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This symposium will draw on the evidenced-based learning progressions for multiplicative 

thinking, algebraic reasoning, geometrical reasoning, and statistical reasoning presented at 

previous MERGA conferences (see references by symposium authors in the papers that 

follow). The four papers will consider key shifts in thinking identified within each progression, 

without which students’ progress may be seriously constrained.  

 

Paper 1: A Disposition to Attend to Relationships: A Key Shift in the Development of 

Multiplicative Thinking  

[Dianne Siemon] 

This paper draws on multiple data sources to better understand the shift from additive to 

multiplicative thinking, which is crucial to all further participation in school mathematics. 

Paper 2: Key Shifts in Students’ Capacity to Generalise: A Fundamental Aspect of Algebraic 

Reasoning  

[Max Stephens, Lorraine Day, & Marj Horne] 

This paper will elaborate five levels of algebraic generalisation and two key understandings 

based on an analysis of students’ responses to RMFII algebraic reasoning tasks. 

Paper 3: Cognitive Flexibility and the Coordination of Multiple Information in Geometry and 

Measurement  

[Rebecca Seah & Marj Horne] 

This paper analyses students’ solutions to problems in geometry and measurement situations 

in order to identify key components needed to nurture reasoning.  

Paper 4: Facilitating the Shift to Higher-order Thinking in Statistics and Probability 

[Rosemary Callingham, Jane Watson, & Greg Oates] 

Students have difficulty moving from concrete representations and procedural mathematical 

statistics to context-based appreciation of data. This paper examines the barriers to this shift 

to higher-order thinking based on the Statistical Reasoning Learning Progression.
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This paper draws on numerous data sources to better understand the shift from additive to 

multiplicative thinking in years 4 to 9. Research studies that have used the Scaffolding 

Numeracy in the Middle Years assessment tasks have found that while students can be supported 

to move through the early and upper zones of the Learning and Assessment Framework for 

multiplicative thinking, it has been difficult to move students through Zone 4 at the same rate. 

A closer examination of item responses at this level reveal that a disposition to notice and work 

with relationships between quantities may explain this phenomenon. 

Access to multiplicative thinking has long been recognised as critical to success in school 

mathematics in the middle years and beyond (e.g., Harel & Confrey, 1994; Hilton et al., 2016; 

Lamon, 1993; Siemon et al., 2006). However, many students at this level do not have access to 

this critical capacity (Brown et al., 2010; Siemon, 2019) suggesting that the transition from 

additive to multiplicative thinking is more complex than previously recognised (e.g., Clark & 

Kamii, 1996; Van Dooren et al., 2010; Vergnaud, 1983). 

Research studies that have used the Scaffolding Numeracy in the Middle Years (SNMY) 

assessment tasks have found that while students can be supported to move through the early 

and upper zones of the Learning and Assessment Framework (LAF) for multiplicative thinking 

(Siemon, 2016, 2019), this appears not to be the case for Zone 4, which is where students are 

starting to use multiplicative thinking on a more consistent basis (see Figure 1 for examples). 

This and the fact that the proportion of students in Zone 4 is typically higher than in any other 

zone confirms the difficulty of acquiring multiplicative thinking, but it also prompts the 

question, “What can be learnt about the barriers to multiplicative thinking from a closer 

analysis of student responses to tasks that span Zone 4?” 

Solves more familiar multiplication and division problems involving two-digit numbers (e.g., Butterfly 

House c and d, Packing Pots c, Speedy Snail a). 

Tend to rely on additive thinking, drawings and/or informal strategies to tackle problems involving larger 

numbers and/or decimals and less familiar situations (e.g., Packing Pots d, Filling the Buses a and b, 

Tables & Chairs g and h, Butterfly House h and g, Speedy Snail c, Computer Game a, Stained Glass 

Windows a and b). Tends not to explain their thinking or indicate working. 

Able to partition given number or quantity into equal parts and describe part formally (e.g., Pizza Party 

a and b), and locate familiar fractions (e.g., Missing Numbers a). 

Beginning to work with simple proportion, for example make a start, represent problem, but unable to 

complete successfully or justify their thinking (e.g., How Far a, School Fair a and b).  

Figure 1. Rich text description of Zone 4 (Siemon et al., 2006). 

Approach 

The Stained Glass Windows task (Figure 2) was selected for analysis as the item difficulties 

ranged from Zone 3 to Zone 7 and the setting, while accessible, did not conform with the more 

familiar multiplicative models implicit in problems such as Packing Pots (i.e., equal groups or 

arrays). It was also selected because the context invited additive thinking, which tested the 

extent to which students could see past that to the underlying multiplicative structure (e.g., 

Vergnaud, 1983), which was hinted at in the task stem. These same criteria were met by another 
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task, Canteen Capers, which involved lunch order options given two choices of rolls, four 

choices of filling, and three choices of drink. The first item required students to identify the 

number of options for a roll with a specified filling and a drink item (2 x 3). The second item 

required them to determine if everyone in a class of 26 children could have a different lunch 

order made up of a roll, filling, and drink. In both cases students were asked to explain their 

reasoning using as much mathematics as they could. 

 

Figure 2. Stained Glass Windows task from SNMY Assessment Option 1 (Siemon et al., 2006). 

Data sets from four different projects are used in the analysis reported here. That is, the 

SNMY project (Siemon et al., 2006a), the Reframing Mathematical Futures Priority project 

(Siemon, 2016), the Reframing Mathematical Futures II project (Siemon et al., 2018), and the 

Growing Mathematically—Multiplicative Thinking project (Callingham & Siemon, 2021). The 

student populations across the four projects ranged from Year 4 to Year 9 of whom 

approximately 65% were from low socio-economic backgrounds. 

