, this is essential information as it 

means the test has been empirically proven and robustly constructed. While the relatively 

small sample size gathered from only one school limits the scope of conclusions that can be 

made from this trial, very little difference was detected between the mean difficulties and 

student achievement of test items. Similarly, the student achievement was found to be 

comparable. This supports the results of the meta-analysis conducted by Wang et al. (2007), 

which noted that the mode of administration did not have a substantive effect on student 

achievement in computer-based and paper-based mathematics assessments. As Popham 
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(2018) suggests, schools should be encouraged to contact test developers, ask for a test’s 

technical guide, and gather information related to the trialing, reliability and validity so they 

can make informed decisions about the suitability and rigor of tests.  

Flexibility 

Providing teachers with access to a comprehensive formative place value assessment that 

can be administered in two modes is considered to increase the usability and practicality of 

the PVAT tool. The PVAT-O was designed to support teachers by providing instant 

feedback on their students’ achievement and save them considerable time. As the online and 

paper PVAT tests were found to be comparable, teachers are now able to choose the mode 

which works best for them and their students. This flexibility is useful, as not all schools 

have the technological requirements to successfully implement CBA. As Csapo et al. (2012) 

note, at a minimum, a school requires the capacity to allow students completing the 

assessment concurrent access to the Internet while still supporting the Internet requirements 

of the rest of the school. As Huff and Sireci (2001) correctly note, when this does not occur, 

the validity of the test is threatened.  In the PVAT-O trial it was noted that some computers 

took a great deal longer than others to move through the PVAT-O. This frustrated and 

disadvantaged the students working on the ‘slow’ computers. Teachers #5 and #9 both 

mentioned their concerns with the fragility of the technology at their school, stating “if the 

computers all work…”(Teacher #5) and “I’m always concerned students will lose their 

work” (Teacher #9). Providing teachers with a ‘back up’ paper version of the test is 

considered a practical way to alleviate these fears. 

Assessment Literacy 

Popham (2018) explains that educators who are not assessment literate often make 

inappropriate decisions about which tests to use. Using formative CBA is a relatively new 

form of mathematics assessment in schools, so it is critical teachers are helped to understand 

the affordances and constraints of these tools. Teachers are a critical stakeholder in the 

formative CBA process. They are required to administer the assessment and their 

interpretation of the results influences its success (Jones & Truran, 2011). Seven of the nine 

teachers in this research described how they based their mode preference choice solely on 

the time it would save. Research by Melleti and Khademi, (2018) showed that for both 

assessment literate and illiterate teachers, time was their main concern when implementing 

formative assessment. Yet interestingly, assessment literate teachers considered the time 

they spent creating and marking assessments a necessary part of the process. Thus, it appears 

that when teachers do not fully appreciate the advantages of formative assessment, they 

consider the time spent on it untenable. This reinforces the need to develop teacher’s 

assessment literacy skills around formative assessment, particularly in CBA (Popham, 

2018). Without appropriate professional development designed to increase assessment 

literacy, teachers will continue to focus on selecting assessments based on their perceived 

ease of administration and marking, rather than the quality of the tool. 

Conclusion 

The demands on a classroom teacher’s time have never been greater. Whilst a major 

affordance of CBA is the time it saves teachers, one of the major constraints is its lack of 

transparency. When a computer database marks student responses, a teacher’s judgment and 

involvement in the process is removed. This research suggests in order to retain the fidelity 

of the formative assessment process, teachers require access to professional development 
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that aims to grow their assessment literacy skills. Developing these skills will encourage 

teachers to seek quality empirically proven assessments, and assist them to accurately 

interpret CBA data. 
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Research examining teachers’ decision making is abundant for pedagogical activities, yet a 

neglected area is the study of factors influencing teachers when selecting mathematical 

games. This article sheds light on the factors considered when teachers’ select a specific game 

to use in their primary mathematics classroom. Data from 248 Australian primary teachers 

was gathered via a questionnaire and thematically analysed. Results indicated four strongly 

endorsed factors: Mathematics is central; Accessibility and differentiation; Classroom 

management; and Engagement and enjoyment. Implications are discussed of how this study 

can inform the decision making of educational leaders, policy makers, and game designers.  

Mathematical games are an integral component of primary mathematics instruction. 

Although there is scant empirical evidence about the frequency of game use, one recent study 

of Australian early years primary teachers (Foundation-Year 2; n = 135) found that almost 

all study participants used games at least once per week, with half of teachers incorporating 

games in almost every mathematics lesson (Russo & Russo, 2020). Given the frequency of 

game use, we recently wrote a conceptual paper outlining five principles of educationally 

rich mathematical games to support teachers and pre-service teacher educators identify 

worthwhile games. These principles included: students are engaged; skill and luck are 

balanced; mathematics is central; flexibility for learning and teaching; and home-school 

connections (Russo et al., 2018). However, although we have made normative claims about 

factors teachers should consider when deciding which games to play, we could not identify 

any studies that examine those factors that teachers do consider when deciding which games 

to play. The purpose of this paper is to address this gap in the literature.  

Background Literature 

It is a widely held view amongst educators that mathematical games have the potential 

to support student learning in mathematics. Over three decades ago, Ernest (1986) put 

forward a rationale for using games in the mathematics classroom, suggesting that games 

could be used to teach a variety of mathematical ideas, and were perhaps particularly 

powerful for supporting student understanding of mathematical concepts; allowing for 

consolidation and practice; developing problem-solving skills; and, enhancing student 

motivation to engage in mathematics. In addition, it has been argued that opportunities to 

play mathematical games supports social skill development (Koay, 1996), encourages 

mathematical reasoning (Olson, 2007), allows for a differentiated approach to instruction 

(Buchheister et al., 2017; Trinter et al., 2015), and can be used to explore multiple connected 

mathematical ideas (Clarke & Roche, 2010). Indeed, there is empirical evidence to suggest 

that games are efficacious for engaging students in mathematics learning (Bragg, 2007; 

Campos & Moreira, 2016) and improving student learning in mathematics (Bragg, 2012b; 



Russo, Russo and Bragg 

338 

Bright et al., 1985; Swan & Marshall, 2009), including for students in the early years 

(Cohrssen & Niklas, 2019; Elofsson et al., 2016). A recent meta-analysis exploring the 

effectiveness of mathematical games across all levels of education revealed that games had 

a medium positive impact on academic achievement compared with what were described as 

“traditional methods” of mathematics instruction, such as worksheets (Turgut & Temur, 

2017, p. 196). 

Although there has been substantial research into the impact of games on the student 

mathematical learning experience, especially in relation to digital games (see Abdul Jabbar 

& Felicia, 2015), how teachers use mathematical games in classrooms has been far less of a 

focus. One exception was a study by Heshmati et al. (2018), who examined the use of a game 

to support the teaching of fraction concepts in a naturalistic classroom based setting. The 

authors videotaped and analysed mathematics lessons across 14 US fifth grade classrooms 

during the teaching of a unit of work focussed on fractions. They found that 20% of lessons 

involved the use of a game to support fraction instruction for at least part of the lesson, and 

that games were used almost exclusively to consolidate student understanding, rather than 

introduce concepts. This latter finding is consistent with the literature that teachers 

frequently use games to support practice and the development of procedural fluency, 

particularly with number (Godfrey & Stone, 2013; Graven & Roberts, 2016). However, 

whether this is the predominant rationale for teachers using games in mathematics 

classrooms remains to be systematically investigated.  

The current study 

In order to address some of the gaps identified in the literature around primary teachers’ use 

of games to support mathematics instruction, we invited teachers to complete a 

questionnaire. In total, 248 Australian primary teachers responded. We have published our 

initial, predominantly quantitative, findings focussed around primary teachers’ motivation 

for and frequency of game usage, their game execution within lesson routines and structures, 

and their perceptions of the efficacy of games to achieve particular pedagogical objectives 

(Russo et al., 2021). Some key findings include:    

• Consistent with Russo and Russo (2020), 98% of teachers reported using games at 

least once per week to support their mathematics instruction, whilst 79% reported 

using games multiple times per week. 

• Teachers used games in a variety of contrasting ways to support mathematics 

instruction. For example, whilst three-quarters of teachers indicated they employed 

games multiple times per week as a warm-up to begin a mathematics class, almost 

half of teachers (45%) responded that they used games multiple times per week as a 

context for launching rich mathematical investigations.  

• Reaffirming perhaps the most consistent finding in games research (Bragg, 2003; 

2007; Campos & Moreira, 2016), all teachers agreed that games were an effective 

means of engaging students in mathematics, with 82% of teachers strongly agreeing 

with this statement.  

• There was strong evidence that teachers preferred using non-digital games and tactile 

materials. When asked about their favourite mathematical game to use in a 

classroom, only 4% of teachers described a game which involved students or the 

teacher interacting with a digital technology in any capacity (e.g., calculator, random 

number generator, interactive number chart, supportive software), whilst only 1% 

selected a digital game specifically. This stands in stark contrast to the relative focus 
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on digital games within the education research literature (Abdul Jabbar & Felicia, 

2015). 

• Perhaps surprisingly, given the oft-remarked connection between games and 

building mathematical fluency (Godfrey & Stone, 2013), teachers indicated that they 

viewed games as being equally effective for developing all four proficiencies 

highlighted in the Australian Curriculum: Mathematics (ACARA, 2019): fluency, 

understanding, problem-solving, and reasoning. 

The purpose of the current paper is to present additional qualitative analysis from the 

questionnaire data. Specifically, we focus on one specific free text response item in the 

questionnaire to shed light on the factors teachers consider when deciding which games to 

use in their mathematics classroom.  

Method 

Two hundred and forty-eight teachers completed the questionnaire focused on how they 

use mathematical games in their classrooms. Participants were spread across all years of 

primary education in Australian classrooms: Foundation-Year 2 (31%); Year 3-4 (25%); 

Year 5-6 (29%); taught across multiple year level groups (15%). Respondents were relatively 

experienced primary school teachers, with a median period of 10 years classroom teaching 

experience (mean = 13.2; SD = 9.3; Min = 1 year; Max = 51 years). 

The questionnaire was administered through an online survey platform, Qualtrics. 

Snowball sampling was employed to disseminate the questionnaire, with the questionnaire 

link being distributed via email to 15 key informants based in three Australian states, as well 

as through social media platforms. Teachers currently teaching in an Australian primary 

education context were invited to complete the questionnaire. Two hundred and thirty-six 

teachers responded to the qualitative item that serves as the focus of the current paper. This 

item was: Which factors do you consider when selecting which games to play in your 

classroom? 

Data was analysed thematically, approximating the process outlined by Braun and 

Clarke (2006). We began by reading and rereading questionnaire responses, the purpose 

being to immerse ourselves in the data. As we reread the responses, several proto-categories 

emerged. These proto-categories were clarified, refined, combined, and then elaborated to 

comprise our final ten themes (see Table 1). For example, the proto-categories ‘materials 

easily sourced’, ‘simple game mechanics’, and ‘time’, were eventually aggregated into the 

theme classroom management.     

Results and Discussion 

Table 1 displays the results of our thematic analysis, noting the number of teachers 

whose response was coded to each of the ten themes, as well as two quotations from teachers 

that help to illustrate this theme. Note that teacher responses could be coded to multiple 

themes. For example, the following response was coded to two themes, mathematics is 

central and enjoyment and engagement:   

Will these games increase mathematical awareness, do they tie into the maths lessons and how much 

do they promote engagement in the lesson and maths in general? Teacher Number 111 (T111) 

From viewing the table, it is apparent that there were four themes frequently endorsed 

by participants: mathematics is central; accessibility and differentiation; classroom 

management; and engagement and enjoyment. Each of these four major themes will now be 

discussed, with relevant links made to the academic literature. 
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Table 1 

Thematic analysis of factors teachers considered when selecting which games to play  

  
Theme Number (%) 

(n = 236) 

Example quotations 

Mathematics is central: connection 

to mathematical learning focus and/ 

or suitability of game for building 

conceptual understanding and 

procedural knowledge 

183 (78%) 

 

Linked to a specific mathematical focus, connected 

to the needs of the student group. (T1) 

How it enables the student to practice the concept 

that has been introduced if it is the main activity of 

the lesson. (T196) 

Accessibility and differentiation: 

accessible for students and capacity 

for differentiation  across age, 

mathematical performance, reading 

abilities 

127 (54%) How can the game be modified with enablers or 

extenders to cater for all students? (T63) 

Something that will provide a level of challenge for 

students working at all levels, possibly with 

progression or layers. (T183) 

Classroom management: 

organisation, availability of 

required materials, setup time, 

noise level. 

110 (47%) How much equipment is needed? Do I need to 

make any of the resources? Are the instructions 

simple? Is it easy to get started/independent? (T8) 

The time it will take (set up, finding the materials, 

providing the instructions). (T82) 

Engagement and enjoyment 91 (39%) We want our kids to develop a love for numbers and 

maths and approach the subject without fear. Games 

are perfect for that reason.  Kids love them. (T61) 

If the activity will engage the students for a sustained 

period of time. (T65) 

Communication and reasoning: 

opportunities for encouraging 

mathematical dialogue, student 

reasoning and language 

development 

24 (10%) A way to share mathematical language, thinking 

and reasoning. (T2) 

The relevance of the maths language used in the 

game. (T224) 

Supporting social and emotional 

development: opportunities for 

collaboration, interaction and 

learning how to play with others 

21 (9%) I like to make sure that games can be played with a 

partner to ensure students get to work together. 

(T76) 

Teams. Usually random so not necessarily ‘fair’, 

just like in real life! (T230) 

Thinking strategically: developing 

strategic thinking, skillful behavior 

and providing opportunities to 

solve problems 

21 (9%) Opportunity for the move that a player makes to 

effect the move of their opponent/s…Opportunity 

for strategies to be articulated and developed (T15) 

One that allows students to stop and reflect on the 

mechanics of the game and explore ways to become 

more efficient in playing the game. (T35) 

Skill and luck are balanced 16 (7%) Games that allows children to experience success 

based on skill and also an element of luck (T49) 

Games that involve a bit of luck as well as skill/ 

strategy so that all students have a chance at 

winning regardless of their ability. This means that 

struggling students are more likely to want to keep 

playing the game. (T87) 

Game adaptation and inquiry: 

opportunities to transform the game 

into an investigation and extend 

student mathematical thinking 

12 (5%) Does it support rich mathematical investigation? 

(T55) 

Does the game have the ability to be 'ramped' up 

over the week with further investigations into the 

strategy or reach a higher level of thinking. (T67) 

Supporting assessment of student 

thinking and mathematical 

knowledge 

4 (2%) Quick formative assessment ‘check in’ (T2) 

What would assessment of game look like (T210) 

Note. The mean number of themes a teacher response was coded to was 2.8 
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Mathematics is Central 

The most frequently endorsed theme that emerged from the data related to choosing 

games with explicit connections to an identified mathematical learning focus, as well as 

games that could further student conceptual understanding of a particular concept, or their 

application of a particular procedure. This reaffirms the supposition that primary teachers 

tend to use games for specific mathematical purposes, rather than for engaging students in 

mathematics irrespective of the content.  

Several teachers referred to the fit between the chosen game, and the intended learning 

intention. For example: 

The learning intention - what is it that I want the children to understand? The maths knowledge 

required - are there any barriers or misconceptions that might come up? (T181) 

However, others indicated that the game may not always be connected to the learning 

objective of the current lesson, but instead be used to reinforce previous learning or as a 

cognitive activation device: 

Does the game support the learning intention of the lesson? Not always, however, sometimes they are 

selected to consolidate learning from previous units or just to get their 'maths' brains attuned. (T96) 

In fact, the notion of using a game to build number fluency, practice a skill, or to 

consolidate student understanding was an important sub-theme to emerge that was explicitly 

noted by over one-quarter of teachers coded to this theme (n = 48).   

Does it help to consolidate a skill? Is it for reviewing a skill? (T70) 

Interestingly, on occasion, teachers noted how the purpose of a game might evolve over 

time, initially using a game to build conceptual knowledge, and then using the game to 

reinforce understanding in subsequent lessons: 

I will teach a new game to introduce then consolidate a new skill. Once the game is understood and 

knowledge in the concept understanding is at a reasonable level, the game becomes a more regular 

warm up. (T88) 

Accessibility and Differentiation 

Over half of teachers noted that when considering which games to play in the classroom, 

they contemplated the extent to which the game was inclusive of all students and whether 

they could modify the game to align with the learning needs and performance levels of a 

diverse group of students. This is consistent with literature suggesting the flexibility of 

games to support differentiated instruction is a comparative strength of this pedagogical 

approach to teaching mathematics (Buchheister et al., 2017; Trinter et al., 2015). Some 

teachers specifically commented on the capacity to adjust game mechanics to optimise the 

level of challenge: 

Ability to differentiate to cater for different skill levels. For example, games where the rules can be 

changed or built on as students develop or where 6 sided dice can be replaced with 10, 12 etc. sided 

dice to make it more challenging. (T87) 

Other teachers emphasised the need for the game to have various entry levels, so that a 

student’s prior mathematical knowledge was not a barrier to them participating in the game: 

I ensure it is fun and engaging and has different entry points for different students based on what they 

understand. (T196) 

Similarly, there was a reference to the value of a game having a ‘low-floor, high-ceiling’: 

Whether it has a low entry point and high ceiling to cater and challenge all students. (T107) 
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In the words of one teacher, considering “how the game could be extended or scaffolded” 

was principally about supporting “maximum participation” in the lesson (T210), a sentiment 

consistent with both high quality and equitable mathematics instruction (Sullivan, 2011). 

Classroom Management 

Approximately half of teacher respondents (54%) described practical considerations as 

being a critical factor when deciding which specific games to play in their classroom, 

encompassing aspects such as the accessibility of materials, the time needed to explain and 

set up the game, and whether student groups could play independently and remain on-task. 

The emphasis on classroom management is noteworthy, particularly given such factors have 

generally not been highlighted in the games research literature in the few empirical studies 

that have focussed on teachers’ use of games (e.g., Heshmati et al., 2018).  

Indeed, the importance of incorporating easily available materials was one of the reasons 

teachers tended to endorse dice and card games over more elaborate alternatives that 

involved the need to create, locate, or purchase specialised equipment: 

Resources. Can I use materials I already have, or does the game need special equipment? I usually go 

for games that use dice, playing cards, or readily available equipment over those that have a 

specialised game board. (T181) 

To some extent, it appeared that the reluctance to use games involving specialised 

materials was due to the time investment needed: 

Resources. For example, games that use dice, cards, counters etc. are better than games where I have 

to make game boards etc. which can be time consuming; although I do do this. (T87) 

As alluded to earlier, time was also mentioned in relation to minimising lost instructional 

time by ensuring the game is easy to set up and play.  

Materials required. Being able to be play the game and pack up in under 10 minutes. (T77) 

Engagement and Enjoyment 

In contrast to the theme of classroom management discussed previously, engagement 

and enjoyment are concepts frequently mentioned in connection to games in the literature 

(Attard, 2012; Bragg, 2003; 2007; Bright et al., 1985). Indeed, as reported elsewhere, our 

study teachers highlighted engagement as the principal pedagogical benefit of games (Russo 

et al., 2021), whilst other studies have concluded that the comparative advantage of games 

over other activities relates to their capacity to engage and maximise on-task behaviour 

(Bragg, 2012a; 2012b). Consequently, it is not surprising that many teachers emphasised 

that the game be engaging and enjoyable to play: 

Engagement - the more students that are interested in math and learn to see math as an enjoyable 

everyday part of life is a win in my opinion. (T166) 

It needs to be engaging and fun. (T223) 

What is surprising, at least ostensibly, was that only a minority of teachers (39%) 

mentioned levels of student engagement and enjoyment as being relevant when choosing 

which games to play in their classroom. One possible interpretation of these data is that 

teachers primarily associate high levels of engagement with the general category of games, 

whilst the specific level of engagement generated by a particular game is only a secondary 

consideration. To put it another way, if (almost) all games are considered engaging, then this 

dimension might be less important when deciding which specific game to choose.  
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Conclusions and Implications 

In conclusion, to deepen the understanding of games usage from the teachers’ 

perspective, this paper presents an investigation of the factors influencing teachers when 

selecting mathematical games for inclusion in their primary classroom. Ten themes were 

drawn from these data, with four of the themes taking prominence. Mathematics being 

central to the selection of the games was the leading consideration for teachers. Hence, key 

to games selection was the enhancement of students’ mathematical understandings. These 

teachers recognised the usefulness of games as a tool for mathematical learning.  

More than half the teachers were cognisant about extending their students’ knowledge 

and skills from different starting points through games. This aligns with initiatives across 

Australia to include differentiated teaching as a high impact teaching strategy recommended 

in schools (e.g., Department of Education and Training, 2017). The emphasis on 

differentiation in these teachers’ responses provides possible evidence for policy makers of 

the effect these initiatives are having on teachers and their classroom decision making.   

Classroom management, with an emphasis on organisational matters, was a 

consideration for many teachers. While educators may appreciate the mathematical value 

inherent in some complex, expensive, or time-consuming games, the practicalities of 

utilising such games were considered and potentially discounted. This factor has 

implications for game designers and individuals responsible for purchasing and organising 

educational resources (e.g., numeracy coordinators). It emphasises the significant practical 

considerations that primary school teachers need to consider on a daily basis, and the 

premium placed on simplicity and ease of access when planning and implementing learning 

tasks. 

Enjoyment and engagement are often presented as key factors for inclusion of this non-

traditional approach to teaching mathematics; and indeed were emphasised by all our study 

teachers as reported elsewhere (Russo et al., 2021). Although still a prevalent theme when 

choosing which specific game to play, as discussed earlier, it may be that engagement was a 

secondary consideration for many teachers because engagement is associated with games as 

a pedagogical category, more so than specific games. What these teachers mean by 

engagement requires further investigation and will be explored in future research. 

Encouragingly, the findings of this research support four of the five principles of 

educationally rich mathematical games raised in our earlier conceptual paper (Russo, et al., 

2018). Absent from these teachers’ considerations was mathematical games providing 

opportunities for fostering home-school connections. The questionnaire was administered 

prior to the COVID-19 pandemic forcing school closures and children learning from home 

with family support. Hence, the relevance of selecting games which support home-school 

connections may be more pertinent to teachers today. Making a home-school connection via 

games will raise the status of games amongst the broader school community from merely an 

enjoyable pastime to a valuable educational tool to be played at home and school.      
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As a multifaceted concept, the learning of angle concepts takes years to achieve and is beset 

with challenges. This paper explores how the processes of constructing and validating a 

learning progression in geometric reasoning can be used to generate targeted teaching advice 

to support the learning of angle concept. Data from 1090 Year 4 to Year 10 students’ ability 

to reason about geometric properties and deduce angle magnitudes were analysed. Rasch 

analysis resulted in eight thinking zones being charted. Students’ responses to the angle items 

within this larger data set were analysed with a focus on how reasoning about angles 

developed. The result is a five-stage framework for learning angle concepts. 

Teaching that is informed by effective assessment data has a significant, proven effect 

on learning (Goss et al., 2015). Designing targeted teaching advice that can nurture 

mathematical reasoning has become even more vital in light of the 2018 Programme for 

International Student Assessment (PISA) results (Thomson et al., 2019). Australian 

students’ mathematical problem solving ability is in a long-term decline, equivalent to the 

loss of more than a year’s worth of schooling since 2003. Australian students are particularly 

weak in the content areas of geometry (Thomson et al., 2017), a discipline that is linked to 

measurement and spatial reasoning.  

Understandings of measurement are embedded in all curriculum in the STEM (Science, 

Technology, Engineering and Mathematics) areas. Concepts such as length, volume and 

angle take years to learn and are beset with challenges. A case in point is the learning of 

angle measurement. The concept of angle can mean different things in different situations. 

When viewed as a static image, angle is defined as a geometric shape, a corner or two rays 

radiating from a point, then as a dynamic image, angle is a rotation and a measurement of 

turn. Research shows persistent student difficulties with angle concepts, including focusing 

on physical appearances such as the length of the arms or the radius of the arc marking the 

angle when comparing angles, inability to see angles from different perspectives and 

contexts, and errors in measuring the angle magnitudes using a protractor (Gibson et al., 

2015; Mitchelmore & White, 2000). In the Australian Curriculum: Mathematics (Australian 

Curriculum Assessment and Reporting Authority [ACARA], n.d), the concept of angle is 

introduced under the sub-strands of geometric reasoning from Year 3 onwards.  In Year 5, 

students are expected to use degrees and measure with a protractor and in Year 6, to find 

unknown angles. Year 7 refers to angle sums in triangles and quadrilaterals. The curriculum 

expectation is that the students will have the necessary understanding of angle and angle 

measurement to be able to reason about angle sizes by Year 6 and Year 7. It is presumed that 

teachers are able to make the necessary connections among and across content strands and 

teach for mathematical reasoning (Lowrie et al., 2012). International results obtained to date 

do not reflect such a reality.  

With STEM becoming a key focus in education, research on learning progressions can 

help transform the teaching and learning of mathematical reasoning. In this paper, we survey 

and analyse Australian students’ knowledge of and reasoning about angle measurement 

within a more comprehensive geometric learning progression.  
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Theoretical Framework 

Learning progressions are a set of empirically grounded and testable hypotheses about 

students’ understanding of, and ability to use, specific discipline knowledge within a subject 

domain in increasingly sophisticated ways through appropriate instruction. They can relate 

to a specific instructional episode, develop a curriculum or in our case, charting mathematics 

learning that encompasses different but related aspects of mathematics. Our purpose is to 

equip teachers with the knowledge, confidence and disposition to go beyond narrow skill-

based approaches to teach for understanding and mathematical reasoning.  

Reasoning is a cognitive process of developing lines of thinking or argument to either 

convince others or self of a particular claim, solve a problem or integrate a number of ideas 

into a more coherent whole (Brodie, 2010). Mathematical reasoning is about constructing 

mathematical conjectures, developing and evaluating mathematical arguments, and selecting 

and using various types of representations (National Council of Teachers of Mathematics 

[NCTM], 2000). Mathematical reasoning encompasses three core elements: (1) core 

knowledge needed to comprehend a situation, (2) processing skills needed to apply this 

knowledge, and (3) a capacity to communicate one’s reasoning and solutions. Justifying and 

generalising are two key characteristics of mathematical reasoning (Brodie, 2010). To justify 

a position, individuals need to connect different mathematical ideas and arguments to 

support claims and conjectures. To generalise requires individuals to reconstruct core 

knowledge and skills when making sense of new situations. Both help improve reasoning 

skills, cement core knowledge and may lead to the development of new ideas. 

Engaging in mathematical reasoning is a social act, directed by a semiotic process (Bussi 

& Mariotti, 2008). Symbols (°, ∠), lines (∟, ⊥, ∡), shapes and objects serve as signs and 

artefacts for a particular purpose. An artefact (e.g., a folded piece of paper or written words) 

is a tool or an instrument that relates to a specific task to be used for a particular purpose. A 

sign is a product of a conjoint effort between it and the mind to communicate an intent, such 

as indication of a right angle. The use of signs and artefacts is never neutral but is intentional 

and highly subjective, linked to the learner’s specific experience and requires the 

reorganisation of cognitive structures. From a cognitive perspective, how well a learner 

reasons mathematically is largely dependent on the degree of connectedness among multiple 

representations (artefacts), visualisation and mathematical discourse (Seah & Horne, 2019). 

Angle is multifaceted and can be represented in various ways. Visualisation of angle 

artefacts requires a dynamic neuronal interaction between perception and visual mental 

imagery. The viewers need to draw on past experiences and existing knowledge to make 

sense of the visualised artefacts. The context within which perception takes place plays a 

critical role in determining the type of imagery gaining attention. Individuals’ beliefs about 

their own ability and how mathematics is practiced also play a critical role in this process. 

