Chris Hurst
Recent curriculum documents such as the Common Core State Standards for Mathematics and the Australian Curriculum: Mathematics F to 10 continue the practice of presenting content in a linear and compartmentalized manner and appear not to accentuate the links and connections that are present in the ‘big ideas’of mathematics. Both documents seem to pay lip service to the ‘big process ideas’ or proficiencies which should be the vehicles for developing and making explicit links between and within the ‘big content ideas’. To some extent, the same criticism could be levelled at the recently developed Australian Curriculum: Science F to 10 although that document at least embeds key process ideas as one of the three strands called Science Inquiry Skills. However, it is suggested that it may be beneficial to re-think the nature of key content and to organise it for teaching based on the ‘big ideas’ of mathematics and science, emphasizing the links and connections within and between them. In attempting to deal with the ‘crowded curriculum’, teachers would do well to consider similarities between ‘big mathematical ideas’ and ‘big scientific ideas’ and to make connections explicit for children. For many teachers, this would represent a change in the way in which they view content knowledge. Teachers should be encouraged to actively seek links and connections within and between concepts and bodies of knowledge and explicitly show children how those links exist and can be used. This round table will consider these and related issues such as the nature of ‘big ideas’, models for numeracy and what an equivalent model for its scientific equivalent might look like.