A total of 11,775 students (67% in Years 7 or 8) responded to the Stained-Glass Windows 

task and 4985 students (83% in Years 7 or 8) to the Canteen Capers task. Student responses 

were marked by project schoolteachers using partial credit scoring rubrics and entered into a 

deidentified spreadsheet which was forwarded to the research team for analysis.  

Analysis and Discussion 

Table 1 shows the proportion of students scoring a 1, 2, or 3 on items a, b, and c of the two 

tasks with the last entry for each item indicating the proportion of students providing a 

multiplicative response. The very low proportion of students evidencing either an additive or a 

multiplicative response to both problems is at odds with the suggestion that strategy usage is 

impacted by the numbers involved or the extent of the challenge (Downton & Sullivan, 2017; 

Larsson et al., 2017). It is undoubtedly the case that “some students use strategies that are only 

as complex as they need” (Downton & Sullivan, 2017, p. 303). However, the proportion of 

students providing a correct answer supported by additive reasoning (i.e., a score of 2 on items 
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a and b of Stained Glass Windows and item a of Canteen Capers) is surprisingly low, given 

that the majority of the students were from Years 7 or 8. 

Table 1 

Proportion of Students Scoring a 1, 2, or 3 on Each Item of Each Task 

 Stained Glass Windows (n = 11,775) Canteen Capers (n = 4985) 

Score A b c a B 

1 22.9% 29.5% 11.3% 22.2% 29.8% 

2 28.5% 13.8% 22.4% 22.6% 24.9% 

3 13.7% 18.5%  17.8%  

An insight into why this might be the case is afforded by the item difficulties shown in 

Table 2 for the Stained Glass Windows task. On the ordered list of item difficulties produced 

by the Rasch analysis a score of 3 on item a (sgwa3) was located towards the top of the scale 

in Zone 7. However, the item difficulties associated with recognising and using the same 

relationship in items b and c (i.e., sgwb3 and sgwc2) were located in Zone 6, which suggests 

that noticing the rule is harder than applying the rule despite the strong suggestion of the rule 

in the stem (2 x 2) and the likelihood that 4 and 16 would be recognised as square numbers.  

Table 2 

Scoring Rubrics for Stained Glass Windows by Item Difficulty (LAF location) 

Item Rubric (item difficulty code) Score Zone 

A Incorrect based on inaccurate drawing and/or counting of triangles, 

or correct with little/no explanation (sgwa1) 
1 3 

 Correct (16 triangles), with evidence of additive reasoning based on 

drawing and counting (sgwa2) 
2 4 

 Correct (16 triangles), with evidence of multiplicative reasoning 

based on 4 x 4 (sgwa3) 
3 7 

B Incorrect based on inaccurate drawing and/or counting of triangles, 

or correct (81 triangles) with little/no explanation (sgwb1) 
1 3 

 Correct (81 triangles), with evidence of additive reasoning based on 

drawing and counting, or inappropriate use of area formula (e.g., L x 

W) (sgwb2) 

2 4 

 Correct (81 triangles), with evidence of multiplicative reasoning 

based on pattern (e.g., 9 by 9) (sgwb3) 
3 6 

C Advice based on additive thinking (e.g., “2 less each time you go 

up”) (sgwc1) 
1 5 

 Correct, advice based on rule (e.g., 26 x 26) (sgwc2) 2 6 

A similar phenomenon is observed for the Canteen Capers task where the item difficulties 

ranged from Zone 2 to Zone 8. Recognising and providing a multiplicative explanation for part 

a (e.g., “It’s 6 because for each roll she could have one of the 3 drinks”) was located in Zone 

8. For item b, determining that there were enough different options for each child in a class of 

26 on a systematic basis that suggested use of 2 x 4 x 3, was located in Zone 6. Again, this 

suggests that noticing the relationship was harder than applying it.  

There are a number of possible explanations for the difficulty of these items that warrant 

further investigation. One is the absence of a familiar multiplicative model, which is known to 

facilitate multiplicative understanding and calculation (Larsson et al., 2017). However, the fact 
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that multiplicative thinking is elicited by these tasks despite this suggests that something more 

is needed to support the shift from additive to multiplicative thinking, particularly as models 

connected to solution strategies can invoke instrumental responses (Skemp, 1976) making it 

difficult to discern multiplicative thinking.  

Apart from the obvious need to offer a broader range of multiplicative tasks and contexts 

that are not readily connected to students’ existing models of multiplication (e.g., Downton & 

Sullivan, 2017), the analysis here suggests that the “something more” is a disposition to attend 

to relationships between quantities in ways that look for generalities rather than particulars. In 

other words, it is about an alertness to and appreciation of mathematical structure (e.g., Mason 

et al., 2009) and multiplicative structure in particular (e.g., Mulligan, 2002; Vergnaud, 1983). 
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This paper will elaborate five levels of algebraic generalisation based on an analysis of students’ 

responses to Reframing Mathematical Futures II (RMFII) tasks designed to assess algebraic 

reasoning. The five levels of algebraic generalisation will be elaborated and illustrated using 

selected tasks from the RMFII study. The five levels will be matched against the eight zones 

identified in the RMFII study supported by its Rasch analysis. We identify two shifts where 

students’ capacity to generalise appear difficult to navigate. The first being where students move 

from noticing and describing regularities to formalising these regularities into verbal or 

symbolic expressions. The second is where students use their understanding of equivalence 

based on relational thinking to write and recognise equivalent algebraic expressions.  