Context and beliefs are influenced by the mathematical narratives and routines learners 

experience. Words and terminologies produce certain visual images. For example, Gibson 

et al., (2015) found that whole-object word-learning bias led many pre-schoolers to judge 

angle size by the side length. This was also found with older children (Mitchelmore & White, 

2000). During a mathematical discourse, communication can take a combination of 

linguistic, symbolic or diagrammatic forms. How they are being used reveal the users’ 

thought processes and in turn shapes their thinking. Analysis of students’ responses to angle 

measurement tasks will enable researchers to document and chart how students’ reasoning 

about angle measurement progressed. This can then help design instructions that move 

students from where they are to the next level of their learning journey. 
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Method 

Drawing on the work of Battista (2007), a draft geometric learning progression was 

developed that saw the development of geometric reasoning as moving through five levels 

of reasoning: visualising physical features, describing, analysing, and inferring geometric 

relationships, leading to engaging in formal deductive proof (Seah & Horne, 2019). The data 

presented here was taken from the Reframing Mathematical Future II study into the 

development of learning progression for mathematical reasoning. The participants were 

middle-years students from across Australia States and Territories. The first group – the trial 

data, was taken from two primary and four secondary schools across social strata and three 

States. They were asked to participate in trialling the assessment tasks to allow for a wider 

spread of data being collected. The trial school teachers administered the assessment tasks 

and returned the student work to the researchers. The results were marked by two markers 

and validated by a team of researchers to ascertain the usefulness of the scoring rubric and 

the accuracy of the data entry. The second group – the project data, came from 11 schools 

situated in lower socioeconomic regions with diverse populations across six States and 

Territories. The project school teachers marked the items and returned the raw score instead 

of individual forms to the researchers. They also received ongoing professional learning 

sessions and had access to a bank of teaching resources. There are two angle measurement 

tasks, Geometric Angles 1 and 2 (coded as GANG) reported here (Figure 1).  

Geometric Angles 1 
You will need the shape you made in class. The steps and diagrams below show how you made the shape. 

 
Step 1   Fold an A4 paper in half lengthwise to make a crease line in the middle of the 

page.  
Step 2  Fold two corners to the middle at the bottom 
Step 3  Fold two corners to middle at the top 
Step 4  Fold the new corners on the sides at the bottom to the middle 
Step 5  Do the same with the top  
 
a [GANG1] 

Phoebe made the same shape that you made using A4 paper.  She said her shape is a rhombus.  
Do you agree? Explain your reasoning. 

 
b [GANG2] 

When Phoebe unfolds the paper, she found a number of crease lines. Find the marked angles on the 
crease line:  Angle f = ____ Angle h = ____ Angle s =_____ 
Explain how you work out the angles.  

Geometric Angles 2 
A four-sided shape is folded from a sheet of A4 paper using the following instructions.   

Step 1      Step 2        Step 3 
a [GANG3] 

What is the name of this shape?                   
 ________________________________ 
Explain your reasoning. 

b [GANG4] 
Unfold the paper and find the size of each marked angle. 
Angle d = ____________       Angle e = ____________ 
Angle f = _____________               Angle g = ____________ 

Explain your reasoning. 

Figure 1.  Geometric angles task 1 and 2. 

Step 1             Step 2      Step 3                 Step 4           Step 5 
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Note that both tasks were used in different forms rather than administered together. Both 

tasks begin with a question on geometric properties followed by deductions of angle 

magnitudes. In GANG1, the teacher was instructed to guide the students to first fold the 

shape and use it to answer the angle measurement question. In this way, the difficulty in 

following the origami instructions was avoided. As an artefact, the folded shape also served 

as a context and a tool to help students comprehend the diagram depicting the crease lines. 

In GANG3, students were shown the steps taken to fold a shape. No further information was 

given. Items GANG2 and GANG4 ask students to work out the magnitude of the angles 

formed by the crease lines. While the tasks GANG1 and GANG3 do not ask students 

specifically to use angle, angle properties are one component of shape classification. The 

focus in this paper is on reasoning about angle magnitude in GANG 2 and GANG 4. 

Rasch partial credit model (Masters, 1982) using Winsteps 3.92.0 (Linacre, 2017) was 

used to analyse students’ responses on the larger set of geometric reasoning tasks including 

these for the purpose of refining the marking rubrics and informing the drafting of an 

evidence based learning progression. Rasch analysis of the validity of the underlying 

construct through the idea of fit to the model produced eight thinking zones in geometric 

reasoning (Seah & Horne, 2019). To validate the zones, the research team interrogated 

student responses located at similar points on the scale to decide whether or not there were 

qualitative differences in the nature of adjacent responses with respect to the sophistication 

of reasoning involved and/or the extend of cognitive demand required (see Siemon & 

Callingham, 2019).  

SCORE DESCRIPTION for GANG1  DESCRIPTION for GANG3  

0 No response or irrelevant response 

1 
Disagree it is a rhombus based on appearance rather 
than properties 

Diamond or other incorrect shape 

2 
Disagree it is a rhombus but claim it is a parallelogram 
with some properties  

Quadrilateral because it has 4 sides OR because it 
looks like a kite 

3 
Agree it is rhombus but insufficient or incorrect 
properties to define it or claims it is a parallelogram and 
includes all properties 

Kite OR unable to name, but gives side and/or angle 
properties of a kite 

4 

Agree it is rhombus. Explanation needs to include 
necessary and sufficient properties, that is, it has 4 
equal sides, or it is a parallelogram with one of the 
following properties: 

• Adjacent sides equal 

• Diagonals bisect each other at right angles or 
diagonals bisect the angles 

• Two lines of symmetry 

Kite because two pairs of adjacent equal sides are 
equal OR because at least a pair of opposite angles 
equal and at least one pair of adjacent sides the same 
length OR because it has a pair of opposite angles 
equal and a line of symmetry. May include other 
properties. 

SCORE DESCRIPTION for GANG2 DESCRIPTION for GANG4 

0 No response or irrelevant response 

1 Incorrect angles 
Incorrect with little/no reasoning, may include one 
correct angle 

2 
At least 2 angles correct but no reason given, or one 
angle correct with correct reasoning 

At least two angles correct with an attempt at 
explaining reasoning 

3 
Two angles found correctly with sensible reasons or all 
angles correct with insufficient reasoning 

Angles correct (d = e = 45°, f = 90° or right angle, g = 

135°) but reasoning sparse and incomplete 

4 

All angles correct with clear reasons given relating to 
the folding and properties. 
F = 45°; h = 45°; s = 135° (e.g., Folding corner to centre 
creates half right angle; All angles around centre of 
side equal so any 2 make 45°or Four angles of 
quadrilateral add to 360°) 

Angles correct. Reasoning includes justifies d as half of 
the right angle in corner or as angles in an isosceles 
triangle, and g on the basis that the four angles of the 
kite shape have to add to 360° 

Figure 2.  Geometric angles task scoring rubrics. 

In the following, we focus on students’ responses to the angle items to determine their 

usefulness and fit to the overall learning progression framework.  
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Findings 

Based on 1041 students’ responses from the larger study, the zones of geometric 

reasoning were established as precognition; recognition; emerging informal reasoning; 

informal and insufficient reasoning; emerging analytical reasoning; property based 

analytical reasoning; emerging deductive reasoning; and logical inference-based reasoning 

(Seah & Horne, 2019). Student responses were coded so that GANG3.1 meant a response at 

Level 1 on the rubric to the question GANG3. Table 1 shows how the responses to the 

GANG questions were spread across the zones (with Zone 8 being the highest level). 

Table 1 

Excerpt from the variable map for geometric reasoning (n=1041). 

Zone 8   GANG3.4 GANG4.4 

Zone 7 GANG1.4 GANG2.4   

Zone 6  GANG2.3 

GANG2.2 

 GANG4.3 

Zone 5    GANG4.2 

Zone 4 GANG1.3 

GANG1.2 

GANG2.1 GANG3.3  

Zone 3 GANG1.1  GANG3.2  

Zone 2   GANG3.1 GANG4.1 

Zone 1     

To validate these zones, the research team interrogated student responses located at 

similar points on the scale to decide whether or not there were qualitative differences in the 

nature of adjacent responses with respect to the sophistication of reasoning involved and/or 

the extent of cognitive demand required. For example, GANG1.2 (disagree it is a rhombus 

claiming it is a parallelogram) and GANG1.3 (agree that it is a rhombus with insufficient 

explanation about its properties) were located in zone 4, indicating similar level of thinking. 

Reasoning about a kite (GANG3.4 and GANG4.4) were located in the highest level (Zone 

8), perhaps revealing students’ lack of exposure to this concept. The angles on the rhombus 

were also easier to deduce than those on the kite.  

Table 2 

Breakdown of student responses on geometric properties (GANG1 and GANG3). 

Score Trial Data (n=230) Project Data (n=433) 

GANG1 Yr 7 Yr 8  Yr 9  Yr 10  Yr 7 Yr 8 Yr 9 Yr 10 

 n=83 n=90 n=31 n=26 n= 171 n= 204 n= 37 n= 21 

0 20.5 45.6 19.4 3.8 36.3 32.8 24.3 14.3 

1 30.1 13.3 9.7 0 19.3 15.2 0 38.1 

2 12.1 11.1 12.9 7.7 4.1 11.3 2.7 47.6 

3 33.7 17.8 48.4 73.1 36.8 27.9 62.2 0 

4 3.6 12.2 9.7 15.4 3.5 12.8 10.8 0 

Score Trial Data (n=157) Project Data (n=270) 

GANG3 Yr 4 Yr 5  Yr 9  Yr 10  Yr 7 Yr 8 Yr 9 Yr 10 

 n=31 n=59 n=30 n=37 n= 23 n= 113 n= 32 n= 102 

0 22.6 23.7 27.6 35.1 0 17.7 53.1 17.7 

1 77.4 66.1 27.6 32.4 17.4 21.2 31.3 28.4 

2 0 10.2 13.8 29.7 69.6 21.2 15.6 32.4 

3 0 0 34.5 2.7 13 31.9 0 20.6 

4 0 0 0 0 0 8 0 1 
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Because the Rasch model is probabilistic, an in-depth analysis of students’ responses to 

the items were conducted. A total of 663 samples for Geometric Angles 1 task and 427 

samples for Geometric Angles 2 were collected. Table 2 shows the breakdown of students’ 

responses for reasoning about geometric properties. Both cohorts performed better in the 

rhombus item than the kite item. The majority of students found reasoning about geometric 

properties difficult and on average, around 25% of students did not respond. In GANG1, 

students tended to define a rhombus based on its orientation or what it looks like: 

Year 7:  I believe wasn’t wide enough to become a rhombus and the shape is a diamond (score 1). 

Year 10:  It can be depending on how you look at it. It could be a diamond or rhombus (score 2). 

Year 9:  … when you hold the shape so that the pointed parts point from left to right you would see 

that it is in the shape of a rhombus (score 3). 

Only a handful of students accurately defined a rhombus, as having ‘4 equal sides’; none 

included the square as part of the rhombus family. Further, when the term angle was used, it 

was to emphasize that a rhombus has no right angle, or incorrectly stating that the shape has 

‘four exactly the same sides with 4 acute angles’. In GANG3, 76.4% of students provided a 

2D name to the folded shape, such as triangle (16%), irregular rectangle/square (31.2%), 

polygon (6.4%) and quadrilateral (8.9%). None of the trial school students were able to 

correctly state the properties of a kite.  

Nevertheless, inability to reason about geometric properties did not appear to influence 

the deduction of angle magnitudes. Comparison of students’ responses by year level shows 

that project schools’ performance was slightly better and that the angles in the rhombus were 

easier to deduce than those in the kite (see Table 3). There was still a large number of no 

response or irrelevant responses received from the trial data (27.8% and 38.5% in GANG2 

and GANG4 respectively).  

Year 9:  I worked this out by counting the crease of each angle (wrote 3, 3, 2 in GANG2). 

Year 4: I measured each line and quartered it (wrote 2 cm, 3 cm, 4 cm, 5 cm in GANG4). 

Other students (47.8% and 28.9% respectively) either wrote the name of the angles as 

acute or obtuse or were only able to give the magnitude of one angle. 

Table 3 

Breakdown of student responses on angle magnitudes (GANG2 and GANG4) 

Score Trial Data (n=230) Project Data (n=433) 

GANG2 Yr 7 Yr 8  Yr 9  Yr 10  Yr 7 Yr 8 Yr 9 Yr 10 

 n=83 n=90 n=31 n=26 n= 171 n= 204 n= 37 n= 21 

0 14.5 44.4 29 11.5 47.4 39.7 35.1 9.2 

1 67.5 35.6 35.5 42.3 33.9 27 35.1 9.5 

2 6 7.8 22.6 7.7 7.6 9.3 5.4 14.3 

3 3.6 10 9.7 23 6.4 10.3 10.8 4.8 

4 8.4 2.2 3.2 15.4 4.7 13.7 13.5 61.9 

Score Trial Data (n=157) Project Data (n=270) 

GANG4 Yr 4 Yr 5  Yr 9  Yr 10  Yr 7 Yr 8 Yr 9 Yr 10 

 n=31 n=59 n=30 n=37 n= 23 n= 113 n= 32 n= 102 

0 83.9 20.3 27.6 37.8 17.4 18.6 43.8 5 

1 16.1 47.5 27.6 10.8 43.5 38.1 34.4 9.8 

2 0 25.4 13.8 27 8.7 23 9.4 21.6 

3 0 5.1 34.5 10.8 21.7 17.7 6.3 33.3 

4 0 1.7 0 13.5 8.7 2.7 6.3 30.4 
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Many of the irrelevant responses for GANG4 were from the primary years 4 and 5, 

suggesting that these students may not have learned this concept. The trial data showed that 

some of the responses were far from the correct answers. Students either solved the problem 

based on physical appearance - ‘it looks like a right angle… (90°, 43°, 180° for GANG2)’, 

made obscure comments such as ‘use a pencil (90°, 110°, 155°)’, or wrote ‘60°, 70°, 90°, 

140° the sum of all the angles = 360°’ (GANG4). A further 29 trial school students admitted 

to using a protractor for GANG2. This may be due to the teacher’s oversight or assumption 

that it was inaccessible by the students or because they have no strategies otherwise. Despite 

its availability, only two students were able to provide the correct answers.  

A 45° angle was the easiest to deduce by using right angle as a benchmark. Using 

existing angle knowledge as benchmark did not always work however and the Year 9 and 

Year 10 students tended not to provide a reason for GANG4: 

Year 7: You work out the angles by knowing where 90° is and if the angle is smaller then you take 

a given between 0° and 90°. If the angle is bigger than 90° and smaller than 180° then you 

guess what the angle might be. I then checked with a protractor to see how far off I was 

(34°, 96.5°, 135°). 

Year 10: They all need to equal to 180 (wrote 20°, 30°, 130°) 

Year 9: d and e has the same size angle as you can see, f as everyone knows that it is 90° because 

it’s a right angle and g is an obtuse, which is 180° (wrote 45°, 45°, 90°, 180°). 

 Discussion 

Angle is the foundation for much of geometry and trigonometry and applicable in many 

daily activities, yet many students did not demonstrate understanding of the concept nor 

ability to reason about angle size. Looking within the overall geometric framework at the 

student responses to the question requiring reasoning about angle measurement in more 

detail gave an indication of the development of reasoning about angle. 

Students operating in Zones 1 and 2 of the geometric learning progression usually did 

not show evidence of identifying the meaning of angle in any useful way. When they did use 

the term angle it was in reference to a right angle, often incorrectly. They did not use angle 

properties at all in identifying shapes. Students in Zone 3 were identifying right angles and 

in Zone 4 some of the students were referring to acute and obtuse angles though they were 

still not correctly giving many angle magnitudes with the exception of a right angle. By Zone 

5 the students were attempting to reason about the angle magnitudes and were identifying 

the magnitudes of some of the angles correctly, usually in relation to a right angle. Diagrams, 

calculations and connecting language were beginning to appear. In Zone 6, the students were 

correctly identifying angle magnitudes, but their reasoning tended to relate just to the right 

angles and was incomplete. The few students who responded in Zones 7 and 8 were able to 

correctly identify the angles and explain their reasoning using a combination of diagrams 

and calculations integrated with words.  

Relating this to the overall learning progression for geometric reasoning indicates that 

for reasoning about angle measurement there appeared to be five stages 

1. Informal reasoning based on appearances (Zones 1-3): This encompasses the 

development of the concept from thinking of angles as lines or lengths through to 

identifying angles as corners and visually recognising 90° angles.  

2. Informal and insufficient formal reasoning (Zone 4): Reasoning about magnitudes as 

being greater or less than a right angle and assigning magnitudes accordingly. 

3. Emerging analytical reasoning (Zone 5): Deducing and arguing 45° angles in relation to 

a right angle, often with an accompanying diagram or calculation. 
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4. Relational-inferential property-based reasoning (Zone 6): Correctly identifying angles 

and giving reasoning for at least some of them usually with some attempt at using 

diagrams and connecting language, often with some calculation. 

5. Emerging deductive and logical inference-based reasoning (Zone 7-8): Correct 

identification of angles reasoned with supporting diagrams, calculations and integrating 

connecting language.  

The descriptions here are in the context of the questions that were asked. The final stage 

would be moving to full deductive reasoning and proof, but we have no evidence of this 

stage as the questions did not seek a response at this level. Nevertheless, the results show 

that many Australian students in our sample across all states are unable to do what the 

curriculum expects them to do. Learning progression research allows researchers to identify 

what learners can do, and what needs to be done to move their learning forward. The stages 

as described here contributed to the development of advice for teaching reasoning about 

angle measurement. Further research is needed to investigate this progression and expand it 

more fully to encompass the whole of angle measurement. 
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Conceptualising 3D shapes in New Zealand primary classes  
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This paper explores three multilingual students’ (9 to 11-years-old) conceptual understanding 

of three-dimensional (3D) shapes as displayed through peer and classroom interactions in 

two New Zealand primary classes. Bakhtin’s dialogic theory and Garfinkel’s 

ethnomethodology inform the theoretical framework. The paper presents two excerpts from 

audio-video recorded data. Findings suggest that the students use their multilingual capacities 

to convey their meanings of geometry shapes as they engage in peer and classroom 

interactions. The paper recommends that it is crucial to explore prosodic features of the 

language to facilitate the meaning-making process during teaching and learning of geometry.   

Multilingualism constitutes the overt or covert existence of multiple languages in 

mathematics classrooms (Barwell et al., 2019). This presence of various languages in 

mathematics classes is widely acknowledged as a resource for promoting the understanding 

of mathematical concepts (Adler, 2010). As a result, the strategy of code-switching between 

the language of instruction and other languages present in students’ repertoire is claimed to 

promote mathematical understanding (Planas & Setati-Phakeng, 2014). It has been argued 

that code-switching can enable students to blend their multilingual capacities and 

successfully participate in mathematical activities (Setati & Moschkovich, 2013); however,  

it has been argued that the nature of language (if it is verb-based or noun-based) influence 

the ways in which students understand and display their mathematical ideas (Borden, 2013). 

For example, Borden found that there is no Mi’kmaw (an aboriginal language of Mi’kmaw 

communities in Nova Scotia) word for the concept of “flatness”, that we take-for-granted in 

mainstream mathematics. Acknowledging the scarcity of research exploring multilingualism 

in geometry classes, the paper aims to investigate how multilingual students talk about 

geometric shapes in primary classes. Moreover, in the work of those who have examined 

language in mathematics education (e.g., Kaur, 2015; Ng & Sinclair, 2015), the exploration 

of dynamicity of language that incorporates the prosodic patterns of stress and intonation is 

often ignored. Ward (2019) argued that these prosodic features of language convey meanings 

and provide social significance to the words in any setting. Moreover, speakers of different 

languages employ these prosodic patterns differently to signify their focus of interaction 

(Ward, 2019). For example, Ward and Al Bayyari (2010) found that Arabic speakers 

construct their utterances in low pitch to signal their intention of continuous listening to the 

speaker, which is often perceived as rude behaviour by English language speakers.  

Thus, acknowledging the dynamic nature of language in contemporary multilingual 

geometry classes, the present paper aims to address the following research gaps: (i) to 

explore the processes through which multilingual students construe and display their 

understanding of geometry shapes as they engage in classroom interactions, and (ii) to 

develop a critical understanding of how the multilingual context of contemporary geometry 

classes influences the process of development of geometry concepts.  

Two excerpts from two New Zealand primary schools are presented here to address the 

research question: How do multilingual students (9 to 11-years-old) discursively construct 

and reconstruct two-dimensional (2D) shapes and three-dimensional (3D) shapes in New 

Zealand primary classes? 
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Theoretical Framework  

The present study draws its theoretical underpinnings from Bakhtin’s (1981) dialogic 

theory and ethnomethodology (Garfinkel, 1967). According to Bakhtin, the specification of 

the meaning is dependent upon the preceding and succeeding dialogues within the dialogic 

space. Moreover, two opposing language forces operate simultaneously at different levels of 

interaction. The centripetal force or the “unifying language” (Bakhtin, 1981, p. 269) aims to 

guarantee mutual understanding of the meanings of utterances by crystallising their 

meanings, within the domains of prevalent dominant discourses. Concomitantly, the 

diversifying force or ‘heteroglossia’ as Bakhtin (1981, p. 270) defined, attempts to 

decentralise the already established meanings of the utterances by embedding individualised 

meanings into the language. It is the ongoing interplay of unifying and diversifying language 

forces in a specific circumstantial context as well as the socio-cultural milieu that informs 

the particular sphere of communication. Exploration of what is said, when it is said, and how 

it is said can enable the researcher to tap into these heteroglossic and unitary language forces. 

Interpretation of what is said, when it is said, and how it is said can be achieved by exploring 

the indexical nature (patterns of stress and intonation) of the language use (Barwell et al., 

2019). The ethnomethodological approach of the present study allowed me to explore these 

indexical properties of the language use as it unfolds within interaction in day-to-day life 

events.  

Undertaking ethnomethodology with Bakhtin’s dialogic theory as a theoretical 

foundation helps us to acknowledge that knowing is construed as an ongoing action that 

takes place within ongoing interactions. Therefore, in this paper, I aim to explore the 

processes through which meanings of geometric shapes are appropriated and developed from 

moment to moment during classroom interaction, on the one hand; while developing a 

critical understanding of dominant mathematical discourse that influences the process of 

meaning-making of geometry shapes in multilingual mathematics class, on the other.  

Methodology 

In this paper, I report on three multilingual students’ (9-11-years-old) discursive 

constructions of 2D and 3D shapes in two primary schools (School A and School B). 

Participants from diverse ethnic and linguistic backgrounds volunteered to participate, and 

informed consent was obtained from participants and their parents before participation. Data 

were primarily gathered through classroom observations in School A, and audio-visual 

recordings of the whole class and group interactions in six geometry lessons School B, as 

well as field notes in both settings. Short semi-structured interviews were conducted with 

the two classroom teachers to seek clarification about the lessons. Six (two from School A 

and four from School B) short audio-recorded focus group interviews were also conducted 

with the students to explore their understanding of shapes and their properties.  

For data analysis, participants’ utterances were considered as the unit of analysis. To 

explore students’ discursive constructions about 3D shapes, video- and audio-recorded data 

were viewed repeatedly to identify the relevant key moments. Only moments where students 

either identified or described the shape or its properties were considered as key moments. 

The key moments were then subjected to two levels of analysis; (i) micro-level and (ii) 

macro-level. At the micro-level of analysis, several Conversation Analysis (CA) techniques 

were employed to explore the circumstantial organisation of talk-in-interaction that aids in 

the conceptual development of the geometric concepts of shapes and their properties. The 

interactions were transcribed using a simplified version of Jefferson (2004) transcription 
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conventions (see Appendix A for transcript key). The transcribed data enabled me to identify 

the subtle prosodic patterns that participants used to convey their meanings with-in talk-in-

interactions. The macro-level analysis used an adapted version of Paul Sullivan’s (2012) 

analytical approach, coding each key moment in terms of participants, genres and discourses 

used, and emotional registers. This coding enabled me to identify the dominant discourses 

that influence the meaning-making process of geometric shapes.  

Analysis and Discussion  

This section presents the analysis of two key moments (from School A and School B) in 

which students discursively constructed “cube” as “3D Square”, and a ‘triangular prism’ as 

“3D Triangle”.   

Micro-level analysis  

Key moment 1: “yeah- just a three-d square.” The first key moment is presented from 

the focus group interview conducted in School A. The focus group interview was held on 

the same day after the third lesson on shapes had been taught. In previous lessons, students 

were taught about 2D and 3D shapes, and their properties. The focus group interview (with 

a group of five students) was audio-recorded, and transcribed data is presented in Excerpt 1. 

R denotes the researcher in the transcript. Lily is a monolingual English speaker. Amir and 

Liu are bilingual students with Arabic and Chinese as their respective home languages. In 

Excerpt 1, students were asked to talk about shapes.  

Excerpt 1 

7  Lily: so:: (.6) we counted how many ↓edges so ^if it was 

8   (1.0)a^ like a SQUARE(.)it had like 

9   twe↑lve(.6)edge:s 

10  R: okay 

11  Amir: ^yeah^ 

12  Lili: a:n::: twelve co:rner:[s 

13  Amir: ^no^ 

14  R: so was it a square? 

15  Amir: cube. 

16  Lily: yeah (1.0)↑cube(.)which is really same as a square 

17  Amir: ^its just three d^ 

18  R: is it is it same as square 

19  Amir: [yeah] its #just the three d square# 

20  Lily: [yeah] 

21  R: whats exa:ctly three d 

22  Amir: ↓a three d [>is when it pops ou:t< 

23  Lily:                  [a three d is like when it pops out? 

24  Amir: ↓yeah three dimensiona:l  

25  Lily: li↑ke(.) a square if you draw it like this 

26  R: yeah 

27  Lili: he it (.5) ↑wont be: a three ↑d: itll just be a 

28   nor:mal squa:re? 

29  Liu: ^its like [this^ 

30  Lily: and then a three D:: is when you do >that an then 

31   another square inside ↑then <you join them up> 

32   toge↑ther? ((Lily drew the cube there on a piece of paper))  

33  Lily: an then a normal square is just like(1.0) four 

34   line:s  

35  Amir: Yup 
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The first question for the focus group interview was not directed to any particular 

student. Lily self-selected (Line 7) and started with pointing out the property of 3D shapes 

(i.e., “edges”). However, in her next utterance (Line 8), she used the name of a 2D shape 

(“square”) to signify the 3D shape (cube). Following Lily’s turn, in Line 11, Amir showed 

agreement. However, he constructed his utterance in a low pitch, a prosodic feature used in 

the Arabic language to convey continued listening and to encourage the speaker to continue 

their talk (Ward & Al Bayyari, 2010). In Line 12, Lily used stretching the syllables of her 

utterance, (i) to hold the floor, and (ii) to look for the right words to express her thoughts 

(Hellermann, 2005). Amir again used the low pitch to convey his intention for continued 

listening, yet he displayed his disagreement with Lily’s suggestion (Line 13) as he said “no”. 

He did this to take part in the discussion without overpowering Lily, the speaker. In Line 14, 

the researcher asked Lily if the shape the group was referring to was a square. This time 

Amir self-selected and stated that the shape was a cube, not square (Line 15). He used a 

falling tone to display (i) his dominance over the knowledge, and (ii) his intent to finish the 

interaction about this shape. His assertion was met with agreement from Lily (Line 16) with 

“yeah”; however, she again paused for one second after saying “yeah” (Line 16). Her use of 

high pitch with the word “cube” (Line 16) indicates her interest in sustaining the topic 

(Walker, 2017), unlike Amir. She constructed her utterance to show that her use of “square” 

is correct as both terms- “square” and “cube’”, imply the same shape. Again, in Line 17, 

Amir self-selected and used lower pitch voice to indicate his agreement with Lily’s statement 

again without interrupting the flow of conversation. In Line 18, the researcher once again 

asked if both names imply the same shape. To this question, both Amir (Line 19) and Lily 

(Line 20) started answering. However, Lily stopped as Amir continued. Amir argued that 

cube is “just the 3D square” (Line 19). He used a creaky voice to claim his authority over 

the knowledge with certainty (Ward, 2019). Lily (Line 20) again approved Amir’s statement 

with “yeah”; however, she did not provide any explanation of why she agrees that a cube is 

“just the 3D square”. It is noteworthy that, in Line 22, Amir used faster speech along with a 

lower pitch voice again to signify his authority over his knowledge (Ward & Al Bayyari, 

2010). In Line 23, Lily again self-selected and she constructed her utterance using high rising 

terminal (HRT), denoted by ‘?’, a conversational solidarity marker used in New Zealand 

English, which is used to check whether the other members of the group agree with her 

(Warren, 2016). In Lines 25, 27, 28, 30-34, Lily constructed her utterances to justify her 

previous claim that a “cube, which is really same as a square” (Line 16).  