Key ideas implicit in the idea of generalisation as they relate to the algebraic reasoning 

tasks of RMFII have been presented by authors such as Love (1986) and Mason (1996), who 

suggested that the generalisation of a pattern, at its core, rests on the capability of noticing 

something general in the particular. Kieran (2007), however, noted that this feature alone may 

not be sufficient to characterise the algebraic generalisation of patterns, arguing that, in 

addition to seeing the general in the particular, students need to be able to express their 

generalisation algebraically, drawing on explicit reasoning in terms of justification and 

explanation. These points are directly relevant to the tasks used by RMFII to assess algebraic 

reasoning in which students were invited to explain their reasoning. Kieran’s ideas will feature 

clearly in the third, fourth and fifth levels of a progression for algebraic generalisation advanced 

in this paper. 

These five levels were enumerated in a previous paper (Stephens et al., 2021). They are: 

Working with particular instances; Noticing and describing regularities and patterns; Forming 

expressions—either verbal or symbolic; Using equivalence to examine different expressions of 

the same relationships and expressions; and Explicit generalised reasoning where students 

move between the particular to the general and vice versa, are able to identify and describe 

what varies and what stays the same, and work confidently with generalised expressions 

including their representation in different forms. 

The research in RMFII developed an effective evidence-based learning progression with 

associated tasks for students’ algebraic reasoning (Day et al., 2017). Nearly all tasks are 

graduated (multi-part) and designed to elicit progressive levels of students’ algebraic 

generalisation, which is a key element of algebraic reasoning. Assessment tasks of this kind 

are helpful for classroom teachers to focus on the key shifts in students’ thinking in order to 

foster their capability in this area. This paper will firstly show how the existing RMFII tasks, 

supported by Rasch modelling, align with and illustrate our five-level categorisation of 

algebraic generalisation. Secondly, the paper will show teachers of mathematics in the middle 

school years the importance of having all students progress at least to the third level of algebraic 

reasoning. 

Drawing on the Rasch modelling (Bond & Fox, 2015) that was used in RMFII to rank the 

task item difficulty of scored responses across eight zones of algebraic reasoning, the Learning 

Progression for Algebraic Reasoning (LPAR) is related to the five levels of algebraic 
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generalisation. In our recent paper (Stephens et al., 2021), several of the RMFII tasks were 

used to illustrate and validate the five levels of algebraic generalisation and in this paper one 

task, the Relational Thinking task, is used to exemplify how the LPAR zones relate to the levels 

of generalisation (Table 1). The Relational Thinking task (ARELS) is comprised of seven task 

items (ARELS1-ARELS7). The coding in the right column refers to the task items enumerated 

in Table 1, and to the score obtained for that item. For example, in Table 2, ARELS4.3 refers 

to the fourth relational thinking task item for which a score of 3 has been obtained. 

Table 1 

Relational Thinking Task Items and Rubrics 

Item no. Task item Task item rubric 

Score 

ARELS1 What numbers would go in these 

boxes to make a true number 

sentence (the numbers may be 

different).  

Explain your reasoning. 

       + 521 = 527 +  

0  No response or irrelevant response 

1  Incorrect response but suggest the difference of 6 is 

recognised in some way (e.g., add 6 to the right hand 

side) 

2 Two correct numbers given (e.g., 13 and 7; 527 and 521) 

but little/no reasoning. 

3  Two correct numbers given where the number on the left is 

6 more than the number on the right (e.g., 100 and 94) 

with reasoning that reflects the relationship between 521 

and 527 (difference of 6). 

ARELS2 Find a different pair of numbers 

that would make the number 

sentence above true. 

0 No response or irrelevant response 

1 A different and correct pair. 

ARELS3 Describe how you could find all 

possible pairs of numbers that 

would make this a true number 

sentence. 

0 No response or irrelevant response 

1 Incomplete attempt based on previous answers (e.g., add 2 

more to both). 
2   Statement regarding the difference of 6 (e.g., number on 

the left must be six more than the number on the right) or 

expression showing the difference (e.g., a + 6, and a) 
ARELS4 What numbers would go in these 

boxes to make a true number 

sentence (the numbers may be 

different). 

      – 521 =       – 527 

Explain how you worked it out. 

0  No response or irrelevant response 

1 Incorrect answer (possibly due to errors in calculation) but 

recognises relationship between 521 and 527 (difference 

of 6).  

2 Two correct numbers given (e.g., 613 and 619) but 

little/no reasoning, may include some calculations. 

3 A pair of correct numbers given where the number on the 

right is 6 more than the number on the left (e.g., 600 and 

606) with reasoning that reflects the relationship between 

521 and 527 (difference of 6). 

ARELS5 Find another pair of numbers 

that would make the number 

sentence above true. 

0 No response or irrelevant response 

1   A different and correct pair. 

ARELS6 Describe how you could find all 

possible pairs of numbers that 

would make this a true number 

sentence. 

0 No response or irrelevant response 

1 Incomplete attempt based on previous answers (e.g., add 

10 to both). 

2  Statement regarding the difference of 6 (e.g., number on 

the right must be six more than the number on the left) or 

an expression showing the difference (e.g., a and a + 6) 

ARELS7 What can you say about the 

relationship between c and d in 

this equation? 

c × 2 = d × 14 

0 No response or irrelevant response 

1  Specific solution provided (e.g., c must be 7 and d must 

be 1 to make it a true number sentence) or a general 

statement (e.g., c is bigger than d) 

2 Statement correctly describes relationship (e.g., c is 7 

times the number d) 
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The first level of our classification of algebraic generalisation is working with particular 

instances, where students find solutions to simple equivalence situations or extending simple 

growing patterns. For example, in the Relational Thinking task the first part of the task asks 

students to find two numbers that make the number sentence true (ARELS1), and the second 

part of the task asks the students to identify a second pair of numbers that also make the 

statement true (ARELS2). 

The second level of our classification of algebraic generalisation is noticing and describing 

regularities, where students are asked to notice regularities among a sequence of particular 

cases. In these cases, students attend to quantities that stay fixed and those that vary (Radford, 

2006; Rivera, 2013) within the context of the task. This is an important level as the next three 

algebraic generalisation levels rely upon being able to notice regularities. 

Forming expressions, either verbal or symbolic is the third level of algebraic generalisation, 

which extends the noticing of regularities to expressing these regularities, as constants and 

variables in formulae that may be articulated verbally or using symbolic language. To obtain 

all three marks for the ARELS1 task item, students have to provide two correct numbers as 

well as demonstrate reasoning that showed the difference of six relationship. 

Establishing and using equivalence enables students to be able to recognise that 

generalisations may be represented by different symbolic expressions. Students should be able 

to show that different expressions can generate the same number where the same variables are 

used and/or algebraic simplification can be used to show equivalence. It is important for 

students to be able to distinguish situations where although two expressions may look different 

from each other, they are in fact equivalent. 

The final level of our classification of algebraic generalisation is explicit generalised 

reasoning. This is where students can move flexibly between the particular and the general and 

vice versa. Students at this level can identify and describe variables and constants and work 

confidently with generalised expressions. The Relational Thinking task item (ARELS7) asked 

students to comment on the relationship between c and d in the equation c x 2 = d x 14. To 

answer this successfully, students need to understand the equivalent relationship between two 

product expressions, and to generalise a relationship explicitly between the two variables c and 

d, using appropriate mathematical language. 

Table 2 

RMFII Zones and Levels of Generalisation Reported in Stephens et al. (2021) 

Item no. RMFII Zone Level of algebraic generalisation  

ARELS1.1 Zone 1 Level 1: Working with particular instances. 

ARELS1.2 Zone 2 Level 1: Working with particular instances. 

ARELS1.3 Zone 6 Level 3: Forming expressions – verbally or symbolically. 

ARELS2.1 Zone 3 Level 2: Noticing and describing regularities. 

ARELS3.1 Zone 5 Level 2: Noticing and describing regularities. 

ARELS3.2 Zone 6 Level 4: Using equivalence. 

ARELS4.1 Zone 3 Level 2: Noticing and describing regularities. 

ARELS4.2 Zone 4 Level 2: Noticing and describing regularities. 

ARELS4.3 Zone 7 Level 4: Using equivalence. 

ARELS5.1 Zone 5 Level 2: Noticing and describing regularities. 

ARELS6.1 Zone 6 Level 3: Forming expressions – verbally or symbolically. 

ARELS6.2 Zone 6 Level 4: Using equivalence. 

ARELS7.1 Zone 5 Level 2: Noticing and describing regularities. 

ARELS7.2 Zone 7 Level 5: Explicit generalised reasoning. 

From the examination of the Relational Thinking task, coupled with the analysis of three 

other RMFII tasks (Stephens et al., 2021) where several responses were located in Zone 8, it 

appeared that two of the key shifts in students’ ability to generalise are difficult for students to 
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navigate. The first of these key shifts is where students move from Level 2 noticing and 

describing regularities to Level 3 where they formalise this noticing and describing to correctly 

form algebraic expressions, either verbally or symbolically. This is demonstrated by noticing 

and describing regularities appearing in Zones 3 and 4 and the beginning of Zone 5 in the LPAR 

(Table 2), while Level 3, which formalises this in verbal and symbolic algebraic expressions 

does not appear until Zone 6. The second of the key shifts, which students find difficult to 

negotiate, is moving from Level 3 to Level 4 drawing on students’ understanding of 

equivalence based on relational thinking and the writing and recognition of equivalent 

algebraic expressions. This level is evident in Zones 5, 6 and 7 of the LPAR (Table 2). 

As these two key shifts are somewhat problematic for students, it is important that teachers 

provide multiple opportunities for students to identify regularities, identify variables and 

constants, form and communicate expressions, and use equivalence. One way for teachers to 

do this is to utilise rich tasks, such as Garden Beds from maths300 (maths300.com), that 

provide opportunities for students to demonstrate all forms of generalisation. By using several 

rich tasks within different contexts, teachers can ensure that students are being exposed to these 

critical steppingstones in the generalisation process. The RMFII Teaching Advice (Day et al., 

2018) includes references to rich tasks from well-known sources such as maths300, reSolve 

(resolve.edu.au) and nrich (nrich.maths.org) at each of the LPAR Zones, which provide 

teachers with tasks that will assist them to progress students in their algebraic learning journeys. 