The presented analysis shows that Amir (a multilingual student) often made use of 

prosodic patterns of his Arabic language in his use of English to convey his understanding 

of shapes to his listeners. Moreover, through his Arabic language patterns of stress and 

intonation, he displayed his authority and confidence about his knowing of geometry shapes. 

Ward and Al Bayyari (2010) noted that Arabic ways of supporting the speakers’ utterance 

with the use of low pitch and faster talk are often perceived negatively as a sign of either 

anger or disinterest by English speakers.    

Key moment 2: “what’s a triangle three-d? A triangular prism!” The second key 

moment is presented from the audio-visual recording from the first lesson at the School B. 

During this lesson, the teacher provided the students with a task called “Shapes in everyday 

life”, and asked them to identify the shapes in the picture given to them. The teacher divided 

the class into groups for this task. After completing the task, she asked each group to come 

and present the shapes that they had identified. As they reported the shapes, the teacher wrote 

the names of the shapes on the whiteboard. The teacher asked a group of three students 

(Alyssa, Tane, and Olivia) to talk about the shapes. They identified one shape as “triangle 
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3D”. The second key moment (Excerpt 2) is extracted from the transcribed classroom 

discussion that followed. In Line 547, the teacher reads the names of the shapes from the 

task sheet. In Line 548, she used a high pitch with “what” to draw students’ attention to the 

coming question (Walker, 2017). Moreover, she stretched the word “triangle” while 

emphasising “three d”. In this utterance, she acknowledged students’ conception of three-

dimensional shape as “3D triangle”. However, she displayed her intention to direct students’ 

attention towards using the geometry term for the identified shape. In Line 549, Ethan (with 

English as his first language), raised his hand to answer and began to speak without 

permission from the teacher. The teacher ignored his utterance (Line 550), and selected Yue 

(bilingual student with English and Chinese) to take the next turn. Yue answered that the 

shape is a “cube” with a flat pitch. It has been argued that Chinese bilinguals often use flat 

pitch while using English (Pickering, 2001).   

Excerpt 2 

547  Teacher: so they ve got(0.2)square(0.5)two d:(1.0)triangle. 

548   three d:(0.5) ↑what is: a tri::angle three d 

549  Ethan:          it. is. [a: 

550  Teacher: [<can anyone remember> what (1.0) a tri (1.0) Yue? 

551  Yue: cube 

552  Teacher: CU::BE(0.5)um kori cu:↑be is (1.0)a cube is a bit 

553   Different (.)um::: Matiu ((teacher smiled and pointed to Matiu)) 

554  Matiu:          tri:angular (0.5)a[:: 

555  Tane:                                     [prism 

556  Matiu: prism 

557  Teacher: triangular prism gre:at. 

558  Garry: I WAS ABOUT TO SAY Cone (1.0)  

In Line 552, the teacher emphasised the word “cube” by using both increased volume 

and stretching. She used these prosodic features for two purposes: (i) to get Yue’s attention 

at the start of her utterance, and (ii) “um” as a hedging device (Schegloff, 2007) to produce 

her next utterance that would implicitly reject the suggestion (Line 552). The teacher 

selected Matiu (bilingual student with Te Reo Māori and English) as the next speaker (Line 

553). Matiu, in Line 554, used stretching and a pause to hold the floor so that he could recall 

and state the full name of the shape. As Matiu could not recall the full name of the shape, 

Tane self-selected and constructed his utterance (Line 556) in alignment with the Matiu’s 

utterance. The teacher accepted Tane’s response and started writing on the whiteboard as 

Matiu constructed his utterance (Line 556) in agreement with Tane’s response. It should also 

be noted that the teacher responded positively to Matiu’s and Tane’s response (Line 557). 

The teacher used a falling tone with “great” to signify the completion of the task of naming 

the 3D triangle in geometry language (Jeong, 2016). However, Garry (a bilingual Filipino 

student) in Line 558, used high volume majorly for two purposes: (i) to draw the teacher’s 

attention to his suggestion of ‘cone’ as the name for shape in question, (Gries & Miglio, 

2014); and (ii) as an attempt to continue the discussion on the possible geometry term for 

the shape by engaging in a parallel talk, a characteristic of bilingual Filipino students 

(Speicher, 1993). Speicher (1993) showed that Filipino students often engage in parallel or 

simultaneous talk to offer their explanation without further delay.  

It is evident that though Yue (a bilingual Chinese student) used English as a medium to 

state her response, she was still learning to use intonational patterns used in English. 

Moreover, Garry, (a bilingual Filipino student) used multilingual capabilities of the English 

language and Filipino language to display his intentions. The micro-analysis of this key 

moment also draws our attention to the different ways multilingual students employ their 
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language repertoires from a different language to convey their meanings as they participate 

in classroom interactions. 

Macro-level analysis  

For this level of analysis, each key moment was coded in terms of: (i) participants, (ii) 

discourses used, and (iii) emotional registers used (see Table 1). The analysis of the two key 

moments suggests that a constant struggle between unitary language and heteroglossia can 

be observed at the overlapping dimensions of language and discourses.  

Table 1 

Macro-level analysis of Key Moments 

Participants  Key moment Discourses  Emotional registers used  

Lily, Amir, 

Researcher, 

Liu  

1.“ a three-d 

square.” 

Everyday language (e.g., 

corners); Geometry specific 

language (e.g. square) 

Authoritative (e.g., Amir- 

line 17), Uncertainty (e.g., 

Lily- line 16),  

Teacher, Yue, 

Ethan, Matiu, 

Tane, Garry 

2.“a 

triangular 

prism.” 

Everyday language (e.g. 

‘triangle 3D’); Geometry 

specific language (e.g. triangle) 

Authoritative (e.g., Tane- 

line 555), 

 

On the dimension of language, both classes catered to multilingual students with varying 

degree of proficiency in their different languages, including English. New Zealand 

Curriculum (Ministry of Education, 2007) encourage and uphold the value of diversity of 

languages (p. 10), thus, promotes the use of Te Reo Māori in classes. However, the use of 

English as the medium of instruction in both multilingual classes highlights the unitary 

language forces. It is interesting to note that the heteroglossic language forces are evident in 

the ways in which students made use of their prosodic features from their multilingual 

repertoire. For example, the use of HRT by Lily (Line 28 in Excerpt 1) to check the 

conversational solidarity with other members highlights the influence of Te Reo Māori, (an 

Indigenous language of New Zealand with an official status gained in 1987) on her English 

(Stubbe & Holmes, 2000). Similarly, Yue’s utterance (Line 551, Excerpt 2) display the 

ongoing interplay of (i) centrifugal force embedded in her use of intonations (use of flat 

pitch), and (ii) the centripetal force of using English as a medium of communication.  

On the dimension of discourse, two different discourses are at play in both the key 

moments. In both the key moments, participants used everyday language and geometry-

specific language to display their understanding of three-dimensional shapes. In Excerpt 1, 

Lily started her utterances using geometry-specific language (e.g., “square” and “edges”). 

The use of geometry-specific language directs our attention to the embeddedness of unitary 

language force in her utterances. It is possible that she used these specific terms to keep her 

utterances in alignment with the dominant geometry discourse. However, the use of 

“corners” (Line 12, Excerpt 1) shows the embedded heteroglossia as the word corner” is 

laden with geometry meanings as well as everyday meanings. Moreover, the use of terms 

like “normal square” and “3D square” in her later utterances also draws our attention to the 

ongoing dialogic tensions between the centripetal and centrifugal language forces. The 

phrase of “normal” with “square” uses both everyday language and geometry-specific 

language. “Normal” implies an everyday understanding of “square”, however, by specifying 

“square” Lily shows her geometry understanding of shape as a four-lined shape. Similarly, 

in Excerpt 2, the teacher’s utterance (Line 548) also highlights the presence of heteroglossia 

and unitary language force. The phrase “triangle three d” emphasises the understanding that 



Sharma 

359 

it is a triangle shape, which is three-dimensional. Thus, the geometry unitary language forces 

are used to define the shape as “triangle”, yet the meaning of “three d” implies a solid shape, 

highlighting heteroglossia by providing it with everyday meaning. The intent of the teacher’s 

utterance (Excerpt 2, Line 548) was to promote the use of geometry-specific language, that 

is, to direct students’ utterances to align with the dominant geometry discourse.  

The analysis highlighted two noteworthy findings. First, it was found that multilingual 

students can make use of subtle yet significant prosodic features from their repertoire of 

multiple languages to display their meanings during peer and classroom interactions. 

Second, the students construct three-dimensional shapes in reference to the two-dimensional 

shapes that they know. It is interesting to note that the students and teacher did not question 

the idea of “3D square” or “3D triangle”; instead, the meanings of these terms were 

discursively constructed in those particular moments. The analysis showed that the use of 

these terms in students’ utterance is confident, signifying their authority over their 

knowledge. Thus, it can be argued that students used these discursive constructions not only 

to make sense of shape but also to negotiate the meaning of it as they engaged in the 

conversation.  

Conclusion  

The paper explored discursive constructions of the multilingual (9 to 11-year-old) 

students as they engaged in group and whole-class interactions. The paper reported on two 

excerpts from two New Zealand primary classrooms. The use of multilingual repertoire by 

multilingual students draws our attention to the growing need to develop understanding of 

these nuances to better support the practices of teaching and learning. Moreover, Bakhtin’s 

dialogic theory enabled me to explore the discursive constructions and reconstructions that 

students used to display their understanding of geometric shapes. It is evident that a variety 

of meanings may emerge as the interaction proceeds. The present analysis contributes to the 

knowledge base in geometry education classroom-based research, specifically in relation to 

multilingual classrooms. Moreover, this present exploration of the multilingual aspects of 

primary classes will be fruitful in developing a diverse knowledge base for teachers and 

researchers for promoting effective teaching and learning practices.  

Appendix A- Transcript key  

↑ Higher 

Pitch 

↓ Lower 

Pitch 

>  <  Faster 

talk  

^ Whispering  . Falling 

Intonation 

(.) Silence for 

1/10th of  second 

# Creaky Voice  

: Stretch [ ]  

Overlaps  

< >   Slower 

talk 

Underline- 

Emphasis 

? Rising 

Intonation 

CAPs  Volume 

Increase 

(n.0) Silence for 

n seconds 
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“I think it’s 3D because it’s not 2D”: Construing dimension as a 

mathematical construct in a New Zealand primary classroom 

Shweta Sharma 
University of Waikato 

<ss555@students.waikato.ac.nz> 

The paper explores one episode from a larger study, where a multilingual student (10-year-

old) described her understanding of what makes a shape 2D or 3D. Bakhtin’s dialogic theory 

and Garfinkel’s ethnomethodology inform the theoretical framework. Transcribed data of the 

episode is presented, which is analysed at micro-level and macro-level. The analysis revealed 

three major findings. First, the analogy of “flat vs fat” for describing shapes may not be 

useful. Second, the meanings of the terms such as fat are shaped by the interaction of unitary 

language and heteroglossia. Third, prosody embedded in utterances contribute to the meaning 

constructions during mathematical discussions. A few implications are presented.  

The mathematical construct of dimension plays a crucial role in developing foundational 

skills in mathematics, more so for construing understanding of two-dimensional (2D) shapes, 

three-dimensional (3D) shapes and their properties. This paper presents an episode from a 

larger study from a New Zealand Year 5/6 geometry classroom, where a student described 

her understanding of what makes a shape 2D or 3D. In school geometry, 2D shapes are the 

plane shapes that have only two dimensions that are length and breadth. Whereas 3D shapes 

are the solid shapes that can be held, have thickness/depth along with length and breadth. 

These definitions of 2D and 3D shapes focus on the dimension as a measurement attribute 

of an object. In mathematics education research, very few studies have explored students 

and teachers’ understandings of dimension. Lehrer et al. (1998) found that students construct 

dimension as a property of thickness of an object, a finding supported by Morgan (2005). 

Recently, Panorkou and Pratt (2016) investigated 10-year-old students’ construction of ideas 

about the dimension, and provided additional understanding of dimension. They argued that 

children expressed that objects/spaces with lower dimensions can move within 

objects/spaces of higher dimension. Tossavainen et al. (2017) studied pre-service teachers’ 

understandings of the area and its dimensional aspect. They argued that although the concept 

of area is central in elementary mathematics, the aspect of two-dimensionality is hardly 

considered in teaching and learning of shapes and their areas. In addition, they highlighted 

that the use of the same word for the boundary of the shape as well as the space within the 

shape might add to the difficulty in construing dimension as an important attribute for 

understanding shapes. For example, Bezgovšek Vodušek and Lipovec (2014) have shown 

that in Slovenian language, the boundary of circle is not considered as a 2D shape, and is 

called krožnica; whereas, a disk is a 2D shape of a circle, and is called krog. Interestingly, 

these two terms krožnica and krog highlight the understanding of shapes from Euclid’s 

boundary notation perspective (Manin, 2006; Skordoulis et al., 2009). According to this 

perspective, the points are the boundaries of lines, lines are boundaries of the surface, and 

the surface accounts for the boundary of the solid object (Skordoulis et al., 2009). As a result, 

the dimension of, let us say, krožnica (circumference of a circle) and krog (circular region) 

would be different. However, in English, a “circle” is used to signal both the boundary and 

the area (as a disc) enclosed by the circle, which may complicate the process of 

understanding dimension as a mathematical construct.  

Interestingly, research investigating students’ understanding of dimension in 

multilingual classrooms are even rarer. Multilingualism research has often focussed on either 
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mathematical terminology (e.g., Adler, 2002) or grammatical patterns of mathematical 

registers (see Kotsopoulos et al., 2015). This focus on mathematical terms and syntax negate 

the role of prosodic features of language use that might contribute to meaning-making. Ward 

(2019) argued that patterns of stress and intonation in language provide impact to words, 

their meanings, and their social significance. For example, Hay et al. (2008) have shown that 

New Zealand speakers often use a High Rising Terminal (HRT) intonation in their speech 

to show solidarity with the listener and to check if the listener is following the speaker, 

instead of asking a question. Thus, to explore students’ understanding of dimension while 

acknowledging the superdiverse context of New Zealand, this paper aims to answer the 

following research question: How do Year 5/6 multilingual students discursively construct 

and reconstruct their understanding of dimension during classroom interactions? 

Theoretical Framework   

The theoretical framework for the larger study was informed by Bakhtin’s (1981) 

dialogic theory and Garfinkel’s (1967) ethnomethodological approach. Bakhtin (1981) 

argued that language provides us with a dialogic space, which opens shared space for all 

participants to generate meanings as they engage in dialogue, that is in this dynamic space, 

all possible meanings are considered in a continuum of meaning construction. The 

specification of meaning is dependent upon the preceding and succeeding dialogues. Bakhtin 

argued that this negotiation of meanings occurs in the realm of the constant struggle between 

unitary language and heteroglossia that operate concurrently at different levels of interaction. 

The unitary language (unifying language force) account for the system of norms that dictate 

the accurate use of language, with the aim to guarantee mutual understanding of the 

meanings of utterances by crystallising their meanings, thus, limiting the occurrence of 

divergent meanings of the utterances. At the same time, heteroglossia (diversifying language 

force) attempt to decentralise the already established meanings of the utterances by 

embedding the use of language with individualised meanings. It is the ongoing play of these 

unifying and diversifying language forces in a specific circumstantial context as well as the 

socio-cultural milieu that informs the specific meaning of an utterance within a sphere of 

communication (Barwell, 2018). Exploration of what is said, when it is said, and how it is 

said can enable access of these heteroglossic and unitary language forces. To explore what, 

when, and how an utterance is said, the paper made use of the ethnomethodological 

approach. The ethnomethodological description, therefore, aims to provide a detailed 

description of how members make sense of any activity as it unfolds in its everyday manner. 

Undertaking this theoretical approach helps us to acknowledge that knowing is construed as 

an ongoing action that takes place within the ongoing interactions. This paper aims to explore 

the processes through which a participant displayed and developed her conception of 

dimension from moment to moment as she participated in classroom interaction, on the one 

hand; while developing a critical understanding of dominant discourses that influenced this 

process of meaning-making in multilingual mathematics class, on the other.  

Methodology   

This paper presents one episode from a larger study. In this episode, a 10-year-old 

student discursively constructed her understanding of dimensions in a New Zealand primary 

classroom. Informed consent was sought from the participants. Six geometry lessons on 

shapes and their properties in one Year 5/6 New Zealand classroom were observed, and field 

notes were taken. Participants included 15 students (with nine multilingual students) and 
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their teacher. Data pertaining to students’ languages were collected using a small 

questionnaire that was filled in by the parents. The observed six lessons were also audio- 

and video-recorded using two directional cameras, one eye-gear, and five audio-recorders. 

One camera was kept in the front of the classroom, and one at the back. The eye-gear/glasses 

with an inbuilt camera was used to record any moment of interaction that caught attention. 

Five audio-recorders were kept on the tabletops to records students’ interaction as they 

worked on group tasks. Each lesson lasted for 45 to 50 minutes. In addition to audio-visual 

data from the lessons, three short (10-12 minutes) semi-structured  interviews were 

conducted with the teacher, which were audio-recorded, transcribed, and sent back to the 

teacher for member checking. Each teacher interview focussed on seeking clarifications 

about the lessons or activities if there was any question. Four focus group interviews (with 

four students in each group) were also conducted once all six lessons were taught. Each focus 

group interview lasted for 18 to 20 minutes. Students’ work samples were also collected.  

The audio-video recorded data was the primary data set for the study, and participants’ 

utterances as units of analysis. Field notes and repeated watching of six video-recorded 

lessons enabled the identification of the relevant moments, where participants displayed their 

understanding of dimension. This paper presents one such moment of classroom interaction 

when a student, Elie (pseudonym), and her teacher displayed their understanding of 

dimension as they engaged in classroom interaction. These relevant moments were then 

analysed at two levels: micro-level and macro-level (see Figure 1). The micro-level analysis 

formed the basis for macro-level analysis.  

 

Figure 1. Example of data analysis procedure 

At micro-level analysis, the selected moment was analysed using selected features of 

Conversation Analysis. The moment was transcribed using a simplified version of 

Jefferson’s (2004) transcript convention. The analysis of participants’ utterances explored 

how participants constructed their utterance using linguistic (including words and 

grammatical forms) and paralinguistic (that includes prosodic features of the pitch, silence 

along with gestures) features to convey their intended meaning and action (e.g., declaring 

their understanding, asking a question, seeking confirmation). Thus, the analysis at the 

micro-level focused on what and how discursive constructions were made. Following the 

micro-level analysis, the same moment was analysed at the macro-level. At this level, based 

on the prosodic analysis at the micro-level analysis, emotional stances embedded in 

participants’ utterances were identified (Sullivan, 2012). In addition, the words used in the 

utterances with their intended socio-historical meanings within the utterance enabled the 

identification of the discourses (Sullivan, 2012).  

Macro-level Analysis: Unitary 
Language and Heteroglossia 

Micro-level analysis: uses 
Conversation Analysis 

Unit of analysis: Utterance "its fat" (Elie's Utterance, Excerpt 2, line 357) 

Analysis of prosodic cues - Use of flat 
pitch in this utterance indicate confidence 

Emotional stances of learning in this 
utterance is Confidence

Content of words and social 
meaning of the words used 

Discourse identified in this 
utterance are Everyday discourse
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Findings  

During the classroom observations, it was noted that students often stated their 

understanding of dimension using a flat vs. fat analogy, as expressed in one of the students’ 

utterance: 

 “D is dimension. Two d is flat and three d is fat. Three d has a lot of stuff. Like a three d has some 

stuff in it. Two d is like flat and it has nothing. It's like his, his body was like he just, it's like squished 

over from the car” (Ozan, Focus Group Interview 1)  

In this moment, the meanings that a student may imply when she distinguishes between 

2D and 3D shapes as she participated in whole-class interaction are explored. During this 

lesson, the teacher organised students in groups and provided them with sticks and glue to 

make the shapes that they already knew. After the group work, the teacher invited one 

student at a time to describe the shape that they had made using “the language of geometry” 

(Teacher, Field notes, Lesson 2). In the moment presented in this paper, she invited Elie to 

describe the shape she made using sticks and glue. Questionnaire data revealed that Elie is a 

bilingual student with more proficiency in English than Te Reo Māori (an indigenous 

language of New Zealand, which gained the official status in 1987). She made a hexagonal 

shape (see Figure 2). The teacher then asked Elie if her shape was 2D or 3D (See transcript 

below, line351).  

 

Figure 2. Elie making shapes with sticks and glue. 

351 Teacher: Elie just hang on a minute (.) is it three d: or two d: (1.0) 

352 Elie: um:: I think its three d because °its not (.) a two d° 

353   ((she was holding the shape and rolling it around her finger)) 

354 Teacher: put it down on a on the grou:nd (1.0) is it (.) flat (.) or fat (0.5) 

355 Elie: its fat (1.5) 

356 Teacher: its fa:t (.) is it ↑coming ou:t towards you (1.0) 

357 Elie: ((looks at the shape holding it near the eye level)) 

358 Teacher: =okay lay it on the grou[nd (1.5) 

359 Kimi:                  [°no its flat° 

360 Teacher: its its okay. so: its not actually coming out of the ground or going through 

361  the grou:nd (.)so we call so we call (.) ↑we call that a two 

362  d? (0.5) okay [so:(.2) 

363 Elie:                   [↓uhm:: 

 

The teacher realised that Elie had not mentioned if the shape was 2D or 3D (line 351). 

To this question, Elie responded that the shape that she had made was 3D (line 352-353). 

Elie used a flat pitch for the first half of her utterance and a whispery voice (whispering 

voice is denoted by degree sign, ˚) for the second half. Research has shown that English 

speakers may use a flat pitch to display their authority or confidence (Ward, 2019). However, 

a whispery voice at the end of utterance may indicate a lack of confidence (Ward, 2019). 

Thus, the use of flat and whispery voice in the same utterance may indicate that Elie was 

partially confident of her claim. Field notes show that the teacher explained the difference 

between 2D and 3D shapes, as “two d is flat. three d is fat. two d, straight onto the ground, 
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three d, you can hold it, its fat, its solid” (Field notes, Lesson 1). The video-recorded data 

showed that Elie was holding the shape and spinning it around her fingers. It is possible that 

Elie understood the shape that she made was 3D as she could hold it. In the following 

utterance, the teacher asked Elie to put the shape on the ground (line 354). As the teacher 

did not repeat Elie’s previous utterance or used markers like “good girl”, it is probable that 

the teacher evaluated Elie’s response as incorrect (line 354). Moreover, she stretched 

“ground” (stretching is denoted by a colon, :) to emphasise it, paused for one second (gap in 

utterances is denoted by (1.0)) probably to provide Elie with a cue. The field notes inform 

that during this activity, the teacher often stated that if the shape was coming out of the 

ground, it was 3D, otherwise, 2D. It seemed the teacher intended to use the same idea to help 

Elie to identify the shape as 2D. The teacher rephrased her question and asked Elie if the 

shape was flat or fat (line 354). The teacher did not emphasise ‘fat’ or ‘flat’ in her utterance. 

This lack of emphasis may imply that the teacher was expecting Elie to recall the ‘flat vs. 

fat’ distinction of shapes. It was noted in the field notes, and video-recorded data (Lessons 

1 to 4) that the “flat vs fat” analogy was often used in this class to describe 2D and 3D shapes. 

To this question, Elie (line 355) responded that the shape was fat. Elie’s flat pitch suggests 

that Elie was sure of her answer (Ward, 2019). The teacher waited for 1.5 seconds before 

constructing her turn, and then repeated Elie’s response (line 355-356); however, she 

stretched “fat” for emphasis. Hellermann (2003) has shown that silence in between turns can 

be interpreted as the current speaker’s (in this case, the teacher) orientation to the previous 

speaker’s (in this case, Elie) utterance as a dispreferred response. Moreover, the teacher used 

different intonation patterns (line 356) with the same words (see fa:t) used by Elie (line 355). 

The use of different intonational patterns with the same words often imply contrast rather 

than agreement (Hellermann, 2003). Thus, it seems that the teacher again evaluated Elie’s 

response as incorrect. Therefore, she again provided Elie with feedback to reconsider her 

response (line 356). The video-recorded data inform that Elie held the shape at her eye level 

instead of verbally responding (line 357) to the teacher’s feedback in the previous turn. This 

may be interpreted as Elie’s way of restating that the shape is 3D as she could hold the shape 

in her hand. Noticing this, the teacher (line 358) asked Elie to put it on the ground. As the 

teacher was talking to Elie, Kimi (a female, 10-year-old, Tongan student) self-selected and 

offered a repair on Elie’s turn. Kimi structured her response in whispery voice (line 359), so 

that she did not interrupt the flow of conversation (Hay et al., 2008), a different way of using 

whispery voice than English speakers. The teacher attempted to build an understanding of 

the shape as 2D with Elie (line 360-362). She used the High Rising Terminal (HRT) (denoted 

by a question mark, ?) (line 362) as a way to overcome a barrier to comprehension and build 

solidarity (Hay et al., 2008). Therefore, through her utterances, the teacher attempted to 

develop a mutual understanding with Elie, as she explained that the shape was not “coming 

out of or going through the ground” (line 360-362). Interestingly, the teacher used “so we 

call” (line 361) twice in her utterance; the use of this phrase could be interpreted as her 

acknowledgement of the possibility of non-confirmation from Elie. Ward (2019) has noted 

that high onset (denoted by ↑) is often used in conversations to mark a change or draw 

attention to the topic of conversations. Thus, the teacher’s use of high onset (line 361) with 

“we call”  may be interpreted as intended action to change the topic of discussion.  

It appears that the teacher realised that Elie was probably not convinced with her 

explanation; thus, the teacher attempted to change the topic of discussion. Elie picked up the 

cue in her utterance as in the following turn (line 363), Elie used ‘uhm’ as a hedging device 

probably to convey that she is not convinced (Drew, 2013). Ward (2019) has shown that 

low/falling pitch (denoted by ↓) may also be interpreted to show declining interest in 
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continuing a discussion. Thus, Elie’s use of low pitch in this context may be interpreted as 

her way to indicate that she was not interested in carrying on with the conversation.  

The micro-level analysis suggests, first, multilingual students may use prosodic features 

of repertoire of their multiple languages. Second, the micro-level analysis suggest that the 

analogies of “flat vs fat” shapes, and “shapes coming out of the ground” as 3D shapes may 

not be helpful for some students to understand dimension as a mathematical construct. 

Similar to Elie, another student also displayed his thinking about fat and flat while making 

shapes using play-dough. He stated that “it’s like all three d you can’t like make…not make 

a fat” (from another relevant moment of group interaction, Lesson 2).  

During the presented moment, the teacher focussed on using geometry-specific language 

to describe the shapes that students made. However, what counted as the geometry-specific 

language for participants was constructed during the classroom interaction. The macro-level 

analysis focussed on the interaction of unitary language and heteroglossia to explore what 

discourses contributed to the meaning of geometry-specific language. Two dominant 

discourses can be identified in the moment analysed here: Eurocentric-Academic Discourse 

and Everyday Discourse. The use of terms like “2D”, “3D” displays the use of Eurocentric-

Academic Discourse, whereas the use of “coming out of ground” display the use of Everyday 

Discourse. Interestingly, the use of “flat vs fat” analogy may suggest the use of Eurocentric-

academic Discourse as well as Everyday Discourse. The heteroglossia can be in located in 

the different meanings that can be drawn from these two terms. For example, “flat” can imply 

either smoothness of surface without any depth from the Everyday Discourse perspective; 

or a very thin object like paper cut-outs that are often used as resources in geometry classes 

for teaching 2D shapes from the Eurocentric-Academic Discourse. The use of term “fat” 

could mean thick, thin, or something that can be held in Everyday Discourse, and in case of 

geometry teaching within the use of Eurocentric-Academic Discourse may mean 3D shapes. 