The algebraic generalisations exemplified in this paper require students to become 

proficient in using appropriate combinations of language, algebraic representation, and 

mathematical justification. These forms of reasoning and proof are applicable across many 

problem-solving situations and explicitly generalised algebraic reasoning will be necessary for 

students’ continuing study of mathematics. Just as important, this paper has drawn attention to 

assisting all students to navigate successfully Levels 3 and 4 where they learn to form correct 

algebraic expressions either verbally or symbolically, and subsequently become able to 

recognise and work with equivalent expressions. Navigating these two key shifts appears 

essential for students to be able to reason algebraically. 
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Building from the evidence-based learning progression in geometric reasoning from the RMFII 

project, this paper presents data from students’ solutions to three problems in geometry and 

measurement situations to identify key components needed to nurture reasoning. To show 

emerging analytical reasoning students must coordinate multiple pieces of information and 

demonstrate cognitive flexibility in their use of visualisation, diagrams, language, and symbols.  

Understanding, fluency, problem-solving and reasoning are an integral part of becoming 

numerate. Good problem solvers exhibit cognitive flexibility, the ability to coordinate number 

skills, visual-spatial and other cognitive processes such as organising multiple pieces of 

information (Ionescu, 2012). Given the considerable difficulty Australian students face with 

solving problems and justifying their mathematical thinking (Thomson et al., 2017), we seek 

to identify key components needed to nurture reasoning. Geometric reasoning is the ability to 

critically analyse axiomatic properties, formulate logical arguments, identify new relationships, 

prove propositions, and used geometric knowledge in solving measurement problem situations 

(Seah & Horne, 2021b). A draft learning progression was developed based on Battista’s (2007) 

exposition of Van Hiele levels of geometric thinking. Analysis of student data produced an 

evidenced based learning progression comprise of eight thinking zones: Zone 1: Pre-cognition; 

Zone 2: Recognition; Zone 3: Emerging informal reasoning; Zone 4: Informal and insufficient 

reasoning; Zone 5: Emerging analytical reasoning; Zone 6: Property-based analytical 

reasoning; Zone 7: Emerging deductive reasoning; Zone 8: Logical inference-based reasoning. 

We analyse student work in depth to determine how to nurture increasingly sophisticated 

reasoning from informal (Zone 3) through to emerging deductive reasoning (Zone 7).  

Method 

The data source used for this analysis is taken from the Reframing Mathematical Future II 

project. The results of these findings have been published elsewhere. Our aim here is to identify 

significant changes in student thinking by finding factors that cause a shift from Zone 3 to Zone 

7. We do this by analysing students’ responses to three tasks: 1) reasoning about nets (Seah & 

Horne, 2020), 2) making deductions of angle magnitudes (Seah & Horne, 2021a), and 3) 

enlarging a logo and determining its area (Seah & Horne, 2021b) (Figure 1). The geometric 

contexts of these tasks allow students to demonstrate their knowledge and understanding. The 

reasoning required for the net task is Zones 2, 3 and 5. The angle magnitudes task is Zones 2, 

5, 6, and 8. The logo drawing task is Zone 3 and 5. The logo area task is Zones 4 and 7.  

In designing the rubric, we determined that a zero score is given for no response or 

irrelevant responses. A ‘1’ score denoted some recognition of the concepts but not full 

application. A maximum score would be given for a correct response with sound reasoning. 

Scores in between, the number of which depended on the complexity and the context of the 

task, would be given for partially correct answer and reasoning. For example, GCRD1 requires 

either a correct or incorrect enlargement logo drawn so the ceiling score is 2. Conversely, it 

was possible to get some of the angle magnitudes (GANG4) correct and give partial reasoning, 

thus requiring more gradation with a score of 4 being the ceiling. The data analysed came from 

students in 12 trial schools and 32 project schools.  
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GNET 4. Sam thinks he has drawn a net of a cube using six squares but it does not fold up to make a cube. 
What might Sam’s drawing look like? Explain how you know. 

Geometric Angles 2 

A four-sided shape is folded from a sheet of A4 paper using the following instructions.   
Step 1      Step 2        Step 3 

a [GANG3] 
What is the name of this shape?                   
 ________________________________ 
Explain your reasoning. 

b [GANG4] 
Unfold the paper and find the size of each marked angle. 
Angle d = ____________       Angle e = ____________ 
Angle f = _____________               Angle g = ____________ 

Explain your reasoning. 

LOGO 

A designer draws a triangular logo on grid paper. He wants to enlarge the logo so the sides are twice as long.  

a. [GCRD1]   Draw his enlarged logo on the graph.   

b. [GCRD2].  Write the coordinates of the corners A’, B’, and C’ of the new large triangle:  

c. [GCRD3]    If the area of the original logo is 2.25m2, what will the area of the new logo be? Explain how you 
know? 

Figure 1. Sample of assessment tasks on geometric reasoning. 

Findings 

Overall Results 

Students’ responses to the tasks reflected not only their ability to reason, but the extent of 

the task requirement and the exposure they had with the concepts. As shown in Table 1, by the 

number of no responses and correct responses received, the GNET task was the easiest whereas 

GCRD3, which required students to find the area of the enlarged shape, was the hardest.  

Table 1  

Breakdown of Student Responses for Each of the Questions (percentage) 

 GNET4 GANG4 GCRD1 GCRD3 

 Trial Project Trial Project Trial Project Trial Project 

Score n = 233 n = 566 n = 157 n = 270 n = 118 n = 328 n = 118 n = 328 

0 13.2 9.1 38.5 16.3 17.8 30.8 37.3 47 

1 11.4 10.7 28.9 27.4 53.4 38.4 52.5 47 

2 36.5 30.4 18.6 19.6 28.8 30.8 1.7 2.1 

3 38.9 49.8 10.9 22.6   8.5 4 

4   3.9 14.1     

 

In GNET4, 48% of the students used just the information in the question by either drawing 

six squares that would fold into a cube or drew a correct shape but did not provide a reason. In 

the trial data, 39% of students gave a correct response. This improved in the project data. 

Students who gave a correct reason went beyond the information given in the question and 

called on other knowledge, such as visualising the nets from different perspectives. Compared 

to GNET task, the number of no response or irrelevant responses was higher in the GANG4. 

Around 29% of the students showed partial angle knowledge by providing a label (e.g., acute, 

or obtuse) or recognising one angle magnitude; 19% showed emerging analytical reasoning 

giving two angles correctly, with some explanation; and 11% trial and 23% project students 

correctly calculated the angles giving some reasons though often sparce. Logical inference-
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based reasoning, albeit about a simple situation, was shown by 4% and 14% of trial and project 

students respectively who reasoned correctly and deduced all angle magnitudes.  

In the logo task, 18% of the trial students did not draw an enlarged logo and 37% did not 

attempt to calculate the area. More than half of the students (53%) operated within the 

information given in the question by drawing a larger logo in some form although incorrectly 

either by enlarging one dimension only or a larger logo with no attention to the magnitude of 

the enlargement. A similar number (52%) gave a response to the area question that was 

incorrect, often just using the numbers given in the question by doubling 2.25 and did not 

provide units or gave little reasoning. Around 29% correctly enlarged the logo and just over 

2% were able to give a correct area measurement, often using a procedural explanation. Just 

over 8% were able to reason correctly, giving an explanation that recognised that doubling the 

length of all the sides quadrupled the area, thus showing emerging deductive reasoning.  

Types of Reasoning 

Table 2 shows the responses to the three questions. The questions are shown with the score 

given following the dot so that GANG4.1 means a sore of 1 on the question GANG4.  

Table 2 

RMFII Zones of Geometric Thinking 

Zone 2. Recognition GNET4.1 GANG4.1   

Zone 3. Emerging informal reasoning GNET4.2  GRD1.1  

Zone 4. Informal and insufficient reasoning   GRD3.1  

Zone 5. Emerging analytical reasoning GNET4.3 GANG4.2 GRD1.2  

Zone 6. Property-based analytical reasoning  GANG4.3   

Zone 7. Emerging deductive reasoning   GRD3.2 GRD3.3 

Zone 8. Logical inference-based reasoning  GANG4.4   

 

We can see that student responses to these three questions spread across the zones of 

reasoning. For GNET, the move to analytical reasoning appeared to occur with a response 

scored of 3. The two student responses in Figure 2 demonstrate this. Student A used recognition 

of a taught prototype. Student B used visualisation and then used a combination of diagram 

and language to explain the image in their mind and hence their reasoning. 

 
GNET 
Student A 

 

    
Student B 

 

   

Figure 2. Students’ responses on the GNET4 task. 

In GANG4, analytical reasoning emerged with a response score of 2 where students gave 

partially correct answers (usually 45° with no explanation). Some students were starting to 

make connections but tended to explain using benchmarks such as 90°, as demonstrated here 

by student C who used no diagrams. 
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Student C: d and e has the same size angle as you can see, f as everyone knows that it is 90° because it’s a right 

angle and g is an obtuse, which is 180° (wrote 45°, 45°, 90°, 180°). 

Limited ability to explain, use diagram effectively and present a sequential argument show 

clearly in the attempts of the students. The few students who were able to reason deductively 

justified 45° as half of the corner right angle and calculated the 135° either by using the interior 

angles or the straight angle with 45°. For GCRD3, student 10JW27701 shows an attempt to 

calculate area but is just using the numbers given in the question rather than demonstrating 

analytical reasoning in the solution (Figure 3). Meanwhile, student 10YL4700 demonstrates 

sound deductive reasoning showing explanations both algebraically and in words. 

 
10JW27701: Isometric drawing, correct coordinates, incorrect solution 10YL4700:  

Algebraic explanation 

 

 
 
 
I trippled (sic) the 
original area because 
the logo was double 
the size & there are 
three lines so times 
three  
2.25 x 3 = 6.75m2. 

 
 

Figure 3. Students’ responses on the GCRD task. 

To reason analytically or deductively, coordination between the information presented in 

the question with the network of one’s own conceptual understanding is needed. While 

knowing the mathematical concepts is important, the results here demonstrate that students 

needed to visualise the problem in situ, coordinate the information in the question with their 

prior knowledge to obtain a solution and present their argument using diagrams, language, and 

symbols flexibly. Finally, they need to be able to check that their reasoning is sound. In short, 

they need cognitive flexibility. These things need to be explicitly in the curriculum. At the 

moment, visualisation and the flexible use of communication tools is absent. 
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It is increasingly recognised that to be informed citizens and to participate fully in the workforce 

requires an understanding of statistical data and risk. Such understanding is underpinned by 

statistical reasoning. It has been shown, however, that students have difficulty moving from 

concrete representations and procedural mathematical statistics to the context-based 

appreciation of data drawing on proportional reasoning that is becoming increasingly necessary. 

Based on the Statistical Reasoning Learning Progression (SRLP), this paper examines the 

barriers to shifting to higher-order thinking. 