In this moment, it is interesting to note that the unitary language force supported different 

discourses during different micro-moments within this interaction. The unitary language 

force supports the Eurocentric-Academic Discourse in teacher’s utterance (line 354) as she 

asked Elie if the shape was flat or fat. Through this utterance, the teacher seemed to use the 

analogy of “flat vs fat” for identifying shapes as 2D and 3D. The Eurocentric-Academic 

Discourse supports the use of “flat” for 2D shapes and “fat” for 3D shapes. However, in the 

following utterance, Elie stated that the shape is fat (line 355). Elie’s utterance highlights the 

heteroglossia embedded in her utterance. Based on the micro-level analysis, it seems that 

Elie construed the shape that she made as 3D as she could hold the shape and could see its 

slight thickness. It seems that at this moment, the unitary language force supported the use 

of Everyday Discourse instead of Eurocentric-Academic Discourse for keeping the flow of 

conversation. The interaction of unitary language and heteroglossia within the use of “flat 

vs fat” analogy highlights that these words are laden with geometric meanings as well as 

everyday meanings, which highlights the heteroglossia.  

The micro-level and macro-level analysis of the moment presented here highlights three 

main findings. First, the analogies of “flat vs fat” shapes and “shapes coming out of the 

ground” may not be helpful for some students to understand dimension as a mathematical 

construct. Second, the macro-level analysis suggested that the meanings of terms “flat” and 

“fat” are constructed within the conversational moment, and the meaning of the term may 

be shaped by any of the discourses supported by the unitary language forces at a particular 

moment of interaction. Thirdly, the analysis suggest that prosodic features play a crucial role 

in meaning construction. Importantly, multilingual students may use prosodic features from 

their multiple languages, which may be differently used in English.  
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Discussion and Conclusion 

In mathematics education research, the construct of “dimensions” has rarely been 

explored, even when the studies have focussed on geometric shapes and their properties (e.g., 

Lowrie et al., 2017; Seah & Horne, 2019). It appears that the mathematical understanding of 

dimension is often taken to be understood without explicit teaching. This study adds to the 

research literature exploring students’ understanding of dimension at the Primary level. The 

analysis revealed that the student may use a “flat vs fat” analogy for explaining what D 

stands for in 2D and 3D. This finding is consistent with the research done by Morgan (2005) 

and Lehrer et al. (1998). Both these studies reported that students and teachers often describe 

“dimension” as one of the mathematical words that concern with the thickness of the shape. 

However, the analysis presented here suggests that the use of “flat vs fat” may not be useful 

for describing the dimensional property of shapes. The difficulty may be attributed to the 

two different understanding of dimension embedded in definitions of 2D and 3D shapes. 

First, defining 2D shapes as planar shapes and 3D shapes as solid shapes underscore the 

understanding of dimension from Euclid’s boundary notation perspective (Manin, 2006). 

Second, defining 2D shapes as having length and breadth; and 3D shapes with length, 

breadth, and height underscore the understanding of dimension from a measurement 

perspective. This construction emphasises dimension as a measurement attribute and does 

not underscore the need for the “planes” to understand dimension. The analysis presented 

here underscore a need for developing a comprehensive understanding of what dimensions 

imply, as a mathematical construct, in curriculum documents; so that its understanding can 

be translated into teaching and learning of shapes including dimensions. Moreover, a 

comprehensive understanding of dimension may also help teachers and students to 

acknowledge the context within which the idea of dimension is used, and for what purposes. 

Hence, the study suggests future opportunities for further research in this area.  

The second finding revealed that the meanings of the terms such as fat are shaped by the 

interaction of unitary language and heteroglossia. From a Bakhtinian perspective using 

unitary language and heteroglossia, it can be argued that the meaning of the utterances is 

dependent upon the discourse supported by the unitary language force within the milieu of 

discourses available in any particular interactional moment. The unitary language is a 

theoretical language force that tends to homogenise the meaning of the utterance to facilitate 

the flow of interaction (Barwell, 2018). It was evident in the data that the unitary language 

force may support either of the discourses depending on the interactional context. Therefore, 

providing different meanings to the same word as and when embedded in different 

discourses. Barwell (2013) claimed the participants may treat an everyday term 

mathematically during a particular interaction. Thus, the students engaged in using their 

everyday language in the form of mathematical language, embedding everyday words with 

mathematical ideas. 

The third finding from this study highlights the role of prosody that contributes to the 

meaning constructions as participants engage in mathematical discussions. For example, the 

study supports the findings that of the use of low, high, flat pitch are some of the interactional 

devices that participants use to draw listeners’ attention to the focus of their utterances (Reed 

& Michaud, 2015). Also, the study suggests that multilingual speakers engage in the practice 

of languaging that involves the use of prosodic features conventions from the linguistic 

repertoire of different languages along with the words used; instead of just engaging in a 

practice of code-switching to meet their needs to communicate their understandings in a 

particular interactional context. The research focussed on language as a resource perspective 

(Adler, 2002; Moschkovich, 2007) often ignores the role played by the prosodic repertoire 
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in contributing to the meanings conveyed in the utterance. Therefore, this study calls for 

further research on interactive practices that may support teaching and learning of geometry. 

The study also suggests that it is important for teachers to become aware of the subtleties of 

prosodic features of language that have an impact on the meaning-making process and 

learning of mathematical ideas.  
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The capacity to recognise, represent, and reason about relationships between different 

quantities, that is, to think multiplicatively, has long been recognised as critical to success in 

school mathematics in the middle years and beyond. Building on recent research that found 

a strong link between multiplicative thinking and algebraic, geometrical, and statistical 

reasoning, this paper will describe the development and validation of two new assessment 

options for multiplicative thinking and discuss the significance of this for the teaching and 

learning of mathematics in the middle years of schooling. 

Introduction and Theoretical Background 

Multiplicative thinking has long been recognised as a necessary foundation for fractions, 

rate, ratio, percentage, and proportional reasoning in the middle years (Harel & Confrey, 

1994; Siegler et al., 2012; Vergnaud, 1988). However, at least 30% and up to 55% of 

Australian Year 8 students have not developed this critical facility (Siemon, et al., 2018a). 

While research suggests that formative assessment can be a powerful means of improving 

student learning (Black & Wiliam, 1998), it would appear that this is more difficult to 

implement than previously thought (Smith & Gorard, 2005; Swan & Burkhardt, 2014; 

Wiliam & Leahy, 2014). Hodgson et al. (2014) suggest that one of the reasons for this may 

be that “formative assessment has been described generically rather than in subject-specific 

terms” (p. 168). But even where evidenced-based, subject-specific formative assessment 

materials have been developed, they are not necessarily taken up where schools feel 

pressured to prepare for high stakes assessment (Wiliam et al., 2004) or teachers lack the 

depth of knowledge needed to provide effective feedback (Hodgson et al., 2014). 

Research-based formative assessment materials to support the development of 

multiplicative thinking were provided by the Scaffolding Numeracy on the Middle Years 

(SNMY) project in 2006. The materials include two validated assessment options and a 

Learning Assessment Framework (LAF) for multiplicative thinking that incorporates an 

evidenced-based learning progression and targeted teaching advice. They are appropriate for 

use in Years 4 to 9 and offer a valid means of identifying starting points for teaching and 

tracking learning over time (Siemon et al., 2006). 

While the SNMY materials have been used quite widely in coaching and professional 

development programs, their use in secondary schools is not widespread. One of the reasons 

given for this is that secondary teachers do not see that multiplicative thinking is something 

that is relevant to what they believe they have to teach (Siemon, 2016; Siemon, Banks, et 

al., 2018). A phenomenon that Arnett et al. (2018) have referred to in terms of the ‘job to be 

done’, even though a large proportion of the mathematics curriculum at this level is 

dependent upon multiplicative thinking (Siemon, 2013).  
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Mathematical reasoning is another aspect of the curriculum which is not seen as a focus 

of mathematics teaching in middle years even though it is recognised as an important 

proficiency in the Australian Curriculum: Mathematics (Australian Curriculum Assessment 

& Reporting Authority, 2016). A funding opportunity in 20141 afforded the possibility of 

investigating the development of evidenced-based learning progressions and teaching advice 

for algebraic, geometrical, and statistical reasoning that could be seen to be more related to 

the curriculum and thereby more relevant to the work of secondary school mathematics 

teachers. Known as the Reframing Mathematical Futures II (RMFII) project, this also 

provided an opportunity to explore the extent to which multiplicative thinking (MT) was 

related to mathematical reasoning (MR) by including a number of tasks from the SNMY 

project in the trials of the MR assessment tasks and by collecting data on both MT and MR 

from project schools who had not participated in the earlier RMF-Priority project in 2013 

(Siemon, 2016).  

The outcomes of the RMFII project have been reported elsewhere (Siemon et al., 2019; 

Siemon, Callingham et al., 2018), but as the analysis of RMFII trial data suggested a strong 

relationship between MT and MR, a secondary analysis of these data together with combined 

data from the RMFII project and archived data from the original SNMY project was 

conducted to test the extent to which this link could be empirically established. This process 

resulted in the development and validation of a single, integrated scale for multiplicative 

reasoning that incorporated the scale for multiplicative thinking and the scales for algebraic, 

geometrical, and statistical reasoning (Callingham & Siemon, 2021).  

At around the same time, the Growing Mathematically – Multiplicative Thinking (GM-

MT) project was initiated by the Australian Association of Mathematic Teachers for the 

purpose of trialing a Teacher’s Manual that could be used as a stand-alone guide to support 

the use of the SNMY formative assessment materials in secondary schools.  The project team 

comprised the Chief Executive Officers of the Australian Association of Mathematics 

Teachers (past and present), three members of the RMFII team (the authors of this paper), 

and a representative of Australian Curriculum and Reporting Authority. Given evidence of 

the strong relationship between MT and MR, it was agreed that this opportunity would be 

used to trial two new assessment options for MT that included MR items from the single 

scale for MT and MR. As a result, an application was made to amend the ethics approval in 

place for the ongoing data analysis work of the RMFII project to cover this aspect of the 

GM-MT project. The purpose of this paper is to describe the processes involved in 

developing and validating the new options and, in doing so, to address the research question: 

To what extent is it possible to develop valid assessments of multiplicative thinking that 

incorporate aspects of algebraic, geometrical, and statistical reasoning?  

Research Approach 

The work to be reported here was made possible by the Reframing Mathematical Futures 

Priority project and the RMFII project both of which explored the efficacy of using the 

SNMY materials in secondary schools alongside the development of the evidenced-based 

formative assessment materials for mathematical reasoning. As indicated above, the details 

of this work have been reported elsewhere, however it is important to acknowledge all three 

projects were framed in terms of a social constructivist view of learning that acknowledges 

                                                 
1 The Australian Mathematics and Science Partnership Program was funded by the Australian Government 

Department of Education and Training from 2013 to 2017 
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the need to identify and build on what is known (e.g. Cobb & Yackel, 1996; Shepherd & 

Penuel, 2018).  

The RMFII project used a design-based research approach (Barab & Squire, 2004; Cobb 

et al., 2003) involving iterative rounds of assessment and the use of Rasch modelling (Bond 

& Fox, 2015) to scale assessment items from easiest to most difficult for the purposes of 

developing, testing, and refining learning progressions for mathematical reasoning (Siemon, 

Callingham, et al., 2018). A similar approach was used in the GM-MT project to evaluate 

the two new assessment options for MT. Interested schools were recruited through 

Australian Association of Mathematics Teachers in 2019 and asked to administer and assess 

one of the options using the scoring rubrics provided and return the de-identified results to 

the project team via an excel spreadsheet. Initially 25 schools agreed to participate in this 

process and use the other option as a pre-test at a later date, but COVID restrictions limited 

the extent to which schools could contribute to the GM-MT data set and provide pre- and 

post-test data in 2020. 

Item Selection 

The two options, referred to as Option 3 and Option 4, had to be compiled such that they 

could be statistically linked to the existing SNMY data set for validation purposes. With 

these constraints in mind, the tasks (each of which comprised at least one item) were chosen 

from the pool of 113 validated assessment items used in the SNMY and RMFII research 

projects. A number of tasks from SNMY Options 1 and 2 were included to provide links 

among the projects. Consistent with the structure of the existing SNMY Options, an extended 

task and a number of shorter tasks were included in each of the new Options. As there were 

strong conceptual links between the SNMY and algebraic reasoning, the new extended tasks 

both came from the RMFII. Trains (Option 3) used a series of increasingly complex 

questions to develop generalisations about the relationships between the number of wheels 

and the train design. Board Room Tables (Option 4) considered the relationship between the 

number of tables in a rectangular arrangement and the number of people that could be seated. 

Tasks from the SNMY pool were chosen because of clear links to geometric or statistical 

reasoning. Stained Glass Windows was set in a geometric context of a triangular tessellation. 

Canteen Capers drew on the Cartesian product to identify the number of possible 

combinations available from a school canteen, which has links to statistical reasoning and 

probability. Conversely, tasks from the RMFII project were chosen because of explicit use 

of multiplicative thinking, such as drawing names from a hat and expressing the answer as 

a fraction (SHAT8) and designing a package to hold a given volume of soft drink (GBEV1). 

All tasks, with the exception of Skin Rash (SRASH) and SHAT8, had multiple items. The 

two new Options had no overlapping items to maximise their utility as pre- and post-tests 

over the short period of time.  

Two draft options were created (referred to as draft Option 3 and draft Option 4) and 

piloted in a small-scale trial for feasibility.  

Pilot study 

Although the numbers from the initial trial were small (n = 38; for draft Option 3 and n 

= 32 for draft Option 4), the Rasch analysis provided sufficient indicative information about 

the behaviour of both the complete draft Options and the individual items to decide whether 

or not they were working as intended. Each option was Rasch analysed separately to provide 

information about the extent to which the items worked together coherently to provide a 
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scale. Both assessments provided good fit to the Rasch model and showed high reliability. 

These findings indicated that the items used were suitable for alternative assessment Options.  

Table 1 

Summary Statistics for Individual Assessment Options 

Option (No. of 

Items) 

Infit 

(Items) 

Infit zstd 

(Items) 

Outfit 

(Items) 

Outfit zstd 

(Items) 

Reliability 

Option 3 (17) 0.99 0.01 0.94 0.03 0.93 

Persons (n = 38) 0.97 -0.04 0.94 0.12 0.87 

Option 4  (19)  1.01 0.00 0.99 -0.03 0.90 

Persons (n = 32) 1.04 0.11 0.99 -0.01 0.80 

Note. Ideal values for Infit and Outfit are 1.00, and zstd = 0.00. Ideal reliability coefficient = 1.00. 

Overall, draft Option 4 was much harder than draft Option 3. When appropriate cut 

scores were applied to identify zones, this option had no items in Zone 1 and only one item 

in Zone 2. A revised Option 4 was developed with one of the more difficult SNMY tasks 

(Tiles, Tiles, Tiles) replaced by an easier task (Butterfly House).  

One issue that emerged was that, of the items developed for geometrical reasoning, few 

made explicit links to MT. As a result, two new questions Enlarging Nets (GENLG) and 

Park Map (GMAP) were developed to address perceived gaps in the geometric aspects of 

MT (i.e., scale and enlargement) at an easier level than those included in RMFII. These 

changes were incorporated into the revised Options that were then trialed as part of the GM-

MT project with students from Year 5 to Year 10 in late 2020.  Tables 2 and 3 show the 

revised task and item selection  

Table 2 

Tasks and Items for Option 3 Trial 

Task Source Item Codes 

Adventure Camp SNMY ADCA, ADCB 

Stained Glass Windows SNMY SWGA, SWGB, SWGC 

Relations  RMFII-Alg AREL1, AREL2, AREL3 

The Beverage Company RMFII-Geo GBEV1RA, GBEV1RB 

Skin Rash RMFII-Stats SRASH 

Trains RMFII-Alg ATRNS1, ATRNS2, ATRNS3, ATRNS4, 

ATRNS5, ATRNS5A, ATRNS6 

Enlarging Nets New GENLG0, GENLG1, GENLG2, GENLG3, 

GENLG4 

Table 3 

Tasks and Items for Option 4 Trial 

Task Source Item Codes 

Butterfly House SNMY BTHA, BTHB, BTHC, BTHD 

Canteen Capers SNMY CCA, CCB 

Lemonade  RMFII-Alg ALEM1, ALEM2 

Hat Chance RMFII-Stats SHAT8 
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Spy Squad RMFII-Geo GSPSQ7, GSPSQ8, GSPSQ9 

Board Room Tables RMFII-Alg ABRT2, ABRT3, ABRT4, ABRT5, 

ABRT6, ABRT7, ABRT8 

Park Map  New GMAPA, GMAPA1, GMAPB, GMAPB1, 

GMAPC, GMAPC1, GMAPD 

These options were trialed by the schools participating in the GM-MT project. 

Trial Analysis 

As the purpose of the project was to extend the usefulness of the LAF, questions from 

that project were used as the anchor for the two assessment options. Because there were no 

common items across the two forms, a link file of student responses to the items that came 

originally from the LAF was created from archived SNMY data. Then all responses to 

Options 3 and 4 and the created link file were merged into a complete data set, so that the 

options were solidly linked through common items. Finally, to ensure that the existing LAF 

scale could be validly compared to the new scale from Options 3 and 4, an anchor file was 

created from the link items so that the new scale was, in effect, using the same ruler. Overall, 

there were 4494 responses included to provide maximum data about the scale.  

Rasch analysis was undertaken using Winsteps v. 4.7.1.0 (Linacre, 2020). Summary 

statistics for the overall scale are shown in Table 4. 

Table 4 

Summary Statistics for Anchored Scale from Options 3 and 4 

 Infit Infit zstd Outfit Outfit zstd Reliability 

Item (n = 50) 1.00 -0.26 1.02 -0.07 1.00 

Person (n =4494) 0.98 -0.03 0.97 0.09 0.82 

Note. Ideal values for Infit and Outfit are 1.00, and zstd = 0.00. Ideal reliability coefficient = 1.00. 

Following this trial, all the items were behaving as expected and the revised scale was 

interpreted using a process of ‘segmenting the variable’ (Wilson, 1999) as reported 

elsewhere (e.g. Callingham & Siemon, 2021).  

Although the detail is too small to be seen clearly, a small part of the Wright map 

produced by the software (Linacre, 2019) for all trialed items is shown in Figure 1 to provide 

a sense of the approach used and the relationship between the MT items (blue), the RMFII-

Alg items (yellow), RMFII-Geo and new geometrical reasoning items (green), and the 

RMFII-Stats items. The scale on the left-hand side is in logits, the unit of Rasch analysis. 

Items at the bottom of the map are easy whereas those at the top are difficult. Similarly, 

persons located towards the bottom of the map have performed less well than persons located 

at the top. Where persons appear at the same logit values as an item, they have a 50% chance 

of achieving the score allocated to that item. the Zones are marked by horizontal boundary 

lines. These borders are not “hard” borders. Rather, the zones provide an indication where 

students are in relation to the development of MT. 

It is noticeable that the Geometry items are more difficult for students with no items 

appearing in the lower two Zones. This may be due to a lack of familiarity with geometric 

contexts, rather than inherent difficulty. Alternatively, the kinds of reasoning in geometry 

occurring in Zones 1 and 2 may rely less on numerical reasoning and more on visualisation. 
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In these Options only two statistics reasoning items were used, although aspects of the items 

from the SNMY project did draw on statistical thinking.  

 

Figure 1. A portion of the Wright map from the GM-MT second trial 

As part of the GM-MT project, participating schools were asked to use the assessment 

options as pre and post assessments to evaluate the efficacy of a targeted teaching approach 

to multiplicative thinking using the existing teaching advice from the Learning Assessment 

Framework for Multiplicative Thinking (LAF). While COVID restrictions significantly 

affected the number of schools who were able to provide matched data sets, the results 

suggest that the assessment options as trialed were working reliably and could be used to 

evaluate learning over time.  

Discussion and Conclusion 

The analysis reported in this paper has shown how assessment tasks used in previous 

research could be combined to create two new assessment options for multiplicative thinking 

that relate multiplicative thinking to algebraic, geometrical and statistical reasoning. Overall, 

the new scale performed in a manner remarkably similar to the existing LAF, meaning that 

the empirical thresholds could be retained, and the new assessment options can be used with 

confidence to place students within a Zone with sufficient accuracy to support targeted 

teaching. This is significant because secondary teachers are much more likely to see the 

importance of multiplicative thinking when they can visibly see its relationship to what they 

believe they have to teach, that is, algebra, geometry, measurement, statistics, and 

probability, and how this relates to mathematical reasoning more generally. 
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While further research and analysis is needed to test the extent to which the new options 

are more difficult than the existing SNMY options, this raises some questions. For instance, 

if it is established that they are more difficult, should the new options be ‘flagged’ as more 

appropriate for secondary students even though some primary school students participated 

in the project? As the GM-MT study was targeting the lower years of secondary schooling, 

is there any benefit in revising the existing SNMY options to include some of the more 

difficult RMFII and geometry items to better reflect the full extent to which MT is required 

for mathematical reasoning more generally? Should some easier reasoning type questions be 

developed for Year 4 to Year 6? These questions suggest there is room for more research in 

this area but the next step in the current process is to use the data obtained from the GM-MT 

trial to review and extend the original Learning Assessment Framework (LAF) for 

Multiplicative Thinking and to test the efficacy of using the revised framework to support a 

targeted teaching approach to multiplicative thinking in the middle years in a larger student 

population. 
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Professional development and junior secondary mathematics 

teachers: Can out-of-field teachers benefit too? 
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To foster effective teaching and quality education, professional development (PD) is 

imperative. This paper explores the perspectives of junior secondary mathematics teachers in 

two Queensland schools as part of a broader case study that investigated the perspectives of 

junior secondary mathematics teachers on the transition of Year 7 to secondary schooling in 

Queensland. The study explored existing PD practices and sought to identify perspectives of 

how PD can be better utilised to improve teacher quality. The theoretical lens of teacher 

identity was adopted, and the key findings indicated a lack of existing PD practices; the need 

for further PD; and a process for implementing mathematically focused PD in the future.    

Professional development (PD), in any field of study, focuses upon changing and 

improving teacher quality and student achievement of those teachers already in the teaching 

profession; where individuals can update, revise, and reflect upon their current practices 

(Roland et al., 2014). Usdan et al. (2001) suggest that no singular facet of school reform is 

more impactful than the idea that student learning depends almost exclusively on the quality 

of teachers. Foster et al. (2013) identified PD as one of the few approaches by which teacher 

quality can be improved. This view is further supported by Kimmel et al. (1999) who state 

that “PD has become a key component for reform in teaching, learning and curriculum 

change” (p. 241); thus, in most educational jurisdictions PD must be undertaken on an 

ongoing basis. As the demand for quality education and the need to foster effective teachers 

is as crucial as ever, the challenge to incorporate timely and appropriate mathematics PD 

into schools is becoming increasingly apparent (Curtis, 2013). Not only will PD achieve this 

improvement of knowledge and broaden the scope of strategies utilised to teach mathematics 

effectively, it is also useful for supporting out-of-field teachers.  

In recent times a shortage of teachers qualified to teach mathematics in secondary 

schools has occurred with a subsequent misfit between appointment, qualifications, and 

experience (Australian Mathematica Sciences Institute [AMSI], 2014). This shortage has led 

to secondary teachers teaching subjects that they are not qualified to teach, a practice known 

as teaching out-of-field (Hobbs, 2012b). Data from AMSI (2014) identified that teaching 

positions in mathematics are harder to fill than any other teaching positions and suggest that 

nearly 40% of mathematics teachers in junior secondary schools in Australia are currently 

underqualified to teach mathematics. Sharplin (2014) found that the experience of teachers 

and the degree of fit or misfit between teachers and their teaching load is a key consideration 

for successful student outcomes. Steyn and Du Plessis (2007) state that “out-of-field teachers 

struggle to teach effectively, which influences their perceptions on their professionalism, 

quality teaching and the extent of the success of their development in teaching as a 

profession” (p. 149). The literature reveals two predominant schools of thought in relation 

to out-of-field teachers. First is a proactive standpoint, whereby the focus remains on the 

improvement of the qualifications and content knowledge of out-of-field teachers to combat 

their lack of knowledge. Second, from a reactive standpoint, where schools are forced to 

remedy staff shortages by employing out-of-field teachers as the only viable option with 

little plan for PD. The underlying issue with the reactive approach is that utilising any 

registered teacher to teach mathematics classes does not work to eradicate the use of out-of-
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field teachers nor improve their knowledge (Lederer, 2004). As out-of-field teaching is 

complicated and prevalent in mathematics education in Australia, it is an important 

consideration when investigating PD.  

Theoretical Framework 

The theoretical framework underpinning this research is teacher identity, also known as 

“professional identity” that incorporates a range of teacher characteristics and considers their 

knowledge, ideals, principles and beliefs as educators and their pedagogical approach to 

teaching (Bennison, 2014). Teacher identity is an effective lens to examine the perspectives 

of teachers as it provides a robust foundation to successfully investigate qualitative data. 

This theoretical lens is particularly beneficial for this research as the information that is being 

sought from mathematics teachers and key stakeholders derives from their perspective and 

sentiments of themselves as educational professionals. Hobbs (2012a) suggests that teacher 

identity can work in conjunction with self-efficacy to reflect an individual’s belief in their 

capacity to influence their environment in relation to motivation, behaviour, and particular 

performance accomplishments. Furthermore, a teacher’s awareness of their own teacher 

identity affects their PD requirements, their ability and inclination to manage educational 

change, and how they innovate in their teaching practice (Beijaard et al., 2000). Therefore, 

to explore existing PD opportunities and to ascertain whether further PD is warranted and 

sought by the participants, the research question addressed in this paper herewith is: Are 

current PD practices appropriate to support junior secondary mathematics teachers and 

out-of-field teachers of mathematics?  

Method 

Data was collected from ten teachers and key stakeholders in two secondary schools in 

Queensland via a case study approach. Case studies offer opportunities to observe the 

emergent patterns and characteristics of a phenomenon with a view to establish 

generalisations regarding the wider population (Bassey, 1999). Although initially each 

school was to be considered as a separate case, the two schools have instead been considered 

together to form one case study. This change of approach occurred after the participants had 

been interviewed, in the analysis stage of research, since most of the responses were similar.   

Participants 

The qualitative data was gathered from ten participants comprising classroom teachers, 

the mathematics Heads of Department, and other key school stakeholders such as school 

leaders. The sample size consists of six participants from School 1; and four participants 

from School 2 to provide a suitable and practical data set (Kumar, 2014). Table 1 outlines 

the background of each de-identified participant. The participants were recruited by each 

school and the background of each participant was not known prior to each interview, thus 

the researcher had no influence over the selection of participants. Each participant was asked 

questions pertaining to the same issues, with the aim of encapsulating an emergent pattern 

to maintain quality interview data (Diefenbach, 2009).  
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Table 1 

Demographics and Qualifications of Participants 

Participant Age 

Range 

(years) 

Time at 

School 

Site 

Current Teaching Position Qualifications 

School 1     

    Peter 40-50 6 years Mathematics HOD B.Ed. Grad Dip Ed (Math) 

    James 20-30 2 years Y8 Maths Co-Ord B.Eng (Civil). Grad Dip Ed (Math/Phys) 

    Rose 30-40 11 years Y9 Maths Co-Ord B.Sc. Grad Dip Ed 

    Violet 50-60 22 years Y8-12 Maths Teacher Dip Teach, then upgraded to B. Ed 

    Leigh 50-60 2 years Y7 Maths Co-Ord B. Ed (Primary P-10). Flying Start. 

    Dylan 30-40 2 years Y7 Maths Teacher B. Ed (Primary). Flying Start. 

School 2     

    Mary 40-50 9 years Y7 Echo Facilitator Dip Teach, then upgraded to B. Ed 

    Caroline 20-30 4 years Y7-9 Maths Teacher BPsySc. Grad Dip Ed. Masters Candidate 

    Dougal 40-50 3 weeks Y11/12 Maths Teacher 

Dir of Academic Perf 

B.Ed (Math/Science) 

    Carly 50-60 1 year Y7-9 Maths Teacher B.Sc / B.IT. Grad Dip Ed. 

Note. Flying Start denotes a teacher who is primary trained brought in from state primary schools to teach Year 7 students 

in the secondary setting; Echo denotes a special program which aims to enhance gifted students.  

The participants in this study were interviewed and were required to critically reflect and 

analyse their own identity as a teacher. The interviews conducted were semi-structured and 

lasted approximately thirty minutes. The participants were invited to provide their 

perspective about existing PD available to them and to ponder PD opportunities sought in 

the future. While there were set questions of focus supported by the literature, at times, 

further questioning was required in response to participant remarks, thus fostering an 

adaptable interview structure tailored to each participant (Wiersma & Jurs, 2005). In 

addition, interviewees were given the opportunity to discuss topics not suggested by the 

researcher.  

Methods of Data Analysis 

Interviews were transcribed by the researcher and data was analysed methodically via 

the six phases of analysis approach developed by Braun & Clarke (2006) where the 

researcher: 1) becomes familiar with the data; 2) generates initial codes; 3) searches for 

themes; 4) reviews the themes; 5) defines and names the themes; and 6) produces the report. 

Key themes were identified throughout the transcription process via the thematic coding 

approach. Once the data was coded, the procedure of repeat reading was completed to 

validate or challenge previous observed patterns.  

Findings and Results 

PD is a vital approach to improving the knowledge and pedagogical methods of 

mathematics teachers and this is a continuous process (Linder, 2011). As such, PD forms the 

main premise for pedagogical improvement. One of the participants, Dougal, was involved 

with PD at both school sites and had conducted PD for other schools in the past, and as such, 

his approach to PD is a core consideration. Dougal professes the importance of PD and stated 

that teachers should be trying to improve themselves by attending PD or investigate other 

ways to enhance their pedagogy. However, it seems that mathematics PD was undertaken 

sporadically in both schools and this is consistent with the view of Curtis (2013) who outlines 

the difficulty in implementing timely and appropriate mathematics PD into schools. See 

Table 2 depicting details on the context of the last PD undertaken by participants.  



Strang 

380 

Table 2 

Topic of Last Professional Development Attended  

Participant Topic Area 

School 1  

Peter General PD focused upon the Australian Curriculum (ACARA). 

James PD on Leadership held with Teacher Education Centre of Excellence (TECE). 

Rose No PD completed recently. Requested PD in external assessment marking for Year 11.  

Violet PD attended with Dougal (in house 3 weeks ago). Last year requested PD on mathematics aimed 

at developing students – however not approved.  

Leigh PD on ACARA and alignment with the school textbook (generic). 

Dylan PD on Behaviour Management. 

School 2  

Mary PD on mathematics games (Concrete games in all topic areas). 

Caroline PD undertaken recently with Dougal.  

Dougal No formal PD undertaken recently. 

Carly Last attended mathematics PD at previous school and it was run by Dougal. This was school 

separate to both schools partaking in the study.  

Dougal confirmed that he develops and presents PD for his staff incorporating an 

optional 15 to 20 minutes PD every week, or often larger sessions of PD in prescribed staff 

meetings. Since Dougal had only commenced at School 2 three weeks prior to being 

interviewed, it is likely that the PD he mentioned is only in its infancy. In his PD sessions, 

Dougal outlines that he always incorporates the use of technology. Technology can prove 

beneficial when utilised effectively in the classroom to teach mathematics and Peter supports 

this notion and suggests that if it is used properly it can be advantageous, although proper 

training in such technology is crucial. However, two participants (Dylan and Rose) 

suggested that they were unaware of how effective technology could be and felt that further 

training would be beneficial. While many teachers had admitted to undertaking some PD 

recently whether it is in other disciplines, it is concerning that eight respondents of the ten 

had not completed any mathematics PD in the past year meaning they had not worked to 

improve their mathematical content and pedagogical knowledge.  

Desired Professional Development 

The participating teachers were asked about the type of PD they would like to undertake, 

a variety of responses emerged. Table 3 outlines the participants desired mathematical PD. 

Peter felt that teachers would benefit from further PD on practicing mathematical problems. 

As the HOD of School 1, Peter stated that he goes “to some of my faculty meetings and say, 

‘do this problem’, because I know that half of the teachers can’t do it because they’re not 

senior teachers”.  Peter believed that teachers must practice their mathematical skills and 

utilise a variety of ways to reach an answer, to ensure they are completely proficient.  

Dougal agreed with Peter and further mentioned that he wanted to have more 

opportunities of teaching mathematics to the younger year levels to improve his pedagogic 

methods and ways to engage the younger students. Dougal felt that it is important to be “able 

to walk into any level of student and know the curriculum well enough to just jump in and 

teacher it really”, and to achieve this, further exposure and access to junior secondary 

mathematics classes, and PD focused upon more simplified pedagogic methods would be 

useful. Furthermore, Dougal and Peter were also in alignment and believed in the benefits 

of the coaching model, where teachers can discuss processes and methods of teaching 

mathematics, and consequently are able to learn from each other.  
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Table 3 

Desired Professional Development 

Participant Desired Professional Development 

School 1  

    Peter Practising mathematical problems.  

    James N/A. 

    Rose Senior mathematics, essence of ACARA, STEM: the expectations from school administration. 

    Violet Microsoft Excel and use with graphing. 

    Leigh  Apps in mathematics. 

    Dylan Further exploration of tips and tricks in mathematics. 

School 2  

    Mary  Time management, better utilisation of time to ensure that all of the ACARA is covered. 

    Caroline Senior mathematics, specifically the topic of algebra. 

    Dougal  Improvement of timetabling to have access and teach mathematics to younger year levels. 

    Carly  More difficult mathematics including Maths B. 

Three participants (Rose, Caroline, and Carly) showed a strong desire to improve their 

mathematical content abilities in relation to senior mathematics. Rose wanted to expand her 

mathematical thinking to incorporate the senior mathematics curriculum “in terms of seniors, 

I feel like I’m in a really dark room and am just feeling my way around”. Rose wanted to 

learn “everything about senior maths, because when it comes to senior maths, the topics are 

very topic driven” and currently all there is to rely on is “one or two books and one or two 

teachers that we can toss ideas around with”. Caroline specifically identified that she would 

like PD on “harder algebra topics from a senior teachers’ perspective, so that I can see where 

they need to get to”. Carly’s viewpoint coincided with this stance and additionally mentioned 

that “I don’t have a clear idea of what they do in Maths B higher up the school, so because 

of that I don’t know where the kids need to go”.   

Hindrances to Professional Development 

Whilst it is evident that further PD is desired by the participants of this study, there are 

some hindrances that have emerged that inhibited staff members from actively undertaking 

further PD. These difficulties seem to stem from top tier school administration as well as the 

HOD for mathematics (Peter), and the Director of Academic Performance and Innovation 

(Dougal), who have control over PD opportunities. The first problem is the apparent lack of 

mathematics PD as most teachers reported limited opportunity. Dylan noted, “not so much, 

it’s usually like there’s a PD, but not really ones of (mathematical) interest”. Dylan reported 

that PD must go through administration and/or the Head of Department for mathematics 

before reaching the teachers, “Peter sometimes says ‘there’s a PD of this coming up would 

you be interested in doing it’? So usually, they must sift through it from up here and then 

they pass it through”. If this is the case, perhaps some opportunities are missed by 

departmental leaders simply because they are not aware of all PD opportunities. Also, if the 

school administration sifts through all PD opportunities, perhaps some are being withheld 

intentionally due to the cost of attendance to the school.  

A further reason that could explain the reduced opportunity for PD is that School 2 

prefers to undertake PD in house. Caroline reported, “since the new principal, there seems 

to be a shift in the way that PD is considered. They don’t really want us to go out to PD, they 

want us to have internal PD instead of us going out to PD’s it’s more internal”. Caroline 

further stated that only senior staff members attend external PD’s “so it’s only if you’re like 

the Head of maths or Head of Echo. Only those type of people that do it, more the senior 

staff. So, everyone just teaches each other, which seems to be the way that it is”. While 
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internal PD is an excellent method to increase the knowledge and pedagogical approaches 

to mathematics; perhaps this format in conjunction with external PD would be useful to 

broaden the horizon of the teachers.  

Another issue hindering the opportunity to attend PD is the quantity of paperwork 

involved and the slow application response rate, an issue for School 1. Violet noted “the 

paperwork here is insane. So, if you find a PD that you want, you have to fill out the 

paperwork, take it to admin, then it’s about a two-week turnaround before it’s a yes or a no 

to go”. Sonya also suggested that favouritism occurs where some teachers are more favoured 

and approved to undertake the PD more so than others. Violet also supported this claim “I 

did apply to go last year, but I got knocked back from admin. That was about teaching maths 

to lower-level kids. And it seems that some people are favoured more towards PD’s than 

others in the school”.  

Professional Development for Out-of-field Teachers 

The existence of out-of-field teaching has been identified in both participating schools 

with 50% of the respondents acknowledging this. Rose, Leigh, Mary, Caroline, and Dougal 

highlighted this issue and its occurrence. Rose mentioned that is has “been a huge problem 

for us, because we don’t have enough maths teachers, the actual maths trained teachers are 

taken to teach senior maths because of the content knowledge, expertise and the amount of 

people qualified to teach certain subjects”. Furthermore, Rose, Caroline and Leigh 

specifically mentioned that the mathematically untrained teachers are teaching mathematics 

to students in the lower year levels. Rose indicated “all the junior classes were given to 

teachers that are out of this department or out of this field”. Caroline believed that these 

untrained mathematics teachers typically were from “Physical Education (PE), Science, and 

English backgrounds”. While it is a common practice to combine the Mathematics and 

Science disciplines so that they are often taught by the same teachers, PE and English has 

limited to no relevance.  

Rose felt this is particularly disadvantageous to students as she believed that Year 7 and 

Year 8 are the most important years of schooling, “they are teaching Year 7 and 8 (I’ve said 

this to my principal as well) they are the most important years”. Furthermore, Leigh outlined 

the inconsistency of utilising out-of-field teachers, in that “they get that maths class for a 

year, and then next year they won’t get another maths class – almost guaranteed. It’s just 

their timetable and how it all fits in and gels”. As out-of-field teaching is a common 

occurrence at these schools, PD is needed for all teaching staff no matter the discipline in 

case they are required to teach mathematics the following year. Leigh noted that PD is vital 

for out-of-field teachers but is problematic as workload changes occur each year.  

Both schools are aware of the need to reduce the use of out-of-field teachers and have 

taken steps to combat the shortage of specialist teachers such as implementing changes to 

timetabling to match the mathematics trained teachers with the mathematics classes. While 

this is a positive step in the right direction in terms of diminishing the use of out-of-field and 

untrained teachers, this does not completely correct the issue as it still relies on having 

enough specialist mathematics teachers to meet the timetabling requirements. 

A tactic that School 2 is opting for is a differentiated approach so that in conjunction to 

ensuring its teachers are mathematically trained, they are actively training and up-skilling 

the untrained mathematics teachers. Dougal explained this in house training to involve team 

teaching where Dougal does the teaching, and the staff member observes by watching and 

learning. With one new staff member specifically, in conjunction to the coaching model, “I 

am sitting down one-on-one and doing a lot of work with her at the moment to up-skill her”.  



Strang 

383 

Overall, it seemed that while some PD relating to mathematics has been undertaken, 

much further incorporation in both schools is warranted considering that PD is one of the 

few approaches to improve teacher quality (Foster et al., 2013). This is particularly important 

to this study as the Junior Secondary teachers interviewed are perhaps not completely 

confident in their abilities along with the use of out-of-field teachers in mathematics.  

Conclusion 

In summary, the findings indicated that eight of the teachers have not undertaken 

mathematics PD in the past year. Although School 2 is in the process of improving this, the 

focus is the incorporation of digital technology. Whilst a step in the right direction, the 

findings suggest that little emphasis has been placed upon other pedagogical strategies to 

improve mathematical content knowledge and teaching. The findings also suggested that 

School 2 favoured in house PD which again limits the scope of the PD available. This is 

contrary to the findings by Roland et al. (2014) who suggests that PD which incorporates a 

variety of teaching professionals such as teacher candidates, current teachers from the 

discipline and internationally educated teachers, allow professionals to collaborate as 

members of the broader educational community providing a more robust and enriching 

learning experience. School 1 was not of this belief and had recently employed Dougal for 

external PD specifically, however, it was unclear as to how long this had been occurring and 

again if technology is of focus.  

The findings indicated that the deficiency of PD is attributed to several factors including: 

the lack of opportunities provided by school administrators; lack of time to attend PD; and 

tedious paperwork involved in the application process. Perhaps if a more streamlined, 

automated administrative process were adopted, mathematics teachers would be able to 

attend more PD. It is evident that there is a need for future teacher learning, and the findings 

indicated specific topic areas that the teachers would like to explore such as problem solving 

and extending their understanding to explore the senior mathematics curriculum. Several 

teachers also felt that the tactic of pairing teachers with their more senior counterparts to 

learn from each other and practice their existing mathematical skills would be beneficial.  

The use of out-of-field teachers occurred in both schools; however, proactive steps are 

in action to reduce this and thus improve the quality of teaching. School 1 is working to 

improve timetabling, whilst School 2 has incorporated a different approach by up-skilling 

its existing teachers. Perhaps by multiskilling junior secondary mathematics teachers to 

teach mathematics to senior students, there would be more availability of staff to fill teaching 

roles, and this will be beneficial for timetabling which is an issue identified at both schools. 

This would also reduce the likelihood of employing out-of-field teachers to teach 

mathematics. However, the shortage of qualified mathematics teachers in Queensland 

remains a significant problem. Overall, it appears that teachers want to develop and extend 

their existing mathematical knowledge and pedagogical practices; however, there is limited 

scope for this development.  

Implications and Limitations 

It was found that although PD is a requirement to sustain teacher registration, very little 

PD is undertaken in mathematics education and rectifying this will aid to not only improve 

the content knowledge of teaching but will also expose teachers to a variety of methods and 

strategies to improve their pedagogic approaches to teaching mathematics. PD will also help 

to expand the skill level of existing mathematics teachers, for instance, if Junior Secondary 
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teachers are trained in senior mathematics teaching there will be more teachers available to 

fulfil the mathematics teaching jobs and the use of out-of-field teachers would be less likely. 

This paper was part of a wider study that explored the self-reported perspectives of Junior 

Secondary mathematics teachers considering the Year 7 transition to secondary schooling in 

two Queensland schools. As such, only one facet of this research focused upon PD 

specifically. Therefore, this research was limited, in that further exploration of PD is required 

to provide a wider consensus to existing PD practices in schools. It is evident that PD is 

crucial to foster high quality mathematics teachers, and as such, further exploration and 

research into effective mathematical PD practices would be beneficial to all stakeholders.   
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Spatial reasoning is seen as increasingly important in STEM fields. Within mathematics, 

geometry is a potential site to study and support young children’s spatial reasoning. In this 

paper we revisit Piaget and his colleagues’ theoretical perspective on children’s development 

of geometry concepts and take note of projective geometry in that theory. We outline 

critiques of Piaget and Inhelder’s (1967) theory of topological primacy and then situate the 

criticisms within current spatial reasoning literature. We suggest a return to research on 

projective geometry holds promise for exploring and expanding opportunities that promote 

spatial reasoning in the early years. 

For more than two decades, the push for STEM (Science, Technology, Engineering, 

Mathematics) skills worldwide has called attention to the importance of spatial skills, and 

specifically the role spatial reasoning plays in each of these domains as well as STEM-related 

fields. Spatial reasoning is integral to spatial skills and more generally, spatial ability, can 

be defined as “the ability to recognize and (mentally) manipulate the spatial properties of 

objects and the spatial relations among objects” (Bruce et al., 2017, p. 147). Studies indicate 

that spatial ability is a critical attribute for entry into and success in STEM professions (Wai 

et al., 2009). Moreover, everyday activities such as assembling furniture, packing a suitcase, 

or using a web-based mapping system to get from one location to another not only require 

spatial know-how but also spatial know-why.  

In fundamental ways, spatial reasoning shapes what we do, how we experience the 

world, and the ways we make sense of and think within it. Yet while spatial reasoning 

underlies all STEM domains, it is mathematics, in particular, that enables examination and 

communication of spatial concepts (Smith, 1964). Arguably then, spatial reasoning and 

spatial skills can be explored and developed in depth within the domain of mathematics.  

In this paper, we report on key conceptual areas informing our inquiry regarding the 

spatial reasoning involved in projective geometry. Focusing on spatial reasoning as generally 

defined and recognized within STEM, we identify its relevance within mathematics 

education, and specifically, its relationships to geometry in the early years of mathematics 

education. Following this discussion, we make the case for spatial reasoning being taught 

through projective geometry—a largely forgotten area of research. We provide a brief 

summary regarding Piaget and his colleagues’ theorizing of young children’s conceptions of 

projective space, including key critiques. We then bring the three criticisms of Piagetian 

theory forward to 2021 and situate them within current spatial reasoning literature. What 

results is a change of theoretical perspectives and the emergence of new sightlines for early 

years research in mathematics education.  
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Spatial Reasoning, Mathematics Education, and the Case for Geometry 

There is a strong link between spatial skills and STEM professions (Mix & Cheng, 2012), 

and increasingly studies reveal connections between spatial skills and mathematics 

performance (Gilligan et al., 2017). Such skills observed with young children appear to be 

critical predictors of mathematics achievement—even beyond measures of verbal and 

quantitative scores, throughout schooling and into STEM-field careers (Cheng & Mix, 

2014). Individual differences in spatial ability are apparent as early as the preschool years. 

For example, children who build with blocks, put together puzzles, and play with shapes 

tend to have stronger spatial reasoning skills than children who do not (Verdine et al., 2014).  

Once viewed as a static and innate attribute of intelligence, spatial ability is now proving 

to be malleable (Uttal et al., 2013). These findings suggest early skill development could 

enhance mathematics performance for students. In fact, spatial training on tasks such as 

mentally rotating objects has led to improved performance in mathematics for 6- to 8-year-

olds (Cheng & Mix, 2014). While findings differ, one conclusion is that some spatial skills 

are more likely than others to impact performance, such as constructing a mental number 

line (Lakoff & Núñez, 2000), solving missing term equations (Lourenco et al., 2018), and 

scaling related to proportional reasoning (Gilligan et al. 2018).  

Spatial skills entail many constructs such as spatial thinking, spatial sense, visualisation, 

spatial cognition, and spatial orientation. There is a debate as to which skills are relevant. In 

this paper, we use Newcombe et al.’s (2013) categorisation of spatial skills, and specifically, 

tool making. Tool making refers to skills involved in manipulating, transforming, and 

creating objects, as well as using these objects as tools. Doing so requires dynamic spatial 

(reasoning) processes such as rotating, bending, and scaling. More than ever, research is 

connecting these process skills and tools with mathematics performance, especially in the 

early years (Mix et al., 2017).  

However, despite evidence for spatial reasoning and spatial skills being essential to 

mathematics, especially in the early years, a clear absence of spatial skill development 

persists in K-12 mathematics classrooms (Woolcott et al., 2020). Given that it is mathematics 

“through which we communicate ideas that are essentially spatial” (Clements & Sarama, 

2011, p. 134), it is concerning that mathematics curricula do not emphasise spatial concepts, 

processes, skills, and thinking (Davis et al., 2015).  

Geometry, which underlies most if not all mathematical thinking (e.g., Bronowski 1947), 

is the curricular area with the greatest potential for providing educational experiences in 

spatial reasoning (Lowrie & Logan, 2018). However, geometry receives the least attention 

in schools K-12 (e.g., Larkin et al., 2016). Geometry content is often limited to sorting and 

naming 2D shapes (Clements & Sarama, 2011), yet young children are motivated by, capable 

of, and need opportunities to apply, analyse, and investigate geometric transformations of 

2D and 3D shapes through mental rotation, use of symmetry, multiple representations, and 

de/constructing parts (Frick et al., 2014).  

The importance of spatial reasoning within mathematics and the supporting role that 

geometry plays, prompted us to turn to educational research in projective geometry initiated 

over a half century ago. While studies in this area were essentially abandoned in the 1990s, 

we assert projective geometry employs extensive spatial processes, many of which are 

underexplored. As such, re-examining and extending research focused on young children’s 

projective thinking is vital to early years mathematics.  
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Projective Geometry 

Projective geometry involves the relationship between objects and images and their 

mappings or projections onto other surfaces. For example, what geometric properties are 

maintained between an object and the shadow it casts. Spatial transformations, such as 

rotation, translation, scaling, and shearing are central to projective geometry. Historically, 

projective geometry grew out of attempts by artists and architects to use perspective to draw 

or paint (i.e., project) the 3D world onto a flat surface. Today, we take for granted the ability 

of artists to draw with perspective. Yet, compared with Euclid’s geometry which is over 

2000 years old, perspective drawings only appeared 600 years ago, during the Renaissance.  

A key difference between Euclidean geometry, on which most of school geometry is built, 

and projective geometry, is that while lines remain lines and points remain points, in the 

latter, lengths, angles, and areas are not all preserved under projection. Figure 1 illustrates a 

2D presentation in which the 90-degree angles, edge lengths, and surface areas of a cube are 

not preserved. We know the image represents a cube because we have learned to read, 

interpret, and thus see it as possessing the geometric properties that can only be observed 

when actually holding the physical object itself. This common example illuminates how 

projective geometry lies at the very intersection between perceptual and representational 

space, and as such, holds tremendous potential for young children’s spatial reasoning in 

mathematics. Current studies on how children come to make sense of projective concepts 

are virtually nonexistent in the literature. As such, our inquiry starts with the research of 

Piaget and his colleagues on young children’s conception of space. 

 

Figure 1. Projective image of a cube 

Children’s Spatial Reasoning within Projective Geometry 

The spatial reasoning research by Piaget and his colleagues (e.g., Inhelder, Meyer) 

preceding and during the 1950s generated many further studies in the decades that followed 

up until and including the 1990s. Here we highlight key aspects of the theory concerning 

projective geometry, related studies, and critiques of the research. 

The Child’s Conception of Space 

Piaget (1953) described young children’s discovery of spatial relationships as 

spontaneous geometry. Central to Piaget and Inhelder's (1967) theory on how children come 

to make mathematical sense of space is that unlike a child’s perceptual space which directly 

reflects their sensorimotor schema of a spatial environment, geometric representations of 

space result from their ongoing building up of motor and internalised actions into logical 

operational systems. Piaget (1953) contended that children’s geometric conceptions follow 

a deductive or axiomatic progression, opposite in sequence to the historical development of 

the mathematics. That is, at 3 years old, the child first makes internal or topological 

distinctions about a particular figure (i.e., open and closed structures, interiority and 

exteriority, proximity and separation). By age 7, they begin to construct the projective 

concept of the straightness of a line. Then, at 9 or 10 years of age, the child understands 

problems involving perspective, such as angle of vision and point of view, and Euclidean 
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concepts relating figures with other figures through angles, sides, parallelism, and distance. 

It is only when the child reaches this point that they have “complete conception of how to 

represent space” (Piaget, 1953, p. 79). Known as the topological primary thesis, Piaget 

(1953) asserted that young children’s spatial reasoning was associated with their geometric 

representation of space as “another example of the kinship between psychological 

construction and the logical construction of science itself” (p. 75). 

 Piaget and Inhelder (1967) suggested that children begin to engage in projective 

geometry when they no longer view or represent objects in isolation but in relation to 

different viewpoints, including perspective in their drawings. For example, children at 7 to 

8 years old can correctly infer by drawing what the doll’s perspective or line of vision of the 

object is, when the doll is standing on the table and an object is placed in a certain direction 

in front of it. A similar experiment involved predicting the shape of an object’s shadow when 

the object is placed in a certain position between a light source and a screen. Piaget (1953) 

concluded, based on the findings from this task, that the coordination of different viewpoints 

does not occur until the child is 9 or 10 years old. Further, Piaget and Inhelder (1967) 

theorised that differently from children’s spatial constructs which are perceptual and 

experiential, or grounded in single viewpoint, their conception of basic projective relations 

requires their conscious constructing of reference systems through operationally connecting 

and coordinating all possible perspectives. 

Critiques of Topological Primacy Theory 

Subsequent studies by researchers who replicated Piaget and Inhelder's experiments 

have, for the most part, confirmed their findings (Laurendeau & Pinard, 1970; Page, 1959). 

However, while not dismissed outright, Piaget and Inhelder’s (1967) theory on topological 

primacy is not supported. We discuss three key criticisms of the theory which inform this 

initial stage of our research on children’s spatial reasoning through projective concepts. 

First, children’s conceptions of space may not follow the logical order of topological 

ideas then projective and Euclidean concepts. Research findings which revealed varied 

results in drawing experiments (Dodwell, 1963; Lovell, 1959) open the possibility that all 

three types of geometric concepts might occur simultaneously and over time, children 

develop the ideas by further integrating and synthesising them. For example, drawings by 4-

year-old children which were not predominantly topological suggest it might not be 

topological features that allow children to draw homeomorphic copies. Instead, it could be 

their coordinating of projective and Euclidean properties which enables topological 

properties to be maintained (Martin, 1976). Other research by Rosser et al. (1988) suggests 

an alternative developmental sequence wherein children progress in their spatial reasoning 

through three levels: from reproducing a set of geometric figures exclusively by encoding 

(i.e., given a set of shapes and then matching them to the original); to building the same 

configuration from memory; to then matching by building an identical configuration of 

geometric shapes from memory after a rotation or taking another's perspective. In their study, 

preschool children achieved the first two levels but not the third. Rosser et al’s (1988) study 

also emphasise the need for research to focus on how children’s projective processes relate 

to their thinking and activity in geometry.  

This point leads to the second critique of topological primacy theory regarding young 

children’s engagement as they develop projective ideas (Clements & Battista, 1992; Rosser 

et al., 1988). The contention concerns the overemphasis in Piagetian theory on identifying 

logical errors which then precludes examination of projective concepts that may not yet be 

fully fledged, articulated, and perhaps are altogether different. For example, Frick et al. 
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(2014) demonstrate how children, as young as 3 years old, engage in perspective-taking tasks 

when allowed to move the objects around or when provided with a model of the room. Here, 

the children encode the location of small objects through the use of landmarks. Additionally, 

these studies indicate that children’s development of projective space may not only require 

operationally connecting and coordinating all possible perspectives, but also forming and 

integrating an external framework as part of their reference system for spatial organisation. 

Third, while children's geometric conceptions of space may not be direct reproductions 

of their sensorimotor perceptions of the environment, at the same time, it is unlikely that 

their representations are purely logical operational systems. Clements and Battista (1992) 

identified this point as a key aspect that researchers had not yet examined in any depth. 

Drawing on the work of Fischbein (1987), Clements and Battista (1992) argued that space 

representations (e.g., a square shadow of a cube die projected on a screen) are more complex 

than exclusively abstract properties of space (e.g., four edge lengths and 90-degree vertices). 

Rather, children’s conceptions of space entail “sensorimotor and intellectual skills organized 

into a system of beliefs and expectations that constitute an implicit theory of space. Most 

important, intuitions thus constructed are enactively meaningful... because they express the 

direct behavioral meaningfulness of an idea” (Clements & Battista, 1992, p. 426). Today, 

even more, it is necessary for researchers to examine how Piagetian theory and theories that 

emphasise the intuitive and complex nature of cognition can inform children’s spatial 

reasoning through projective concepts. 

Changing Perspectives 

We now take the three critiques and consider them further by situating each of them 

within more current and general spatial reasoning literature. In doing so, we distinguish 

complementary theoretical perspectives which not only offer possibilities for how we might 

observe anew the ways young children reason spatially in projective geometry, but also 

prompt sightlines for reconceptualisation. 

1. Children’s conceptions of projective space may not follow the logical order 

proposed by Piaget and Inhelder (1967).  

This point calls into question several aspects of Piaget and Inhelder’s (1967) notion of 

topological primacy such as ages, stages, linear sequencing, mutual exclusion of the three 

types of geometries, and contexts. Moving deeper and changing tact, what might it mean if 

young children's conceptions of projective space were not characterised once and for all, as 

a predetermined sequence, or prescriptive stages? 