Introduction 

As statistics and probability began to be acknowledged as a fundamental part of the 

mathematics curriculum towards the end of the 20th century (Australian Education Council 

[AEC], 1991), it became important to consider the new challenges for students in mastering 

this part of the curriculum. Although traditionally the other parts of the mathematics curriculum 

have claimed to have applications across other school subjects and outside of the classroom, 

two aspects of statistics and probability add even more potential to the application of the 

curriculum outside of the mathematics classroom: uncertainty and context (Callingham et al., 

2021). At this point in time, the combination of uncertainty and context is seen starkly in 

society’s experience of the COVID-19 pandemic (Watson & Callingham, 2020). The 

uncertainty associated with chance events and the confidence associated with decisions in 

contexts where statistics have been collected, is different from the rest of the mathematics 

curriculum, which is based on undisputed facts and proved theorems. Further, context is 

essential to any meaningful data that are collected (Cobb & Moore, 1997), and the entire 

statistical problem-solving process is based on anticipating, acknowledging, accounting for, 

and allowing for variability in these data (Bargagliotti et al., 2020). At each step in this process, 

particular skills and understandings need to be applied and combined to reach the answer to 

the statistical problem posed.  

Students’ progress in developing their statistical understanding and reasoning has been 

described in terms of an 8-zone Statistical Reasoning Learning Progression (SRLP) 

(Callingham et al., 2019). A question has arisen, however, as to why, as students progress 

through the middle school years (aged 11 to 16 years), many have difficulty moving to the 

highest zones in the learning progression but remain around the middle zones, particularly in 

Zone 4 (Callingham et al., 2019).  

Approach 

The Statistical Reasoning Learning Progression (SRLP) was developed during the 

Reframing Mathematical Futures (RMFII) project (Siemon et al., 2018). The SRLP describes 

an increasingly sophisticated hierarchy in which procedural mathematical statistics, such as 

calculation of an average or quantifying outcomes from a probability experiment, interact with 

an understanding of the context of the problem. In Zones 1 and 2, skills are limited to, for 
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example, reading a value from a graph or offering an opinion about a context with no reference 

to data. At the higher levels (Zones 7 and 8), students call on proportional reasoning with data 

integrated with contextual understanding to make decisions and draw informal statistical 

inferences. Of particular interest here are the middle levels of the 8-zone hierarchy (See 

handout).  

Students in Years 7 to 10 undertook a series of assessments based on statistical reasoning 

tasks. The student data reported here are taken from the third round of RMFII assessment, 

(Callingham et al., 2019) and have not been previously reported. Two tasks are used to 

exemplify the shifts observed in moving across zones, particularly in respect of the difficulties 

observed in moving up from of Zone 4: one based on probability (STATS) in the context of 

the interpretation and implications of winning Tattslotto; and the second based in a statistical 

context (STWN) with students contrasting two different graphical representations of the same 

data set to tell a story in the context of how long families have lived in a town. Both tasks are 

based in social contexts with which students are likely to be familiar. The abbreviated titles 

were used to identify tasks during the analysis and are used here for consistency. The tasks 

were marked by teachers based on the rubrics provided. The tasks and rubrics are shown in 

Figure 1.  

Findings and Discussion 

Table 1 presents the findings from a sample of 581 students in Years 7 to 9 (aged 13 to 15 

years) who undertook at least four statistical reasoning tasks (not just the tasks reported here) 

during the third round (MR3) of assessment. Student responses were Rasch analysed, and the 

person measures used to determine the distribution of students across the zones. 

Table 1 

Number and Proportion of Students across SRLP Zones 

 n 

Zone 1 

(%) 

Zone 2 

(%) 

Zone 3 

(%) 

Zone 4 

(%) 

Zone 5 

(%) 

Zone 6 

(%) 

Zone 7 

(%) 

Zone 8 

(%) 

Yr 7 165 19 

(11.52) 

19 

(11.52)) 

51 

(30.91) 

48 

(29.09) 

20 

(12.12) 

6 

(3.64) 

2 

(1.21) 

0 

(0.00) 

Yr 8 215 13 

(6.05) 

16 

(7.44) 

43 

(20.00) 

56 

(26.05) 

41 

(19.07) 

25 

(11.63) 

19 

(8.84) 

2  

(0.93) 

Yr 9 201 26 

(12.94) 

29 

(14.43) 

49 

(24.38) 

38 

(18.91) 

38 

(18.91) 

6 

(2.99) 

14 

(6.97) 

1 

(0.50) 

Total 581 58 

(9.98) 

64 

(11.02) 

143 

(24.61) 

142 

(24.44) 

99 

(17.04) 

37 

(6.37) 

35 

(6.02) 

3 

(0.52) 

The proportion of students in each zone is very similar to that reported elsewhere 

(Callingham et al., 2019), and in previous similar studies (Callingham & Watson, 2017). It 

should be emphasised that this analysis is based on a new and different group of RMFII 

students, and that the nature of the analysis allows for skewed distributions and is not based on 

a normal distribution. The very similar patterns shown to previous analyses suggest that the 

sticking points in the middle zones are not environmental but related to cognitive development.  

Shifts to Higher Zones 

As shown in Figure 1, the rubrics reflect an increasing sophistication and quality of 

response and their position along the SRLP is based on the Rasch analysis. Across these two 

different tasks, to reach higher levels of response students need to bring together multiple 

aspects of reasoning. 
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Figure 1. Exemplar items and rubrics.  

STATS One day Claire won Tattslotto with the numbers 1, 7, 13, 21, 22, 36. So she said she would always play the same 

group of numbers, because they were lucky. What do you think about this? 

Code 1 

Zone 3 

Affirms a belief in being lucky (e.g., I think it would be lucky I will pick the same number’s too; I don’t think 

many numbers are lucky. But I think 4, 7 & 9 are, so I guess I’d agree in a way you can have lucky numbers). 