In Spatial Reasoning in the Early Years: Principles, Assertions, and Speculations, Davis 

et al. (2015) argue for theoretical perspectives and ways of interpreting spatial reasoning in 

mathematics which not only move beyond isolating observable and measurable aspects, but 

at the same time, more closely reflect learners’ cognitive activities as they engage in-situ 

where mathematics teaching and learning happen. Here the authors characterise spatial 

reasoning as:  

a clearly discernible whole that cannot be fully comprehended by reducing it to its components. Such 

forms arise in the entangled interactions of many aspects, agents, or subsystems – and, within those 

interactions, new and unpredictable possibilities can arise. Those possibilities, in turn, can affect and 

occasion the entire system’s current and future properties and behaviors. (Davis et al., 2015, p. 140) 

Both the description and circular model proposed by Davis et al. (2015) (see Figure 9.1, p. 

141) reflect spatial reasoning as neither linear nor hierarchical but instead dynamically 
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emergent and ever-changing. This perspective which complements Piaget and Inhelder’s 

psychological axiomatic order, facilitates more nuanced research, both theoretical and 

empirical, and enables alternate ways to understand young children’s spatial reasoning in 

projective geometry. We illustrate and discuss these aspects next. 

2. There is a need for research that examines children’s projective concepts which 

may not yet be fully fledged, integrated, or articulated, and perhaps are altogether 

different. 

Taking an emergent view of young children’s spatial reasoning in projective geometry 

implies that while their cognitive activities may be unpredictable in foresight, for example, 

the forms they take or the ways they manifest moment to moment in everyday learning 

settings such as mathematics classrooms, they can potentially be understandable in 

hindsight. Here the value of both artifacts and acts of children’s spatial reasoning is 

emphasised (Thom & McGarvey, 2015) as well as the prospect of gaining insight into the 

moments and contexts during which children bring projective ideas into being. 

Within this theoretical perspective, we revisit Piaget’s (1953) experiment with children 

predicting the shape of the shadow projected by an object (e.g., a six-sided die). Studying 

the emergence of their spatial reasoning demands paying even closer attention to children’s 

cognitive activities as they engage with the object, its projected image, and different points 

of view. Using Davis et al.’s (2015) descriptive terms, several discernable and possibly co-

emergent transformings include movings (e.g., rotations), alterings (e.g., 

dialating/contracting, distorting/morphing), situatings (e.g., dimension-shifting, orienting, 

and locating), and (de)constructings (e.g., de/re/composing, sectioning). Elements of 

understanding that could arise involve interpreting (e.g., diagramming, comparing, relating) 

and sensating (e.g., perspective-taking, visualising, imagining, tactilising). 

Further, we see still other and potentially different opportunities to examine young 

children’s conceptions of projective space within today’s contexts. Projective geometry 

underlies many different designing and map-making activities associated with computer 

modelling, 3D printing, digital photography and editing, perspective drawing, engineering 

and architectural plans, as well as other imaging applications. These activities of designing 

and map-making, along with projecting are also identified by Davis et al. (2015) in their 

circular model as emergent competencies. 

3. While children's geometric conceptions of space may not be direct reproductions 

of their sensorimotor perceptions of their environment, at the same, it is unlikely 

their representations are purely logical operational systems. 

It is worth repeating that what makes projective geometry striking, complex, and unique 

is how the concepts are inextricably perceptual and representational. Relevant theories that 

allow for inquiry into young children’s perceptual and representational conceptions of 

projective space include those which enable cognition to be viewed as dynamic, contextually 

contingent and body-centred, whereby logical forms of knowing are not separate from 

perceptually-guided activity (Varela et al., 1991).  

Perspectives such as those rooted in enactive and/or embodiment theories, take cognitive 

structures and activities to be co-implicated by our biological bodies and our social-cultural 

ways of knowing. That is, what we come to know, how we think, and that to which we 

choose to attend is influenced by how our material bodies move through space and in relation 

to other bodies, as well as historical and cultural significances (Nemirovsky et al., 2020; 
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Varela et al., 1991). Cognitive scientists increasingly show the vital role our body plays in 

the conceptual development of both simple and seemingly abstract mathematical concepts 

(Marghetis & Núnez, 2013).  

Past and current studies in mathematics education elucidate bodily aspects of young 

children’s spatial thinking such as the spontaneous and deliberate ways they use their bodies 

to express concepts and develop meanings, though not necessarily related to projective 

geometry, for 2D and 3D figures and transformations (e.g., Bussi & Baccaglini-Frank, 2015; 

Thom, 2018). These include gestures, movement, sound, speech, rhythm, and drawing(s). 

Thus, it seems reasonable to assume that the body and perception are not simply the means 

by which children progress to more formal projective thinking, but rather, the means with 

which their conceptual thinking depends, emerges, and evolves. Here lies tremendous 

potential for research to expand understanding of spatial reasoning in projective geometry, 

in terms of critical spatial skills, processes, and tools that young children ‘know’ as well as 

how they demonstrate and develop these perceptually, logically, informally, and formally, 

mentally and physically. 
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The reification of the array: The case of multi-digit multiplication  
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The array is a powerful tool that builds students’ understanding in multiplication. Students’ 

interactions with the array changes through the course of an instructional sequence, which 

can be viewed as a process of reification. In this paper, I report the findings of a research 

study conducted with 45 Year 5 students in Sydney. The study explored students’ changing 

use of the array through the course of an instructional sequence on multi-digit multiplication. 

Design Research methods were used to track students’ use of different forms of the array and 

the functions that these forms served. Three key stages were identified in the process of 

reifying the array in multi-digit multiplication.  

Mathematical representations play an important role in the development of 

understanding (Hiebert & Carpenter, 1992; Pirie & Kieren, 1994). Representations make 

visible that which is abstract, thus making more abstract concepts accessible to students 

(Gravemeijer, 2004). Students’ abilities to work with mathematical representations flexibly 

and their capacities to interpret and connect representations are key to the process of building 

mathematical understanding (Goldin & Shteingold, 2001; Gravemeijer, 1999). As students 

interact with formal, external representations they can more easily observe connections and 

relationships between mathematical concepts. Those observed connections and relationships 

form students’ own internal representations of concepts (Goldin & Shteingold, 2001). 

The array has been recognised as a powerful representation that allows access to the 

important theoretical constructs of multiplication (Barmby et al., 2009; Battista et al., 1998). 

This two-dimensional representation of multiplication highlights equal groupings and shows 

how the composite units build on each other to produce a whole (Steffe, 1994). Curriculum 

documentation presents the array in various forms as an important tool in the teaching of 

single- and multi-digit multiplication (ACARA, 2017). 

There has been substantial research on the array with single-digit multiplication but there 

exists limited research on its usage in multi-digit multiplication (Barmby et al., 2009; Young-

Loveridge & Mills, 2009). Despite this limitation, studies have shown that the array affords 

students access to important multi-digit multiplication understandings, including the 

distributive property (Barmby et al., 2009, Izsak, 2004; Young-Loveridge & Mills, 2009) 

and the associativity property (Ding et al., 2013). What is less evident in the literature is how 

students’ interaction with the array in multi-digit multiplication evolves over the course of 

an instructional sequence as their understanding of the multiplicative structure develops.  

In this study, I examined the power of the array as a representation of a contextual 

situation through to a representation for mathematical reasoning as enacted by the students 

through their mathematical activity over the course of an instructional sequence. 

Gravemeijer (1999) described this changing use of representations as a process of reification, 

where mathematical activity takes on object-like character as a result of student activity. 

According to Gravemeijer (1999), there are two stages to the process of reification. First, 

students’ activity is bound in the context of the problem, a stage Gravemeijer refers to as the 

referential level. The second stage is the general level, where students’ interpretations and 

solutions operate separately to the contextual imagery. 

To address the research gap, and to inform curriculum design and teaching practice, the 

following question focused the research: How does students’ use of the array develop from 
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a representation of a contextual situation to a representation that is used for more 

generalised mathematical reasoning in multi-digit multiplication? 

Theoretical Framework 

The theory of Realistic Mathematics Education (RME) was used to guide the design of 

this research. RME is founded on the belief that mathematics is not a closed body of 

knowledge to be transmitted. Rather, it is an exercise in which learners are active participants 

(Van den Heuvel-Panhuizen, 2003), whereby one ‘reinvents’ conventional mathematics for 

themselves (Gravemeijer, 2004). In the context of the classroom, students engage in tasks 

that require them to develop their own tools and strategies as they solve experientially real 

problems. This is the process of mathematisation. Students form and organise new 

knowledge and develop their own mathematical insights (Van den Heuvel-Panhuizen & 

Drijvers, 2014). The aim of RME is to support students’ progressive mathematisation, or 

level-raising (Gravemeijer et al., 2003). To achieve this, learning experiences are based on 

three important design heuristics: experientially real contexts, guided reinvention (a process 

where students reinvent conventional mathematics through active teacher guidance), and 

emergent modelling. Most relevant to this paper is the heuristic of emergent modelling, 

which describes how students’ interactions with models develop and change through the 

course of an instructional sequence. 

In RME, a model is a broad term that encompasses varied representations of 

mathematical concepts and structures (Van den Heuvel-Panhuizen, 2003). Models are not 

designed as ready-made representations trying to make mathematical concepts concrete. 

Rather, models are developed out of contexts (Gravemeijer, 2004) and support students in 

the process of progressive mathematisation. The model, as Van den Heuvel-Panhuizen 

(2003) explains, serves as a bridge. On one side of the bridge are the informal understandings 

bound within the context of the problem, and on the other side are the formalised 

mathematical concepts. It is students’ interactions with the model that allow them to cross 

this bridge. 

The nature of the model changes through students’ activity. It moves from a model of a 

situation to a model for mathematical reasoning (Gravemeijer, 2004; Van den Heuvel-

Panhuizen, 2003) with different forms of a model serving different functions (Saxe, 2002, 

2004). Initially the model is closely connected to the context of the problem: it is a model of 

a particular situation and students use it to make sense of the problem at hand. As students 

work with the model over multiple experiences, they build an appreciation for the 

mathematical concept or structure that the model embodies. Their understanding of the 

model becomes more generalised, and it becomes a model for mathematical reasoning. The 

model is reified. As Gravemeijer (2004) explains,  

the model first comes to the fore as a model of the students’ situated informal strategies. Then, over 

time, the model gradually takes on a life of its own. The model becomes an entity in its own right and 

starts to serve as a model for more formal, yet personally meaningful, mathematical reasoning (p. 

117). 

Methods 

The methodological approach for this research needed to allow the researcher to observe 

first-hand students’ reasoning and interaction with the array. To meet this aim, Design 

Research methods were employed (as described by Cobb & Gravemeijer, 2008). Three 
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research phases were enacted: preparatory thought experiments, teaching experiments and a 

retrospective analysis.  

The preparatory phase formed the foundation of the project. A detailed analysis of 

relevant literature was the basis for anticipatory thought experiments (Gravemeijer, 2004). 

This phase clarified the learning goals, documented the starting points for instruction and 

then, from this, delineated a predicted learning pathway. 

The teaching experiment phase of the project was conducted in two different Year 5 

classes. Both classes were from non-government schools in Sydney; 23 students in the first 

class and 22 in the second class, comprised a sample size of 45 students. The researcher 

adopted the role of the teacher in each teaching experiment. This approach allowed the 

learning environment and teaching across both experiments to be controlled and enabled the 

researcher to experience first-hand the events of the classroom, thus enriching the ongoing 

cycles of data analysis and experimentation. The students’ regular teacher was also present 

in the classroom and helped facilitate student activity. The same instructional sequence was 

taught in both classes. The sequence was implemented over a two-week period and 

comprised of four teaching episodes. Each teaching episode spanned two or three one-hour 

lessons and was characterised by a focus on a distinct mathematical concept, presented 

through the context of a problem. Each teaching episode is described later in the results 

section of this paper.  

 The retrospective analysis situated the classroom learning process into the “broader 

theoretical context as a paradigmatic case of a more encompassing phenomenon” (Cobb & 

Gravemeijer, 2008, p. 83). It was in this phase that a grounded theory (Glaser & Strauss, 

1968) on the reification process of the array was formed. 

Data collection and analysis 

The data collected needed to elicit evidence of students’ reasoning with the array, shifts 

in their reasoning, and how these shifts were supported and organised. Based on this, three 

key forms of data were collected: student work samples from the teaching episodes, 

transcribed video recordings of classroom activity, and field notes compiled by the 

researcher and class teacher during classroom lessons. 

The analysis of data occurred over two phases of the research. The Constant Comparative 

method (Glaser & Strauss, 1968), adapted to the needs of Design Research as illustrated by 

Cobb and Whitenack (1996), was used during the teaching experiments. Students’ use of the 

array was tracked across the teaching episodes and descriptions of students’ usage were 

grouped in two ways: according to the individual students and then according to the solution 

method used. This enabled observation of whether the model held power for individual 

students, which would be evident through the moving from a model of the contextualised 

situation to a model for more generalised mathematical reasoning.  

The second round of data analysis was conducted as part of the retrospective analysis, 

which mapped the process of the array moving from a model of a contextualised situation to 

a model for more generalised mathematical reasoning. Saxe’s (2004) form-function 

framework was used to explore the different forms of the array used by students and what 

function each form of the array served. The framework helped explain how students’ use of 

the array shifted over the course of the instructional sequence, to serve differing functions. 

The form of the array was defined as specific visual features, and its function was defined as 

the way the students chose to interact with the array in their work. Three forms of the array 

were observed across the instructional sequence: arrays with all individual parts visible, a 

pre-partitioned array, and an open array. The dataset was grouped according to the three 



Tripet 

396 

forms of the array so that commonalities could be identified, and so that shifts in students’ 

form-function use over the course of the instructional sequence could be noted. The dataset 

was then re-grouped, this time based on the array’s function. Grouping in this way served to 

confirm the commonalities that were identified, students’ evolving use of the array, and to 

highlight any anomalies. The final step in the analysis was to explore the form and function 

of the array based on students’ diverse conceptions and strategies. To do this, data were 

grouped based on the form and function of the array that the students chose to use as they 

developed solutions to the problems. 

Results 

The results section describes the visual form of the array used and the student-chosen 

function that each array served. The students’ use of context is also recorded as the process 

of reification is mapped. Examples of students’ work is used to illustrate each teaching 

episode. The work of these students was typical of what was observed across both classes. 

Teaching Episode 1 – Zoe and Lucille 

The first teaching episode introduced the students to the context of a bakery that sold 

cupcakes. Students were presented with the following narrative: A baker makes and sells 

eight different flavours of cupcakes. The cakes are baked in a tray that has four rows with 

six cakes in each row. He bakes one tray of each flavour. How many cupcakes does he bake 

each day?  

 

Figure 1. Zoe and Lucille’s work sample from Teaching Episode 1 

Zoe and Lucille’s solution and justification were bound within the context of the 

problem. They represented their strategy using arrays which were presented as actual cakes. 

The function of the array in this form was to support calculation. Each tray was considered 

individually and was partitioned into groups of 20 and 4 (Figure 1). Lucille’s verbal 

explanation of their strategy highlighted that the context was relevant to their thinking as 

they solved the problem: But it is not like you are really cutting a row off, like, you can’t. 

They are in a tray, so, yeah, you can’t actually do it. But it is just how we worked it out. 
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Teaching Episode 2 – Ryan and Dylan 

The class was shown a picture of 16 filled cupcake boxes sitting on a bench in a 4 × 4 

array, and students were told that each box held 12 cakes. The array was somewhat 

abstracted as the individual cakes were not visible. However, a further diagram shown to 

students revealed that the cakes in each box were configured in three rows of 4.  

 

Figure 2. Ryan and Dylan’s work sample in Teaching Episode 2 

Ryan and Dylan partitioned the array based on place value and noted that the result for 

this collection of cakes, 16 × 12, was the same as the total number of cakes in the first 

teaching episode, an array of 24 × 8. This led into investigating a second mathematical 

goal—why did 16 × 12 = 24 × 8? Recognising that 16 could be halved to make 8 and that 

12 could be doubled to give 24, the pair divided the array in half and rearranged it to 

transform 16 × 12 into 24 × 8 (Figure 2). Through their mathematical activity, they 

established a new function for the array: the array could be manipulated. The array moved 

from a static tool to a dynamic one. Through their working, the boys reasoning remained 

connected to the context, as illustrated in the following comment from Ryan: You could join 

two of the boxes together to make 24 then… wait, that’s 8 groups…yeah…that’s 8 groups 

because 8 twos are 16.  

Teaching Episode 3 - Amelie 

 

Figure 3. Comparing the area of two trays in Teaching Episode 3 

In the third teaching episode, the students were shown the trays inside different cupcake 

boxes, and they discussed why one array was skewed and the other was not (see Figure 3). 

Students hypothesised that the skewed array was smaller in area and therefore would be 

cheaper to make. This hypothesis was the focus of the teaching episode.  

Amelie, a student from Class 2, reasoned that 28 × 24 would be bigger, arguing that 2 

could be taken from 28 and added to 24 resulting in the “equivalent” equation 26 × 26 (which 

is larger than 25 × 25). While 28 × 24 was indeed bigger, Amelie came to see that her 

reasoning was incorrect, and a new mathematical goal emerged: why was 28 × 24 not 

equivalent to 26 × 26? To achieve this goal, Amelie worked independently from the context 

of the problem. She regressed from an open array to a more familiar form of the array, a grid 
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array with all parts visible. The function of the array in this form was a sense making tool 

for the multiplicative structure. Amelie created a 28 × 24 array from grid paper, then cut off 

two columns from the 28 and taped them to the bottom of the array (Figure 4). She noticed 

that a 2 × 2 corner was missing, which left her puzzled. To understand what was happening, 

Amelie explored some other calculations, including 12 × 8. She recognised that, when 

attempting to form a square, a square corner with the dimensions of the number removed 

would be missing. This process helped Amelie realise that additive compensation could not 

be used in a multiplicative context.  

 

Figure 4. Amelie’s strategy for comparing 28 × 4 and 26 × 26 

Teaching Episode 4 – Hannah and Ava 

The final teaching episode continued the narrative of the bakery and presented students 

with a multi-step problem: the total cost of 24 trays of cakes packed into boxes of 12 and 

sold at $28 per box. This context could not be easily represented as an array, as the problem 

presented a rate-based context. The intention was to see if students’ strategies were limited 

by the context, or if they moved beyond the context to use the array as a calculation tool. 

The majority of students from both classes used the array, partitioning it into place value 

parts to form simpler calculations. This is illustrated by Hannah and Ava’s work. The girls 

reasoned that partitioning into place value parts created calculations that were easy to 

perform. Hannah and Ava were working abstractly with the array and made no reference to 

the context of the problem in their recording or justifications. 

Abstract thinking, disconnected from the context, was evident in most students’ work. 

While in earlier teaching episodes students referred to calculating with ‘boxes’, in this 

episode a shift was made to calculating with numbers: We timesed [sic] 64 by 20 which is 

really just like doing 64 times 2 and then adding a zero. And then we just timesed [sic] 64 

by 2, and then doubled again to get 64 times 4. Abstract thinking was realised through 

students’ mental calculations, as illustrated by one student’s solution to 32 × 25: 25 is a 

friendly number because you just multiply it by 4 to get 100, so you divide the 32 by 4 to get 

8, so it is just the same as 8 × 100. 

Discussion 

The process of the array’s reification can be understood by examining the forms of the 

array that students selected to use and the function that each form served. Students chose to 

use different forms of the array within a single problem and oscillated between multiple 

forms across the instructional sequence. At the start of the instructional sequence and when 

a problem was first posed, students used a form of the array that was closely connected to 

the context of the problem. In the same way, their interactions with the array were 
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contextually bound. The function of the array in this form was to support calculations. This 

is indicative of the referential level in the process of reification (Gravemeijer, 2004). By the 

end of the sequence, students’ reasoning with the array was more abstract and generalised 

and removed from the context of the problem; they had progressed to the general level in 

the reification process (Gravemeijer, 2004). 

An interim level was observed in this process which I have termed structuring. In the 

process of making sense of the multiplicative structure, students worked independently of 

the context with a previously understood form of the array. They were no longer working at 

the referential level, nor were they generalising. The array had not yet become a tool for 

more formal mathematical reasoning as students were not engaged in reflection, explanation 

and justification. Student activity was focused on sense-making through an exploration of 

the multiplicative structure, removed from the context of the problem.  

Central to this process of structuring was the flexibility for students to move between 

different forms of the array. On several occasions when using a form of the array connected 

to the context of the problem, students were faced with their own insufficient or incomplete 

internal representations (Goldin & Shteingold, 2001). In these instances, students would 

‘fold back’ (Pirie & Kieren, 1994) to the simpler form of the external representation: the 

array with all parts visible, as illustrated by Amelie’s working. Students would use this form 

of the array to explore the multiplicative structure and to make sense of what was happening 

mathematically. The evidence suggested that students were creating new connections and 

strengthening existing connections between their internal representations and, in so doing, 

building a deeper, or ‘thicker’, mathematical understanding (Pirie & Kieren, 1994). This 

process of thickening understanding was removed from the context of the problem.  

At this structuring level, students also needed to work independently of the context of 

the problem in order to make sense of the mathematical properties of the array. As powerful 

as a context can be in enabling students’ access to mathematical ideas, it can also be a 

hindrance. Students’ strategies can be bound within the context of a problem (Ambrose et 

al., 2003) and the array may not be recognised as a multiplicative representation. This does 

not mean that contextual situations should not be used to introduce mathematical content. 

However, students must have the opportunity to work independently of the context in order 

to connect the array representation with the mathematical concept being explored. It is the 

array representation, not the context, that highlights important theoretical properties of 

multiplication.  

Conclusion 

The process of reification of the array in multi-digit multiplication highlights how 

students progress from using the representation as a model of a particular situation to using 

the array for more generalised mathematical reasoning. Mapping this process contributes to 

the growing body of knowledge on how the array supports the development of understanding 

and provides guidance to curriculum designers and practitioners. Students need the 

opportunity to use the array to explore the multiplicative structure. In their explorations, 

students should not be restricted to one form of the array. Rather, flexibility is needed. 

Students should be afforded the opportunity to select and use different forms of the array, 

recognising that different forms will serve different functions.  
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Effective middle leading of mathematics is a complex task as it requires a focus on improving 

learning outcomes for students. This study gathered information about the activities of middle 

leaders of mathematics using a survey of primary and secondary mathematics leaders. Both 

primary and secondary mathematics leaders more often focussed on interacting with students 

in the classroom and participating in team planning meetings. Secondary leaders mentored 

teachers more often than primary leaders. Time to conduct some of the less frequent but more 

effective leadership activities needs to be provided. 

Previous studies of instructional leadership have theorized the role and responsibilities 

of middle leaders (Kemmis et al., 2014, Lingard et al., 2003, Sexton, 2018). Studies of 

mathematics leading have reported on particular projects involving mathematics leaders (for 

example, Grootenboer et al., 2015b). Few studies have reported on what leaders of 

mathematics in schools actually do. In this paper we report on the activities of mathematics 

leaders in primary and secondary schools in Victoria, Australia, in order to understand the 

support that needs to be provided by school and system level leaders. 

Background 

Middle leading is a complex task (Kemmis et al., 2014). It involves teaching, 

administration, managing, and curriculum and pedagogical development (Sexton & 

Downton, 2014). Grootenboer et al. (2015a) argued that middle leading is significant 

because middle leaders are located between the school leader and teachers and therefore 

participate in both the leadership and teaching practices of the school. Also as they are 

teachers, typically middle leaders are aligned philosophically with their teacher colleagues 

and therefore are able to collaborate with teachers in their day-to-day practice. Finally, 

middle leading is significant because it is a practice that involves “the sayings, doings, and 

relatings of leading rather than the characteristics and qualities of middle leadership” 

(Grootenboer et al., 2015a, p. 18). Driscoll (2017) argued that the focus of middle leaders’ 

practice should be on teacher development to improve the learning outcomes of students. 

Lingard et al. (2003) claimed that effective pedagogical leading engages teachers in 

collaborative, critical, and reflective discussion about their practices and students’ learning. 

Productive leadership relies on school leaders providing the support and opportunities for 
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middle leaders to create a collaborative culture and practice. Martinovic and El Kord (2018) 

conducted a review of the literature on leading mathematics in schools. Two of the studies 

reviewed focused on the ‘doings’ of leaders. Masters (2010) reported that middle leaders 

analyse samples of student work, co-plan with teachers, co-teach lessons, review efficiency 

of teaching, and celebrate professional learning. Calderone et al. (2018) reported qualities of 

middle leaders that included their expertise in teaching, and their practices of leading such 

as actively listening, encouraging success of colleagues, facilitating communities of 

learning, confronting barriers in school culture and structure, and striving for authenticity in 

teaching, learning and assessment.  

The role of leaders of mathematics (and other subjects) is not specified for government 

schools. In Victorian public primary and secondary schools,’ various titles are used for 

middle leaders of mathematics. For example, Learning Specialist, Numeracy Leader, 

Numeracy Coordinator, Maths Domain Leader, Numeracy Learning Specialist, Professional 

Learning Community Leader, Maths Curriculum Team Leader, and Maths Leader. The 

Australian Standards for teachers include descriptors of competencies and knowledge for 

lead teachers concerning professional learning and engaging with colleagues, parents and 

community and do specify roles or activities for teachers at the level of lead teacher (AITSL, 

2017). These include planning and developing professional learning for colleagues (6.1), 

initiating collaborative relationships (6.2), implementing professional dialogue to improve 

outcomes of students (6.3), and lead strategies to support professional learning opportunities 

for colleagues (6.4) (AITSL, 2017). In Victoria, the framework that describes levels of 

“Instructional shared leadership” expects that school leaders will lead teaching and learning. 

They “model and demonstrate high levels of pedagogical practice” and “align instructional 

planning and curriculum planning with the goals of the school” (Department of Education 

and Training [DET], 2019). 

It is therefore not clear what mathematics leaders are expected to do. In this study we 

invited mathematics leaders in Victorian government schools to provide information about 

their leadership activities. The research questions were:  

• What leadership activities do school mathematics leaders do and how often? 

• What are the similarities and differences in the leadership activities of mathematics 

leaders in primary and secondary schools? 

• How much time is allocated to primary and secondary mathematics leaders to do 

this work? 

The Study 

This study is part of the Numeracy Leaders’ Needs Analysis (Vale et al., 2020) designed 

to understand the contexts of teachers who have the responsibility for leading improvement 

in mathematics teaching and learning. The Numeracy Leaders’ Needs Analysis set out to 

identify the activities, knowledge, wishes, goals, and challenges of mathematics leaders in 

primary and secondary schools in order to identify their professional learning needs as well 

as to seek their preferences for their professional learning. In this paper, we report on the 

activities and time allocation for leaders.  

The Numeracy Leaders’ Needs Analysis questionnaire gathered responses online through 

Qualtrics. The questionnaire included 24 items with a mixture of Likert items, ranking items, 

multiple-choice items and open-ended items. 

There were three Likert items about the frequency of various leadership activities. The 

sub-items consisted of a range of possible activities drawing on findings from qualitative 

studies (for example, Driscoll 2017, Cheeseman & Clarke 2005, Sexton & Downton 2014) 
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and their authors’ professional experiences. The sub-items were organised into three sets to 

reflect the main contexts in which middle leaders work (Grootenboer et al., 2015a):  

• Leadership in the classroom (Question 1, includes seven sub-items)  

• Leadership beyond the classroom (Question 2, includes twelve sub-items)  

• Managing and administration (Question 3, includes four sub-items)  

These three items used a seven-point Likert scale from ‘Not at all’ (1) to ‘Very often’ (7). 

The items were checked for face validity by one author and two volunteers. Descriptive 

statistics, that is, frequencies were calculated for all closed items, including by school sector 

and regional location of the school. Means and standard deviations were calculated for the 

Likert items, and a two-tailed t-test conducted to compare the frequency of leadership 

activities between primary and secondary leaders of mathematics.  

One hundred and ninety-six (196) people responded to the questionnaire. The majority 

(71%) worked as numeracy leaders, specialists, or teachers in primary schools. About a 

quarter (23%) worked as leaders or teachers in secondary schools. The other participants 

(6%) included leaders or teachers working in, or with, Special Education schools or with 

networks of schools. The proportion of responses from primary and secondary leaders 

approximately corresponds to the proportion of primary and secondary schools in Victoria 

(69% and 31% respectively). About two-thirds of respondents (65%) were from 

metropolitan schools and one-third from non-metropolitan schools (35%). Respondents 

included leaders from very small primary schools with fewer than 50 students (4% of 

primary leaders) to large primary and secondary schools with more than 1000 students (2% 

of primary respondents and 26% of secondary respondents). 

Findings 

Data about the number of years teaching and leading mathematics is provided first 

followed by findings regarding the doings of primary and secondary leaders and then the 

time available to do these leadership activities.  

Teaching and leadership experience 

It was also important to understand the extent of their teaching and leading experience 

as factors that may influence their activities as leaders of mathematics (see Table 1).  

Twenty-nine (29) of respondents were not currently the school mathematics leader. Almost 

all the leaders, 99% of primary leaders and secondary leaders responding to the questionnaire 

had more than 3 years’ teaching experience. However, 30% of primary leaders and 23% of 

secondary leaders had been leading mathematics for less than one year. A higher proportion 

of secondary mathematics leaders had been leading mathematics for more than three years 

(33% compared to 22%). 

The two least frequently conducted activities by both primary and secondary leaders 

were “Co-teach mathematics alongside teachers and review lesson” and “Model 

mathematics lessons for other teachers” (see Table 2). Secondary leaders tended to “Observe 

and talk with students about their learning during mathematics lessons, and provide feedback 

for the teacher” more often than “Collect, analyse and discuss student work samples with the 

classroom teacher.” For primary leaders they tended to analyse student work slightly more 

often than conducting peer observations.  
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Table 1 

Number of years teaching and leading mathematics  

 Teaching (n=196) Leading mathematics (n=167) 

 Primary 

n (%) 

Secondary 

n (%) 

Primary 

n (%) 

Secondary 

n (%) 

Less than 1 year 1 (0.7) 0 (0) 39 (30.4) 9 (23.0) 

1-3 years 1 (0.7) 1 (2.2) 55 (42.9) 15 (38.4) 

4-9 years 44 (29.3) 17 (37.0) 28 (21.9) 10 (25.6) 

10-15 years 34 (22.7) 13 (28.3) 3 (2.3) 4 (10.3) 

Longer than 15 years 70 (46.7) 15 (32.6) 3 (2.3) 1 (2.6) 

Table 2 

Leading mathematics in the classroom (Q1) 

 Primary 

mean (SD) 

Secondary 

mean (SD) 

t-test 

p 

a. Model mathematics lessons for other teachers. 3.7 (1.9) 3.7 (1.9) 0.89 

b. Co-plan individual mathematics lessons with 

classroom teacher(s). 

4.6 (2.0) 4.1 (1.9) 0.15 

c. Collect, analyse and discuss student work samples 

with the classroom teacher. 

4.2 (1.8) 3.9 (1.7) 0.32 

d. Co-teach mathematics alongside teachers and 

review lesson. 

3.5 (2.0) 3.6 (1.9) 0.88 

e. Observe and talk with students about their 

learning during mathematics lessons, and provide 

feedback for the teacher. 

4.0 (2.1) 4.0 (2.0) 0.98 

f. Use instructional walks to talk to students about 

their learning during a mathematics lesson. 

5.1 (2.0) 5.4 (1.7) 0.24 

g. Teach small groups of students for intervention or 

extension. 

4.0 (2.3) 4.2 (2.4) 0.56 

Leading mathematics beyond the classroom 

The most frequent activity for both primary and secondary leaders when leading outside 

the classroom was “Participate in team mathematics planning meetings” (see Table 3).   

The independent two-tailed t-test found that secondary leaders (m=6.1) conducted this 

activity more often than primary leaders (m(s)=6.1, m(p)=4.9, t=-3.722, p<0.01). Secondary 

leaders also “Mentor teachers of mathematics” more often than primary leaders (m(s)=5.3, 

m(p)=4.2, t=-2.670 p<0.01). A third significant difference showed that secondary leaders 

more often “Design and lead mathematics assessment programs in the school” than primary 

leaders (m(s)=5.1, m(p)=4.2, t=2.810 p<0.01). These three activities were the three most 

frequent activities for secondary leaders. The second most common activity for primary 

leaders was “Facilitate or conduct professional learning for teachers of mathematics,” an 
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activity in the top four for secondary leaders.  

 A fourth significant difference was found for one of the least often activities. Primary 

leaders more often “Participate in a network of mathematics/numeracy leaders” than 

secondary leaders (m(p= 3.4, m(s= 2.8, t=1.938, p<0.01). Secondary school mathematics 

leaders were asked to indicate the number of non-specialist mathematics teachers that is, out-

of-field teachers of mathematics, in their school. A third (33%) identified between one and 

three teachers who were teaching mathematics out-of-field and a further third had four or 

more teachers of mathematics who were not qualified to teach mathematics. Mentoring non-

specialist teachers was among the least frequent activities for secondary leaders (m=3.2, 

SD=2.3), however the high standard deviation indicates that this varies more than other 

activities and likely reflects the number of non-specialist teachers at their school.  

Table 3 

Leading beyond the classroom (Q2) 

 Primary 

mean (SD)  

Secondary 

mean (SD)  

t-test 

p 

a. Mentor teachers of mathematics. 4.4 (2.0) 5.3 (1.6) 0.00** 

b. Facilitate or conduct professional learning for 

teachers of mathematics. 

4.7 (1.9) 4.7 (1.7) 0.98 

c. Participate in team mathematics planning 

meetings. 

4.9 (2.1) 6.1 (1.2) 0.00** 

d. Facilitate meetings for assessment moderation. 4.0 (2.0) 4.3 (1.8) 0.44 

e. Facilitate formative assessment meetings to 

analyse student work. 

3.7 (2.0) 3.7 (1.9) 0.91 

f. Facilitate meetings to analyse assessment data to 

refine and adjust curriculum based on identified 

needs of students. 

4.2 (1.9) 4.6 (1.6) 0.15 

g. Design and lead mathematics assessment 

programs in the school. 

4.2 (1.9) 5.1 (1.7) 0.01* 

h. Engage parents and community in the school’s 

mathematics program. 

2.9 (1.7) 2.8 (1.5) 0.86 

i. Facilitate meetings to evaluate strengths, 

weaknesses, and opportunities for improving 

teaching of mathematics/numeracy. 

4.0 (1.9) 4.2 (1.6) 0.51 

j. Lead the design of goals for improving 

mathematics/numeracy teaching. 

4.4 (2.0) 4.6 (1.9) 0.42 

k. Mentor teachers about opportunities for 

numeracy learning in other subjects. 

3.4 (1.8) 3.2 (1.9) 0.49 

l. Participate in a network of 

mathematics/numeracy leaders. 

3.4 (2.0) 2.8 (1.8) 0.04* 

m. Mentor non-specialist teachers of mathematics NA (2.3)  

*p<0.05      ** p<0.01  
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Managing and administration.  

For the four items that asked leaders about their management and administration tasks 

both primary and secondary leaders frequently “Manage access to and purchasing of 

mathematics resources” (m(p)=5.3, m(s)=5.0) and “Manage mathematics assessment 

programs” (m(p)=4.5, m(s)=4.9; see Table 3). There were no significant differences for any 

of the four activities.  

Most frequent doings 

When comparing the frequency of activities across each of these leadership domains 

primary leaders most often “Manage access to and purchasing of mathematics resources” 

(m=5.3, SD=1.9), “Talk to students about their learning during a mathematics lesson,” 

(m=5.1, SD=2.0) and “Participate in team mathematics planning meetings” (m=4.9, 

SD=2.1). Secondary leaders most often “Participate in team mathematics planning 

meetings” (m=6.1, SD=1.2), “Talk to students about their learning during a mathematics 

lesson” (m=5.4, SD=1.7), and “Mentor teachers of mathematics” (m=5.3, SD=1.6) (see 

Table 4). 

Table 4  

Managing and administration (Q3) 

 Primary 

mean (SD) 

Secondary 

mean (SD) 

t-test 

p 

a. Organise professional learning facilitated by 

external experts. 

3.2 (2.0) 3.1 (1.8) 0.83 

b. Manage access to and purchasing of mathematics 

resources. 

5.3 (1.9) 5.0 (2.2) 0.36 

c. Timetable and organise allocated planning time 

(APT). 

3.2 (2.4) 3.3 (2.1) 0.82 

d. Manage mathematics assessment programs. 4.5 (2.0) 4.9 (1.8) 0.17 

Leadership support 

School leaders can support mathematics leaders by providing time to complete 

mathematics leadership activities and responsibilities. Many of the primary and secondary 

leaders were provided less than two hours per week to complete their leadership activities 

(42% and 50% respectively) (see Table 5).  

Table 5 

Number of hours per week allocated for the School Mathematics Leadership role (Q17)  

 
Primary 

n (%) 

Secondary 

n (%) 

Zero hrs 28 (18.7) 7 (15.2) 

< 2 hrs 35 (23.3) 16 (34.8) 

2.1 - 4 hrs 16 (10.7) 9 (19.6) 

4.1 – 6 hrs 13 (8.7) 9 (19.6) 
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6.1 – 8 hrs 8 (5.3) 2 (4.3) 

8.1- 10 hrs 10 (6.7) 1 (2.2) 

10.1 -20 hrs 33 (22.0) 2 (4.3) 

> 20 hrs 8 (5.3) 0 (0.0) 

Whilst the distribution of time release for leading mathematics corresponds with the 

number of teachers of mathematics for both primary and secondary leaders, it is not 

surprising that many leaders have been limited in the opportunity to frequently conduct many 

of the activities included in the instrument. 

Discussion and Conclusion 

The activities of middle leaders of mathematics reflect the complexity of this role which 

includes teaching, working with their teaching colleagues as well as conducting 

administrative tasks as reported previously (Grootenboer et al., 2015b; Sexton & Downton, 

2014). For both primary and secondary leaders talking with students about their learning was 

one of the most frequent activities and so was participating in team planning meetings. It is 

not clear from this study what was actually involved in these planning meetings and whether 

they took a leadership role in these planning meetings to encourage teachers to develop 

evidence-based practice (Grootenboer et al., 2015b). It seems unlikely, as facilitating 

meetings to discuss formative assessment of students was among the least frequent activities 

for both primary and secondary middle leaders. Secondary leaders frequently mentor other 

teachers rather than use other strategies for professional learning for non-specialist and 

beginning teachers such as peer observation, co-planning and co-teaching, or conducting 

professional learning activities. The limited use of these activities by both secondary and 

primary leaders indicates a need for their professional learning.  

Middle leaders are expected to lead the improvement of mathematics teaching in their 

school, but they have very limited time allowance to enact some of the more effective 

practices to achieve their vision for teaching and goals for student learning (Roche et al.,  , 

2020). School leaders need to be encouraged to provide more time for middle leaders to 

develop collaborative practices (AITSL, 2017) and shared meanings of effective practice 

(Kemmis et al., 2014). Participating in network meetings with other middle leaders of 

mathematics was not a frequent activity. An implication from this study is for local system 

leaders of mathematics to be encouraged to provide opportunities for middle leaders to meet 

to learn from each other and support each other (Proffitt-White, 2017) to effect strategies for 

improving the teaching of mathematics in their schools. 
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Statistical terms are used in everyday language and, at times, used in non-statistical ways. It 

is often assumed students understand statistical terms because of their common use; however, 

research into their understanding of specific statistical terms is scant. This report focuses on 

58 Year 3 students’ responses to the basic question, “What does the term ‘data’ mean?”, and 

associated examples of data and data representations. The results indicate students are 

making progress in establishing meaning about data and their representations. 

Recommendations include more use of varying contexts within which students can explore 

data to enrich and enhance their learning about the practice of statistics. 

Statistics in school curricula in Australia dates to the National Statement for Mathematics 

in Australian Schools (Australian Education Council, 1991) following the US National 

Council of Teachers of Mathematics’ (NCTM) publication of its Curriculum and Evaluation 

Standards (1989). Neither of these documents, nor the later Principles and Standards for 

School Mathematics (NCTM, 2000) or the GAISE Report (Franklin et al., 2007), defines the 

term “data”. Indeed, the focus in early childhood professional learning for teachers has been 

on representing data and not specifically on defining the term data (e.g., Schwartz & Whitin, 

2006). Reflecting this background, in the early years children are often introduced to 

activities that involve collecting and representing data (e.g., Taylor, 1997), apparently with 

the assumption that by giving them many examples of data, they will eventually 

“understand” what data stand for and what the term means. Russell (2006) claims that “[t]o 

understand what data are and how to use them, students must themselves be engaged in 

developing questions about their world and creating data to shed light on those questions” 

(p. 17) but does not go so far as to define the word. She stresses the importance of creating 

data by noting the connections data allow and the reason for their existence: “Data are not 

the same as events in the real world, but they can help us understand phenomena in the real 

world” (p. 17). In the adult world, Moore and McCabe (1989) define statistics in relation to 

defining data: “Statistics is the science of collecting, organizing, and interpreting numerical 

facts, which we call data” (p. xvii). Cobb and Moore (1997) go further in claiming that 

“Statistics requires a different kind of thinking, because data are not just numbers, they are 

numbers with a context” (p. 801). This statement complements well Russell’s (2006) linking 

data to events in the real world.  

New Zealand was likely the first country to define data, in its Mathematics in the New 

Zealand Curriculum (Ministry of Education, 1992): “Data A set of facts, numbers, or 

information” (p. 211). In Australia, the development of the most recent Australian 

Curriculum: Mathematics (Australian Curriculum, Assessment and Reporting Authority 

[ACARA], 2019a) began in 2010 and currently includes a definition of data as, “Data is a 

general term for information (observations and/or measurements) collected during any type 

of systematic investigation.” The inclusion of “systematic investigation” in this definition 

adds a third element, “context”, to “information” and “collection,” for making meaning of 

data. From Year 1 of the curriculum, the word “data” appears with the creation of 

representations with objects or drawings, along with descriptions of displays (Year 1, 

ACMSP263). By Year 2, students are gathering, checking, classifying, creating displays, 

and interpreting categorical data for a question (ACMSP048, ACMSP049, ACMSP50). In 
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Year 3, the representations may be lists, tables, picture graphs or simple column graphs 

(ACMSP069, ACMSP070). Although the word “context” is not used in the content 

descriptors, the act of interpreting data implies that students will link data with the 

representations created and contexts within which the data were collected. 

The other source of curriculum input on data comes from the Numeracy component of 

the General Capabilities section of the Australian Curriculum (ACARA, 2019a). As part of 

Numeracy in that document, “Interpreting statistical information” is one of six interrelated 

capabilities in the learning continuum. “This element involves students gaining familiarity 

with the way statistical information is represented. Students solve problems in authentic 

contexts that involve collecting, recording, displaying, comparing, and evaluating the 

effectiveness of data displays of various types” (ACARA, 2019a). In addition, although the 

Achievement Standard of the Australian Curriculum for Year 3 includes “conducting simple 

data investigations for categorical variables,” the Numeracy Capability reduces the element 

of “Interpreting statistical information” to “interpret data displays” for all year levels. It is 

not until the end of Year 6 that students are expected to evaluate or analyse data 

representations. Prior to that, students are only expected to be able to collect, record, and 

display data. 

Research into children’s early understanding of data and their representation has focused 

on using data in contexts meaningful for children (e.g., Russell, 1990) without asking for a 

description or definition of the word itself. Similarly, Fitzallen (2012) analysed children’s 

early appreciation of data in the context of graphing and analysis, without asking specifically 

about the word itself. An extensive search of the research literature found no instances where 

children were asked the meaning of “data.” Given the importance of the term and its 

definition in the Glossary of the Australian Curriculum (ACARA, 2019a), it seems 

appropriate to ask this question of students. 

The results reported in this paper are drawn from the beginning of a four-year teaching 

intervention related to studying the impact of making data the focus of learning activities, 

with the goal of enhancing the emerging STEM curriculum (Fitzallen & Watson, 2020). The 

student learning activities in the study were grounded in the concepts imbedded in the 

Practice of Statistics (Watson et al., 2018), which encapsulates all aspects of working with 

data: formulating questions, collecting data, analysing data, and interpreting results. At the 

beginning of the longitudinal project, Year 3 students were asked to respond to the item in 

Figure 1 as part of a pre-test of students’ initial understanding related to the goals of the 

project. In retrospect, however, it also provided the opportunity to monitor the 

implementation of the Australian Curriculum definition of “data” and expectations for 

creating representations from data over the previous 3+ years of schooling (Foundation to 

Year 2 and half of Year 3). The research question hence becomes: How well do Year 3 

students understand data in relation to the Australian Curriculum’s definition of “data”, 

and its expectations related to data displays? 

 

Survey Questions about data 

(a) What do you think “data” means? 

(b) Give an example of some data you have seen or collected. 

(c) Sketch a graph of the data.   

Figure 1. Survey item for Year 3. 
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Method 

For the research question asked in this report, a survey method using open-ended 

questions is appropriate to obtain the required data. Ballou (2008) suggests open-ended 

questions provide the opportunity to gain insights into how terms are understood, and ideas 

are developed. The three tasks in Figure 1 solicit qualitative data related to students’ 

understanding of the topic of interest: a basic appreciation of the meaning of data and how 

they might be represented. The item was included in an eight-item survey. The other items 

focused on visual representations, sampling, and questioning.  

Participants 

Fifty-eight students from two Year 3 classes in a parochial K-10 school in an inner 

regional centre with a socio-economic status index ICSEA value of 1026 (mySchool.com.au; 

mean of 1000 and standard deviation of 100) were surveyed: 33 boys and 25 girls, 8-9 years 

of age. At the time students completed the survey, it had been two months since the 

NAPLAN testing for Year 3 had taken place. At the time of the survey, the researchers had 

no background on the teachers or the students. In terms of the results on NAPLAN testing 

nationally, the Year 3 cohort in this study was in the Average range for Reading, Writing, 

Grammar, and Numeracy, and in the Above Average range for Spelling (ACARA, 2019b). 

These results, and the fact that the teachers and students had no content interaction with the 

researchers prior to the survey, suggest that the sample can reasonably be assumed to be only 

marginally above average for Australian Year 3 children at this time in their education. The 

project had approval of the Tasmania Social Sciences Human Research Ethics Committee 

(H0015039). 

Data Analysis 

Due to the cognitive nature of mathematics learning, the method of analysing the data 

involved characterising similar responses with relation to a learning theory. The hierarchical 

model chosen was the Structure of Observed Learning Outcomes (SOLO) model (Biggs & 

Collis, 1982). The SOLO model has been used across the field of mathematics education for 

many years to analyse what respondents say or write (e.g., Watson, 2001) and continues to 

be useful in statistics education (e.g., Groth et al., 2019). For the survey questions in Figure 

1, responses are expected to occur within the Concrete Symbolic (CS) mode, typical of 

students in the primary and middle years (ages 7 to 12 years). The levels are: Unistructural 

(Uni), where a single element or idea is presented; Multistructural (Multi), where responses 

include two or more elements presented in a serial fashion; and Relational (Rel), where 

responses describe links or relationships among the elements presented. Responses judged 

not to use elements involved in the task, including no response, are often labelled Pre-

structural, but here they are examined from Groth et al.’s perspective, which considered in 

more detail the Ikonic mode (IK) for evidence of response compatibility (c) or 

incompatibility (ic) with the context of the task. Incompatible responses include 

superstitious, subjective, or deterministic beliefs, whereas compatible responses include 

personal experiences, imagery, or intuition related to the context of the task. It is hence of 

interest to observe responses considered to be in the IK mode for their compatibility as a 

step toward the CS mode. Using this structured analysis of students’ responses, it is possible 

to suggest the degree to which a sample of children have had access to and taken on the goals 

of the curriculum in relation to “data”, introduced by the middle of Year 3. 
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The coding scheme based on the SOLO model was designed to reflect the three 

components in the definition of “data” (information, collection, and context), the complexity 

of the example described, the representation created and its completeness, including the link 

between the representation and the context in the example. The elements that were 

considered appropriate for a definition of data (Figure 1, Part a) included a word interpreted 

as an appropriate synonym for “information” at the Year 3 level, a word related to the process 

of “collecting” information, and a word or phrase suggesting a meaningful context 

(systematic investigation) for information to be collected. Providing single elements was 

classified as Uni; putting two together as Multi; and combining all three in a meaningful 

sentence as Rel. For the example of data given (Figure 1, Part b), a single suggestion of a 

“variable” was considered Uni, whereas if it were connected with a second variable, it was 

considered Multi. This question did not lead to the expectation of a Rel response. With 

respect to Part (c), the representations were categorised according to the three representations 

noted in the content descriptor for Year 3 of the Australian Curriculum (ACMSP069): 

pictographs, tables, and column graphs. Within each type of graph there were increasing 

levels of combining the elements required to construct the representation. For pictographs, 

a picture without labels or categories was considered IK. Supplying categories but no 

variation in represented data was Uni, whereas displaying variation across categories was 

Multi. For both Tables and Column Graphs, an incomplete representation or no labels added 

was considered IK, whereas Uni or Multi representations included either one or two, 

respectively, of the essential components of the entity. For Tables the components were 

tallies and totals and for Column Graphs they were one or both axes meaningfully labelled 

including the column bars. Given the way that the questions were linked, if a complete 

pictograph, table, or column graph was labelled to reflect the context of the example 

suggested in Part (b), the response was considered Rel. Given the expectations of the content 

descriptors and the definition of “data” in the Australian Curriculum (ACARA, 2019a), 

Table 1 outlines the SOLO response levels for the three questions asked of the students. The 

coding was initially completed by the first author and repeated separately by an experienced 

research assistant. Agreement was 83% with discrepancies decided by negotiation. 

Table 1 

SOLO Levels of Response to the Three Parts of the Survey Item on Data 

Level Part (a) Part (b) Part (c) Sketch a graph 

 Defining data Example data Pictograph Table Column Graph 

IK 

(c, ic) 

Idiosyncratic; 

self-reference; 

specific case 

Idiosyncratic; 

source; tallies 

with no categories 

Icons without 

labels or 

categories 

Table without 

information 

Incomplete/no 

labels; 

unconventional 

CS 

Uni 

Single 

element 

mentioned 

Single aspect of 

process or context 

Icons in 

categories not 

showing variation 

Labelled 

categories 

with either 

tallies or totals 

Column graph with 

one dimension 

meaningfully 

labelled 

CS 

Multi 

Linking 

information 

either to the 

process or 

context 

Clear summary of 

data or process 

with context 

Icons in 

categories 

displaying 

variation 

Labelled 

categories 

with both 

tallies and 

totals 

Column graph with 

both dimensions 

meaningfully 

labelled 

CS 

Rel 

Linking 

information to 

both process 

and context 

 Complete 

pictograph related 

to context in Part 

(b) 

Complete 

table related to 

context in 

Part (b) 

Complete column 

graph related to 

context in Part (b) 
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Results 

The results are considered with respect to the three parts of the item. Table 2 contains 

the total number and percentage of representations coded for the four SOLO levels for the 

question, “What do you think ‘data’ means?” (Figure 1, Part a). Also included are indicative 

examples of student responses for each level. Two IK responses were considered 

incompatible (ic) with the context,  and three were compatible (c). The word “information” 

(or an abbreviation) was used 23 times across the levels but sometimes, the meaning was 

conveyed in general terms. The ability to construct a sentence that related the ideas of 

collecting, information, and context, which was needed to be coded at the Rel level, was not 

demonstrated by many students.  

Table 2 

SOLO Levels for Part (a) of the Survey Item on Data 

Level What do you think “data” means? % 

IK 

(c, ic) 

Like Friday 7th August 2015. (c) (ID115) 

It means a graph? (c) (ID151) 

Something you do. (ic) (ID165) 

17%* 

(n=10) 

CS 

Uni 

Tells you stuff. (ID105) 

Information. (ID108) 

Like a survey. (ID132) 

28% 

(n=16) 

CS 

Multi 

Collecting information. (ID103) 

Calculating graphs and collecting information. (ID145) 

Data means what you know and you put it into a graph. (ID148) 

45% 

(n=26) 

CS 

Rel 

It means collecting information about people or a person. (ID104) 

Information collected on a question like = what is your favourite colour? (ID122) 

Data means that you collect knowledge about something and put it in a graph. 

(ID142) 

10% 

(n=6) 

*This value includes five students who did not reply to the question. 

Table 3 contains responses to the request for examples of data (Figure 1, Part b). The 

difference between Uni and Multi responses depended on the implied action of collecting 

information or asking questions related to the example provided. Two IK responses were ic. 

Table 3 

SOLO Levels for Part (b) of the Survey Item on Data 

Level Give an example of some data you have seen or collected. % 

IK 

(c, ic) 

I have seen data with pictures in data. (c) (ID116) 

We/have done graph work. (c) (ID129) 

Making lunch? (ic) (ID164) 

19%* 

(n=11) 

CS 

Uni 

How many boys or girls. (ID102) 

A food graph. (ID104) 

I have some data of the earth. (ID140) 

26% 

(n=15) 

CS 

Multi 

How many people had cake for recess. (ID103) 

What is your favourite colour. (ID108) 

Who ate what fruit and veg. (ID119) 

55% 

(n=32) 

*This value includes six students who did not reply to the question. 

With respect to Part (c) (Figure 1), the students produced three types of representation: 

Pictographs (n=5), Tables (n=13), and Column graphs representing frequency (n=37), as 

expected by Year 3 (ACARA, 2019a). Table 4 contains examples of each level of 

representation that was assessed for the three graph types. The numbers in square brackets 
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in each cell indicate the number of representations in that category, whereas the percentages 

in the right column represent the percentages across the three categories combined. For 

Pictographs, one variable is represented at the Uni level and two variables for Multi. At the 

Uni level for Tables, the list is supplemented by totals (could be tallies), whereas both are 

present at the Multi level. Similarly, for the Column graphs, the bars are accompanied by 

labels on either one (Uni) or two axes (Multi). At the Rel level, the response provided in Part 

(b) is included to demonstrate the connection made between the two questions by the student. 

The seven IK responses were considered compatible with the context. 

Table 4 

SOLO Levels for Part (c) of the Survey Item on Data 

Level 

Sketch a graph of the data 

% Pictograph Table Column graph 

IK 

(c) 

 
(ID164)                  [1] 

 
(ID108)              [2] 

 
(ID155)                  [4] 

17%* 

(n=10) 

CS 

Uni 

 
(ID103)                  [1] 

 
(ID120)              [4] 

 
(ID131)                 [11] 

28% 

(n=16) 

CS 

Multi 

 
(ID102)                  [1] (ID143)              [1] 

 
(ID121)                   [5] 

12% 

(n=7) 

CS 

Rel 

7 boys liked oranges and 8 

girls liked apples, so did two 

boys. 

 
(ID111)                  [2] 

Who ate fruit and veg. 

 

 
(ID119)              [6] 

I collected data for a healthy 

breakfast.

 
(ID145)                 [17] 

43% 

(n=25) 

*This value includes three students who did not reply to the question. 

Although blank responses are a concern, the presence of 17 IK responses across the three 

questions, with only four considered incompatible with the contexts, suggests that 

expectation of CS responses is reasonable in Year 3. Of particular interest is the association 

between the responses to Parts (a) and (c). Whereas 43% of students could produce a 

Relational level representation linked to the data in their examples, only 10% could provide 

a complete Relational definition of data. Fifteen students performed better on Part (a) than 

Part (c), whereas 26 did better on Part (c), with 14 consistent across the parts. An indicative 

Pearson’s correlation coefficient (r=0.302, p<0.05) suggests significance but only about 9% 
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of shared variance. This is a sign that there is not a strong relationship between these two 

aspects of early learning about data. 

Discussion and Conclusion 

Interest in the question in the title of this paper arose at the beginning of a longitudinal 

project that was underpinned by the practice of statistics, fundamental to which are the data 

collected to answer a statistical question. Aware of the Australian Curriculum’s (ACARA, 

2019a) definition of “data” but finding no published report of students’ responses to the 

question prompted including the question as a survey item.  