Code 2 

Zone 4 

Rejects ‘luck’ (e.g., There is no such thing as lucky numbers ) or states that numbers were unlikely to occur 

again, or less likely to occur than other numbers (e.g., I think she shouldn’t go for the group of numbers again 

because you can’t get the same numbers after numbers, you always get different numbers all the time). 

Code 3 

Zone 6 
Implicitly recognises that all combinations of numbers have the same chance of occurring on any draw (e.g., It 

was just a stroke of luck because any number could of come up; There is no such thing as a lucky number, things 

like Tattslotto are picked at random). 

Code 4 

Zone 7 

Explicit recognition that all numbers or combinations of numbers are equally likely, may/may not offer an 

opinion (e.g., There is an equal chance for all combinations, but she’s already won once, so why keep gambling, 

why not invest the money, you would get more out of it). 

Code 5 

Zone 8 

Reasoning that recognizes equal chance and interprets Claire’s comments relative to context (e.g., It is a good 

idea to use the same numbers all the time but there is as much chance as getting any other six numbers). 

A class of students recorded the number of years their families had lived in their town. Here are 

two graphs that students drew to tell the story. 

 

 

 

Code1 

Zone 3 

Code 2 

Zone 5 

Code 3 

Zone 8 

STWN1 

Tautological response (e.g., The numbers along the bottom tell you how many years; How long people lived in 

that town). 

Response refers to one or more specific aspects (e.g., 3 and 12 have the most; 1 family had lived there 37 years, 

There are 22 kids). 

Summative or comparative response that reflects some appreciation of information overall (e.g., They range 

from all years; Not many families have stayed there for the same time). 

 

Code 1 

Zone 4 

 

Code 2 

Zone 5 

Code 3 

Zone 7 

STWN2 

Incorrect (e.g., Less people live in the town in Graph 2 than Graph 1; There are more Xs in Graph 2) or 

superficial comments related to the appearance of the graph (e.g., Graph 2 is harder to read because numbers 

are together, Graph 1 is easier to read because numbers are spread out). 

Some indication that difference recognised in terms of spread and accuracy (e.g., Graph 2 goes up in fives and 

Graph 1 doesn’t). 

Acknowledges that graphs show the same data and describes the difference in terms of the scales used (e.g. 

There is no difference from graph 1 to graph 2 except that graph 2 shows the spaces where graph 1 doesn’t; 

graph 2 says all the years between 0 and 37 – while graph 1 only tells the relevant ones).   

 

Code 1 

Zone 3 

Code 2 

Zone 5 

Code 3 

Zone 7 

STWN3 

Statistically inappropriate choice (Graph 1) with reasoning that ignores spread (e.g., Graph 1 because it only 

has the time it needs) 

Statistically appropriate choice (Graph 2) with reasoning based on personal preferences (e.g., Graph 2 because 

they have set it out better) or indicates both the same (e.g., Neither – they tell the same amount of information). 

Statistically appropriate choice (Graph 2) with reasoning that recognises the importance of seeing all the years 

(e.g., Graph 2 because you can see the difference between the years more clearly and the graph is more 

spaced out; Graph 2 because it has all the years). 

 

STWN1: What can you tell by 

looking at Graph 1? 

STWN2: What differences do 

you notice between Graph 1 and 

Graph 2? 

STWN3: Which graph is better at 

presenting information and 

“telling the story”? Explain your 

answer. 
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In the probability item (STATS), it appears that developing the complex concept of 

random, and the necessity for appreciating the probability of groups of numbers occurring 

rather than single values, as appropriate for the context of the question, is important in moving 

responses to the higher zones. The emerging recognition of randomness and the application to 

groups of numbers is evident in the Code 2 (Zone 4) response but this loses coherence and falls 

back on individual numbers (“you always get different numbers all the time”). The Code 4 

(Zone 7) response, however, is confident about working with groups of numbers but falls back 

on opinion (“but she’s already won once so why keep gambling”) to justify the thinking.  

The other item (STWN), in its two-part structure (presenting two graphs and requiring a 

comparison rather than a single description), requires several components of the context, both 

visual and textual, to be integrated for a higher-level response. Students need to recognise the 

subtlety of the comparison needed between the graphs and to bring together understanding of 

the nature of the graphs and the context of the question to reach higher zones. That the lowest 

levels of the responses (Code 1) appear in Zones 3 and 4 rather than lower down the SRLP 

indicates that comparing two graphs creates some difficulty for students. The reasoning 

demonstrated to obtain a Code 1 is procedural, (e.g., Graph 1 is easier to read because numbers 

are spread out) focussing on aspects of the graph alone, rather than the information each graph 

conveys. To reach a Zone 7 response, students have to explicitly reason by integrating both the 

visual appearance of the graph and the nature of the information conveyed (e.g., Graph 2 says 

all the years between 0 and 37—while Graph 1 only tells the relevant ones).  

Conclusion  

It appears that coordinating different types of information and bringing together diverse 

aspects of mathematics and context are critical to shift reasoning to more sophisticated levels 

of response. This capacity to bring together two or more aspects of knowledge and 

understanding is important in other areas of mathematics, including in the shift from additive 

to multiplicative thinking. The inclusion of Statistics and Probability in the Mathematics 

Curriculum (AEC, 1991) has extended the appreciation of the structure of the multiple 

understandings required when data and context need to be combined rather than considered 

separately. It is appreciating this combination that moves reasoning to higher zones. 
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