The official definition of data in the Australian Curriculum (ACARA, 2019a) elaborates 

on the word “information” in parenthesis with “observations and/or measurements”, as well 

as with the reference to collecting data for “any type of systematic investigation.” In the 

definitions provided by the students in this study, 40% mentioned a version of the word 

“information” but only one student mentioned “measuring”; none mentioned observations 

or observing. It may be that teachers are not making the distinction that information in the 

context of statistical investigations can be numerical or categorical, and measurable or 

observable in nature. It is possible closer attention to the definition and meaning of data will 

make the use of data more meaningful for students when answering statistical questions 

(Russell, 2006) and conducting systematic investigations (Watson et al., 2018).  

It does, however, appear that young students are given the background to represent data 

in many ways. The students in this study utilised tallies, tables, pictographs, and column 

graphs, all of which are expectations of the curriculum at Year 3. This reflects appreciation 

of the quantifiable nature of data and the notion that data are plural in nature and collected 

from multiple sources as seen at all SOLO CS levels. That many responses to “What do you 

think data means?” described data in very general, non-quantifiable ways suggests a 

disconnect between how data are described and how they are represented (e.g., the 

correlation reported). Making explicit the connections between these two aspects of a 

statistical investigation in Year 3 may help students in posing questions that generate 

meaningful data that can be represented and analysed, part of the practice of statistics with 

which they have been shown to have difficulty (e.g., English et al., 2017; Wright et al., 2020). 

Making meaning from data and creating data are emphasised in both the curriculum and 

the extant literature on student learning of statistical concepts. In terms of the contexts 

suggested in Parts (b) and/or (c) of the survey item, 44 students (76%) based their contexts 

around food, including food at recess, food for breakfast, and fruit choices. Although 

investigations about the contents of young students’ lunch boxes provide convenient and 

legitimate data collection opportunities, they potentially limit exposure to contexts in which 

students can conduct a systematic investigation, learn about different data types, and explore 

how data explain and are influenced by the context of the investigation (Fitzallen & Watson, 

2011; Russell, 2006). There are many resources available that provide engaging contexts for 

investigations that require observations and measurements to collect information (e.g., 

Fitzallen & Watson, 2020). It is recommended teachers embrace the learning opportunities 

made available when students’ experiences with statistical concepts are positioned within 

investigations across the curriculum that explore issues related to a range of contexts. 
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This presentation reports on teaching and learning practices in teacher education that 

address preservice teachers’ wellbeing when learning about mathematics and numeracy. The 

participatory research study evolved through three phases. Data collected included a survey 

and focus group interviews with preservice teachers and open-ended interviews with teacher 

educators. Four themes that emerged from data analysis include the need to: (i) proactively 

address the emerging dynamic state of stable wellbeing; (ii) understand that lack of 

challenges can be detrimental to the emerging dynamic state of stable wellbeing; (iii) address 

the overlapping challenges that can exist for preservice teachers and educators that can 

negatively affect learning; and (iv) the need for guiding frameworks to help address the 

emerging challenges. The presentation discusses possible implications to the practice of 

teaching and learning in mathematics and numeracy classrooms.  
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The Sri Lankan curriculum stipulates the use of digital technologies in learning, but the 

practice is different for most teachers. Two case studies were conducted in two teacher 

education institutes in Sri Lanka to examine perceptions on the use of mobile applications 

in geometry after the block-teaching experience of pre-service teachers. The study followed 

the mixed method, explanatory sequential design. The findings of this study will contribute 

to the literature addressing new models relevant to the pedagogy perspectives of pre-service 

teachers’ use of mobile applications for secondary geometry. 
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This presentation reports the results of a pilot study for a PhD research that investigates 

the digital competencies of high school mathematics teachers. The main objective was to 

identify appropriate survey questions in the context of mathematics teaching with digital 

resources in Pakistan. The pilot study was conducted with 42 participants. The response 

rate was 36 per cent. The results demonstrated that the study protocols are feasible. The 

changes made in the instrument included rewording, layout, structure, statements and flow 

of the survey items. As the research on digital competence continues, I believe the 

mathematics research community can use the survey in different contexts. With possible 

new frameworks that may emerge in future studies on digital competence, the survey can be 

further refined.   
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Textbooks play a significant role in the teaching and learning of mathematics. They aid 

teachers in framing their lessons, and students in learning the subject content. In this 

research, I analysed three Singapore Ministry of Education (MOE) approved Additional 

Mathematics textbooks to examine the approaches used to develop concepts of trigonometric 

identities, as well as the cognitive demands of the exercises provided by the textbooks. It 

was discovered that different textbooks use different approaches for conceptual development 

and most of the exercise questions are at the basic or intermediate levels. 

  



Research Presentation 

Marshman and Bennison 

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics 

Education: Foundations and Pathways (Proceedings of the 43rd annual conference of the Mathematics 

Education Research Group of Australasia), p. 421. Singapore: MERGA. 

 

421 

Pedagogical and epistemic beliefs of pre-service secondary 

mathematics teachers: A pilot study 

Margaret Marshman 
University of the Sunshine Coast 

<mmarshma@usc.edu.au> 

Anne Bennison 
University of the Sunshine Coast 

<abenniso@usc.edu.au> 

 

As problem solving and reasoning are best suited to constructivist teaching approaches, 

initial teacher education courses should promote beliefs aligned to these approaches. 

This pilot study investigated the beliefs of a small cohort of secondary mathematics pre-

service teachers (PSTs) and their intended pedagogical practices. Data from an online 

survey were analysed using descriptive statistics and data from interviews were coded using 

content analysis to identify consistency between the PSTs’ beliefs and their intended 

pedagogical practices. The PSTs’ beliefs could be categorised as constructivist or 

developing towards constructivist and their pedagogical beliefs were aligned to their 

intended pedagogical practices.  

  



Research Presentation 

Missen 

2021. In Y. H. Leong, B. Kaur, B. H. Choy, J. B. W. Yeo, & S. L. Chin (Eds.), Excellence in Mathematics 

Education: Foundations and Pathways (Proceedings of the 43rd annual conference of the Mathematics 

Education Research Group of Australasia), p. 422. Singapore: MERGA. 

 

422 

 Teaching 21st Century skills in the mathematics classroom 
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This presentation describes the necessity and difficulties faced by Mathematics teachers 

when working towards implementing 21st Century skills. While the experience and 

examples come from the Australian Context, the difficulties are faced across most countries 

and jurisdictions. The presentation introduces two approaches to incorporating these 21st 

Century skills but admits that much work still needs to be done to support teachers to do this 

successfully. 
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In this presentation, we report on more detailed evidence that shows self-similarity in 

the Hands, Head and Heart (3H) framework (Tan et al., 2021) for curriculum review. We 

describe two examples where the framework was validated: (a) pre-service teachers’ surveys 

and (b) meeting transcripts between the committee members. The analysis of the data 

uncovered both the interactions and the self-similarity of 3H domains, both of which are the 

key features of the 3H framework. 
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The purpose of this presentation was to examine MERGA research papers in 

Mathematics teacher education in the past decade. This presentation includes an analysis 

about the country and university the study was carried out, number of participants, nature of 

teacher education course, research methods and methodologies involved, commonly used 

seminal work, theories and theoretical frameworks, and study findings. Research papers on 

Mathematics teacher education from 2010 to 2019 were downloaded from MERGA website. 

Document analysis was used as the research method. Findings show that most of these 

research papers are focused on pre-service teachers’ mathematical knowledge for teaching 

and there are several under-researched areas. 
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This study builds on Brady and Winn’s (2014) use of metaphors to understand pre-

service teachers’ attitudes towards mathematics. 32 pre-service teachers (PSTs) across early-

childhood, primary and secondary initial teacher education (ITE) courses completed 

metaphors on their attitudes towards mathematics in Week 1 of a compulsory mathematics 

content unit. They reflected on these metaphors in the final week of the unit. Many PSTs 

demonstrate a negative emotional disposition towards mathematics (Harper & Daane, 1998), 

and this was reflected in students’ initial metaphor. Upon reflection, while PSTs’ metaphors 

did not change dramatically, many commented on an increase in confidence towards 

mathematics. The study emphasises the value of a mathematics content unit for PSTs. 
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The COVID19 school closures forced many primary school teachers to adopt relatively 

unfamiliar remote-teaching practices in mathematics, and other learning areas. Given 

primary school mathematics experiences significantly influence students’ ongoing 

engagement with mathematics (Larkin & Jorgensen, 2016; McPhan et al., 2008), it is 

important to understand how this disruption impacted mathematics pedagogies. Drawing on 

data from semi-structured interviews with Australian primary teachers from two separate 

studies, we apply the Framework for Engagement with Mathematics (Attard, 2014) to 

examine the pedagogies employed during school closures. We identify challenges and 

opportunities revealed by these pandemic experiences that can be addressed to develop the 

engaging use of online pedagogies in primary school mathematics. 
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Early number sense, including subitizing and composing, is fundamental for 

mathematics (Clements & Sarama, 2007; Samara & Clements, 2009). Multi-touch digital 

technologies can afford foregrounding fingers and gesture in experiencing and developing 

number sense (Baccaglini-Frank et al., 2020). Researchers used iterative stages of analytic 

memoing, coding, and theming to qualitatively analyse weekly videos of 18 4-5-year-old 

pre-schoolers playing the multi-touch number sense digital game Fingu for five weeks. 

Initial findings include: (a) use of subitising, composing, and less commonly, counting 

strategies, with corresponding finger patterns; and (b) strategy use patterns, often evident 

when encountering challenges. Potential implications include relevance of gesture, 

quantification strategies and flexible strategy use in developing early number sense. 
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Teachers spend part of each day communicating with their students. During this time 

important aspects of students’ mathematical thinking are noticed. Teachers then interpret 

these moments and make decisions on how to act (Jacobs & Empson, 2016). The online 

environment offers teachers a different setting in which to notice student’s mathematical 

thinking. Previous research in this area focuses on what teachers notice and why these 

moments might be worthy of teachers’ attention (Sherin et al., 2011).  In this study, informal 

interviews were conducted with primary school teachers on two separate occasions to 

investigate what cues lead teachers to noticing moments of mathematical significance. In 

this short communication, I present findings from the first round of interviews that were 

conducted while teachers were engaged in online learning with their students. The online 

environment provided different opportunities and cues for teachers to notice students’ 

mathematical thinking and dispositions.  
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STEM capability is accepted as one of the key competences necessary for creative 

thinking and problem solving. Many countries consider the issue of competence in STEM 

as important and incorporate strategies for its development during schooling, at the highest 

policy level (e.g., the USA). Students, however, sometimes perceive individual STEM 

disciplines (e.g., mathematics, science) as irrelevant abstract subjects dominated by rules 

and formulae. Perceptions such as these may deter them from studying STEM subjects and 

negatively influence their facility in them. Consequently, teachers of STEM need to employ 

explicit teaching strategies to urge students to engage more in learning tasks.  

Research in STEM education suggests that the development of STEM competency 

requires effective learning environments. One of the elements evident in effective learning 

environments is the use of varied representations (e.g., visual, symbolic) and opportunities 

for students to make connections between them (sometimes referred to as “representational 

competence”). Although such practices have been advocated in the teaching of mathematics 

and science for some time, recently there has been a renewed focus on the use of 

representations in the teaching and learning of STEM (e.g., Glancy & Moore, 2013).  

Working with representations plays a critical role in helping students develop flexible 

thinking and problem solving, and provides multiple entry points and access to the study of 

individual STEM subjects. The ability to create effective learning environments, inclusive 

of explicit strategies to develop students’ representational competence, is one element of 

teacher knowledge. Expertise in this area is key to achieving desirable STEM learning 

outcomes.  

Developing teacher knowledge is a focus of professional learning initiatives. Here we 

report the progress of an interdisciplinary learning circle (Using Multiple Representations in 

Mathematics and Science Teaching Practices) that met regularly over the course of a school 

semester to explore the use of representations in teaching and learning of STEM (with a 

focus on mathematics and science). The group developed their own understandings of 

representational competence, culminating in the development of learning tasks aimed at 

improving representational competence of mathematics and science undergraduates.  
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Orchestrating interesting and informative math activities within the limited classroom 

time is a complex task. Teachers need to master the game and course content at the same 

time and encourage students to participate in the construction of the concept of decimals. 

Through interesting mathematics activities, students are motivated to participate in the 

classroom, so that they can experience and construct models of mathematical concepts. This 

article aims to use the perspective of modelling as an analytical structure to understand how 

the mathematics grounding activities (MGA) are used in class and further to know its 

teaching effectiveness. In this study, we applied a hybrid approach. Participants are 28 third-

grade students from urban schools and a teacher who has been teaching for 20 years. Data 

collection included observation videos, semi-structured interviews in five classes, and a 

learning attitude scale.  

The results revealed that : (i) The teaching of the teacher in a decimal unit combined 

with MGA (The Game of Adding and Subtracting Decimal Numbers) mostly corresponds 

to the modelling teaching stage such as model construction, model validation, and model 

application; (ii) The teacher often use students’ problem-solving results as teaching materials 

and invited students to evaluate, compare, and explain their peers’ answers; (iii) If necessary, 

the teacher will be given a question as scaffolding integrate students’ responses and re-

narrate to help students construct and validate models; (iv) Using MGA in the classroom can 

improve students' interest in mathematics learning and self-confidence. (v) Students hoped 

that the mathematics class can be conducted like MGA. 
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Both in New Zealand and internationally, diverse groups of people including indigenous, 

migrant, and other minority communities are under-represented in mathematics with an 

accompanying narrative or “gap story” in relation to achievement within school systems 

(Faulkner et al., 2019; Martin, 2019). Arguably, the privileging of white middle-class ways 

of knowing and being in the mathematics classrooms has led to these ongoing deficit 

discourses in mathematics education (Adiredja & Louie, 2020). Within the context of New 

Zealand, Pāsifika and Māori communities have been positioned within a deficit framing and 

a subsequent outcome has been a lack of awareness of the rich mathematics within these 

cultural groups. One way to challenge and disrupt deficit discourses is to highlight the 

strengths and resources of marginalized communities through a focus on mathematical funds 

of knowledge. This presentation will focus on the stories of mathematics at home and in the 

community from Pāsifika and Māori students from New Zealand and Niue (a small Pacific 

nation) to highlight what we can learn from the voices of minority communities.  
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One of the barriers for novice STEM teachers to implement integrated STEM education 

with mathematics at its core is the development of teaching materials (e.g., Anderson et al., 

2020). To break through this, we focus on mathematics textbooks (Fujii, 2016) as an 

important resource for teachers to design and find appropriate materials. The aim of study is 

to explore the possibility of translating mathematics textbooks into STEM teaching 

materials. We will focus on the “paper helicopter material”, which is a statistical material in 

a Japanese seventh-grade mathematics textbook (Okamoto et al., 2016), and analyse the 

concepts and ideas in STEM fields contained in the material. The implications for teachers 

and teacher educators of the transformation of mathematics textbooks into STEM materials 

will be discussed. 
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In this presentation, I report on the pedagogical actions of one primary school teacher to 

provide equitable opportunities for all students to learn mathematics. Data were collected in 

one New Zealand primary school mathematics classroom over a year-long investigation 

examining how classroom environments can be restructured and revisioned as a means of 

striving toward equity. Initial attempts by the teacher to create a reform-style collaborative 

learning environment were impeded by issues of status. Status issues arise when 

generalisations relating to notions of other’s perceived intellectual ability, social advantage, 

or cultural difference are made by peers (Cohen & Lotan, 1995; Dunleavy, 2015; 

Featherstone et al., 2011; Shah & Crespo, 2018). These generalisations create status 

hierarchies, which in turn affect student engagement in learning mathematics (Cohen, 1997; 

Langer-Osuna, 2016). In class, four students afforded themselves high status during 

mathematics lessons and dominated classroom discussions. The imbalance in status impeded 

all students’ access to learning mathematics. Through critical reflection and enactment of 

specific pedagogical actions, the teacher mitigated these status issues, and pathways to 

learning mathematics for all students were created.  
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We report on initial stages of a study where a group of eight primary school mathematics 

teachers, guided by the first author, work within a Community of Practice (Wenger, 1998) 

to explore ways of integrating music note values into their teaching of fractions to learners 

in Years 4 to 6. The teachers trial, reflect on, and adapt strategies to exploit opportunities 

deriving from synergies between mathematics and music, and, in so doing, pursue the dual 

curriculum goal of deepening young learners’ conceptual understanding of fractions while 

simultaneously helping them recognise the beauty and elegance of mathematics as a human 

activity. 
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A teacher's ability to effectively differentiate instruction in the classroom is crucial in 

catering for student individuality and diversity, especially in the context of inclusive 

learning. Tomlinson (2004) defines differentiated instruction as a pedagogical approach 

where teachers modify curriculum content, proactively develop a variety of teaching 

strategies, and continually revisit the desired product of learning. The goal of the teacher in 

a differentiated classroom, therefore, is to allow students to make connections with their 

prior learning and build upon their knowledge quickly and efficiently.  

In the secondary mathematics classroom, however, the most common approach used to 

address diverse learning needs is to place the students into homogenous ability groupings 

(“streaming” or “tracking”). A flexible-grouping alternative, heterogeneous grouping, 

assembles a mixture of abilities in the same classroom, aiming to create a well–rounded 

blend of all levels that allows higher achieving students to mentor their peers in a supportive 

and cohesive environment, promoting the concept of inclusive education. 

Differentiated instruction offered in heterogeneous groupings could foster positive 

learning environments in the Australian secondary mathematics classroom. Any potential 

advantages, however, such as embracing diversity in a way that provides for individual 

growth in learning (based on a student’s ability, interest and readiness levels) have not been 

fully investigated. Therefore, the present study focuses on the ability and motivation of 

mathematics teachers to implement differentiated instruction effectively and sustainably and 

to thereby provide a new model of learner engagement.  

This presentation outlines a prototype practice framework for mathematics teachers 

designed to transform mathematics education by leveraging recent progress in adapting 

theory to practice. Implementation of the framework should enable mathematics teachers, 

regardless of teaching experience, to progress on a continuum of practice, leading to 

differentiated instruction that is integral to their teaching. The framework engages 

collaboration and co-creation using a design-based implementation approach (Woolcott et 

al., 2019), in conjunction with a strategic focus on the guiding questions that form the basis 

of generative dialogue (Adams et al., 2019).  
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Reflecting upon mathematical competency: An appreciative inquiry  

 

A key principle underlying the Reggio Emilia approach is the recognition of children’s 

existing capabilities and competencies (Infant-Toddler Centres and Preschools, 2010). 

Therefore, this presentation reports an appreciative inquiry into mathematical competency 

situated within a Reggio Emilia inspired primary school in South Australia (McCluskey & 

Moyse, 2020). This appreciative inquiry aimed to uncover teachers’ use of language to 

describe children’s mathematical competencies alongside identifying characteristics of 

effective practice (Gaffney & Faragher, 2010) to illuminate a sense of reciprocity between 

learning and teaching. This involved an iterative process of reflecting upon documented 

stories of mathematical learning and practice. Pedagogical themes emerging from the inquiry 

are identified and areas for further research are identified. 
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This presentation provides an overview of the development and trialling of a Spatial 

Reasoning Mathematics Program (SRMP) in one cohort of 30 students over an 18-month 

period in Grades 3 through 4. Integral to a larger study, Connecting Spatial Reasoning with 

Mathematics Learning*, the SRMP embedded transformation skills in learning sequences 

comprising repeating and growing patterns, 2D and 3D relationships, structuring area and 

perimeter, directionality and perspective taking. There were significantly better gains by 

the experimental group on the Pattern and Structure Assessment-2 (PASA-2) measure of 

awareness of pattern and structure, and on the PASA-Sp assessment of spatial ability at 

post-SRMP. There were no significant differences found between groups on the 

PATMaths4 test of mathematics achievement. Qualitative analyses indicated that students 

developed complex spatial concepts that supported their mathematical reasoning, well 

beyond curriculum expectations.  
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Fluency is regarded as a key proficiency in learning mathematics (Sullivan, 2011). Such 

fluency requires strategic flexibility (Threfall, 2009) underpinned by rich connections and 

adaptive expertise (Baroody & Dowker, 2003). Whilst Australia has recently introduced 

numeracy learning progressions (Australian Curriculum, Assessment and Reporting 

Authority [ACARA], 2000), there is little evidence of guidance for teachers to help students 

make rich connections. I draw on Lakoff and Núñez’s (2000) theory of grounding metaphors 

to explore how the two source domains (an object collection domain and motion domain) 

may be used to underpin connections in calculation strategies in additive and multiplicative 

thinking.  
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We argue that affective research in mathematics is compelling when affect is explored 

within the mathematics classroom and in relation to classroom practices. We therefore used 

a systematic scoping review methodology (Peters et al., 2020) to identify a notably small 

data corpus of approximately 250 papers relating to mathematical classroom practice and 

student affect. Initial analysis described a range of classroom practices employed in mainly 

upper-primary and secondary school. Classroom practices were described to varying depths, 

including use of technology, teacher interactions, and collaborative group work, and were 

related to a range of, often poorly-defined, affective constructs. 
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Video recordings have been shown to be effective in supporting pre-service teachers to 

better understand their own practice (Balzaretti et al., 2019, Clark et al., 2018). In our current 

research we explore the ways in which 360degree video can extend this, by creating an 

immersive experience for pre-service teachers to review their own practice from multiple 

perspectives. We present examples of pre-service teachers of mathematics’ emerging 

understandings of their own practice and discuss ways in which their ability to ‘notice’ 

becomes a key element of their development. 
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prompts to support online learners in mathematics 

Lisa O’Keeffe 
University of South Australia 

<Lisa.OKeeffe@unisa.edu.au > 

Bruce White 
University of South Australia 

<Bruce.White@unisa.edu.au > 

Amie Albrecht  
University of South Australia 

<Amie.Albrecht@unisa.edu.au> 

Chelsea Cutting 
University of South Australia 

<Chelsea.Cutting@unisa.edu.au> 

 Bec Neil 
University of South Australia 

<Bec.Neil@unisa.edu.au > 

 

Collaboration has been shown to be beneficial when problem solving in mathematics 

(Retnowati et al., 2017); however, it is difficult to achieve this collaboration in an online 

teaching and learning environment. As part of a project focused on exploring the potential 

of 360degree video to support and develop online learners’ collaborative problem-solving 

experiences, the authors have video recorded groups of university mathematics students 

undertaking group problem solving. In the initial analysis of this 360degree video data, the 

theme of external (to the group) and internal (to the group) prompts emerged. We will present 

two examples of the ways prompts supported students to persist with working on their 

problem.  
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Early numeracy skills and spatial reasoning skills are both key predictors of later 

mathematics learning (e.g., Nguyen et al., 2016; Verdine et al., 2017), highlighting the 

critical role of preschool mathematics education in supporting mathematics achievement 

through the primary and secondary years. The current observational study engaged a 

nationally representative sample of 1,770 preschool children at the beginning of the 

academic year using a game-based digital activity to capture their patterning, spatial 

language, perspective-taking (a kind of spatial reasoning skill), and a range of numeracy 

skills. This talk will present on the findings, which informs preschool mathematics 

education.  
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Student affect is interwoven with cognition and achievement (Zan et al., 2006), so it is 

vital to understand how affective constructs develop and change. We conducted a quasi-

experimental study in a university mathematics course to test the effects of an intervention 

(Riegel & Evans, in press) on promoting positive assessment-related affect in students (N = 

379). Preliminary results from cross-sectional analysis of Time 1 (baseline) data indicate 

that students’ exam-related self-efficacy is predicted by their prior achievement, gender, 

stress mindset, and emotions. In the analyses to be presented, we will focus on how students’ 

assessment-related affect changed during the semester and its relationship with their 

academic performance.  
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Drawing on the claim that the zone of proximal development (Vygotsky, 1978) is multi-

directional (Abtahi et al., 2017), we describe collaboration between an English-medium 

after-school mathematics club facilitator and four Year 3 learners in solving the sharing of 

24 candy-sticks equally among five people. We show how, in the course of the interaction, 

the “more knowledgeable other” role shifted between participants, and how, despite the 

children’s lack of English proficiency, the facilitator’s prompting, in combination with the 

children’s use of whiteboards to diagrammatically represent and share their thinking, and the 

physical presence of the candy-sticks, generated productive learning engagement towards 

the solution.  
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In recent years, mathematics education scholars have shown an increasing interest in 

teachers’ professional noticing (e.g., Choy & Dindyal, 2020; Kaiser & König, 2019; Philipp 

et al., 2014; Scheiner, 2016). This presentation explores shifts in prospective mathematics 

teachers’ frames in noticing students’ mathematical thinking over time. The focus is on what 

prospective teachers attend to students’ mathematical thinking, how they talk about what 

they notice, and in what ways both what they notice and how they talk about it changes over 

time.  

In particular, two changes in prospective teachers’ noticing are discussed in detail. First, 

prospective teachers changed what they have paid attention to students’ mathematical 

understandings. Initially, teachers attended to missing aspects of students’ mathematical 

thinking, and later, they attended to productive aspects of students’ mathematical thinking 

that serve as resources for students’ further learning. Second, prospective teachers changed 

with regard to the ways they have interpreted students’ mathematical thinking. Initially, 

teachers interpreted students’ mathematical understandings as faulty and deficient compared 

to the canonical understanding of mathematics. Later, they interpreted the same 

understandings as productive and valuable in their own right. 

Analyses of data of prospective teachers’ written responses to students’ mathematical 

work are presented, and two framings of teacher noticing are discussed that resulted from 

these analyses: a deficit-based framing and a strength-based framing. These two framings 

are considered fundamental in accounting for the changes in teachers’ noticing of students’ 

mathematical thinking.  

The presentation concludes with the outline of a model of teacher noticing that suggests 

that noticing is directed by teachers’ framing (see Scheiner, 2021). More important, perhaps, 

this model suggests that perception and cognition reinforce each other, and that the teacher 

is an integral part of the world of classroom events. Implications of framing theory for the 

notion of teacher noticing are discussed, and its consequences for the study and development 

of teacher noticing are outlined.  
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Traditional approaches to number sense (e.g., Clements et al., 2019) insufficiently 

accommodate embodiment, including gestures, which can support learning when 

conceptually congruent (Segal et al., 2014). This study examined weekly video recordings 

of 66 4-6 year old students regularly interacting with the multi-touch number sense app 

Fingu for 3-5 weeks. Iterative qualitative analyses included microgenetic learning analysis, 

analytic memoing, and eclectic coding. Four main types of gestural number sense emerged 

from this context: gestural subitising, gestural estimating, gestural composing, and gestural 

counting, plus subtypes and combinations. These can be considered conceptually congruent, 

embodied versions of number sense, but can also support reconceptualizing number sense to 

account for embodiment. 
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A well thought-through mathematics curriculum is central to any efforts aimed at 

improving mathematics teaching and learning. Seeing curriculum as a collection of learning 

experiences—“the interaction between the learner and the external conditions in the 

environment to which he can react” (Tyler, 1949, p. 63)—it is crucial that curriculum 

documents are clear about the mathematics content to be taught and more importantly, how 

students are taught these ideas. International benchmark assessments, such as TIMSS, have 

provided opportunities for mathematics educators to “pursue questions about what makes a 

difference in those countries for students’ learning of mathematics and science” (National 

Research Council, 1996, p. 2). Therefore, it is not surprising that countries have begun to 

examine the mathematics curricula of other nations to fine-tune their own curricular. 

However, we should be cautious about using observations from these comparisons to 

determine which curriculum is better, or even attempting to synthesise features from 

different curricula to fuse into our own. Instead, these observations can, at best, “point to 

questions for further investigation about educational practices and what they may imply for 

students’ learning” (National Research Council, 1996, p. 3). But what can we learn from 

comparing mathematics curricula across countries? Given that each country has its own 

unique historical, cultural, political, and social contexts, it is very challenging to pose 

relevant questions and find answers that will help to refine the current mathematics 

curriculum. In this roundtable discussion, we will use examples from two contrasting 

economies—New Zealand and Singapore—to discuss the kind of questions and insights we 

can derive from such comparisons. This will have important implications for what and how 

we can learn from comparing mathematics curricula across countries. 
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